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Analytic Shape Representations
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Linear Interpolation on a line segment

    p0          p        p1

The Barycentric coordinates !  = (!0 !1) for any point p on line

segment <p0 p1>, are given by
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Linear interpolation over a triangle

p0

p1 p        p2

For a triangle p0,p1,p2, the Barycentric coordinates

!  = (!0 !1 !2) for point p,
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Linear interpolant over a tetrahedron

Linear Interpolation within a
• Tetrahedron (p0,p1,p2,p3)

 !  = !i  are the barycentric coordinates of p
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Other 3D Finite elements

• Unit Pyramid (p0,p1,p2,p3,p4)

     p0

p1       p2     p          p3

            p4
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Other 3D Finite Elements

• Unit Cube (p1,p2,p3,p4,p5,p6,p7,p8)

– Tensor in all 3 dimensions
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Non-linear finite elements-3d
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•Irregular prism

–Irregular prisms may be used to represent data.
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Non-Linear Algebraic Curve and Surface Finite
Elements ?
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The conic curve interpolant is the zero of the bivariate quadratic

polynomial interpolant over the triangle



Algebraic Curve, Surface Splines

We shall consider the modeling of domains and function fields using
algebraic splines

Algebraic Splines are a complex of piecewise :

algebraic plane & space curves

algebraic surfaces
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So what are Algebraic Splines, again ?

Collection (Complex) of smooth finite elements of polynomial
(algebraic) curves and surfaces with prescribed order of continuity
between the finite elements.

1 The splines are variously called Simplex, Box, Polyhedral
depending on the support of the polynomial pieces.

2 The splines also can variously use the B-basis (B stands for
Basis) or the BB-basis (BB stands for Bernstein-Bezier), or the
C-basis (C for Chebyshev), etc. depending on the choice of
polynomial basis

3 B-Splines (E.g. UBs or NUBs) or B-patches or Rational B-splines
(e.g. NURBs) or T-Splines or X-splines etc. are just several
examples of polynomial splines which are rational.
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Brief History of Algebraic Splines

1 A-Splines:
T-PACs, Cubics [Sederberg(’98),Patterson-Paluzny(’99)]
Ck A-splines within triangles [Bajaj,Xu(’99)]
Regular A-splines over rectangular domains [Xu,Bajaj (’01)]
A-splines in Data Fitting [Bajaj,Xu(’03)]

2 A-Patches:
C1 piecewise quadric patches [Dahmen (’89)]
Clough-Tocher split for C1 cubic patches [Guo (’91]
Single valued cubic C1 A-patches [Bajaj, Chen, Xu (’95)]
Quintic C2 A-patches [Bajaj, Xu (’97)]
Rational C1 A-patches [Xu, Bajaj (’01)]
C1 Prism A-patches and shell A-patches [Bajaj, Xu (’02,’03)]
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Ck Triangular A-Splines

An A-spline element of degree d over the triangle [p1p2p3] is defined
by

Gd(x , y) := Fd(α) = Fd(α1, α2, α3) = 0

where
Fd (α1, α2, α3) =

X

i+j+k=d
bijk Bd

ijk (α1, α2, α3)), Bd
ijk (α1, α2, α3)) =

d!

i!j!k!
αi

1αj
2αk

3

and (x , y)T and (α1, α2, α3)
T are related by
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C1 Cubic Triangular A-Spline
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Rational Parametric Form of A-Splines

and in parametric spline form

X (t) =
d∑

i=0

wiBd
i (t)bi/

d∑

i=0

wiBd
i (t), t ∈ [0, 1]

where bi ∈ R3, wi ∈ R and Bd
i (t) = {d !/[i!(d − i)!]}t i(1− t)d−i

A-Splines: Local Interpolation and Approximation Using Gk -
Continuous Piecewise Real Algebraic Curves Computer Aided
Geometric Design, (1999)
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Ck A-Patches
A-Patches are surface finite elements.
A-Patch element of degree d over the tetrahedron p1, p2, p3, p4 is
defined by

Gd(x , y , z) := Fd(α) = Fd(α1, α2, α3, α4) = 0

where

Fd(α1, α2, α3, α4) =
∑

i+j+k+l=d

αijklBd
ijkl(α1, α2, α3, α4)

and
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Cubic A-patches on Tetrahedral Domains

C1 Modeling with Cubic A-patches ACM Transactions on
Graphics, 1995
C1 Modeling with A-patches from Rational Trivariate Functions
Computer Aided Geometric Design, (2001)

Geometric Modeling and Visualization—Bajaj ( Department of Computer Sciences, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.cs.utexas.edu/ bajaj )The University of Texas at Austin CS384R-Fall2007 51 / 25



Prism C1 A-patches
Low degree algebraic surface finite element with dual implicit and
rational parametric representations.
The A-patch element is defined within a prism scaffold. For each
triangle vivjvk of a triangulation of the molecular surface, let

vl(λ) = vl + λnl , l = i , j , k

Define the prism

Dijk := {p : p = b1vi(λ) + b2vj(λ) + b3vk (λ), λ ∈ Iijk}
where (b1, b2, b3) are the barycentric coordinates of points in
vivjvk .

Hierarchical Multiresolution Reconstruction of Shell Surfaces
Computer Aided Geometric Design, (2002)
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Can we convert between Algebraic Splines and
Parametric Splines ?

Figure: C1 Rational Algebraic Splines

Answer: Since the algebraic plane/space curve and/or algebraic
surface in general are not rational we need to construct rational
parametric spline approximations. !

NURBs Approximation of A-splines and A-patches International
Journal of Computational Geometry and Applications, (2003)
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Additional Reading 
• C. Bajaj, G. Xu

A-Splines: Local Interpolation and Approximation Using Gk- Continuous Piecewise Real 
Algebraic Curves

Computer Aided Geometric Design, 16:6(1999), 557-578.   http://www.cs.utexas.edu/
~bajaj/cs384R08/reading/ck-aspline.pdf

•  
• C.Bajaj  “Free Form Modeling with Implicit Surface Patches (Chap 

4 of Bloomenthal et al book)”  http://www.cs.utexas.edu/~bajaj/
cs384R08/reading/chap4-implicit.pdf

• C.Bajaj, G.Xu  “Smooth Shell Construction with Mixed Prism Fat 
Surfaces”  http://www.cs.utexas.edu/~bajaj/cs384R08/reading/
smooth-shell.pdf


