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Abstract. We present algorithms to compute the genus and rational parametric equations, for implicitly defined
irreducible plane algebraic curves of arbitrary degree. Rational parameterizations exist for all irreducible
algebraic curves of genus 0. The genus is computed by a complete analysis of the singularities of plane algebraic
curves, using affine quadratic transformations. The rational parameterization techniques, essentially, reduce to
solving symbolically systems of homogeneous linear equations and the computation of polynomial resultants.

1. Introduction

Effective computations with algebraic curves and surfaces are increasingly proving useful in
the domain of geometric modeling and computer graphics where current research is involved in
increasing the geometric coverage of solids to be modeled and displayed, to include algebraic
curves and surfaces of arbitrary degree, see [Sederberg '84], [Hoffmann & Hopcroft ’85], [de
Montaudoin, Tiller & Vold ’86], [Farouki ’86], [Bajaj "88]. An irreducible algebraic plane curve
is implicitly defined by a single prime polynomial equation f(x, y) =0 over an algebraically
closed field of characteristic zero, such as the field of complex numbers. Certain plane algebraic
curves have an alternate representation, namely the rational parametric equations which are
given as (x(#), y(¢)), where x(¢) and y(¢) are rational functions in ¢, i.e., the quotient of
polynomials in 7.

Both implicit and parametric representations have their inherent advantages. It is thus
important to design algorithms for both these curve representations as well as algorithms to
convert efficiently from one to the other, whenever possible. Though all algebraic-curves have
an implicit representation, only irreducible algebraic curves with genus = {0 are rational, i.e.,
have a rational parametric representation, (see [Walker *78], p. 188). The genus of the curve
measures the deficiency of singularities on the curve from its maximum allowable limit. A
method of computing the genus of irreducible plane algebraic curves is presented in this paper,
which uses affine quadratic transformations.
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Recently, various efficient methods have been given for obtaining the parametric equations
for special low degree irreducible rational algebraic curves: degree two and three plane
algebraic curves [Abhyankar & Bajaj '87a, b], the rational space curves arising from the
intersection of degree two surfaces [Levin 79|, [Ocken, Schwartz & Sharir ’86]. The parameteri-
zation algorithms presented in this paper are applicable for implicitly defined irreducible
rational plane algebraic curves of arbitrary degree. The computed rational parameterization is
over the traditional power basis; however, one may convert this to an equivalent Bernstein form
over an arbitrary parameter range, by using the conversion algorithms of [Geisow "83].

The reverse problem of converting from parametric to implicit equations for plane algebraic
curves, called implicitization, is achieved by eliminating the single parameter from the two
parametric equations, see [Rowe "17], [Sederberg, Anderson & Goldman ’84], [Bajaj *87]. This
eliminant is also known as the Sylvester resultant, see [Salmon 1885]. Efficient computation of
the Sylvester resultant, has been considered by various authors: for univariate polynomials see
[Schwartz ’80], [Brent, Gustavson & Yun ’80] and for multivariate polynomials see [Collins *71],
[Bajaj & Royappa "83].

The rest of this paper is as follows. In Section 2 we examine the intricate relationship of
genus with curve rational parameterizations and also describe a method of computing the genus
of irreducible algebraic plane curves. Examples of rational curves are: conics (degree 2 curves);
cubics with a singular (double) point; quartics with three double point singularities, etc. In
Section 3 we present an efficient algorithm to construct rational parameterizations for a special
class of plane curves. These parameterizations are obtained by taking lines through a singular
point on the curves, with the slope of the lines being the parameter. This technique suffices for
the rational parameterization of conics, cubics with one double point and all irreducible higher
degree d curves with a (d — 1)-fold singularity. In Section 4 we generalize the algorithm of
Section 3 to provide rational parameterizations for all irreducible rational plane curves. These
rational parameterizations are obtained by taking a one parameter family (pencil) of curves of
degree d— 2 through fixed points on the original curve of degree d. Crucial here is the
distinction between disiinct and infinirely near singularities of an algebraic plane curve. Various
algorithmic algebraic techniques are illustrated, such as the mapping of points to infinity, the
‘passing’ of a pencil of curves through fixed peints, the ‘blowing up’ of singularities by affine
quadratic transformations, etc.

