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Lecture 3

Algebraic Curves and Surfaces: 
Implicit and Parametric forms

Example Algebraic Surfaces

The Clebsch Diagonal Cubic The Cayley Cubic The Ding-Dong Surface

81 ∗ x3 + 81 ∗ y3 + 81 ∗ z3 − 189 ∗ x2 ∗ y − 189 ∗ x2 ∗ z
−189 ∗ y2 ∗ x − 189 ∗ y2 ∗ z − 189 ∗ z2 ∗ x − 189 ∗ z2 ∗ y
+54 ∗ x ∗ y ∗ z + 126 ∗ x ∗ y + 126 ∗ x ∗ z + 126 ∗ y ∗ z −
9 ∗ x2,−9 ∗ y2 − 9 ∗ z2 − 9 ∗ x − 9 ∗ y − 9 ∗ z + 1

−5∗x2∗y−5∗x2∗z−
5∗ y2 ∗ x−5∗ y2 ∗ z−
5∗z2∗y −5∗z2∗x+2∗
x∗y +2∗x∗z +2∗y ∗z

x2 + y2 − (1− z) ∗ z2

(27 real lines with 10 triple points) (9 real lines = 6 connect-
ing 4 double points, and
3 in a coplanar config)
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Algebraic Curve, Surface Splines

We shall consider the modeling of domains and function fields using
algebraic splines

Algebraic Splines are a complex of piecewise :

algebraic plane & space curves

algebraic surfaces
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Algebraic Plane curves

An algebraic plane curve in implicit form is a hyperelement of
dimension 1 in R2:

f (x , y) = 0 (1)

An algebraic plane curve in parametric form is an algebraic variety
of dimension 1 in R3. It is also a rational mapping from R1 into R2.

x = f1(s)/f3(s) (2)
y = f2(s)/f3(s) (3)
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Algebraic Space curves

An algebraic space curve can be implicitly defined as the
intersection of two surfaces given in implicit form:

f1(x , y , z) = 0 f2(x , y , z) = 0 (4)

or alternatively as the intersection of two surfaces given in
parameteric form:

(x = f1,1(s1, t1), y = f2,1(s1, t1), z = f3,1(s1, t1)) (5)
(x = f1,2(s2, t2), y = f2,2(s2, t2), z = f3,2(s2, t2)) (6)

where all the fi,j are rational functions in si , tj
Rational algebraic space curves can also be represented as:

x = f1(s), y = f2(s), z = f3(s) (7)

where the fi are rational functions in s.
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Parameterization of algebraic curves

Theorem An algebraic curve P is rational iff the Genus(P)= 0.

The proof is classical, though non-trivial. See also, Abhyankar’s
Algebraic Geometry for Scientists & Engineers AMS Publications,
(1990)

Constructive proof, genus computation, and parameterization
algorithm is available from:

Automatic Parameterization of Rational Curves and Surfaces III :
Algebraic Plane Curves Computer Aided Geometric Design, (1988)
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Parameterization of algebraic space curves ..1

For algebraic space curves C given as intersection of two algebraic
surfaces there exists a birational correspondence between points of C
and points of a plane curve P.

The genus of C is same as the genus of P.

Hence C is rational iff Genus(P) = 0.

Algorithm :

Construct a birationally equivalent plane curve P from C
Generate a rational parametrization for P
Construct a rational surface S containing C.

Automatic Parameterization of Rational Curves and Surfaces IV :
Algebraic Space Curves ACM Transactions on Graphics, (1989)
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Parameterization of algebraic space curves ..2
Given: Irreducible space curve C = (f = 0 ∩ g = 0), and f , g not tangent
along C.
Compute: Project C to an irreducible plane curve P, properly, to yield a
birational map from P to C.

X1

Y1

X

Y

X Y

Z

1 Space curve C as intersection of two axis aligned cylinders

C : (f = z2 + x2 − 1 ∩ g = z2 + y2 − 1) (8)

2 Badly chosen projection direction results in P not birationally related to C

P : (x2 + z2 − 1)2 = 0 (9)

3 Birationally equivalent plane curve P with properly chosen projection direction

P : (8y2
1 − 4x1y1 + 5x2

1 − 9)(8y2
1 + 12x1y1 + 5x2

1 − 1) = 0 (10)
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Parameterization of algebraic space curves ..3

Projection can be computed using Elimination Theory. One way to eliminate a
variable from two polynomials, is via Sylvester’s polynomial resultant:

