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1 What is an Algebraic Curve or Surface?

We review some basic terminology from algebraic geometry that we shall use in subsequent sections.
These and additional facts can be found for example in [38].

The set of real and complex solutions (or zero set Z(C)) of a collection C of polynomial equations

f1(x1, ..., xd) = 0
...

fm(x1, ..., xd) = 0 (1)

with coefficients over the reals R or complexes C, is referred to as an algebraic set. The algebraic set
defined by a single equation (m = 1) is also known as a hypersurface. A algebraic set that cannot
be represented as the union of two other distinct algebraic sets, neither containing the other, is said
to be irreducible. An irreducible algebraic set Z(C) is also known as an algebraic variety V .

A hypersurface in Rd, some d dimensional space, is of dimension d − 1. The dimension of an
algebraic variety V is k if its points can be put in one-to-one rational correspondence with the
points of an irreducible hypersurface in k + 1 dimensional space. In Rd, a variety V1 of dimension
k intersects a variety V2 of dimension h, with h ≥ d− k, in an algebraic set Z(S) of dimension at
least h + k − d. The resulting intersection is termed proper if all subvarieties of Z(S) are of the
same minimum dimension h+ k − n. Otherwise the intersection is termed excess or improper.

Let the algebraic degree of an algebraic variety V be the maximum degree of any defining
polynomial. A degree 1 hypersurface is also called a hyperplane while a degree 1 algebraic variety
of dimension k is also called a k-flat. The geometric degree of a variety V of dimension k in some
Rd is the maximum number of intersections between V and a (d − k)-flat, counting both real
and complex intersections and intersections at infinity. Hence the geometric degree of an algebraic
hypersurface is the maximum number of intersections between the hypersurface and a line, counting
both real and complex intersections and at infinity.

The following theorem, perhaps the oldest in algebraic geometry, summarizes the resulting
geometric degree of intersections of varieties of different degrees.

Theorem 1.1 (Bezout). A variety of geometric degree p which properly intersects a variety of
geometric degree q does so in an algebraic set of geometric degree either at most pq or infinitely
often.

The normal or gradient of a hypersurfaceH : f(x1, ..., xn) = 0 is the vector∇f = (fx1 , fx2 , . . . , fxn).
A point p = (a0, a1, . . . an) on a hypersurface is a regular point if the gradient at p is not null;
otherwise the point is singular. A singular point q is of multiplicity e for a hypersurface H of degree
d if any line through q meets H in at most d− e additional points. Similarly a singular point q is
of multiplicity e for a variety V in Rn of dimension k and degree d if any sub-space Rn−k through
q meets V in at most d − e additional points. It is important to note that even if two varieties
intersect in a proper manner, their intersection in general may consist of sub-varieties of various
multiplicities. The total degree of the intersection, however is bounded by Bezout’s theorem. Fi-
nally, one notes that a hypersurface f(x1, ..., xn) = 0 of degree d has K =

(
n+d
n

)
coefficients and
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one less than that number of independent coefficients. Hypersurfaces f(x1, ..., xn) = 0 of degree d
form K − 1 dimensional vector spaces over the field of coefficients of the polynomials.

Finally, two hypersurfaces f(x1, . . . , xn) = 0 and g(x1, . . . , xn) = 0 meet with Ck-continuity
along a common subvariety V if and only if there exist functions α(x1, . . . , xn) and β(x1, . . . , xn)
such that all derivatives up to order k of αf −βg equals zero at all points along V , see for instance
[25].

1.1 Algebraic Curves

Two dimensional curves are defined as plane curves. They thus have a reduced representation when
compared with space curves and can be parameterized (if possible) more efficiently. Algebraic plane
curves are defined as f(x, y) = 0 and the parametric representation is {x = f1(t) and y = f2(t)}.
All degree two curves are rational. Degree three curves which are non-singular like ellipses are
not. In general, curves with degree higher than two need not be rational. We will next give the
conditional for rationality. The genus of a curve is defined as a measure of how much the curve
is deficient from its maximum allowable limit of singularities. For a curve of degree d, genus g is
given as g = 1/2(d− 1)(d− 2)−DP , where DP stands for Double Points, a sum of all singularities
of the curve Cd which are counted.

Cayley - Riemann criterion The genus of a curve is zero if and only if the curve has a rational
parametrization.

1.2 Algebraic Surfaces

Why is low degree important? The geometric degree of an algebraic surface is the maximum
number of intersections between the surface and a line, counting complex, infinite and multiple
intersections. It is a measure of the “wavi-ness” of the surface. This geometric degree is the same
as the degree of the defining polynomial f of the algebraic surface in the implicit definition, but
may be as high as n2 for a parametrically defined surface with rational functions Gi of degree n.
The geometric degree of an algebraic space curve is the maximum number of intersections
between the curve and a plane, counting complex, infinite and multiple intersections. A well
known theorem of algebraic geometry (Bezout’s theorem) states that the geometric degree of an
algebraic intersection curve of two algebraic surfaces may be as large as the product of the geometric
degrees of the two surfaces [38]. The use of low degree surface patches to construct models of
physical objects thus results in faster computations for subsequent geometric model manipulation
operations such as computer graphics display, animation, and physical object simulations, since
the time complexity of these manipulations is a direct function of the degree of the involved curves
and surfaces. Furthermore, the number of singularities1 (sources of numerical ill-conditioning) of a
curve of geometric degree m may be as high as m2 [40]. Keeping the degree low of the curves and
surfaces thus leads to potentially more robust numerical computations.

Theorem 1.2. [Castelnuovo] An algebraic surface S is rational if and only if the arithmetic
genus(S)= second pluri-genus (S) = 0.

A proof can be found in [43].
1Points on the curve where all derivatives are zero
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Figure 1: Cartan Surface f = x2 − yz2 = 0

2 Singularities and Extreme Points

The Clebsch Diagonal Cubic The Cayley Cubic The Ding-Dong Surface

81x3 +81y3 +81z3−189x2y−189x2z
−189y2x−189y2z−189z2x−189z2y
+54xyz + 126xy + 126xz + 126yz −
9x2,−9y2 − 9z2 − 9x− 9y − 9z + 1

−5x2y − 5x2z − 5y2x −
5y2z− 5z2y −5z2x+ 2xy+
2xz + 2yz

x2 + y2 − (1− z)z2

(27 real lines with 10 triple points) (9 real lines = 6 connecting
4 double points, and 3 in a
coplanar config)

2.1 Singularities and Genus

Consider an irreducible plane algebraic curve Cd of degree d. Lines through a point P intersects Cd
(outside P ) in general at d − multpCd points, where multpCd = e = multiplicity of Cd at P =
order at P of the polynomial equation describing Cd . The order of a polynomial equation at a point
P = (a, b), is the minimum (i+ j), when the polynomial is expressed with terms (x−a)i(y− b)j . If
e = 0: P is not on Cd. If e = 1 then P is called a simple point. If e > 1 we say P is a singular
point of the curve Cd with multiplicity e or an e-fold point. A 2-fold point is also called a double
point and a 3-fold point a triple point.

By Bezout’s theorem one may see that the maximum number of double points of Cd is ≤
(d − 1)(d − 2)

2 . Further, the number of independent conditions needed to specify Cd is (d+2)(d+1)
2 − 1.

One definition of the genus G of a curve Cd is a measure of how much the curve is deficient from
its maximum allowable limit of singularities,

G =
(d − 1)(d − 2)

2
− DP (2)

whereDP is a ‘proper’ counting of the number of double points of Cd (summing over all singularities,
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in the projective complex plane ).
Distinct singularities of a plane curve can computationally be obtained by simultaneously solving

for the roots of the system of polynomial equations f = fx = fy = 0 where fx and fy are the x and
y partial derivatives of f , respectively. One way of obtaining the common solutions is to find those
roots of Resx(fx, fy) = 0 and Resy(fx, fy) = 0 which are also the roots of f = 0. Here Resx(fx, fy)
( similarly Resy(fx, fy)) is the Sylvester resultant of fx and fy treating them as polynomials in
x (similarly y). For a classical treatment of the Sylvester resultant see [32]. Other methods of
computing the roots of a system of polynomial equations, for example via the U−resultant may
also be used [31]. This method yields an overall time bound of O(d6 + T (d2)) for computing all the
O(d2) possible singularities of Cd, using the Sylvester resultant which for two j-variate polynomials
of maximum degree d can be computed in O(d2jlog3d) time [12]. Note that singularities at infinity
can be obtained in a similar way after replacing the line at infinity with one of the affine coordinate
axes. In particular, on homogenizing f(x, y) to F (X,Y, Z) we can set Y = 1 to obtain f̃(x, z)
thereby swapping the line at infinity Z = 0 with the line Y = 0. Now the above computation of
roots can be applied to f̃ = f̃x = f̃z = 0 to compute singularities at infinity.

Having computed the singular points one next obtains a proper count of the total number of
double points DP of Cd. A proper counting was achieved by Noether using (projective) Cremona
quadratic transformations, see [40] Following [2], the same can be achieved using (affine) quadratic
transformations.

Affine Quadratic Transforms In a general procedure for counting double points, given an e-
fold point P of a plane curve Cd, we choose our coordinates to bring P to the origin and then apply
the quadratic transformation Q1 or Q2.

Q1 : x = x1 , y = x1y1 (3)
Q2 : x = x2y2 , y = y2 (4)

Affine quadratic transformations are centered on a singularity and affect the curve locally, allowing
one to treat each singularity of Cd in isolation. If now Cd : f(x, y) = 0, then the quadratic
transformation Q1 transforms Cd into the curve C1 : f1(x1, y1) = 0 given by

f(x1, x1 y1) = x1
e f1(x1, y1)

C1 will intersect the exceptional line E : x1 = 0 in the points P 1 , ..., Pm, the roots of
f1(0, y) = 0. If P i is a ei-fold point of C1, then we shall have e1 + ... + em ≤ e. The P 1 , ..., Pm

are termed the points of Cd in the first neighborhood of P . The quadratic transformations can
be repeated at each of the P ipoints of C1 with ei > 1, yielding points P ij points in the second
neighborhood of P and so on. The collection of these neighborhod points are termed the points
infinitely near P and form in general a singularity tree at P . At each node of this tree (including
the root) keep a count equal to the multiplicity of the curve (transformed curve) at that point.
The desingularization theorem for algebraic plane curves, see [2, 40], states that at every node
beyond a certain level, the count equals one; in other words, C has only a finite number of singular
points infinitely near P . Next (using Bezout) take e(e−1)

2 double points towards DP for a count e
and sum over all nodes of a singularity tree and additionally over all singularities of Cd and their
corresponding singularity trees, to obtain a precise count for the total number of double points
DP of Cd. This proper counting of double points then yields the genus of Cd via the above genus
formula, (1).

Theorem 2.1: The Genus G for Cd of degree d can be computed in O(d6 + d2T (d2)) time.

Proof. The time taken to compute G is bound by the time O(d6 + T (d2)) taken to compute the
O(d2) possible singular points of Cd, plus the time taken by the refinement of singularities via
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quadratic transformations, which we now bound. As many as O(d2) quadratic transformations
may be needed for all infinitely near singularities of Cd where a single quadratic transformation
takes O(d2) time. Then there is the O(d2 T (d2)) time spent in computing intersections with the
exceptional line accounting also for a degree blowup of O(d2) for the transformed curve in a sequence
of quadratic transformations. Additionally, there is the time spent in translating the singularity to
the origin which entails an algebraic simplification with an overall cost of O(d4). This results in
the overall time bound of O(d6 + d2 T (d2)).

There is then the concise characterization for curves having rational parametric equations
Theorem [Cayley-Riemann]: Cd has a rational parameterization iff G = 0.
In other words if the given plane curve has its maximum allowable limit of singularities, then

it is rational.

2.2 Parameterizing with a Pencil of Lines

From Cayley-Riemann Theorem of the earlier section, we know that all degree d curves Cd with
one distinct d − 1 fold point, are rational. One way then of parameterizing these curves Cd is to
symbolically intersect them with a pencil of lines (y − y0) = t(x − x0) through the d − 1 fold
point (x0, y0) on the curve. This pencil intersects Cd in only one additional point, the coordinates
of which can be expressed as rational functions of the parameter t. Alternatively, the same can be
achieved by mapping the d − 1 fold point on Cd to infinity along one of the coordinate axis. We
illustrate this below.