2. Genus and parameterization

An irreducible algebraic curve C,; of degree d in the plane is one which intersects most lines
in d points. Lines through a point P intersect C, (outside P) in general at d — mult,C, points,
where mult ,C, = multiplicity of C, at P = e = order at P of the polynomial equation describing
C;. The order of a polynomial equation at a point P with coordinates (a, b), is the minimum
(i +j), when the polynomial is expressed in terms of (x — a)'(y — b)’. If e =1, then P is called
a simple point. If e > 1, then P is a singular point of the curve C, with multiplicity e. If e = 2,
then P is also called a double point. In general, we talk about an e-ple point or an e-fold point.
This then leads to the following well known theorem for curves

Theorem 1 (Bezout). A curve of degree d, and a curve of degree d,, with no common components,
meet at dyd, points, counting multiplicities and points at infinity. (C; - C,;, = dyd, poinis.)

Consider a curve C,; described by a polynomial equation f(x, y)=0 of degree 4 and with
order e at the origin. ‘

Cyt flx, )= L axy'=f(x, )+ fusi(x, y)+--- +f(x, y)

e<i+j=d
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(where f(x, y) are homogeneous polynomials of degree i together with f,(x, y)# 0 and
f.(x, )0, so that d= degree and e = order). Here f,(x, y) is also called the degree form
and f.(x, y) is called the initial or order form. The equation of a line through the origin is
vy = tx. [ts intersection with the curve is given by

flx, tx)=/f,(x, tx)+f_(x, tx)+ - +f.(x, 1x)
=xf, (1, 1) +x7 (1, ) + -+ xA(1, 1)
=x¢[ f,(1, )x7+ - +£(1, 1)]

Lines through the origin intersect the curve, outside the origin, in d—e points. Hence the
multiplicity of the origin = e (= order of the polynomial equation describing the curve). Note
that by translation, {if (@, b) is the point P, then by setting X=x—a, y=y— b} we can
assume any point P on the curve to be the origin. Thus if the curve C, has a (4 — 1)-fold point
at the origin (e = d — 1), then lines y = 1x through the origin intersect f at one other point, and
hence x and y can be expressed as rational functions of one parameter f, i.e., rationally
parameterizes the curve.

Here we can also note that for most values of m, f.(1, m) # 0. The values of m for which it
is zero correspond to the tangents to the curve at the origin, [f,(x, y)=117_,(y —m,x)]
(Tangentus at P are thus those special lines which intersect C, at P at more than e points,
where e = multiplicity of C; at P.)

Now note, for example, that the equation of a conic has five independent coefficients and if
we take five ‘independent’ points in the plane and consider a conic passing through these
points then this will give five linear homogeneous equations in the five coefficient variables. If
the rank of the system matrix is 5, then there is a unique conic through these points. In general,
the number of independent coefficients of a plane algebraic curve C, of degree d is 3d(d + 3).

Using conics one can for example, easily prove by Bezout’s theorem that a curve of degree 4
cannot have 4 double points. In general one may see that the number of double points, say DP,
of C;is < i(d—1)(d—2). Assume DP > %(d—1)(d—2). Then since 3(d —2)(d + 1) fixed
points determine a C,_, curve and if we choose 3(d — 1)(d — 2) + 1 double points of C,, then
to determine C,_, one needs a remaining

Wd—2)(d+1)—(3(d—1)(d=2)+1)=(d—2)—1=d— 3 points.

So take d — 3 other fixed simple points of C,. Then we can pass a C,_, curve through the
above 3(d—1)d— 2)+ 1 double points of C, and d— 3 other simple points of C,. Then
counting the number of points of intersection of C, and C,_,, together with multiplicities,
yields

which contradicts Bezout. Thus assuming Bezout we see that
DP < 3(d—1)(d—2).

In general, we have Table 1.
One definition of the genus g of a curve C, is a measure of how much the curve is deficient
from its maximum allowable limit of singularities,

g=3(d=1)(d—2)~ P

where DP is a ‘proper’ counting of the number of double points of C,; (summing over all
singularities). From the earlier discussion and Bezout, we can see that in counting the number
of double points DP of C,; an e-ple point of C is to be counted as se(e — 1) double points.