Given two polynomials

f (x) = amxm + am−1xm−1...a0 (11)
g(x) = bnxn + bn−1xn−1...b0 (12)

The Sylvester resultant matrix is constructed by rows of coefficients of f ,
shifted, followed by rows of coefficients of g, shifted.
To project along the z axis, write both equation as just polynomials in z,
construct the matrix of coefficients in x , y , and the Sylvester resultant
(projection) is the determinant.
Of course, the z axis may not be a proper projection direction. Hence first
choose a valid transformation, to enable the projection to yield a rational
(inverse) map.
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Parameterization of algebraic space curves ..4
Choosing a valid projection direction:

Consider a general linear transformation to apply to f , g:

x = a1x1 + b1y1 + c1z1, y = a2x1 + b2y1 + c2z1, z = a3x1 + b3y1 + c3z1 (13)

On substituting, we obtain the transformed equations

f1(x1, y1, z1) = 0, g1(x1, y1, z1) = 0

Compute Resultant h(x1, y1) eliminating z1 to yield the projected plane curve
P: h = 0.
To obtain a birational inverse map z1 = H(x1, y1), which exists when the
projection degree is 1, we need to satisfy:

Determinant of linear transformation to be nonzero
Equation h of projected plane curve P is not a power of an irreducible
polynomial.

A random choice of coefficients for the linear transformation, works
with high probability.
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Algebraic surfaces

An algebraic surface in implicit form is a hyperelement of
dimension 2 in R3:

f (x , y , z) = 0 (14)

An algebraic surface in parametric form is an algebraic variety of
dimension 2 in R5. It is also a rational mapping from R2 into R3.

x = f1(s, t)/f4(s, t) (15)
y = f2(s, t)/f4(s, t) (16)
z = f3(s, t)/f4(s, t) (17)
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Example Algebraic Surfaces

The Clebsch Diagonal Cubic The Cayley Cubic The Ding-Dong Surface

81 ∗ x3 + 81 ∗ y3 + 81 ∗ z3 − 189 ∗ x2 ∗ y − 189 ∗ x2 ∗ z
−189 ∗ y2 ∗ x − 189 ∗ y2 ∗ z − 189 ∗ z2 ∗ x − 189 ∗ z2 ∗ y
+54 ∗ x ∗ y ∗ z + 126 ∗ x ∗ y + 126 ∗ x ∗ z + 126 ∗ y ∗ z −
9 ∗ x2,−9 ∗ y2 − 9 ∗ z2 − 9 ∗ x − 9 ∗ y − 9 ∗ z + 1

−5∗x2∗y−5∗x2∗z−
5∗ y2 ∗ x−5∗ y2 ∗ z−
5∗z2∗y −5∗z2∗x+2∗
x∗y +2∗x∗z +2∗y ∗z

x2 + y2 − (1− z) ∗ z2

(27 real lines with 10 triple points) (9 real lines = 6 connect-
ing 4 double points, and
3 in a coplanar config)
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Cubic Algebraic Surfaces: Historical Gossip Column!

[1849 Cayley, Salmon] Exactly 27 straight lines on a general cubic
surface

[1856 Steiner] The nine straight lines in which the surfaces of two
arbitrarily given trihedra intersect each other determine together with
one given point, a cubic surface.

[1858,1863 Schlafli] classifies cubic surfaces into 23 species with
respect to the number of real straight lines and tri-tangent planes on
them

[1866 Cremona] establishes connections between the 27 lines on a
cubic surface and Pascals Mystic hexagram:- If a hexagon is inscribed
in any conic section, then the points where opposite sides meet are
collinear.
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45 Tri-Tangents on Smooth Cubic Surfaces
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Why are the 27 lines useful to geometric modeling ?

Given two skew lines on the cubic surface f (x , y , z) = 0

l1(u) =




x1(u)
y1(u)
z1(u)



 and l2(u) =




x2(u)
y2(u)
z2(u)





One can derive the following surface parameterization :

P(u, v) =




x(u, v)
y(u, v)
z(u, v)



 =
al1 + bl2

a + b
=

a(u, v)l1(u) + b(u, v)l2(v)

a(u, v) + b(u, v)

where
a = a(u, v) = ∇f (l2(v)).[l1(u)− l2(v)]

b = b(u, v) = ∇f (l1(v)).[l1(u)− l2(v)]
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Algorithm for Computing the 27 Lines

f (x , y , z) =
Ax3 + By3 + Cz63 + Dx62y + Ex2z+

Fxy2 + Gy2z + Hxz2 + Iyz2 + Jxyz + kx2+
Ly2 + Mz2 + Nxy + Oxz + Pyz + Qx + Ry + Sz + T = 0