Mapping Points to Infinity Consider f(x, y) a polynomial of degree d in x and y representing
a plane algebraic curve Cd of degree d with a distinct d− 1 fold singularity. We first determine the
d− 1 fold singularity of the curve Cd and translate it to the origin. Then we can write

f(x, y) = fd(x, y) + fd − 1(x, y) = 0

where fi consists of the terms of degree i. Note that fd and fd−1 are the only terms that will exist,
since a d− 1 fold singularity at the origin implies that ∀(i+ j) < d− 1, ∂f i+j

∂xi∂yj = 0 at (0, 0).
On homogenizing f(x, y) we obtain

F (X,Y, Z) = a0Y
d + a1Y

d−1X + ... + adX
d

+ b0Y
d−1Z + b1Y

d−2XZ + ... + bdX
d−1Z = 0 (5)

Now by sending the singular point (0, 0, 1) to infinity along the Y axis we eliminate the Y d term.
Algebraically this is achieved by a homogeneous linear transformation which maps the point (0, 0, 1)
to the point (0, 1, 0) and is given by X = X1 , Y = Z1 , Z = Y1, which yields

F (X1, Y1, Z1) = a0Z
d
1 + a1Z

d−1
1 X1 + ... + adX

d
1

+ b0Z
d−1
1 Y1 + b1Z

d−2
1 X1Y1 + ... + bdX

d−1
1 Y1 = 0 (6)

Then one easily obtains

Y1 = − a0Z
d
1 + a1Z

d−1
1 X1 + ... + adX

d
1

b0Z
d−1
1 + b1Z

d−2
1 X1 + ... + bdX

d−1
1

(7)

Letting X1 = t and dehomogenizing by setting Z1 = 1 and using the earlier homogeneous linear
transformation, we construct the original affine coordinates

x =
X

Z
=

X1

Y1

y =
Y

Z
=

Z1

Y1
(8)
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as rational functions of the single parameter t.
Theorem 3.1: An algebraic plane curve of degree d with a distinct d − 1 fold point can be

rationally parameterized in O(d4log3d) time.

Proof. The time taken to determine the d−1-fold singularity is bound by O(d4log3d) the time taken
to determine a single mutliple root of a univariate polynomial of degree d is O(d log2d [30]. This
also yields the overall time bound, since the homogeneous linear transformation after a translation
of the singularity to the origin, is bound by O(d4).

2.3 Parameterizing with a Pencil of Curves

In the general case we consider a curve Cd with the appropriate number of distinct and infinitely
near singularities which make Cd rational (genus 0). We pass a pencil of curves Cd−2(t) through
these singular points and d−3 additional simple points of Cd. This pencil intersects Cd in only one
additional point, the coordinates of which can be expressed as rational functions of the parameter
t.

Let F (X,Y, Z) = 0 and G(X,Y, Z) = 0 be the homogeneous equations of the curves Cd and
Cd−2(t) respectively. For a distinct singular point of multiplicity m of Cd at the point (Xi, Yi, Zi)
we pass the curve Cd−2(t) through it with multiplicity m− 1. To achieve this we equate

G(Xi, Yi, Zi) = F (Xi, Yi, Zi) = 0 (9)
GXjY k(Xi, Yi, Zi) = FXjY k(Xi, Yi, Zi) = 0 , 1 ≤ j + k ≤ m− 2 (10)

where GXjY k = ∂Gj+k

∂Xj∂Y k . Similarly for FXjY k .
For an infinitely near singular point of Cd we construct its associated singularity tree and pass

the curve Cd−2(t) with multiplicity r − 1 through each of the points of multiplicity r in the first,
second, third, ..., neighborhoods. To achieve this we apply quadratic transformations Ti to both
F (X,Y, Z) and G(X,Y, Z) centered around the infinitely near singular points corresponding to the
singularity tree. The appropriate multiplicity of passing is achieved by equating the transformed
equations FTi and GTi and their partial derivatives as above. All the above conditions in totality
lead to a square system of homogeneous linear equations where the unknowns are the coefficients
of Cd−2(t) having one variable parameter t.

A counting argument shows that this method generates the correct number of conditions which
specifies Cd−2(t) and furthermore the total intersection count between Cd and Cd−2(t) satisfies
Bezout. A curve Cd of genus = 0 has the equivalent of exactly (d−1)(d−2)

2 double points. To pass
a curve Cd−2(t) through these double points and d − 3 other fixed simple points of Cd, the total
number of conditions (= the total number of linear equations) is given by

(d − 1)(d − 2)
2

+ (d − 3) =
d (d − 1)

2
− 2

which is exactly the number of independent unknowns to determine a pencil of Cd−2(t). Having
determined the pencil of Cd−2(t) curves we compute the resultant Resx(Cd, Cd−2(t)) which yields
a polynomial of degree d(d−2) in y which on dividing by the common factors corresponding to the
(d − 3) simple points and (d−2)(d−1)

2 double points, yields a polynomial in y and t which is linear
in y and thereby gives y as a rational function of t. Similarly repeating with Resy(Cd, Cd−2(t))
yields x as a rational function of t.

Theorem 4.1: A rational algebraic plane curve of degree d can be rationally parameterized
in O(d6log3d + d2T (d2)) time.

Proof. The time taken to compute the O(d2) point singularities with refinement for infinitely near
singularitites is bound as before by the time O(d6 + d2T (d2)). The time taken to determine d− 3
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simple points requires at worst no more than O(d T (d)) time (most points are simple). Then there
is the time taken to solve the homogeneous linear system of size O(d2). Using a technique similar
to Gaussian elimination (which requires O(d3) for a linear system of size d), the time can be bound
by O(d6). Finally there is the computation of the resultants of the equations for Cd and Cd−2

involving variables x, y and t and division by univariate polynomials [7], all bound by O(d6log3d)
time. Hence the overall time bound above.

2.4 Algebraic Space Curves

Consider an irreducible algebraic space curve Cd of degree d, which is implicitly defined as the
intersection of two algebraic surfaces f(x, y, z) = 0 and g(x, y, z) = 0. There always exists a
birational correspondence between the points of Cd and the points of an irreducible plane curve Pd
of degree d, whose genus is the same as that of Cd [1]. Birational correspondence between Cd and Pd
means that the points of Cd can be given by rational functions of points of Pd and vice versa (i.e there
exists a 1-1 mapping between points of Cd and Pd, except for a finite number of exceptional points
). Consequently, knowing how to compute the genus and rational parameterization of algebraic
plane curves from sections 2, 3 and 4, yields an algorithm to compute the genus of the space curve
Cd and if genus = 0 the rational parametric equations of Cd.

To determine the equation of the plane curve Pd we consider the projection of the space curve
Cd along one of the coordinate axis. Projecting Cd along, say the z axis, can be achieved by treating
both f and g as polynomials in z with coefficients in x and y and then computing the Sylvester
resultant. The resultant yields a polynomial in the coefficients of f and g, viz., a plane curve Pd
described by the polynomial in x and y. However this projected plane curve Pd in general, is not
in birational correspondence with the space curve Cd. For a chosen projection direction it is quite
possible that most points of Pd may correspond to more than one point of Cd (i.e. a multiple
covering of Pd by Cd). However this may be rectified by choosing a valid projection direction.

Valid Projection Direction To find an appropriate axis of projection, the following general
procedure may be adopted. Consider the linear transformation x = a1x1 + b1y1 + c1z1, y =
a2x1 + b2y1 + c2z1 and z = a3x1 + b3y1 + c3z1. On substituting into the equations of the
two surfaces defining the space curve we obtain the transformed equations f1(x1, y1, z1) = 0 and
g1(x1, y1, z1) = 0. Next compute the Resz1(f1, g1) which yields a polynomial h(x1, y1) which is the
equation of the projected plane curve. Choose the coefficients of the linear transformation, ai, bi
and ci such that (i) the determinant of ai, bi and ci is non zero and (ii) the equation of the projected
plane curve h(x1, y1) is not a power of an irreducible polynomial. The latter can be achieved by
making the discriminant Resx1(h, hx1) to be non zero. Such a choice of coefficients ensures that
the projected irreducible plane curve given by h(x1, y1) is in birational correspondence with the
irreducible space curve and thus of the same genus. As ”bad” values for ai, bi, ci, i = 1 . . . 3, satisfy
a lower dimension hypersurface, any random choice of values will suffice with probability 1, see
[34].

Constructing the Birational Map There remains the problem of constructing the birational
mapping between points on Pd and Cd. Let the projected plane curve Pd be defined by the poly-
nomial h(x1, y1). The map one way is linear and is given trivially by x1 = x and y1 = y. To
construct the reverse rational map one only needs to compute z = I(x1, y1) where I is a rational
function. We now show how it is always possible to construct this rational function by use of a
polynomial remainder sequence along a valid projection direction.

Let the surfaces f(x, y, z) = 0 and g(x, y, z) = 0 be of degrees m1 and m2 respectively.
Without loss of generality let this direction be the z axis and that m1 ≥ m2. Both m1 and m2

are bound by d, the degree of the space curve Cd. Let F1 = f(x, y, z) and F2 = g(x, y, z) be
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given by

F1 = f0 z
m1 + f1 z

m1−1 + ... + fm1−1 z + fm1

F2 = g0 z
m2 + g1 z

m2−1 + ... + gm2−1 z + gm2 (11)

with fj , (j = 0 ... m1) and gk, (k = 0 ... m2), denoting polynomials in x, y. Then, there exist
polynomials Fi+2(x, y, z), for i = 1 ... k, such that Ai Fi = Qi Fi+1 + Bi Fi+2 where mi+2,
the degree of z in Fi+2, is less than mi+1, the degree of z in Fi+1 and certain polynomials Ai(x, y),
Qi(x, y, z) and Bi(x, y). The polynomials Fi+2, i = 1, 2, ... form, what is known as a polynomial
remainder sequence ( PRS ) and can be computed in various different ways [28]. We choose the
subresultant PRS scheme for its computational superiority and also because each Fi = Smi−1−1,
1 ≥ i ≥ r, where Sk is the kth subresultant of F1 and F2. This together with making the z
axis a valid projection direction ensures that in the polynomial remainder sequence there exists a
polynomial remainder which is linear in z, i.e., Fr−1 = zΦ1(x, y) − Φ2(x, y) = 0. This then
yields z as a rational function of x and y and the inverse rational map.

Theorem 5.1: For an irreducible algebraic space curve Cd, the equations of the birational
map and the projected plane curve Pd can be computed in O(d6log3d) time.

Proof. The time for computing the valid projection direction via a random choice of values and the
above polynomial remainder sequence is bound by the resultant computation for the projection.

This together with Theorems 2.1 and 4.1 yields
Corollary 5.2: The genus of an algebraic space curve of degree d and the parametric equations

of a rational space curve of degree d can be computed in O(d6log3d + d2T (d2)) time.

2.5 Faithful Parameterizations

Given a polynomial parameterization

x = P (t) = amt
m + am − 1t

m − 1 + ... + a0

y = Q(t) = bnt
n + bn − 1t

n − 1 + ... + b0 (12)

of an affine algebraic curve f(x, y) we now give an algorithm to check if the parameterization is
faithful, i.e., for all but a finite number of points of the curve there corresponds a single parameter
value and vice versa. Both m and n are bound by the degree d of the plane curve. Take the Taylor
expansion with a single shift and let

C(t) = Resτ

(
P (t+τ) − P (t)

τ
Q(t+τ) − Q(t)

τ

)
(13)

= Resτ

(
P (1)(t) +1

2P
(2)(t)τ +... + 1

m!P
(m)(t)τm−1

Q(1)(t) +1
2Q

(2)(t)τ +... + 1
n!Q

(n)(t)τn−1

)
(14)

where P k is the kth derivative of P . Similarly for Qk.
Then C(t) 6= 0 if and only if the parameterization is faithful. Further, if C(t) is a nonzero

polynomial, its roots give the singular points with multiplicities of the affine curve. Finally, if C(t)
is a non-zero constant then the affine plane curve is non-singular, or equivalently, since the curve
is of genus 0, the curve has a single d− 1 fold singularity at infinity.

For a rational parameterization

x =
P (t)
R(t)

y =
Q(t)
R(t)

(15)
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of f(x, y), again take the Taylor expansion with a single shift and let

C(t) = Resτ

(
P (t+τ)R(t)−R(t+τ)P (t)

τ
Q(t+τ)R(t)−R(t+τ)Q(t)

τ

)
(16)

= Resτ

(
R(t)P (1)(t)− P (t)R(1)(t) +1

2(R(t)P (2)(t)− P (t)R(2)(t))τ + ...

R(t)Q(1)(t)−Q(t)R(1)(t) +1
2(R(t)Q(2)(t)−Q(t)R(2)(t))τ + ...

)
(17)

Then again C(t) 6= 0 if and only if the parameterization is faithful.
Theorem 6.1: The faithfulness of parameterizations as well as the singularities of parame-

terically defined algebraic curves of degree d can be computed in O(d4log3d) time.

Proof. The time for the Taylor expansion is at most O(d2) and is bound by the time taken to
compute the resultant.

3 Triangulation and Display

See Section 3.4.

4 Polynomial and Power Basis

Let p1, . . .pd ∈ Rk. Then the convex hull of pi is the set

[p1, . . . ,pd] = {p : p ∈ Rk, p =
d∑
i=1

λipi,
d∑
i=1

λi = 1, λi ≥ 0}

If d = k + 1, then [p1, . . . ,pd] is called a simplex. Let P ⊂ Rp, Q ⊂ Rq, then P ×Q is defined by

P ×Q = {p ∈ Rp+q : p = (x, y)T , x ∈ P, y ∈ Q}.

A. Tensor-product form

p(x1, . . . , xd) =
n1∑
i1=0

n2∑
i2=0

. . .

nd∑
id=0

ai1i2...id x
i1
1 x

i2
2 . . . x

id
d (18)

where (x1, . . . , xd)T ∈ Rd.