However this counting is not very precise as such is the case only for the so called distinct
multiple points of C. For a multiple point, that is not distinct, one has also to consider infinitely
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Table 1

degree of curve 1 2 3 4 5 6 o d

the maximum number
of double points 0 0 1 3 6 10 .- Hd—1Xd =2

the number of inde-
pendent paramaters 2 5 9 14 20 27 e 1d(d+3)

near singularities. In general a double point is roughly either a node or a cusp. If a cusp is given
by y*—x” it is called a distinet cusp and is counted as a single double point. Cusps other than
distinct look like y* — x*™*! (an m-fold cusp). Though the multiplicity of the origin is two the
origin accounts for m double points when counted properly. The proper counting was achieved
by Noether using homogeneous ‘Cremona quadratic transformations’, see also [Walker *78].
Following [Abhyankar ’83] we can achieve the same thing by using ‘affine quadratic transfor-
mations’.

Consider for example, the cusp y*— x> =0 which has a double point at the origin. The
quadratic transformation ' (or substitution) 7 given by

x=X and y=Xy (1)
yields

0=y2—x3=)?2ﬁ2—i3=iz(fz—i),

and cancelling out the extraneous factor X* we get the nonsingular parabola 3> — X = 0. So the
origin in this case was a distinct singular point and is counted as a single double point. To
desingularize the m-fold cusp one has to make a succession of m transformations of the type
(1). Only the mth successive application of (1) changes the multiplicity of the origin from two
to one. Hence in this case, counting properly, we say that the cusp has one distinct double point
and (m — 1) infinitely near double points, giving a total DP count of m.

In a general procedure for counting double points, given an e-fold point P of a plane curve
C, we choose our coordinates to bring P to the origin and then apply (1). If now C:
f(x, y)=0, then the substitution (1) transforms C into the curve C: f(x, ¥)= 0 given by

f(% 25) =%(%. 7).
C will meet the line E: x=0 in the points P',..., P™ the roots of f(0, y)=0 which
corresponds to the tangents to C at P. If P’ is an e-fold point of C, then we shall have
e + -+ +e, <e. Wesay that P!,..., P™ are the points of C in the first neighborhood of P,
and the multiplicity of C at P is e,. Now iterate this procedure. The points of C infinitely near
P can be diagrammed by the singularity tree of C at P (see Fig. 1).

At every node of this tree (including the root) we keep a count equal to the multiplicity of C
at that point, which.will then be greater than or equal to the number of branches arising at that
node. It follows that every node higher than a certain level will be unforked, that is have a
single branch. The desingularization theorem for algebraic plane curves, see [Abhyankar ’83], or
[Walker *78], says that at every node higher than a certain level, the count equals one. In other
words, C has only a finite number of singularities infinitely near P. Thus, since C has only

! The quadratic transformation § maps the origin to the line X = 0, and is one-to-one for all points (x, y) with x # 0.
Viewed alternatively, § maps tangent directions to f at the origin to different points on the exceptional line ¥ = (.
This may be seen by noting that the lines y = mx are mapped to parallel lines ¥ = m which intersect ‘the exceptional
line at points {0, m). But g does not map the line x = 0 properly, so we must make sure that x = 0 is. not a tangent
direction to the curve at the origin. This is done by a nonsingular transformation x = uf + ¢f and y = r£ + s where
neither u£ + ¢f nor r% + 5P are tangents to f at the origin.
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Fig. 1. Singularity tree.

finitely many distinct singularities, it follows that C has only a finite number of singular points,
distinct as well as infinitely near.

Thus, by summing the counts of each node and counting e (e — 1) double points for a count
e and additionally summing over all singularities of C and their corresponding singularity trees,
we obtain a precise count of the total number of double points DP of C. This proper counting
of double points then yields the following theorem

Theorem 2 (Cayley—Riemann). g =0 iff C has a rational parameterization.

In other words the given plane curve has its maximum allowable limit of singularities, if and
only if it 1s rational.