Through intersection with tangent planes, one can reduce this to

f̂2(x̂ , ŷ) + ĝ3(x̂ , ŷ) = 0

With a generic parameterization of the singular tangent cubics, one
derives a polynomial P81(t) of degree 81.
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Properties of the polynomial P81(t)

Theorem The polynomial P81(t) obtained by taking the resultant of f̂2
and ĝ3 factors as P81(t) = P27(t)[P3(t)]6[P6(t)]6, where P3(t), and
P6(t) are degree 3 and 6 respectively.

Theorem Simple real roots of P27(t) = 0 correspond to real lines on
the surface.

Proof and algorithm details available from

Rational parameterizations of non singular cubic surfaces ACM
Transactions on Graphics, (1998)
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Some Examples

Geometric Modeling and Visualization—Bajaj ( Department of Computer Sciences, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.cs.utexas.edu/ bajaj )The University of Texas at Austin CS384R-Fall2007 18 / 25



Parameterization of algebraic surfaces

Theorem An algebraic surface S is rational iff the Arithmetic
Genus(S)= Second Pluri-Genus (S) = 0.

The proof is attributed to Castelnuovo. See, Zariski’s Algebraic
Surfaces Ergeb. Math. , Springer, (1935)

Several examples of well known rational algebraic surfaces include:
Cubic, Del Pezzo, Hirzebruch, Veronese, Steiner, etc.
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What if the Algebraic Curve and/or Surface is Not
Rational ?

Answer: Construct Rational Spline Approximations for a piecewise
parameterization!
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Rational Spline Approximation of Algebraic Plane
Curves

Input: Given a real algebraic curve C of degree d , a bounding box B, a
finite precision real number ε and integers m, n with m + n ≤ d . The
curve C within the bounding box B is denoted as CB.

Output: A C−1, C0 or C1 continuous piecewise rational ε-approximation
of all portions of C within the given bounding box B, with each rational
function Pi

Qi
of degree Pi ≤ m and degree Qi ≤ n and m + n ≤ d .

Piecewise Rational Approximation of Real Algebraic Curves Journal of
Computational Mathematics, (1997)
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Rational Spline Approximation of
(x2 + y2)3 − 4x2y2 = 0 in Ganith
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2. Algorithm

Compute the intersections, the singular points S and the
x-extreme points T of CB.

Compute Newton factorization (via Hensel lifting) for each (xi , yi)
in S and obtain a power series representation for each analytic
branch of C at (xi , yi) given by

{
X (s) = xi + ski

Y (s) =
∑∞

j=0 c(i)
j sj , c(i)

0 = yi
(18)

or {
Y (s) = yi + ski

X (s) =
∑∞

j=0 c̃(i)
j sj , c̃(i)

0 = xi
(19)
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3. Algorithm Contd.

Compute Pmn(s)
Qmn(s) the (m, n) rational Padé approximation of Y (s).

Compute β > 0 a real number, corresponding to points
(x̃i = X (β), ỹi = Y (β)) and (x̂i = X (−β), ŷi = Y (−β)) on the
analytic branch of the original curve C, such that Pmn(s)

Qmn(s) is
convergent for s ∈ [−β,β].
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4. Algorithm Contd.

Modify Pmn(s)/Qmn(s) to P̃mn(s)/Q̃mn(s) such that
P̃mn(s)/Q̃mn(s) is C1 continuous approximation of Y (s) on [0, β],

Denote the set of all the points (x̃i , ỹi), (x̂i , ŷi), the set T and the
boundary points of CB by V . Starting from each (simple) point
(xi , yi) in V , CB is traced out by the Taylor approximation

X (s) = xi + s

Y (s) =
∞∑

j=0

c(i)
j sj , c(i)

0 = yi
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5. Results

Figure: (x2 + y2)3 − 4x2y2 = 0
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Rational Spline Approximation of Space Curves

Given a real intersection space curve SC which is either the
intersection of two implicitly defined surfaces
f1(x , y , z) = 0, f2(x , y , z) = 0, or, the intersection of two parametric
surfaces defined by

X1(u1, v1) = [G11(u1, v1) G21(u1, v1), G31(u, v1)]
T

X2(u2, v2) = [G12(u2, v2) G22(u2, v2), G32(u2, v2)]
T

within a bounding box B and an error bound ε > 0, a continuity index k ,
construct a Ck (or Gk ) continuous piecewise parametric rational
ε-approximation of all portions of SC within B.