B. Total degree form

p(x1, . . . , xd) =
∑

i1+...+id≤n
ai1i2...idx

i1
1 x

i2
2 . . . x

id
d (19)

where (x1, . . . , xd)T ∈ Rd.

C. Mixed form

Let d = d1 + d2, then the mixed form is

p(x1 . . . xd) =
∑

i1+...+id1
≤m

n1∑
j1=0

. . .

nd2∑
jd2

=0

ai1...id1
j1...jd2

xi11 . . . x
id1
d1
xj1d1+1 . . . x

jd2
d (20)

where (x1 . . . , xd) ∈ Rd. If d1 = 0, p is the tensor-produce form. If d2 = 0, p is the total degree
form.
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5 Power Series and Puiseux Expansions

5.1 Weierstrass Factorization

Consider f(x, y) with degree d and ordy f(0, y) = e < ∞. The ordy f(0, y) is the y-
exponent of the lowest degree term in f(0, y) and is equal to ∞ if f(0, y) = 0. The occur-
rence of f(0, y) = 0 can be rectified by a simple linear transformation (rotation) of f(x, y), which
avoids making the x-axis, a tangent to the curve f(0, y) = 0 at the origin, and hence yields a
nonzero f(0, y) and a finite ordy f(0, y). A Weierstrass power series factorization is of the form
f(x, y) = g(x, y) (ye + ae−1(x)ye−1 + · · · + a0(x))︸ ︷︷ ︸

h(x,y)

where g(x, y) is a unit power series, i.e.,

g(0, 0) 6= 0 while h(x, y) is a “distinguished” polynomial in y with coefficients ai(x), i = 0 . . . e− 1
being non-unit power series, i.e., ai(0) = 0.

The Weierstrass preparation can efficiently be achieved via Hensel Lifting. Given

f(x, y) = f0(y) + f1(y)x + · · · + fk(y)xk + · · ·

with
f(0, y) = f0(y) = (a0 + a1y + · · · )︸ ︷︷ ︸

g0(y)

ye︸︷︷︸
h0(y)

, a0 6= 0

in general for k ≥ 1, we wish to compute hk(y) and gk(y) using Hensel, yielding factors similar to
(22) such that

fk(y) −
∑

i>0, j>0, i+j=k

gi(y)hj(y) = g0(y)hk(y) + yegk(y) (21)

with degree hk(y) < e.

To achieve this we compute A(y) =
fk(y) −

P
i>0, j>0, i+j=k gi(y)hj(y)

g0(y) and then set hk(y) = terms
of A(y) with degree < e and gk(y) = terms of A(y) with degree ≥ e.

5.2 Hensel Lifting

Consider f(x, y) of degree d. Assume it is monic in y .

f(x, y) = f0(y) + f1(y)x + · · · + fk(y)xk + · · ·

We wish to compute real power series factors g(x, y) and h(x, y) where f(x, y) = g(x, y)h(x, y).
The technique of Hensel lifting allows one to reconstruct the power series factors

g(x, y) = g0(y) + g1(y)x + · · · + gi(y)xi + · · ·
h(x, y) = h0(y) + h1(y)x + · · · + hj(y)xj + · · · (22)

from initial factors f(0, y) = f0(y) = g0(y)h0(y).
Consider the factorization of f(0, y) = f0(y) as the base case of k = 0. Assume f0(y)

is of degree d. Choose real coprime factors g0(y) of degree p and h0(y) of degree q satisfying:
p + q = d. Real coprimeness is achieved by ensuring that g0 and h0 contain distinct real roots of
f0 and that complex conjugate pairs are not split up. However, it may arise that the only coprime
factors of f0 are complex, that is, the distinct roots are complex conjugates, in which case the curve
f(x, y) = 0 does not intersect the y-axis and there is no real Newton power series factorization.
Since GCD(g0(y), h0(y)) = 1 using the fast GCD algorithm we can also compute α(y) and β(y)
such that α(y)g0(y) + β(y)h0(y) = 1.
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In the iterative Case of k ≥ 1, we compute gk(y) and hk(y) of the desired factorization (22),
with degree of gk(y) < p and degree of hk(y) < q, as follows. We note from (22) that

fk(y) =
∑

i + j = k

gi(y)hj(y)

and additionally

fk(y) −
∑

i>0, j>0, i+j=k

gi(y)hj(y) = g0(y)h∗k(y) + h0(y)g∗k(y) (23)

Hence,

h∗k(y) = α(y)[fk(y) −
∑

i>0, j>0, i+j=k

gi(y)hj(y)]

g∗k(y) = β(y)[fk(y) −
∑

i>0, j>0, i+j=k

gi(y)hj(y)]

If degree h∗k(y) ≥ q then compute hk(y) = h∗k(y) mod h0(y) and set gk(y) = γ(y)g0(y) + g∗k(y)
where h∗k(y) = γ(y)h0(y) + hk(y).

fk(y) −
∑

i>0, j>0, i+j=k

gi(y)hj(y) = g0(y)hk(y) + h0(y)gk(y) (24)

Clearly degree hk(y) is < q. Additionally in (24) the degree of gk(y) must also be < p. This is so
because in (24) the degree of the LHS is < d and since degree g0(y)hk(y) is < d and degree h0(y)
is = q, it must be that degree gk(y) is < p.

6 Derivatives, Tangents, Curvatures

6.1 Curvature Computations

6.1.1 Curvature Formulas

The aim of this section is to provide readers with a quick reference for the curvature computation
formulas. The detail derivation of these formulas are given in the section that follows.

Let M be a 2-dimensional Riemannian manifold in Rk with a Riemannian metric defined by
the scalar inner product. Let (ξ1, ξ2) be a local coordinate system of the 2-manifold M at the point
x ∈M . Then x ∈ Rk can be expressed as

x = [x1(ξ1, ξ2), · · · , xk(ξ1, ξ2)]T . (25)

Let ti = ∂x
∂ξi

, tij = ∂2x
∂ξi∂ξj

, gij = tTi tj , and

G =
[
g11 g12

g21 g22

]
, Q = I − [t1, t2]G−1[t1, t2]T ∈ Rk×k,

where

G−1 =
1

det(G)

[
g22 −g12

−g21 g11

]
.

Then we have the following formulas:

Riemannian Curvature:

K(x) =
tT11Qt22 − tT12Qt12

det(G)
. (26)
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The Riemannian curvature is a counterpart of the Gaussian curvature of the classical surface. If
k = 3, the Riemannian curvature coincides with the Gaussian curvature for surfaces.

Mean Curvature Vector:

H(x) =
Q(g22t11 + g11t22 − 2g12t12)

2 det(G)
. (27)

The mean curvature vector is a vector in the normal space. If k = 3, the mean curvature vector is
in the normal direction, and its length is the classical mean curvature of the surface.

Principal Curvatures and Principal directions:
To obtain formulas for the principal curvatures and the principal directions, we first introduce

an auxiliary result: Let A = (aij)2
i,j=1 ∈ R2×2 be a symmetric matrix. Then the eigenvalues of A

are

λ± =
a11 + a22 ±

√
(a11 − a22)2 + 4a2

12

2
(28)

and the corresponding eigenvectors are [cosθ±, sinθ±]T , where θ± are given (modulo π) by

θ+ =
1
2

arctan
2a12

a11 − a22
, θ− = θ+ +

π

2
. (29)

Now we give formulas for computing the principal curvatures and the principal directions. Let
h(x) = H(x)/‖H(x)‖,

A = Λ−
1
2KFhK

TΛ−
1
2 ∈ R2×2, [u1, u2] = [t1, t2]KTΛ−

1
2 , (30)

where Fh = −
(
tTij h(x)

)2

ij=1
, K ∈ R2×2 and Λ ∈ R2×2 are defined by

G = KTΛK, KTK = I, Λ = diag(λ1, λ2) (31)

and they can be computed by (28)–(29). Let A be expressed, by virtue of (28) and (29), as

A = P diag(k1, k2) P T , with P TP = I. (32)

Then k1 and k2 are the principal curvatures and v1 and v2, defined by

[v1, v2] := [u1, u2]P = [t1, t2]KTΛ−
1
2P, (33)

are the corresponding principal directions with respect to the direction vector h.
Again, the principal curvatures and the principal directions are the counterparts of the same

concepts for surfaces. If k = 3, they are the same.

6.1.2 Derivation

In this section we derive the curvature formulas from the field of Riemannian geometry. However,
we have tried to make the paper self-contained, so that readers can understand the derivation
without having to consult the Riemannian geometry literature. Readers may simply skim over this
section if they merely intend to use the curvature formulas.
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Notations and Terminologies Differential Manifold. A differentiable manifold of dimension
n is a set M and a family of injective mappings xα : Uα ⊂ Rn → M of open sets Uα into M such
that

(1).
⋃
α xα(Uα) = M .

(2). For any pair α, β with xα(Uα) ∩ xβ(Uβ) = W 6= ∅, the sets x−1
α (W ) and x−1

β (W ) are open
in Rn and the mappings x−1

β ◦ xα are differentiable.
The mapping xα with x ∈ xα(Uα) is called a parameterization of M at x. In our case, we use

the 2-dimensional manifold (n = 2). Denoting the coordinate Uα as (ξ1, ξ2), then the tangent space
TxM at x ∈ M is spanned by { ∂

∂ξ1
, ∂
∂ξ2
}. The set TM = {(x, v); x ∈ M, v ∈ TxM} is called a

tangent bundle.

Vector Field ([23], page 25). A vector field X on a differentiable manifold M is a correspondence
that associates to each point x ∈M a vector X(x) ∈ TxM . The field is differentiable if the mapping
X : M → TM is differentiable.

Considering a parameterization x : U ⊂ R2 →M , there exist ai(x), such that

X(x) =
∑
i

ai(x)
∂

∂ξi
.

Let D be the set of differentiable functions on M , and X be a vector field on M . Then X can be
regarded as a mapping X : D → D such that

(Xf)(x) =
∑
i

ai(x)
∂f

∂ξi
(x). (34)

It is easy to check that Xf does not depend on the choice of parameterization x. Let X and Y be
differentiable vector fields on a differentiable manifold M . Then there exists a unique vector field
Z such that, for all f ∈ D, Zf = (XY − Y X)f . The vector field Z := XY − Y X is called the
bracket of X and Y (see [23], pages 26-27), denoted by [X,Y ]. Let

X(x) =
∑
i

ai(x)
∂

∂ξi
, Y (x) =

∑
i

bi(x)
∂

∂ξi
.

Then from (34) we can derive that

[X,Y ] =
∑
j

(∑
i

ai
∂bj
∂ξi
− bi

∂aj
∂ξi

)
∂

∂ξj
.

Riemannian Manifold. A differentiable manifold with a given Riemannian metric is called a
Riemannian Manifold. A Riemannian metric 〈 , 〉x of M is a symmetric, bilinear and positive-
definite form on the tangent space TxM . Since M is a sub-manifold of Euclidean space Rk, we use
the induced metric:

〈u, v〉x = uT v, u, v ∈ TxM.

Connection. Let us indicate by X (M) the set all vector fields of class C∞ on M and by D(M) the
ring of real-valued functions of class C∞ defined on M . An affine connection ∇ on a differentiable
manifold M is a mapping ∇ : X (M)× X (M) → X (M) which is denoted by (X,Y ) → ∇XY and
which satisfies the following properties:

1) ∇fX+gY Z = f∇XZ + g∇Y Z.
2) ∇X(Y + Z) = ∇XY +∇XZ.
3) ∇X(fY ) = f∇XY +X(f)Y ,

in which X,Y, Z ∈ X (M) and f, g ∈ D(M).
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Choose a system of coordinates (ξ1, ξ2),

X =
∑
i

aiti, Y =
∑
j

bjtj ,

where ti = ∂
∂ξi

, then from properties 1)–3) we have

∇XY =
∑
k

(∑
ij

aibjΓkij +X(bk)
)
tk, (35)

where Γkij is defined by

∇titj =
∑
k

Γkijtk. (36)

An affine connection ∇ on M is said to be symmetric if

∇XY −∇YX = [X,Y ] for all X,Y ∈ X (M).

A connection ∇ on a Riemannian manifold M is compatible with the metric 〈 , 〉 if and only if
([23], page 54)

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, X, Y, Z ∈ X (M).

Riemannian Curvature Here we start with the Levi-Civita theorem ([23] page 55): Given a
Riemannian manifold M , there exists a unique affine connection ∇ on M satisfying the conditions:

a) ∇ is symmetric.
b) ∇ is compatible with the Riemannian metric.
The connection defined by the Levi-Civita theorem is called the Riemannian connection. For

the Riemannian connection, the number Γkij defined by (36), which is called the Christoffel Symbols,
is calculated by

Γmij =
1
2

∑
k

{
∂gjk
∂ξi

+
∂gki
∂ξj
− ∂gij
∂ξk

}
gkm, (37)

where (gkl) = (gij)−1, (gij) = G. Note that Γmij = Γmji , since gij = gji. It is easy to recognize that
if M is an Euclidean space Γmij = 0.