Note also that in counting singularities we consider all the singularities of the complex
projective curve. That is we consider the real and complex singularities at both finite distance
as well as at infinity. The process of considering singularities at infinity is no different than that
at finite distance. With homogeneous coordinates (X, ¥, Z) corresponding to the affine
coordinates (x, y), and with x=X/Z and y = Y/Z, let us consider Z =10 to be the line at
infinity. By swapping one of the axis lines X =0 or ¥ = 0 with the line at infinity we can bring
the points at infinity to the affine plane. We illustrate this as well as Theorem 2 by means of an
example. Consider again the m-fb[d cusp y®— x*™*!. We have seen ecarlier that the origin
accounts for m double points when counted properly. Now consider the singularity at infinity.
We swap the Z =0 line with the ¥ =0 line by homogenizing and then setting Y =1 to
dehomogenize:

2 - 2 2 .
)4 Z2m I_X -1 — o 2m 1_x2m I-l.

The singularity at infinity is again at the origin and of multiplicity 2m — 1 accounting for
1(2m — 1)(2m — 2) double points. On applying an appropriate quadratic transformation x = X
and z = xz, the multiplicity at the origin is reduced to 2:

E‘_m—l . EC-Z

After a sequence of m — 1 additional quadratic transformations the multiplicity at the original
finally reduces to one. These infinitely near singularities then account for totally m—1
additional double points, resulting in a total DP count for the curve to be equal to

m+i2m—1)2m=2)+m—1=32m)(2m—1)
which is exactly the maximum number of allowable double points for a curve of degreé 2m + 1.

Hence the m-fold cusp has genus 0 and is rational with a parameterization given by

x=ZZ 'V=l‘2m+1
. .
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3. Parameterizing with lines

The geometric idea of parametrizing a circle or a conic is to fix a point and take a pencil of
lines through that point which meet the conic at one additional point. Hence conics always
have a rational parameterization, with the slope of the line being the single parameter. Next,
consider a cubic curve, C; which is a curve with which most lines intersect in three points. If we
consider a singular cubic curve (genus 0), SC;, then a pencil of lines through the singular
(double) point intersects SC; at one additional point and hence rationally parameterizes SC;. 1f
C, has no singular points (genus 1), then C; cannot be parameterized by rational functions.

Now intersecting a curve C with a pencil of lines through a fixed point P on it, can
efficiently be achieved by sending the point P on C to infinity. To understand this, let us first
consider an irreducible conic which is represented by the equation

g(x, y)=ax’+ by’ +cexy+dx+ey+f=0.

Bezout confirms that the irreducible conic cannot contain a double point for otherwise the
conic consists of two lines. We observe that the trivial parameterizable cases are the parabola
y?=x which has no term in x?; the parabola x* =y which has no term in y?% and the
hyperbola xy =1 which has no terms in x* and y*. The non-trivial case arises when a and b
are both non-zero, e.g. the ellipse. This then suggests that to obtain a rational parameterization
all we need to do is to kill the y® term. This can always be achieved by a suitable linear

coordinate transformation resulting in the equation
(rx+s)y+ (ux*+vx+w)=0.

from which one could easily obtain a rational parametrization

 —{(u® ot +w)

=t’ y=
* g (rt+s)

The elimination of the x? or the y* term through a linear coordinate transformation is said to
make the conic irregular in x or y respectively. Geometrically speaking, a conic being irregular
in x or y means that most lines parallel to the x or y axis respectively, intersect the conic in
one point. Remember that most lines through a fixed point on the conic meet the conic in one
additional varying point. By sending the fixed point to infinity we make all these lines parallel
to some axis and the curve irregular in one of the variables (x or y) and hence amenable to
parameterization. The coordinate transformation we select is thus one which sends any point
on the conic to infinity along either of the coordinate axes x or y.
As an example consider the unit circle and fix a simple point P (-1, 0) on it:

x, y affine coordinates (—1,0),
X, Y, Z homogeneous coordinates (—1, 0, 1),

and send P to a point at infinity along the y-axis. That is, send (—1,0,1) to (0, 1, 0).
(Explanation: A point on the y-axis is like (0, p, 1); divide by p giving (0/p,; p/p.1/p) and
then let p — oo and thereby (0, 1, 0). This we achieve by a homogeneous linear transformation
which transforms (—1, 0, 1) to (0, 1, 0)

X —aX+BY +vZ,
Y — X+ LY +37Z,
Z—oa*X+B*Y +y*Z.
The chosen point on the circle (—1, 0, 1) determines

_1=ﬁa 0:,8\5 1:B*
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and the a’s and y’s are chosen such that the det(a’s, B’s, y’s) % 0. This yields a well defined
invertible linear transformation. So let us take as our homogeneous linear transformation

X- -7,

Y— Z,

Z—=X+7Y.
We first homogenize the circle x*+y?—1=0 to X*>+ Y2 — Z?>=0. On applying the above
linear transformation, we eliminate the Y? term:

Y 4Z = (X+Y)' =0

. . . 72_x?
= 2XY=X*'-Z7Z° = Y="—"—.