NURBS Approximation of Surface/Surface Intersection Curves
Advances in Computational Mathematics, (1994)
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Results from Ganith - Intersection of Two implicit
surfaces
Surfaces: x4 + y4 + z = 0 and y2 + z = 0
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Results from Ganith - Intersection of Implicit and
Parametric Surfaces
Surfaces: x2 + z2 + 2z = 0 and x = s+st2

1+t2 , y = 2−2t2

1+t2 , z = 4t−2−2t2

1+t2

Geometric Modeling and Visualization—Bajaj ( Department of Computer Sciences, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.cs.utexas.edu/ bajaj )The University of Texas at Austin CS384R-Fall2007 29 / 25



Rational Spline Approximation of Algebraic Surfaces

Given an implicit surface defined by a function f (x , y , z) = 0 and
bounding box, create a piecewise rational spline approximation of the
surface within the bounding box.

Spline Approximations of Real Algebraic Surfaces Journal of Symbolic
Computation, Special Isssue on Parametric Algebraic Curves and
Applications, (1997)
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Results from Ganith

Cartan Surface: f = x2 − y ∗ z2 = 0 has a singular point at (0, 0, 0)
and a singular line (x = 0, z = 0).
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Results from Ganith

Patch of a Steiner Surface:
f = x2 ∗ y2 + y2 ∗ z2 + z2 ∗ x2 − 4 ∗ x ∗ y ∗ z = 0 has a singular curve
along x-axis, y -axis, z-axis and a triple point at the origin.
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Lower Degree Spline Approximation of Rational
Parametric Surfaces
For a rational parametric surface :

x(s, t) =
X (s, t)
W (s, t)

, y(s, t) =
Y (s, t)
W (s, t)

, z(s, t) =
Z (s, t)
W (s, t)

Constructing lower degree rational spline approximations require
solutions to sub-problems:

1 Domain poles
2 Domain base points
3 Surface singularities
4 Complex parameter values
5 Infinite parameter values

Triangulation and Display of Arbitrary Rational Parametric Surfaces,
Proceedings: IEEE Visualization ’94 Conference
Finite Representations of Real Parametric Curves and Surfaces, Intl.
Journal of Computational Geometry and Applications, (1995)
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Infinite parameter range

Consider the unit sphere:

implicit form: f (x , y , z) = x2 + y2 + z2 − 1 = 0

parametric form:

x = 2s/(1 + s2 + t2) (20)
y = 2t/(1 + s2 + t2) (21)

z = 1− s2 − t2/(1 + s2 + t2) (22)

The point ( 0 , 0 , -1 ) can only be reached when both s and t tend to
infinity.
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Complex parameter values

We may need complex values to get real points

Consider the rational cubic curve:

implicit form: f (x , y) = x3 + x2 + y2 = 0

parametric form: x(s) = −s2 + 1, y(s) = −s(s2 + 1)

The origin can only be reached with s =
√
−1 .
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Poles
The denominator polynomial f4(s, t) may be 0, yielding a polynomial
pole curve

Consider a hyperboloid of 2 sheets: implicit form:

f (x , y , z) = z2 + yz + xz − y2 − xy − x2 − 1 = 0

parametric form:

x(s, t) = 4s/(5t2 + 6st + 5s2 − 1) (23)
y(s, t) = 4t/(5t2 + 6st + 5s2 − 1) (24)

z(s, t) = (5t2 + 6st − 2t + 5s2 − 2s + 1)/(5t2 + 6st + 5s2 − 1) (25)

The problem arises from the polynomial pole curve
5t2 + 6st − 2t + 5s2 − 2s + 1 = 0 in the parameter domain.

Geometric Modeling and Visualization—Bajaj ( Department of Computer Sciences, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.cs.utexas.edu/ bajaj )The University of Texas at Austin CS384R-Fall2007 36 / 25



Base points

All the polynomials may equal 0 for some values of s and t , thus
causing curves ( seam curves ) to be missing from the parametric
surface
Hyperboloid of 1 sheet with seam curve gaps caused by two base
points :
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Handling Base points