Curvature. The curvature ([23], page 89) of a Riemannian manifold M is a correspondence which
associates to every pair of vector fields X,Y a mapping R(X,Y ) which maps a vector field of M
to another vector field of M given by

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z, (38)

where ∇ is the Riemannian connection of M .
Let (Uα, xα) be a coordinate system at point x ∈M . Let ∂

∂ξi
= ti and put

R(ti, tj)tk =
2∑
l=1

Rlijktl. (39)

Then R(X,Y )Z can be expressed as

R(X,Y )Z =
∑
i,j,k,l

Rlijkaibjcktl,
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where X =
∑

i aiti, Y =
∑

j bjtj , Z =
∑

k cktk. From (35) we can derive that Rlijk are given as

Rsijk =
∑
l

ΓlikΓ
s
jl −

∑
l

ΓljkΓ
s
il +

∂Γsik
∂ξj

−
∂Γsjk
∂ξi

. (40)

Riemannian curvature. The counterpart of the Gaussian curvature for a surface is the Rieman-
nian curvature for a Riemannian manifold ([23, 41]). For x ∈ M , let X,Y ∈ TxM be two linearly
independent vectors. Then the Riemannian curvature of the tangent space TxM is defined by

K(x) =
〈R(X,Y )X,Y 〉x

‖X‖2‖Y ‖2 − 〈X,Y 〉2x
.

The Riemannian curvature, also called sectional curvature, is originally defined for a two-dimensional
subspace of the tangent space TxM . However, since TxM is assumed to be two-dimensional, the
Riemannian curvature is then uniquely defined. For a regular surface in R3, the Riemannian cur-
vature is the Gaussian curvature. It is not difficult to realize ([23], page 94) K(x) does not depend
on the choice of the vectors X,Y ∈ TxM . Hence, we can use X = t1, Y = t2 and from (39)–(40)
we have

〈R(X,Y )X,Y 〉x =
2∑
s=1

Rl121gs2

=
2∑
s=1

[
2∑
l=1

(
Γl11Γs2l − Γl21Γs1l

)]
gs2 +

2∑
s=1

(
∂Γs11

∂ξ2
− ∂Γs21

∂ξ1

)
gs2. (41)

It follows from (37) that
[Γ1
ij , Γ2

ij ] = tTij [t1, t2]G−1, i, j = 1, 2. (42)

Substituting these into (41) we have

2∑
s=1

(
∂Γs11

∂ξ2
− ∂Γs21

∂ξ1

)
gs2 = (tT11t22 − tT12t12) + tT11[t1, t2]G−1

{
[t12, t22]T t2 + [t1, t2]T t22

}
− tT12[t1, t2]G−1[tT11t2 + tT1 t12, t

T
12t2 +−tT2 t12]T . (43)

Using (42), the first summation of (41) can be written as

(Γ2
11Γ1

22 − Γ1
12Γ2

12)g12 + [Γ2
12(Γ1

11 − Γ2
12) + Γ2

11(Γ2
22 − Γ1

21)]g22

= [Γ1
11,Γ

2
11][tT12t2, t

T
22t2]T − [Γ1

21,Γ
2
21][tT11t2, t

T
12t2]T . (44)

Combining (43) with (44) we arrive at formula (26). Note that (41) involves the third order
partial derivatives of M , but (26) does not.

Mean Curvature For a 2-dimensional Riemannian sub-manifold M of Rk, the mean curvature
vector is defined by ([42] page 119)

H(x) =
1
2

[h(e1, e1) + h(e2, e2)],

where (e1, e2) is an orthonormal frame for the tangent space to M at x. h(X,Y ) is defined by

h(X,Y ) = ∇̃XY −∇XY,

16



where ∇ and ∇̃ are the Riemannian connection in M and Rk, respectively. Since ∇XY ∈ TM ,
h(X,Y ) ∈ TM⊥, we may consider only the computation of ∇̃XY and then project it into the
normal space to obtain h(X,Y ). It follows from (35) that

∇̃el
el =

[
∂el
∂x1

, · · · , ∂el
∂xk

]
el, (45)

where the fact Γlij = 0 for the Euclidean space Rk has been used. The orthonormal frame (e1, e2)
can be obtained by the Gram-Schmitt process from (t1, t2):

e1 = t1/
√
g11, e2 = (g11t2 − g12t1)/

√
g11det(G), (46)

Since xj = xj(ξ1, ξ2), j = 1, · · · , k, we have

εj = t1
∂ξ1

∂xj
+ t2

∂ξ2

∂xj
, j = 1, · · · , k, (47)

where εj = [0, · · · , 0, 1, 0, · · · , 0]T is the j-th unit vector in Rk. Performing the inner product of
both sides of (47) with t1 and t2 and then solving the linear system derived for the unknowns
∂ξ1
∂xj

, ∂ξ2∂xj
, we get [

∂ξ1

∂xj
,
∂ξ2

∂xj

]T
= G−1

[
tT1 εj , t

T
2 εj
]T
.

Then by
∂el
∂xj

=
∂el
∂ξ1

∂ξ1

∂xj
+
∂el
∂ξ2

∂ξ2

∂xj
, l = 1, 2; j = 1, · · · , k,

we have

∇̃el
el =

[
∂el
∂ξ1

,
∂el
∂ξ2

]
G−1[t1, t2]T el. (48)

Taking l = 1, 2 and using (46) we get

∇̃e1e1 =
∂e1

∂ξ1
/
√
g11, ∇̃e2e2 =

(
−g12

∂e2

∂ξ1
+ g11

∂e2

∂ξ2

)
/
√
g11detG.

Since what we required is the part of ∇̃el
el orthogonal to the tangent space, we get[

∇̃e1e1

]⊥
=

[t11]⊥

g11
,
[
∇̃e2e2

]⊥
=

[g2
12t11 + g2

11t22 − 2g11g12t12]⊥

g11detG
,

where [·]⊥ denotes the normal component of a vector. From this we have

H(x) =
[g22t11 + g11t22 − 2g12t12]⊥

2(g11g22 − g2
12)

, (49)

and thereafter (27) is derived, since Q is a projector that maps a vector to the normal space.

Principal Curvatures and Principal Directions Since M ⊂ Rk, the normal space, denoted
by TxM⊥, can be defined at each point x ∈M :

TxM
⊥ = {n ∈ Rk : 〈t, n〉x = 0, ∀t ∈ TxM}.

Let n be a normal vector field on M and X be a vector field tangent to M . Then we have

∇̃Xn = −AnX +∇⊥Xn,
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where −AnX and ∇⊥Xn are respectively the tangent and the normal components. Then An is
a self-adjoint map from TM to TM , called second fundamental tensor with respect to n ([42]
pages 119-121). The principal curvatures k1(x), k2(x) and the principal directions v1(x), v2(x) with
respect to n are defined as the eigenvalues and the orthonormal eigenvectors of An. However, the
principal curvatures and the principal directions are not uniquely defined since the normal vector
field is not uniquely defined for k > 3.

We have chosen a special normal vector field h = H(x)/‖H(x)‖, which is the normalized mean
curvature vector field of the manifold M and is uniquely defined.

To calculate the spectrum of Ah, we need to obtain its matrix representation. Let e1, e2 be the
orthonormal basis of TxM defined by (46):

[e1, e2] = [t1, t2]W, with W =

[
g
− 1

2
11 −g12[g11det(G)]−

1
2

0 g11[g11det(G)]−
1
2

]
.

Let
Ahei = a1ie1 + a2ie2, i = 1, 2. (50)

Then
Ah[e1, e2] = [e1, e2]Ah,

where Ah is a 2× 2 matrix which needs to be calculated in the following. It will be clear soon that
Ah is symmetric. Before giving an explicit form of Ah, we first show that the eigenvalues of Ah are
the eigenvalues of Ah. Let

Ah = S diag(λ1, λ2) ST , STS = I, and [v1, v2] = [e1, e2]S. (51)

Then

Ah[v1, v2] = Ah[e1, e2]S
= [e1, e2]AhS
= [e1, e2]Sdiag(λ1, λ2)
= [v1, v2]diag(λ1, λ2).

Hence, vi is the eigenvector of Ah with respect to the eigenvalue λi. Furthermore,

[v1, v2]T [v1, v2] = ST [e1, e2]T [e1, e2]S = I.

That is, v1, v2 are orthonormal.
Now we calculate the matrix Ah. To this end, we need to calculate ∇̃eih. Paralleling to the

derivation of ∇̃eiei, we have an expression similar to (48):

∇̃el
h =

[
∂h

∂ξ1
,
∂h

∂ξ2

]
G−1[t1, t2]T el, l = 1, 2. (52)

If we project ∇̃el
h into the tangent space and express Ahel as (50), Ah can be expressed as

Ah = −[e1, e2]
[
∂h

∂ξ1
,
∂h

∂ξ2

]
G−1[t1, t2]T [e1, e2]

= −W T [t1, t2]T
[
∂h

∂ξ1
,
∂h

∂ξ2

]
W. (53)

Now we need to calculate [t1, t2]T
[
∂h
∂ξ1
, ∂h∂ξ2

]
. Substituting the expression h into (53) and with some

additional calculations, we have
Ah = W TFhW, (54)
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where Fh is a 2× 2 symmetric matrix defined by

Fh =
g22(B11 −A11) + g11(B22 −A22)− 2g12(B12 −A12)

2det(G)‖H(x)‖
, (55)

Akl = (tTijtkl)
2
ij=1, Bkl = (cTijG

−1ckl)2
ij=1, cij = [t1, t2]T tij . (56)

Substituting (56) into (55) and using the mean curvature formula (27), we have a simple expression
for Fh:

Fh = −
(
tTij h(x)

)2
ij=1

.

Having an explicit expression for Ah, we are able to compute the principal curvatures and the
principal directions by (28), (29) and (51). However, since Ah involves W , it is not intrinsic. To
obtain more elegant formulas, we rewrite Ah = W TFhW as follows

Ah = (Λ
1
2KW )TA(Λ

1
2KW ) with A = Λ−

1
2KFhK

TΛ−
1
2 .

It follows from (30) and (31) that [u1, u2]T [u1, u2] = I. We then have

I = [e1, e2]T [e1, e2]
= W T [t1, t2]T [t1, t2]W

= W TKTΛ
1
2 [u1, u2]T [u1, u2]Λ

1
2KW (57)

= (Λ
1
2KW )T (Λ

1
2KW ),

that is, Λ
1
2KW is an orthgonal matrix. Hence, the eigenvalues of Ah and A are the same, and

therefore we can use A to compute the principal curvatures instead of Ah. Using relation (32), we
have

Ah = (Λ
1
2KW )TPdiag(k1, k2)P T (Λ

1
2KW ).

Hence S could be written as
S = (Λ

1
2KW )TP.

Therefore, the eigenvectors are given by

[v1, v2] = [e1, e2]S
= [t1, t2]WS

= [u1, u2](Λ
1
2KW )(Λ

1
2KW )TP

= [u1, u2]P,

and hence (33) is derived.

Remark 1. Since h uses the second order partial derivatives of x ∈ M , ∂h
∂ξi

uses the third order
partials. A nice property is that all the third order partials are canceled in Ah. The final result
only uses the first and the second order partials.

Remark 2. Both the matrix A for computing the principal curvatures and the formula (33) for
computing the principal directions do not involve W . Furthermore, it can be proved that all the
curvatures do not depend on the choice of the local coordinate system (ξ1, ξ2). Therefore, they are
intrinsic to the manifold M . The proof of this claim is not the theme of this paper.
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Figure 2: A classification of low degree algebraic curves (left) and surfaces (right)

7 Converting Between Implicit and Parametric Forms

A real implicit algebraic plane curve f(x, y) = 0 is a hypersurface of dimension 1 in R2, while a
parametric plane curve [f3(s)x− f1(s) = 0, f3(s)y − f2(s) = 0] is an algebraic variety of dimension
1 in R3, defined by the two independent algebraic equations in the three variables x, y, s. Similarly,
a real implicit algebraic surface f(x, y, z) = 0 is a hypersurface of dimension two in R3, while a
parametric surface [f4(s, t)x − f1(s, t) = 0, f4(s, t)y − f2(s, t) = 0, f4(s, t)z − f3(s, t) = 0] is an
algebraic variety of dimension 2 in R5, defined by three independent algebraic equations in the five
variables x, y, z, s, t.

A plane parametric curve is a very special algebraic variety of dimension 1 in x, y, s space, since
the curve lies in the 2-dimensional subspace defined by x, y and furthermore points on the curve
can be put in (1, 1) rational correspondence with points on the 1-dimensional sub-space defined
by s. Parametric curves are thus a special subset of algebraic curves, and are often also called
rational algebraic curves. Figure 2 depicts the relationship between the set of parametric curves
and non-parametric curves at various degrees.

Example parametric (rational algebraic) curves are degree two algebraic curves (conics) and
degree three algebraic curves (cubics) with a singular point. The non-singular cubics are not
rational and are also known as elliptic cubics. In general, a necessary and sufficient condition for
the rationality of an algebraic curve of arbitrary degree is given by the Cayley-Riemann criterion: a
curve is rational if and only if g = 0, where g, the genus of the curve is a measure of the deficiency of
the curve’s singularities from its maximum allowable limit [40]. Algorithms for computing the genus
of an algebraic curve and for symbolically deriving the parametric equations of genus 0 curves, are
given for example in [5].