2X
Then on dehomogenizing by setting Z =1, using the above linear transformation to obtain the
original affine coordinates and setting X = we obtain the rational parameterization of the
circle:

X - Y Y 1
X = o = T = T,
Z x+Y Y=z X+Y
- —(1—1%) /2t 1—1¢2
X=¢ X = ( 2)/ = —
t+(1—1¢%)/2t 1+1¢°
=1
- 1-17 1 2t
Y = y= - ~ -
2t t+(1—12)/2t 1+1

In general, curves of degree d with a distinct (d — 1)-fold point, of which the above was a
special case, can be rationally parameterized by sending the (d— 1)-fold point to infinity.
Consider f(x, y) a polynomial of degree d in x and y representing a plane algebraic curve C,
of degree d with a distinct (d — 1)-fold singularity.

Note that singularities of a plane curve can be computed by simultaneously solving the
equations f=f = f, =0 where f, and f, are the x and y partial derivatives of f, respectively.
One way of obtaining the common solutions is to find those roots of Res (f., /,)=0 and
Res,(f.. f,) =0 which are also the roots of f= 0. Here, Res (., f,) is the Sylvester resultant
of f. and f, treating them as polynomials in x, for details see [Bajaj & Royappa '87]. Note
singularities at infinity can be obtained, similarly, after replacing the line at infinity with one of
the coordinate axes. In particular on homogenizing a plane curve f(x, y) to F(X, Y, Z) we
can set Y =1 to obtain f(x, z) thereby swapping the line at infinity Z = 0 with the line ¥ = 0.
Then the above procedure can be applied to f(x, z) to find the singularities at infinity.

Let us then compute the (4 — 1)-fold singularity of the given curve C, and translate it to the
origin by a simple linear transformation. Then the polynomial describing the curve will be of
the form

fx ) =fa(x, p) +fuui(x, ¥)

where f, (degree form) consists of the terms of degree d and f,;_; consists of terms of degree
d — 1. On homogenizing this curve we obtain

F(X, Y, Z)=a, Y%+ a Y 'X+ --- +a,X¢
+b YT Z+ p YITEXZ A+ -+, X2,

Now by sending the singular point (0, 0, 1) to infinity along the Y axis we can eliminate the Y*
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term. This is done by a homogeneous linear transformation which maps the point (0, 0, 1) to
the point (0, 1, 0) and is given by

X=X, Y=Z, 6  Z=Y
which yields

(X, ¥, Z) =ayZ'+a,Z X+ - +a,X"
by ZA T 45, Z XY 4 -+ +b, X4 T,
a02d+ alzd7 I§+ A +aﬂv)_f:d

Y=—— e —
boZ' Y+ b Z4 X + - b X!

Then dehomogenizing, by setting Z =1, and using the linear transformation to obtain the
original affine coordinates

X X
X == e =

N
Z Yy Y=z

~I| N

and setting X = 7, we obtain the rational parametrization of the curve.

Alternatively we could have symbolically intersected a single parameter family ( pencil) of
lines through the (d — 1)-fold singularity with C, and obtained a rational parameterization with
respect to this parameter. This concept of passing a pencil of curves through singularities is
generalized in the next section.

4. Parameterizing with higher degree curves

From the genus formula and Bezout’s theorem we note that an irreducible rational quartic
curve in the plane has either a distinct triple point or three distinci double points etc.. The
rational parameterization of the quartic with a distinct triple point is handled by the method of
Section 3. To give the geometric idea of the method of parameterizing with a pencil of curves,
let us consider an irreducible quartic curve C, with three distincr double points. From Table 1
of Section 2 we know that 5 points define a conic. With the three double points and any simple
point of C,, a one parameter family (pencil) of conics, C,(¢) can be defined. Now C, - C,(1) = 8
points. Since the fixed points (3 double points and a simple point) account for2 +2+2+1=7
points, the remaining point on C, is the variable point, giving us a rational parametrization of
Cy, in terms of parameter 7.