THEOREM : Let (a, b) be a base point of multiplicity q. Then for any
m ∈ R, the image of a domain point approaching (a, b) along a line of
slope m is given by (X (m), Y (m), Z (m)W (m) =

q∑

i=0

(
∂qX

∂sq−i∂t i (a, b))mi ...
q∑

i=0

(
∂qX

∂sq−i∂t i (a, b))mi

COROLLARY : If the curves X (s, t) = 0, ..., W (s, t) = 0 share t tangent
lines at (a, b), then the seam curve (X (m), Y (m), Z (m), W (m)) has
degree q − t . In particular, if X (s, t) = 0 have identical tangents at
(a, b), then for all m ∈ R the coordinates (X (m), ..., W (m)) represent a
single point.
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Parametric surfaces with a point, curve singularities
A Cubic Rational Surface:

The Steiner Rational Surface:
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Algebraic Surface Blending, Joining, Least Squares
Spline Approximations

Input: A collection of points, curves, derivative jets (scattered data) in
3D.

Output: A low degree, algebraic surface fit through the scattered set
of points, curves, derivative jets, with prescribed higher order
interpolation and least-squares approximation.

The mathematical model for this problem is a constrained minimization
problem of the form :

minimize xT MA
T MAx subject to MIx = 0, xT x = 1,

MI and MA are interpolation and least-square approximation matrices,
and x is a vector containing coefficients of an algebraic surface.
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Theoretical Basis - I

Definition
Two algebraic surfaces f (x , y , z) = 0 and g(x , y , z) = 0 meet with Ck

rescaling continuity at a point p or along an irreducible algebraic curve
C if and only if there exists two polynomials a(x , y , z) and b(x , y , z),
not identically zero at p or along C, such that all derivatives of af − bg
up to order k vanish at p or along C.
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Theoretical Basis - II

Theorem

Let g(x , y , z) and h(x , y , z) be distinct, irreducible polynomials. If the
surfaces g(x , y , z) = 0 and h(x , y , z) = 0 intersect transversally in a
single irreducible curve C, then any algebraic surface f (x , y , z) = 0
that meets g(x , y , z) = 0 with Ck rescaling continuity along C must be
of the form f (x , y , z) = α(x , y , z)g(x , y , z) + β(x , y , z)hk+1(x , y , z). If
g(x , y , z) = 0 and h(x , y , z) = 0 share no common components at
infinity. Furthermore, the degree of α(x , y , z)g(x , y , z) ≤ degree of
f (x , y , z) and the degree of β(x , y , z)hk+1(x , y , z) ≤ degree of
f (x , y , z).

Higher-Order Interpolation and Least-Squares Approximation Using
Implicit Algebraic Surfaces ACM Transactions on Graphics, (1993)
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Quartic Joining Surfaces

Figure: C1 Interpolation at the Joins and Least-Squares Approximation in the
Middle
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Piecewise C1 Cubic Fit

Figure: C1 Cubic Rational Algebraic Spline
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So what are Algebraic Splines, again ?

Collection (Complex) of smooth finite elements of polynomial
(algebraic) curves and surfaces with prescribed order of continuity
between the finite elements.

1 The splines are variously called Simplex, Box, Polyhedral
depending on the support of the polynomial pieces.

2 The splines also can variously use the B-basis (B stands for
Basis) or the BB-basis (BB stands for Bernstein-Bezier), or the
C-basis (C for Chebyshev), etc. depending on the choice of
polynomial basis

3 B-Splines (E.g. UBs or NUBs) or B-patches or Rational B-splines
(e.g. NURBs) or T-Splines or X-splines etc. are just several
examples of polynomial splines which are rational.
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Additional Reading 

• The references given below include the ones cited in the lecture 
slides. Please check for pdf’s of these references on university 
computers from http://cvcweb.ices.utexas.edu/cvc/papers/
papers.php

• C. Bajaj, S. Abhyankar
Computations with Algebraic Curves
Proceedings: International Symposium on Symbolic and Algebraic Computation, ISSAC88, Lecture Notes 

in Computer Science, No. 358, Springer-Verlag, (1989), 279-284 
• C. Bajaj

Geometric Modeling with Algebraic Surfaces
The Mathematics of Surfaces III, edited by D. Handscomb, Oxford University Press, (1990), Chapter I, 
3-48. 
Invited Paper: 3rd IMA, Conference on the Mathematics of Surfaces.

• C. Bajaj
Surface Fitting with Implicit Algebraic Surface Patches
Topics in Surface Modeling, edited by H. Hagen, SIAM Publications, (1992), Chapter 2, 23-52.

• S. Abhyankar, C.Bajaj  “Parameterization of Algebraic Curves III”  
http://www.cs.utexas.edu/~bajaj/cs384R08/reading/
ParamIII.pdf