For implicit algebraic plane curves and surfaces defined by polynomials of degree d, the maxi-
mum number of intersections between the curve and a line in the plane or the surface and a line
in space, is equal to the maximum number of roots of a polynomial of degree d. Hence, here the
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geometric degree is the same as the algebraic degree which is equal to d. For parametric curves
defined by polynomials of degree d, the maximum number of intersections between the curve and a
line in the plane is also equal to the maximum number of roots of a polynomial of degree d. Hence
here again the geometric degree is the same as the algebraic degree.

For parametric surfaces defined by polynomials of degree d the geometric degree can be as large
as d2, the square of the algebraic degree d. This can be seen as follows. Consider the intersection of
a generic line in space [a1x+b1y+c1z−d1 = 0, a2x+b2y+c2z−d2 = 0] with the parametric surface.
The intersection yields two implicit algebraic curves of degree d which intersect in O(d2) points (via
Bezout’s theorem), corresponding to the intersection points of the line and the parametric surface.

A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so have (d−1)(d−2)
2

= O(d2) singular (double) points. This number is the maximum number of singular points an
algebraic curve of degree d may have. From Bezout’s theorem, we realize that the intersection of
two implicit surfaces of algebraic degree d can be a curve of geometric degree O(d2). Furthermore
the same theorem implies that the intersection of two parametric surfaces of algebraic degree d
(and geometric degree O(d2)) can be a curve of geometric degree O(d4). Hence, while the potential
singularities of the space curve defined by the intersection of two implicit surfaces defined by
polynomials of degree d can be as many as O(d4), the potential singularities of the space curve
defined by the intersection of two parametric surfaces defined by polynomials of degree d can be as
many as O(d8).

7.1 Parameterization of Curves

An irreducible algebraic curve Cd of degree d in the plane is one which is met by most lines in d
points. Lines through a point P meet Cd (outside P ) in general at d − multpCd points, where
multpCd = e = multiplicity of Cd at P . If e = 1 then P is called a simple point. If e = 2 then
P is called a double point. Similarly we talk about an e-ple point or an e-fold point. If e = 0: P
is not on Cd. If e > 1 we say P is a singular point of the curve Cd with multiplicity e. This also
leads to the following theorem for curves

Theorem 7.1. [Bezout] Curves of degree d and curves of degree e, with no common components,
meet at dcdote points, counting multiplicities and points at infinity. (Cd · Ce = d · e points.)

Consider curve Cd of degree d to be also of order e.

Cd : f(x, y) =
∑

e≤i+j≤d
aijx

iyj = fd(x, y) + fd−1(x, y) + · · ·+ fe(x, y)

where fi(x, y) are homogeneous polynomials of degree i together with fd(x, y) 6= 0 and fe(x, y) 6= 0
so that d = degree and e order. Thus fd(x, y) is the degree form and fe(x, y) is the initial or order
form. Again, the multiplicity of a point P on Cd is geometrically, the number of points that a line
through that point P meets Cd at P . By translation, we can assume the point P to be the origin.
Then the equation of a line through the origin is y = mx. Its intersection with the curve is given
by

f(x, mx) = fd(x, mx) + fd − 1(x, mx) + · · · + fe(x, mx)
= xdfd(1, m) + xd − 1fd − 1(1, m) + · · ·xefe(1, mx)
= xe[fd(1, m)xd − e + · · · + fe(1, m)

Lines through the origin meet the curve, outside the origin, in d− e points. Hence the multiplicity
of the origin = e = (order of the curve). Thus if the curve Cd has a d− 1 fold point (origin), then
lines through that point meet F at one other point, and thereby parameterizes the curve (rational).

Here we can also note that for most values of m , fe(1, m) 6= 0. The values of m for which it is
zero correspond to the tangents fe(x, y) =

∏e
i=1(y −mix) to the curve at the origin. (Tangents
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degree of curve 1 2 3 4 5 6 · · · d
the maximum number
of double points 0 0 1 3 6 10 · · · 1

2(d − 1)(d − 2)
the number of inde-
pendent parameters 2 5 9 14 20 27 · · · 1

2d(d + 3)

Table 1: Relation of degree of curve to number of double points and independent parameters.

at P are thus those special lines which meet Cd at P at more than e points, where e = multiplicity
of Cd at P .)

Now note for example that the equation of a conic has five independent coefficients and if we
take five ‘independent’ points in the plane and consider a conic passing through these points then
this will give five linear homogeneous equations in the five coefficient variables. If the rank of the
matrix is 5 then there is a unique conic through these points. In general, the number of independent
coefficients of a plane algebraic curve Cd of degree d is 1

2d(d+ 3).
One can easily prove by Bezout’s theorem that a curve of degree 4, for example, cannot have

4 double points. In general one may see that the number of double points, say DP , of Cd is
≤ 1

2(d − 1)(d − 2). Assume DP > 1
2(d − 1)(d − 2). Then since 1

2(d − 2)(d + 1) fixed
points determine a Cd − 2 curve and if we choose 1

2(d − 1)(d − 2) + 1 double points of Cd then
to determine Cd − 2 one needs a remaining

1
2

(d− 2)(d+ 1)− (
1
2

(d− 1)(d− 2) + 1) = (d− 2)− 1 = d− 3 points.

So take (d − 3) other fixed simple points of Cd. Then we can pass a Cd − 2 curve through the
above 1

2(d − 1)(d − 2) + 1 double points of Cd and (d − 3) other simple points of Cd. Then
counting the number of points of intersection of Cd and Cd − 2 together with multiplicities yields

(d − 1)(d − 2) + 2 + d − 3 = d2 − 2d+ 1 = (d− 2)d+ 1 = Cd · Cd−2 + 1

which contradicts Bezout. Thus assuming Bezout we see that

DP ≤ 1
2

(d − 1)(d − 2)

In general, we have Table 7.1

One definition of the genus g of a curve Cd is a measure of how much the curve is deficient from
its maximum allowable limit of singularities,

g =
1
2

(d − 1)(d − 2)

where DP is a ‘proper’ counting of the number of double points of Cd (summing over all singular-
ities). From the earlier discussion and Bezout, we can see that in counting the number of double
points DP of Cd an e-ple point of C is to be counted as 1

2e(e − 1) double points.
However this counting is not very precise as such is the case only for the so called distinct

multiple points of C. For a multiple point, that is not distinct, one has also to consider infinitely
near singularities. In general a double point is roughly either a node or a cusp. If a cusp is given
by y2 − x3 we call it a distinct cusp and is counted as a single double point. Cusps other than
distinct look like y2 − x2m + 1 (an m − fold cusp). Though the multiplicity of the origin is two
(= order of the curve) the origin accounts for m double points when counted properly. The proper
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counting was achieved by Noether using homogeneous “Cremona quadratic transformations”, see
also [40]. Following [2] we can achieve the same thing by using “affine quadratic transformations”.

Consider for example, the cusp y2 − x3 = 0 which has a double point at the origin. The
quadratic transformation q given by

x = x̄ and y = x̄ȳ (58)

yields
0 = y2 − x3 = x̄2ȳ2 − x̄3 = x̄2(ȳ2 − x̄),

and canceling out the extraneous factor x̄2 we get the nonsingular parabola ȳ2 − x̄ = 0. So the
origin in this case was a distinct singular point and counted as a single double point.

To desingularize the m − fold cusp one has to make a succession of m transformations of the
type (58). Only the mth successive application of (1) changes the multiplicity of the origin from
two to one. Hence in this case, counting properly, we say that the cusp has one distinct double
point and (m− 1) infinitely near double points, giving a total DP count of m.

In a general procedure for counting double points, given an e-fold point P of a plane curve C,
we choose our coordinates to bring P to the origin and then apply (58). If now C : f(x, y) = 0,
then the substitution (58) transforms C into the curve C : f : (x, y) = 0 given by

f(x, xy) = xef(x, y).

Cbar will meet the line E : x̄ = 0 in the points P 1, . . . , Pm, the roots of f̄(0, y) = 0 which
corresponds to the tangents to C at P . If P i is a ei-fold point of Cbar, then we shall have
e1 + ... + em ≤ e. We say that P 1 , . . . , Pm are the points of C̄ in the first neighborhood of P ,
and the multiplicity of C̄ at P i is ei. Now iterate this procedure. The points of C infinitely near
P can be diagrammed by the singularity tree of C at P .

At every node of this tree (including the root) we keep a count equal to the multiplicity of C at
that point which will then be ≥ the number of branches arising at that node. It follows that every
node higher than a certain level will be unforked, that is have a single branch. The desingularization
theorem for algebraic plane curves, see [2] or [40] says that at every node higher than a certain
level, the count equals one; in other words, C has only a finite number of singularities infinitely
near P . Thus, since C has only finitely many distinct singularities, it follows that C has only a
finite number of singular points, distinct as well as infinitely near.

Thus, by summing the counts of each node and counting 1
2e(e − 1) double points for a count

e and additionally summing over all singularities of C and their corresponding singularity trees,
we obtain a precise count of the total number of double points DP of C. This proper counting of
double points yields the following theorem.

Theorem 7.2. [Cayley-Reimann] g = 0 if and only if C has a rational parametrization.

In other words the given plane curve has its maximum allowable limit of singularities if and
only if it is rational.

Note also that in counting singularities we consider all the singularities of the projective curve.
That is we consider the singularities at both finite distance as well as at infinity. The process
of considering singularities at infinity is no different than that at finite distance. With regard to
homogeneous coordinates let us consider Z = 0 to be the line at infinity. By swapping one of
the axis lines x = 0 or y = 0 with the line at infinity we can bring the points at infinity to the
affine plane. We illustrate this as well as Theorem 2 by means of an example. Consider again the
m − fold cusp y2 − x2m + 1. We have seen earlier that the origin accounts for m double points
when counted properly. Now consider the singularity at infinity. We swap the Z = 0 line with the
Y = 0 line by homogenizing and then setting Y = 1 to dehemogenize.

Y 2Z2m − 1 − X2m + 1 ⇒ z2m − 1 − x2m + 1
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The singularity at infinity is again at the origin and of multiplicity 2m − 1 accounting for
1
2(2m − 1)(2m − 2) double points. On applying an appropriate quadratic transformation x = x
and z = xz, the multiplicity is reduced to 2:

z2m − 1 − x2.

After a sequence of m−1 additional quadratic transformations the multiplicity at the origin finally
reduces to one. These infinitely near singularities then account for totally m− 1 additional double
points, resulting in a total DP count for the curve to be equal to

m+
1
2

(2m − 1)(2m − 2) +m− 1 =
1
2

(2m)(2m− 1)

which is exactly the maximum number of allowable double points for a curve of degree 2m + 1.
Hence the m-fold cusp has genus 0 and is rational with a parametrization given by

x = t2, y = t2m + 1.

7.1.1 Parameterizing with lines

The geometric idea of parameterizing a circle or a conic is to fix a point and take lines through
that point which meet the conic at one additional point. Hence conics always have a rational
parametrization, with the slope of the line being the single parameter. Next, consider a cubic curve,
C3. A cubic curve is a curve to which most lines intersect in three points. If we consider a singular
cubic curve then lines through the singular (double) point meet the curve at one additional point
and hence rationally parameterize the cubic curve. If C3 has no singular points, then C3 cannot be
parameterized by rational functions. Now intersecting a curve C with a pencil of lines through a
fixed point P on it, can be achieved by sending the point P on C to infinity. To understand this,
let us first consider an irreducible conic which is represented by the equation

g(x, y) = ax2 + by2 + cxy + dx + ey + f = 0

Bezout confirms that the irreducible conic cannot contain a double point for otherwise the conic
consists of two lines. We observe that the trivial parameterizable cases are the parabola y2 = x
which has no term in x2; the parabola x2 = y which has no term in y2; and the hyperbola xy = 1
which has no terms in x2 and y2. The non-trivial case arises when a and b are both non-zero, e.g.
the ellipse. This then suggests that to obtain a rational parametrization all we need to do is to
kill the y2 term. This can always be achieved by a suitable linear transformation resulting in the
equation

(rx + s)y + (ux2 + vx + w) = 0

from which one can easily obtain a rational parametrization

x = t, y =
−(ut2 + vt + w)

(rt + s)

The elimination of the x2 or the y2 term through a coordinate transformation is said to make
the conic irregular in x or y respectively. Geometrically speaking, a conic being irregular in x or y
means that most lines parallel to the x or y axis respectively, intersect the conic in one point. Note
that most lines through a fixed point on the conic meet the conic in one additional varying point.
By sending the fixed point to infinity we make all these lines parallel to some axis and the curve
irregular in one of the variables (x, or y) and hence amenable to parametrization. The coordinate
transformation we select is thus one which sends any point on the conic to infinity along either of
the coordinate axis x or y.
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As an example consider the unit circle and fix a simple point P (−1, 0) on it: (x, y) affine
coordinates (−1, 0) and (X, Y, Z) homogeneous coordinates (−1, 0, 1). Send P to a point at
infinity along the y-axis. That is, send (−1, 0, 1) to (0, 1, 0). (Explanation: A point on y-axis is
like (0, p, 1) divide by p and let p→∞). Thus we achieve by a homogeneous linear transformation
which transforms (−1, 0, 1) to (0, 1, 0)

X → αX + βY + γZ

Y → α̂X + β̂Y + γ̂Z

Z → α∗X + β∗Y + γ∗Z

The chosen point on the circle (−1, 0, 1) determines

−1 = β, 0 = β̂, 1 = β∗

and the α’s and γ’s are chosen such that the det ( α’s , β’s, γs) ! = 0, yielding a well defined
invertible transformation. So let us take as our homogeneous linear transformation

X → −Y ,
Y → Z,

Z → X + Y .