Computationally we proceed with homogeneous coordinates allowing us to simultaneously
also deal with points at infinity. Consider the projective quartic C,: F( X, Y, Z) = 0 with three
distinct double points. We first obtain, by the method sketched in Section 3, the three double
point singularities of the homogeneous polynomial F( X, Y, Z) as well as any simple point on
it. Let them be given by (X3, Yy, Z)), (X5, Vs, Z,), (X5, Y3, Z3) and (X, Y,, Z,) respectively.
Consider next the general equation of a projective conic C, given by

G(X,Y, Z)=aX>+ bY>+ XY +dXZ + eYZ + fZ2 =0

which has six coefficients, however five independent unknowns as we can always divide out by
one of the nonzero: coefficients. We now try to determine these unknowns to yield a one
parameter family of curves, C,(¢). We pass C, simply through the singular double points and
the simple point of C,. (In general we shall pass a curve through an m-fold singularity with
multiplicity m — 1). In other words we equate for i=1,...,4,

F(X,. Y, Z,)=G(X, Y, Z,) =0.
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This yields a linear system of 4 equations in five unknowns. Set one of the unknowns to be ¢
and solve for the remaining unknowns in terms of 7.

Next compute the intersection of C, and C,(r), by computing Res(F, G) which is a
polynomial in X, Z and ¢ On dehomogenizing this polynomial by setting Z =1 (since
resultants of homogeneous polynomials are homogeneous) and dividing by the common factors
(x—x;)* for i=1,2,3 and (x — x4) we obtain a polynomial linear in x which yields the
rational parameterization. The process when repeated for y by taking the Res,(F, G) and
dividing by the common factors (y — y;)* for i=1, 2, 3 and (y — »,) vields a polynomial in y
and 7 which is linear in y and which then yields the rational parameterization.

As an example, consider a quintic curve with also infinitely near singularities. In particular,
the homogenized quintic cusp Cs: F(X, Y, Z)= Y?Z? — X° has a distinct double point and an
infinitely near double point (in the first neighborhood) at (0, 0, 1), and a distinct triple point
and an infinitely near double point at (0, 1, 0). Counting all the double points, properly, we see
that Cs has 6 double points and hence is of genus 0 and rational. To obtain the parameteriza-
tion we pass a one parameter family of cubics C5(7) given by

G(X,Y, Z)=aX’ +bY’ + cX°Y +dXY* + eX?Z + fY?Z + gXYZ + hXZ?
+iYZ>+;Z°
through the singularities of Cs. Passing C;(#) through the distinct double point (with multiplic-
ity 2 —1=1) 1s obtained as before by equating

F(0,0,1)=G(0,0,1) =0, (1)
and the distinct triple point, (with multiplicity 3 — 1 = 2) by equating

F(0,1,0)=G(0,1,0) =0, (2)

Fy(0,1,0)=G,(0,1,0)=0, (3)

F,(0,1,0)=6G,(0,1,0)=0. (4)

These conditions for our example curve C; makes j=0, b=0, d=0 and f=0 in Cy(¢)
yielding the curve

G(X,Y, Z)=aX>+ cX*Y + eX*Z + gXYZ + hXZ* + iYZ>.

We now wish to pass C,(¢) through the infinitely near double point in the first neighborhood
of the singularity at (0, 0, 1) of Cs. To achieve this we apply the quadratic transformation
X=X, Y=XY, Z=2Z centered at (0,0,1) to both F(X,Y, Z) and G(X, Y, Z). The
transformed equation F,= Y?Z> — X* has a double point at (0, 0, 1) and we pass the curve of
the transformed equation G, = aX? + cX?Y +eXZ +gXYZ +hZ*+iYZ? through the double
point as before by equating

Fr(0,0,1)=G,(0,0,1)=0. (5)
This condition makes # =0 in C;(¢) yielding
G(X, Y, Z)=aX?+ eX?Y + eX2Z + gXYZ +iYZ?.