We first homogenize the circle x2 + y2 − 1 = 0 to X2 + Y 2 − Z2 = 0. On applying the above
linear transformation we eliminate the Y 2 term

Y
2 + Z

2 − (X + Y )2 = 0

⇒ −2XY = X
2 − Z

2 ⇒ Y =
Z

2 − X
2

2X
.

Then on dehomogenizing by setting Z = 1 and using the linear transformation to obtain the
original affine coordinates and setting X = t, we obtain the rational parametrization of the circle:

x =
X

Z
=

−Y
X + Y

, y =
Y

Z
=

1
X + Y{

X = t

Y = 1 − t2

2t

⇒

{
x = −(1 − t2)/2t

t + (1 − t2)/2t
= −1 − t2

1 + t2

y = 1
t + (1 − t2)/2t

= 2t
1 + t2

In general, curves of degree d with a distinct d − 1 fold point can be rationally parameterized
by sending the d − 1 fold point to infinity. Consider f(x, y) a polynomial of degree d in x and y
representing a plane algebraic curve Cd of degree d with a distinct d− 1 fold singularity.

Note that singularities of a plane curve can be computed by simultaneously solving the equations
f = fx = fy = 0 where fx and fy are the x and y partial derivatives of f , respectively. One way of
obtaining the common solutions is to find those roots of Resx(fx, fy) = 0 which are also the roots
of f = 0. Here Resx(fx, fy) is the resultant of fx and fy treating them as polynomials in x. Note
singularities at infinity can be obtained the same way after replacing the line at infinity with one
of the coordinate axes. In particular on homogenizing a plane curve f(x, y) to F (X,Y, Z) we can
set Y = 1 to obtain fbar(x, z) thereby swapping the line at infinity Z = 0 with the line Y = 0.
Now the above procedure can be applied to fbar(x, z) to find the singularities at infinity.

Let us then compute the d− 1 fold singularity of the curve Cd and translate it to the origin by
a simple linear transformation. Then the polynomial describing the curve will be of the form

f(x, y) = fd(x, y) + fd−1(x, y)
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where fd, (degree form), consists of the terms of degree d and fd−1 consists of terms of degree d−1.
On homogenizing this curve we obtain

F (X,Y, Z) = a0Y
d + a1Y

d−1X + . . .+ adX
d + b0Y

d−1Z + b1Y
d−2XZ + . . .+ bdX

d−1Z

Now by sending the singular point (0, 0, 1) to infinity along the Y axis we can eliminate the Y d

term. This as before by a homogeneous linear transformation which maps the point (0, 0, 1) to the
point (0, 1, 0) and given by

X = X Y = Z, Z = Y

which yields

F (X,Y , Z) = a0Z
d + a1Z

d−1
X + · · ·+ adX

d + b0Z
d−1

Y + b1Z
d−2

XY + · · ·+ bdX
d−1

Y ,

Y = − a0Z
d + a1Z

d−1
X + · · ·+ adX

d

b0Z
d−1 + b1Z

d−2
X + ...+ bdX

d−1
.

Then dehomogenizing, by setting Z = 1 and using the linear transformation to obtain the original
affine coordinates

x =
X

Z
=
X

Y
, y =

Y

Z
=
Z

Y

and setting X = t we obtain the rational parametrization of the curve.
Alternatively we could have symbolically intersected a single parameter family (pencil) of lines

through the d − 1 fold singularity with Cd and obtained a rational parameterization with respect
to this parameter. This concept of passing a pencil of curves through singularities is generalized in
the next section.

7.1.2 Parameterizing with Higher Degree Curves

From the genus formula and Bezout’s theorem we note that an irreducible rational quartic curve in
the plane has either a distinct triple point or three distinct double points. The rational parameter-
ization of the quartic with a distinct triple point is handled by the method of the previous section.
Let us then consider an irreducible quartic curve C4 with three distinct double points. From Table
7.1 we know that through 5-points a conic can be passed. Choose three double points and a simple
point on the curve C4, yielding a one parameter family (pencil) of conics, C2(t). Now C4 · C2(t) = 8
points. Since the fixed points (3 double points and a simple point) account for 2 + 2 + 2 + 1 = 7
points, the remaining point on C4 is the variable point, giving us a rational parametrization of C4,
in terms of parameter t.

Computationally we proceed as follows. Consider first C4 with three distinct double points. We
first obtain the three double point singularities of the homogeneous quartic F (X,Y, Z) as well as
a simple point on it. Let them be given by (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3) and (X4, Y4, Z4)
respectively. Consider next the general equation of a homogeneous conic C2 given by

G(X,Y, Z) = aX2 + bY 2 + cXY + dXZ + eY Z + fZ2 = 0

which has six coefficients however five independent unknowns as we can always divide out by one of
the nonzero coefficients. We now try to determine these unknowns to yield a one parameter family
of curves, C2(t). We pass C2 simply through the singular double points and the simple point of C4.
(In general we shall pass a curve through an m-fold singularity with multiplicity m− 1). In other
words we equate for i = 1, ..., 4,

F (Xi, Yi, Zi) = G(Xi, Yi, Zi) = 0
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This yields a linear system of 4 equations in five unknowns. Set one of the unknowns to be t
and solve for the remaining unknowns in terms of t.

Next compute the intersection of C4 and C2(t), by computing ResY (F,G) which is a polyno-
mial in X, Z and t. On dehomegenizing this polynomial by setting Z = 1, (since resultants of
homogeneous polynomials are homogeneous) and dividing by the common factors (x − xi)2 for
i = 1..3 and (x − x4) we obtain a polynomial linear in x which yields the rational parameterization.
The process when repeated for y by taking the ResX(F,G) and dividing by the common factors
(y − yi)2 for i = 1..3 and (y − y4) yields a polynomial in y and t and linear in y which yields the
rational parameterization.

Next consider an example of a quintic curve with infinitely near singularities. In particular, the
homogenized quintic cusp C5 : F (X,Y, Z) = Y 2Z3 − X5 has a distinct double point and an
infinitely near double point (in the first neighborhood) at (0 , 0 , 1), and a distinct triple point and
an infinitely near double point at (0 , 1 , 0). Counting all the double points, properly, we see that
Csub5 has 6 double points and hence is of genus 0 and rational. To obtain the parameterization
we pass a one parameter family of cubics C3(t) given by

G(X,Y, Z) = aX3 + bY 3 + cX2Y + dXY 2 + eX2Z + fY 2Z + gXY Z + hXZ2 + iY Z2 + jZ3

through the singularities of C5. Passing C3(t) through the distinct double point (with multiplicity
2 − 1 = 1) is obtained as before by equating

F (0, 0, 1) = G(0, 0, 1) = 0 (59)

and the distinct triple point, (with multiplicity 3 − 1 = 2) by equating

F (0, 1, 0) = G(0, 1, 0) = 0 (60)
FX(0, 1, 0) = GX(0, 1, 0) = 0 (61)
FZ(0, 1, 0) = GZ(0, 1, 0) = 0 (62)

These conditions for our example curve C5 makes j = 0, b = 0, d = 0 and f = 0 in C3(t)
yielding the curve

G(X, Y, Z) = aX3 + cX2Y + eX2Z + gXY Z + hXZ2 + iY Z2

We now wish to pass C3(t) through the infinitely near double point in the first neighborhood of
the singularity at (0, 0, 1) of C5. To achieve this we apply the quadratic transformation X = X
, Y = XY , Z = Z centered at (0, 0, 1) to both F (X, Y, Z) and G(X, Y, Z). The transformed
equation FT = Y

2
Z

3 − X
3 has a double point at (0, 0, 1) and we pass the curve of the

transformed equation GT = aXsup2 + cX
2
Y + eXZ + gXY Z + hZ

2 + iY Z
2 through the

double point as before by equating

FT (0, 0, 1) = GT (0, 0, 1) = 0. . . (63)

This condition makes h = 0 in C3(t) yielding

Ĝ(x, y, z) = aX3 + cX2Y + eX2Z + gXY Z + iY Z2.

Similarly we pass C3 through the infinitely near double point in the first neighborhood of the
singularity at (0, 1, 0) of C5. To achieve this we apply the quadratic transformation X = X̂,
Y = Ŷ , Z = X̂Ẑ centered at (0, 1, 0) to both F (X, Y, Z) and Ghat(X, Y, Z). The transformed
equation FT = Ŷ 2Ẑ3 − Xhat2 has a double point at (0, 1, 0) and we pass the curve of the
transformed equation GhatT = aX̂ + cŶ + eX̂Ẑ + gŶ Ẑ + iŶ Ẑ2 through the double point
as before by equating

FT (0, 1, 0) = ĜT (0, 1, 0) = 0 (64)
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This condition makes c = 0 in C3 yielding

G̃(x, y, z) = aX3 + eX2Z + gXY Z + iY Z2.

Our final condition to determine pencil of cubics C3(t) is to choose two simple points on C5, say
(1, 1, 1) and (1, − 1, 1) and pass C3 through it by equating.

F (1, 1, 1) = G̃(1, 1, 1) = 0 (65)
F (1, − 1, 1) = G̃(1, − 1, 1) = 0. (66)

Note that in total we applied eight conditions to determine the pencil, since nine conditions com-
pletely determine the cubic. The last two conditions yield the equations

a + e + g + i = 0
a + e − g − i = 0

In choosing the pencil C3(t) we allow one of the coefficients to be t and we may divide out by
another coefficient (or choose it to be 1). The above equations yield a + e = 0 and g + i = 0
and on choosing a = t and g = 1 we obtain e = − t and i = − 1. Hence our homogeneous
cubic pencil is given by

G3(X, Y, Z, t) = tX3 − tX2Z + XY Z − Y Z2

or the dehomogenized pencil G3(x, y, t) = tx3 − tx2 + xy − y = 0. This yields y = − tx2.
Intersecting it with the dehomogenized quintic C5 : y2 − x5 yields t2x4 − xsup5 = 0 or x = t2

on dividing out by the common factor x4. Finally the parametric equations of the rational quintic
C5 are given by x = t2 and y = − t5.

In the general case we consider an irreducible curve Cd with the appropriate number of distinct
and infinitely near singularities which make Cd rational (genus 0). We pass a curve Cd−2 through
these singular points and d − 3 additional simple points of Cd. Consider again F (X,Y, Z) and
G(X,Y, Z) as the homogeneous equations of curves Cd and Cd − 2 respectively. For a distinct
singular point of multiplicity m of Cd at the point (Xi, Yi, Zi) we pass the curve Cd − 2 through it
with a multiplicity of m− 1. To achieve this we equate

F (Xi, Yi, Zi) = G(Xi, Yi, Zi)
FX(Xi, Yi, Zi) = GX(Xi, Yi, Zi)
FY (Xi, Yi, Zi) = GY (Xi, Yi, Zi)

FXX(Xi, Yi, Zi) = GXX(Xi, Yi, Zi)
FXY (Xi, Yi, Zi) = GXY (Xi, Yi, Zi)
FY Y (Xi, Yi, Zi) = GY Y (Xi, Yi, Zi)

...
FXjY k(Xi, Yi, Zi) = GXjY k(Xi, Yi, Zi), 0 ≤ j + k ≤ m− 2.

For an infinitely near singular point of Cd with its associated singularity tree we pass the curve
Cd−2 with multiplicity r−1 through each of the points of multiplicity r in the first, second, third,
..., neighborhoods. To achieve this we apply quadratic transformations Ti to both F (X,Y, Z) and
G(X,Y, Z) centered around the infinitely near singular points corresponding to the singularity tree.
The appropriate multiplicity of passing is achieved by equating the transformed equations FTi and
GTi and their partial derivatives as above.

A simple counting argument now shows us that this method generates the correct number of
conditions which specifies Cd − 2 and furthermore the total intersection count between Cd and
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Cd − 2 satisfies Bezout. A curve Cd of genus = 0 has the equivalent of exactly 1
2(d − 1)(d − 2)

double points. Then to pass a curve Cd − 2 through these double points and d− 3 other fixed
simple points of Cd and one variable point specified by t, the total number of conditions (= to

the total number of linear equations) is given by

1
2

(d − 1)(d − 2) + (d − 3) + 1 =
1
2

(d − 2)(d + 1)

which is exactly the number of independent unknowns to determine Cd − 2 (see table 7.1). Next,
counting the number of points of intersection of Cd and Cd − 2

(d − 1)(d − 2) + d − 3 + 1 = (d − 2)d = Cd−2 · Cd

satisfying Bezout.
For further details of the applicability of Bezout’s theorem with respect to infinitely near sin-

gularities, see Abhyankar (1973). Then computing the Resx(Cd, Cd−2) which yields a polynomial
of degree d(d − 2) in y and dividing by the common factors corresponding to the (d − 3) simple
points (a polynomial of degree (d − 3) in y) and 1

2(d − 2)(d − 1) double points (a polynomial of
degree (d − 2)(d − 1) in y) yields a polynomial in y and t which is linear in y, (for the single
variable point) and thus gives a rational parameterization of y in terms of t. Similarly repeating
with Res””y(Cd, Cd − 2) yields a rational parameterization of x in terms of t.

As a final example consider the m-fold cusp y2 − x2m+ 1 once again (for the last time). We
know from the above that it is a rational curve with genus 0 and with a distinct double point and
m − 1 infinitely near double points at the origin (0,0,1) and a distinct (2m − 1)-fold singularity
and m − 1 infinitely near double points at infinity (0,1,0). Now we pass a pencil of curve C2m−1

of degree 2m − 1 appropriately (as explained above) through these singularities and also through
2m+ 1 − 3 = 2m− 2 simple points of the m-fold cusp C2m+1.

In the following let F (X, Y, Z) = 0 be the equation of C2m+1 and G(X, Y, Z) the equation of
C2m−1. Now the conditions available to specify a pencil of curves C2m−1 is given as follows. A total
of 2m− 2 conditions are given by equating F and G at the 2m− 2 simple points of C2m+1. Further
by equating F and G and the corresponding transformed FTi and GTi (transformed by a sequence
of quadratic transformations) at the distinct and infinitely near double points of the origin (0,0,1)
and infinitely near double points of infinity (0,1,0). This totally accounts for m + m−1 = 2m−1
additional conditions. Finally through the (2m− 1) fold singularity at infinity of C2m+1 the pencil
C2m−1 is passed with multiplicity 2m−2 which is obtained by equating the equations and the partial
derivatives FXiY k = GXiY k for all 0 <= j + k < 2m − 2 which yields 1

2(2m − 2)(2m − 1)
conditions. One final condition is achieved by equating one of the coefficients of C2m−1 to ‘t’. Hence
totally the conditions available to specify the pencil of curves C2m−1 is given by

1 + 2m− 2 + 2m− 1 +
1
2

(2m− 2)(2m− 1) =
1
2

(2m− 1)(2m+ 2)

which is exactly the number of conditions required to specify a pencil of curve C2m−1 as given by
Table 7.1 This then yields a linear system of (2m − 1)(m + 1) equations in the same number of
unknowns and can be easily solved.

Finally, note that the total number of intersections (counting multiplicities) between C2m−1

are given by 1 single variable point + (2m − 2) fixed simple points + 2(2m − 1) double points
+ (2m − 1)(2m − 2) 2m − 2 multiplicity of C2m−1 at the (2m − 1)-fold singularity of C2m+1 =
(2m− 1)(2m+ 1) satisfying Bezout. Hence on computing the Resx(C2m+1, C2m−1 and dividing by
the common factors corresponding to the (2m− 2) simple points, (2m− 1) double points and the
2m−2 multiplicity of C2m−1 at the (2m−1)-fold singularity of C2m+1 yields a polynomial in y and
t which is linear in y, (for the single variable point) and thus gives a rational parameterization of y
in terms of t. Similarly repeating with Resy(C2m+1, C2m−1) yields a rational parameterization of
x in terms of t.
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7.1.3 Parameterization of conic, cubic plane curves

Conics A general degree two algebraic plane curve is given as f(x, y) = ax2 + by2 + cxy + dx+
ey + f = 0. If either a or b is 0, then set the the solution for the corresponding variable gives
us a parameterization. Otherwise, a point on the curve is sent to infinity, thus making the curve
linear in one of the variables. We obtain a rational parameterization with polynomials of maximum
degree two.

Cubics A general degree two algebraic plane curve is given as f(x, y, z) = ax3 + by3 + cx2y +
dxy2 + ex2 + fy2 + gxy + hx + iy + j = 0. Since a cubic equation has a real root, a real point at
infinity, remove say the y3 term with a linear transformation of x and y. Rearrange the terms to
obtain a quadratic in transformed y. Taking the root of this equation, we will obtain a function
for the transformed y. Hence if there exists a parameterization for this function, we have obtained
the parameterization of the cubic curve.

7.2 Parameterization of Algebraic Space Curves

Consider an irreducible algebraic space curve C which is implicitly defined as the intersection of
two algebraic surfaces f(x, y, z) = 0 and g(x, y, z) = 0. We concern ourselves with space curves
defined by two surfaces since they are of direct interest to applications in computer-aided design
and computer graphics, see Boehm, et. al [17]. Irreducible space curves in general, defined by more
than two surfaces are difficult to handle equationally and one needs to resort to computationally
less efficient ideal-theoretic methods, Buchberger [19]. However general space curves is a topic with
various unresolved issues of mathematical and computational interest and an area of important
future research, Abhyankar [1].

Now for an irreducible algebraic space curve C as above, there always exists a birational cor-
respondence between the points of C and the points of an irreducible plane curve P whose genus
is the same as that of C, see Walker [40]. Birational correspondence between C and P means
that the points of C can be given by rational functions of points of P and vice versa (i.e a 1-1
mapping, except for a finite number of exceptional points, between points of C and P ). Together,
(i) the method of computing the genus and rational parameterization of algebraic plane curves,
Abhyankar and Bajaj [5], and (ii) the method of this paper of constructing a plane curve P along
with a birational mapping between the points of P and the given space curve C, gives an algorithm
to compute the genus of C and if genus = 0 the rational parametric equations of C.

We now show how, given an irreducible space curve C, defined implicitly as the intersection of
two algebraic surfaces, one is able to construct the equation of a plane curve P and a birational
mapping between the points of P and C. As a first attempt in constructing P , we may consider the
projection of the space curve C along any of the coordinate axis yielding a plane curve whose points
are in correspondence with the points of C. Projecting C along, say the z axis, can be achieved by
computing the Sylvester resultant of f and g, treating them as polynomials in z, yielding a single
polynomial in x and y the coefficients of f and g. The Sylvester resultant eliminates one variable,
in this case z, from two equations, see Salmon [32]. Efficient methods are known for computing
this resultant for polynomials in any number of variables, see Collins [22], Bajaj and Royappa [12].
The Sylvester resultant of f and g thus defines a plane algebraic curve P . However this projected
plane curve P in general, is not in birational correspondence with the space curve C. For a chosen
projection direction it is quite possible that most points of P may correspond to more than one
point of C (i.e. a multiple covering of P by C) and hence the two curves are not birationally
related. However this approach may be rectified by choosing a valid projection direction which
yields a birationally related, projected plane curve P .

There remains the problem of constructing the birational mapping between points on P and
C. Let the projected plane curve P be defined by the polynomial h(x̃, ỹ). The map one way is
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Figure 3: Two intersecting space curves. A valid projection direction will yield two planar curves
intersecting transversally.

linear and is given trivially by x̃ = x and ỹ = y. To construct the reverse rational map one only
needs to compute z = I(x̃, ỹ) where I is a rational function. We show how it is always possible to
construct this rational function by use of a polynomial remainder sequence along a valid direction.
In fact the resultant is no more than the end result of a polynomial remainder sequence, see Bocher
[16], Collins [21].

Note additionally that the reverse rational map, z = I(x̃, ỹ) where I is a rational function is
also the rational parametric equation of a rational surface containing the space curve C. Hence
constructing a birational mapping between space and plane curves which always exists, also yields
an explicit rational surface containing the space curve. By an explicit rational surface we mean
one with a known or trivially derivable rational parameterization. For irreducible space curves
C, a method of obtaining an explicit rational surface containing C, is given (without proof) in
Snyder and Sisam [39]. The technique presented here is similar, but uses a subresultant polynomial
remainder sequence, which for an appropriately chosen coordinate direction, provides an efficient
way of obtaining the reverse rational map as well as an explicit rational surface containing C.

It is important to note that conversely knowing the rational parametric equations of a rational
surface containing a space curve, yields a birational mapping between points on the space curve
and a plane curve. Namely, if one of the two surfaces f or g defining the space curve C, or actually
any known surface in I(f, g), the Ideal2 of the curve generated by f and g is rational with a known
rational parameterization, then points on C are easily mapped to a single polynomial equation
h(s, t) = 0 describing a plane curve P in the parametric plane s− t of the rational surface. This
mapping between the (x, y, z) points of C and the (s, t) points of P is birational with the reverse
rational map, from the points on P to points on C being given by the parametric equations of the
rational surface. For space curves C which have a quadric or a rational cubic surface in its Ideal,
the plane curve P and the rational mapping from the points on P to C are easily constructed by
using known techniques for parameterizing these rational surface, see Abhyankar and Bajaj [3, 4],
Sederberg and Snively [36].

The rest of this paper is structured as follows. Section 2 describes a method of choosing a valid
direction of projection for the space curve C. This then also yields a projected plane curve P in
birational correspondence to C. Using these results, Section 3 describes a method of constructing
the reverse rational map between points on the plane curve P and points on C.

Valid Projection Direction To find an appropriate axis of projection, the following general
procedure may be adopted. Consider the linear transformation x = a1x1 + b1y1 + c1z1, y =
a2x1 + b2y1 + c2z1 and z = a3x1 + b3y1 + c3z1. On substituting into the equations of the
two surfaces defining the space curve we obtain the transformed equations f1(x1, y1, z1) = 0 and

2I(f, g) = {h(x, y, z) | h = αf + βg for any polynomials α(x, y, z) and β(x, y, z)}.
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g1(x1, y1, z1) = 0. Next compute the Resz1(f1, g1) which is a polynomial h(x1, y1) describing the
projection along the Z axis of the space curve C onto the z = 0 plane.

Since C is irreducible and f and g are not tangent along C, the order of h(x1, y1) is exactly equal
to the projection degree, see [1]. By order of h(x1, y1) we mean k, if h(x1, y1) = (g(x1, y1))k. For
a birational mapping we desire a projection degree equal to one. Hence, we choose the coefficients
of the linear transformation, ai, bi and ci such that (i) the determinant of ai, bi and ci is non
zero and (ii) the equation of the projected plane curve h(x1, y1) is not a power of an irreducible
polynomial. The latter can be achieved by making the discriminant Resx1(h, hx1) to be non zero.
Note, a random choice of coefficients would also work with probability 1, since the set of coefficients
which make the determinant and Resx1(h, hx1) equal to zero, are restricted to the points of a lower
dimensional hypersurface. See [34] where the notion of randomized computations with algebraic
varieties is made precise. A suitable choice of coefficients thus ensures that the projected irreducible
plane curve given by h(x1, y1) is in birational correspondence with the irreducible space curve and
thus of the same genus. The parameterization methods of Abhyankar and Bajaj [4] for algebraic
plane curves are now applicable and thereby yield a genus computation as well as an algorithm for
rationally parameterizing the space curve.

Constructing the Birational Map We choose a valid projection direction by the method
described in the earlier section. Without loss of generality let this direction be the Z axis. Let the
surfaces f(x, y, z) = 0 and g(x, y, z) = 0 be of degrees m1 and m2 in z, respectively. Again,
without loss of generality, assume m1 ≥ m2. Let F1 = f(x, y, z) and F2 = g(x, y, z) be given
by

F1 = f0 z
m1 + f1 z

m1−1 + ... + fm1−1 z + fm1

F2 = g0 z
m2 + g1 z

m2−1 + ... + gm2−1 z + gm2 (67)

with fj , (j = 0 ... m1) and gk, (k = 0 ... m2), denoting polynomials in x, y. Then, there exist
polynomials Fi+2(x, y, z), for i = 1 ... k, such that Ai Fi = Qi Fi+1 + Bi Fi+2 with mi+2,
the degree of z in Fi+2, less than mi+1, the degree of z in Fi+1 and certain polynomials Ai(x, y),
Qi(x, y, z) and Bi(x, y). The polynomials Fi+2, i = 1, 2, ... form, what is known as a polynomial
remainder sequence and can be computed in various different ways, as we now describe.

Let lc(A) denote the leading coefficient of polynomial A, viewed as a polynomial in z, (i.e.
coefficient of term with highest z degree). Further let ci denote lc(Fi). To compute Fi+2 from Fi
and Fi+1 we first begin with R0

i = Fi and then,

for k = 1, ... ,mi − mi + 1 + 1
if lc(Rki − 1) = 0
then Rki = Rki − 1
else Rki = ci+1 R

k−1
i − zmi−mi+1+1−k lc(Rk−1

i ) Fi+1 (68)

The polynomial Rmi − mi+1+1
i is known as the psuedo-remainder of Fi and Fi+1. Using Collin’s

reduced PRS method [21], one constructs the polynomial Fi+2 = R
mi−mi+1+1

i
di−1

where d0 = 1 and

di = c
mi−mi+1+1
i+1 . Using Brown’s subresultant PRS scheme [18], one constructs the polynomial

Fi+2 = (−1)mi − mi+1+1 R
mi−mi+1+1

i
ci Emi

where Em1 = 1 and Emi+1 =
c
mi−mi+1
i+1

E
mi−mi+1−1
mi

. As shown

by Loos [28], both the above methods, as well as others, follow naturally from the subresultant
theorem of Habicht.