Similarly we pass C; through the infinitely near double point in the first neighborhood of the
smgulanty at (O 1, 0) of Cs. To achieve this we apply the quadratm transformation X — X,
Y=Y, Z=XZ centered at (0,1, 0) to both F(X, Y, Z) and G(X, Y, Z). The transformed
equation Fr= N EVARSD '€ has a double point at (0,1,0) and we pass the curve of the
transformed equation Gr=aX + ¢¥Y + eXZ + g¥Z + iYZ? through the double point as before
by equating

Fr(0,1,0)=G,(0,1,0)=0. (6)
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This condition makes ¢ =0 in C; yielding
G(X,Y, Z)=aX>+eX*Z +gXYZ +iYZ.

Our final condition to determine a pencil of cubics Cy(¢) is to choose two simple points on
Cs, say (1, 1, 1) and (1, —1, 1) and pass C; through then by equating

F(1,1,1)=G(1,1,1) =0, (7)

F(1, -1,1)=G(1, =1,1) =0. (8)

Note that in total we applied eight conditions to determine the pencil, since nine conditions
completely determine the cubic. The last two conditions yield the equations

ate+g+i=Aq,
ate—g—i=0

In choosing the pencil C;(7) we allow one of the coefficients to be ¢ and we may divide out by
another coefficient (or choose it to be 1). The above equations vield a + e=0 and g+i=0
and on choosing a =t and g= 1 we obtain e = —1 and i = — 1. Hence our homogeneous cubic
pencil 1s given by

G(X,Y, Z,t)=tX*—1X*Z+ XYZ ~ YZ?

or by the dehomogenized pencil G;(x, y, 1) =1x’ —tx? + xp — y = 0. This yields y= —#x>
Intersecting it with the dehomogenized quintic C: y* — x” yields t?x* — x> =0 or x =% on
dividing out by the common factor x“. Finally the parametric equations of the rational quintic
Cs are given by x =7 and y= —1°.

In the general case we consider an irreducible curve C, with the appropriate number of
distinct and infinitely near singular points and 4 — 3 additional simple points of C,. Consider
again F(X, Y, Z) and G(X, Y, Z) as the homogeneous equations of curves C, and C,_,
respectively. For a distinct singular point of multiplicity m of C, at the point (X, Y,, Z,) we
pass the curve C,_, through it with a multiplicity of m — 1. To achieve this we equate

F(X, Y, Z)=G(X, Y, Z),
F;;'(Xn Y, Zi)=GX(Xh Y., Z,),
Fy(X, Y, Z,)=Gy(X, Y, Z),
Fex (X, Y., Z,) = Gy (X, Y, Z;),
Fyy (X, Y, Z) = Gyy(X,, Y, Z,),
Fyy(X, Y, Z,) = Gyy( X, Y, Z),

Foy( X, Yoo Z) =Gy (X, Y., Z.), O<jt+k<m—2.

For an infinitely near singular point of €, with its associated singularity tree we pass the
curve C,;_, with multiplicity » — 1 through each point of the points of multiplicity r in the first,
second, third, ..., neighborhoods. To achieve this we apply quadratic transformations 7, to both
F(X, Y, Z)and G(X, Y, Z) centered around the infinitely near singular points corresponding
to the singularity tree. The appropriate multiplicity of passing is achieved by equating the
transformed equations F, and G, and their partial derivatives as above.

A simple counting argument now shows us that this method generates the correct number of
conditions which specifies C,;_, and furthermore the total intersection count between C, and
C,_, satisfies Bezout. A curve C,; of genus =0 has the equivalent of exactly 3(d — 1)(d — 2)

double points. Then to pass a curve €, _, through these double points and 4 — 3 other fixed
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simple points of C, and one variable point specified by ¢, the total number of conditions (= to
the total number of linear equations) is given by

Hd=1)(d=2)+(d—3)+1=3(d—2)(d+1)

which is exactly the number of independent unknowns to determine C,_, (see Table 1 of
Section 2). Next, counting the number of points of intersection of C, and C,_»

(d—10d—2) +d—341=(d—Dd=CrsCy

satisfying Bezout. For details of the applicability of Bezout’s theorem with respect to infinitely
near singularities, see [Abhyankar *73]. Then computing the Res, (C,, C,_,) which yields a
polynomial of degree d(d — 2) in y and dividing by the common factors corresponding to the
(d — 3) simple points (a polynomial of dégree (d—3)in y) and 3(d — 2)(d — 1) double points
(a polynomial of degree (d — 2)(d — 1) in y) yields a polynomial in y and ¢ which is linear in y
(for the single variable point) and thus gives a rational parameterization of y in terms of r.
Similarly repeating with Res (C,, C, ,) yields a rational parameterization of x in terms of 7.

As a final example consider the m-fold cusp y* — x*™*! once again. We know from Section
2 that it is a rational curve with genus 0 and with a distinct double point and m — 1 infinitely
near double points at the origin (0, 0, 1) and a distinct (2m — 1)-fold singularity and m —1
infinitely near double points at infinity (0, 1, 0). Now we pass a pencil of curve C,,,_, of degree
2m — 1 appropriately (as explained above) through these singularities and also through 2m + 1
— 3 =2m — 2 simple points of the m-fold cusp C,,,. ;.

In the following let F(X, ¥, Z) =0 be the equation of C,,,,, and G(X, Y, Z) the equation
of C,,,_;. Now the conditions available to specify a pencil of curves C,,,_; is given as follows.
A total of 2m — 2 conditions are given by equating F and G at the 2m — 2 simple points of
Cy,ns1- Further by equating F and G and the corresponding transformed F; and G
(transformed by a sequence of quadratic transformations) at the distinct and infinitely near
double points of the origin (0, 0, 1) and infinitely near double points of infinity (0, 1, 0). This
totall accounts for m + m — 1 = 2m — 1 additional conditions. Finally through the (2m — 1)-fold
singularity at infinity of C,,,., the pencil C,,,_; is passed with multiplicity 2m — 2 which is
obtained by equating the equations and the partial derivatives Fyiyx = Gyiyx forall 0 <j+k <
2m — 2 which vields 3(2m — 2)(2m — 1) conditions. One final condition is achieved by equating
one of the coefficients of ,,,_, to ‘z’. Hence totally the conditions available to specify the
pencil of curves C,,,_; 1s given by

1+2m—2+42m—1+32m-=2)2m—-1)=32m—1)2m +2)

which is exactly the number of conditions required to specify a pencil of curve C,,, ; as given
by Table 1 in Section 2. This then yields a linear system of (2m — 1)( + 1) equations in the
same number of unknowns and can be easily solved.

Finally, note that the total number of intersections (counting multiplicities) between Cymn
and C,,,., are given by 1 {single variable point} + (2m — 2) {fixed simple points} + 2(2m — 1)
{double points} + 2m — 1)2m — 2) {2m — 2 multiplicity of C,,,_; at the (2m — 1)-fold singu-
larity of G401} = @m — 1)(2m + 1) satisfying Bezout. Hence on computing the
Res (G, 15 Coyn—1) and dividing by the common factors corresponding to the (2m — 2) simple
points, (2m — 1) double points and the 2m — 2 multiplicity of C,,,_; at the (2m — 1)-fold
singularity of C,,,,; yields a polynomial in y and ¢ which is linear in y (for the singte variable
point) and thus gives a rational parameterization of y in terms of r. Similarly repeating with
Res (G, 01, Copy—1) yields a rational parameterization of x in terms of 7.
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5. Conclusion

In this paper we presented algorithms to obtain rational parameterizations of irreducible
algebraic curves of genus 0. These methods also apply to all irreducible planar algebraic curves,
where planar curves are either specified by a single polynomial equation in the plane,
f(x, y)=0 or may be specified by two polynomial equations in space, f(x, y, z)=0 and
g(x, y, z) = 0 (defining an irreducible space curve) where one of the two surface equations is
rational. In the latter case the two equations specifying the space curve are easily mapped to a
single polynomial equation k(s, 7) =0 describing the curve in the parametric plane s—¢ of the
rational surface. This mapping between the (x, y, z) points of the space curve and the (s, 1)
points of the plane curve is birational (almost one-to-one and onto) and hence a rational
parameterization of this plane curve gives a rational parameterization of the space curve.
Rational parameterization algorithms for surfaces thus provide this birational mapping be-
tween intersection curves in space and plane curves. For algorithms to parameterize low degree
rational surfaces see [Abhyankar & Bajaj ’87a, b], [Sederberg '87]. Rational parameterization
techniques for irreducible algebraic space curves which are specified by two polynomial
equations in space, without conditions on the rationality of the defining surfaces, are consid-
ered in [Abhyankar & Bajaj "87c].
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