Thus starting with polynomials F1 and F2 one constructs the polynomial remainder sequence,
F1, F2, F3, . . . Fi, . . Fr with mi, the z degree of Fi less than mi−1, the z degree of Fi−1 and mr = 0
(i.e. Fr being independent of z). We choose the subresultant PRS scheme for its computational
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superiority and also because each Fi = Smi−1−1, 1 ≤ i ≤ r, where Sk is the kth subresultant of
F1 and F2, see [16, 18, 21].

Now for any i, if Fi−1 and Fi are of degree greater than two and Fi+1 is independent of z then
the Z axis is not a valid projection direction. This may be seen as follows. Since the Z axis was
chosen as a valid projection direction, the Resz[f(x, y, z), g(x, y, z)] = Resz[F1, F2] is non-zero
and not a multiple of some irreducible polynomial. This holds for any two surfaces f = Fi−1

and Fi in the polynomial remainder sequence where each of the subresultants is also not a multiple
of some irreducible polynomial. To complete the argument, it remains to see that by induction if
Fi−1 and Fi are of say degree three and two respectively and Fi+1 is independent of z then the
Resz(Fi−1, Fi) is equal to some h3(x, y), which is impossible.

Hence in the polynomial remainder sequence there exists a polynomial remainder which is linear
in z, i.e., Fr−1 = zΦ1(x, y) − Φ2(x, y) = 0. Thus on computing the polynomial remainder
sequence and obtaining Fr−1, one is able to construct the required inverse map, z = Φ2(x,y)

Φ1(x,y) , which
also is a rational surface containing the space curve. The rational parameterization of this rational
surface is trivially given by x = s, y = t and z = Φ2(s, t)

Φ1(s, t) .
The method of the earlier sections of constructing the inverse rational map as well as a rational

surface containing the space curve can be applied for reducible as well as irreducible curves, defined
implicitly as the intersection of two surfaces. The one limitation however is the assumption of non-
tangency of the surfaces meeting along the space curve. It remains open to construct a birational
map as well as a rational surface containing a space curve when the two surfaces defining the space
curve are also tangent along the entire curve.

7.3 Automatic Parametrization of Degree 2 Curves and Surfaces

General curves and surfaces can be represented by implicit or parametric equations. A general
(degree two) conic implicit equation is given by C(x, y) = ax2 + by2 + cxy + dx + ey + f =
0, and rational parametric equations given by x = u(t)/w(t) and y = v(t)/w(t), where u, v
and w are no more than quadratic polynomials. Further a general (degree two) conicoid implicit
equation is given by C(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j =
0, with corresponding rational parametric equations x = u(s, t)/q(s, t), y = v(s, t)/q(s, t), and
z = w(s, t)/q(s, t), where again u, v, w and q are no more than quadratic polynomials. The
rational parametric form of representing a surface allows greater ease for transformation and shape
control, Tiller (1983), Mortenson (1985). The implicit form is preferred for testing whether a point
is above, on, or below the surface, where above and below is determined relative to the direction of
the surface normal. As both forms have their inherent advantages it becomes crucial to be able to
go efficiently from one form to the other, especially when surfaces of an object are automatically
generated in one of the two representations.

Both conics and conicoids always have a rational parameterization. We describe algorithms
to obtain rational parametric equations for the conics and conicoids, given the implicit equations.
Polynomial parameterizations are also obtained whenever they exist for the conics and conicoids.
These parameterizations are at most degree 2 and are over the field of Reals, or the field of Complex
numbers when real solutions do not exist. We consider obtaining rational parameterizations over Q,
the fields of rationals. Computations over Q are exact and hence give rise to stable computational
algorithms as opposed to finite precision calculations with real numbers. Additionally, considering
rational parameterizations over Q proves to be an interesting mathematical question in its own
right.

Cubicoids (degree 3) surfaces also always have a rational parameterization. On the other hand
cubics (degree 3) plane curves do not always have a rational parameterization. However they
always have a parameterization of the type which allows a single square root of rational functions.
In a companion paper, Abhyankar and Bajaj (1986), show how to obtain the rational and special
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parametric equations for cubics and cubicoids. Higher degree curves and surfaces in general are
not rational. The reverse problem of converting from parametric to implicit equations, called
implicitization has been considered computationally by various authors in the past, see Collins
(1971) and Sederberg et. al., (1985). However as yet no correct closed form solution is known for
implicitizing rational surfaces or in general, implicitizing parametric algebraic varieties.

7.3.1 Conics

The general conic implicit equation is given by C(x, y) = ax2 + by2 + cxy + dx + ey + f =
0. The non-trivial case in converting this to a rational parameterization arises when a and b are
both non-zero. Otherwise one already has one variable ( x, or y) in linear form and expressible as
a rational polynomial expression of the other, and hence a rational parameterization. This then
suggests that to obtain a rational parameterization all we need to do is to make C(x, y) non-regular
in x or y. That is, eliminate the x2 or the y2 term through a coordinate transformation. For then
one of the variables is again in linear form and is expressible as a rational polynomial expression
of the other. We choose to eliminate the y2 term, by an appropriate coordinate transformation
applied to C(x, y). This is always possible and the algorithm is now described below. (The entire
algorithm which also handles all trivial and degenerate cases of the conic is implemented on a
VAX-780 using VAXIMA.)

Geometrically speaking, a conic being irregular in x or y means that most lines parallel to the
x or y axis respectively, intersect the curve in one point. Also, most lines through a point (b1, b2)
on the conic meet the conic in one additional point. By sending this point ( b1, b2) to infinity we
make all these lines parallel to some axis and the curve irregular in one of the variables ( x, or
y) and hence amenable to parameterization. The coordinate transformation we select is thus one
which sends the point ( b1, b2) on the conic to infinity. The rational parameterization we obtain is
global, of degree at most 2 and with parameter t corresponding to the slopes of the lines through
the point (b1, b2) on the conic. Further t ranges from (−∞,∞) and covers the entire curve. The
selection of the point ( b1, b2) on the conic becomes important and may be made appropriately,
when the parameterization is desired only for a specific piece of the conic.

If C(x, y) has a real root at infinity, a linear transformation of the type x′ = a1x + b1y + c1

and y′ = a2x + b2y + c2 will suffice. If C(x, y) has no real root at infinity, we must use a linear
transformation of the type x′ = ( a1x + b1y + c1)/( a3x + b3y + c3) and y′ = a2x + b2y + c2)/(
a3x + b3y + c3). This is equivalent to a homogeneous linear transformation of the type X ′ =
a1X + b1Y + c1H, Y ′ = a2X + b2Y + c2H and H ′ = a3X + b3Y + c3H applied to the
homogeneous conic C(X,Y,H) = aX2 + bY 2 + cXY + dXH + eY H + fH2 = 0.

Step (2) Points at infinity for C(x, y) are given by the linear factors of the degree form (highest
degree terms) of I. For the conic this corresponds to a real root at infinity if c2 >= 4ab, (e.g.
parabolas and hyperbolas). For otherwise both roots at infinity are complex , (complex roots arise
in conjugate pairs). Further for c2 = 4ab, (e.g. parabolas), the degree form is a perfect square
and this gives a polynomial parameterization for the curve.

Step (3) Applying a linear transformation for c2 >= 4ab, gives rise to C(x′, y′) = I( a1x+ b1y + c1,
a2x+ b2y + c2). To eliminate the y2 term we need to choose b1 and b2 such that ab21 + cb1b2 + bb22 = 0.
Here both the values of b1 and b2 can always be chosen to be real.

Step (4) Applying a homogeneous linear transformation for c2 < 4ab, gives rise to C(X ′, Y ′, H ′)
= C(a1X + b1Y + c1H, a2X + b2Y + c2H, a3X + b3Y + c3H). To eliminate the Y 2 term
we need to choose b1, b2 and b3 such that ab21 + bb22 + cb1b2 + db1b3 + eb2b3 + fb23 = 0. This
is equivalent to finding a point ( b1, b2, b3) on the homogeneous conic. The values of b1 and b2
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are both real if (cd − 2ae) is not less than the geometric mean of 4af − d2 and 4ab − c2, or
alternatively (ce− 2bd) is not less than the geometric mean of 4bf − e2 and 4ab − c2.

Step (5) Finally choose the remaining coefficients ai’ s, ci’ s, ensuring that the appropriate
transformation is well defined. In the case of a linear transformation, this corresponds to ensuring
that the matrix (

a1 b1
a2 b2

)
is non-singular. Hence ci’ s can be chosen to be 0 and a1 = 1, a2 = 0. In the case of a

homogeneous linear transformation, one needs to ensure that the matrix a1 b1 c1

a2 b2 c2

a3 b3 c3


is non-singular. Here a1 = 1, c2 = 1 and the rest set to 0 suffices. These remaining coefficients
provide a measure of local control for the curve and may also be chosen in a way that gives specific
local parameterizations for pieces of the curve, appropriate for particular applications.

Conicoids
The case of the conicoid is a generalization of the method of the conic. The general conicoid

implicit equation is given by C(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy +
iz + j = 0. Again the main case of concern is when a, b and c are all non-zero. Otherwise one
already has one of the variables ( x, y, or z) in linear form and expressible as a rational polynomial
expression of the other two. This then suggests that to obtain the rational parameterization all
we need to do again is to make C(x, y, z) non-regular in say, y. That is, eliminate the y2 term
through a coordinate transformation. For then y is in linear form and is expressible as a rational
polynomial expression of the other two. We eliminate the y2 term by an appropriate coordinate
transformation applied to C(x, y, z). This is always possible and the algorithm is now described
below. (The entire algorithm which also handles all trivial and degenerate cases of the conicoid is
implemented on a VAX-780 using VAXIMA. )

Geometrically speaking, a conicoid being irregular in x, y or z means that most lines parallel
to the x, y or z axis respectively, intersect the surface in one point. Also, most lines through a
point (b1, b2, b3) on the conicoid meet the conicoid in one additional point. By sending this point (
b1, b2, b3) to infinity we make all these lines parallel to some axis and the surface irregular in one of
the variables ( x, or y) and hence amenable to parameterization. The coordinate transformation
we select is thus one which sends the point ( b1, b2, b3) on the conicoid to infinity. The rational
parameterization we obtain is global, of degree at most 2 and with parameters s and t corresponding
to the ratio of the direction cosines of the lines through the point (b1, b2, b3) on the conicoid. Further
s and t both range from (−∞,∞) and cover the entire surface. The selection of the point ( b1, b2, b3)
on the conicoid becomes important and may be made appropriately, when the parameterization is
desired only for a specific patch of the conicoid.

Step (1) If C(x, y, z) has a real root at infinity, alinear transformation of the type x′ = a1x+ b1y + c1z + d1,
y′ = a2x + b2y + c2z + d2 and z′ = a3x + b3y + c3z + d3 will suffice. If C(x, y, z) has no real
root at infinity, we must use a linear transformation of the type x′ = ( a1x + b1y + c1z + d1)/(
a4x + b4y + c4z + d4), y′ = a2x + b2y + c2z + d2)/( a4x + b4y + c4z + d4). and z′ = (
a3x + b3y + c3z + d3)/( a4x + b4y + c4z + d4). This is equivalent to a homogeneous linear
transformation of the type X ′ = a1X + b1Y + c1Z + d1H, Y ′ = a2X + b2Y + c2Z + d2H, Z ′

= a3X + b3Y + c3Z + d3H and H ′ = a4X + b4Y + c4Z + d4H applied to the homogeneous
conicoid C(X,Y, Z,H) = aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z + gXH + hY H + iZH +
jH2 = 0,
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Step (2) Points at infinity for C(x, y) are given by the linear factors of the degree form (highest
degree terms) of I. For the conicoid this corresponds to the roots of the homogeneous conic
equation C(x, y, z) = ax2 + by2 + dxy + exz + fyz + cz2 = 0. Also, here the simultaneous
truth of d2 = 4ab, e2 = 4ac and f2 = 4bc corresponds to the existence of a polynomial
parameterization for the conicoid, as then the degree form is a perfect square.

Step (3) Apply a linear transformation if a real root (rx, ry, rz) exists for the homogeneous conic
C(x, y, z) of (2). This gives rise to C(x′, y′, z′) = I( a1x + b1y + c1z + d1, a2x + b2y + c2z + d2,
a3x + b3y + c3z + d3). To eliminate the y2 term we can take ( b1, b2, b3) = ( rx, ry, rz), the real
point on C(x, y, z).

Step (4) Apply a homogeneous linear transformation if only complex roots exist for the homoge-
neous conic C(x, y, z) of (2). This gives rise to C(X ′, Y ′, Z ′, H ′) = I( a1X + b1Y + c1Z + d1H,
a2X + b2Y + c2Z + d2H, a3X + b3Y + c3Z + d3H, a4X + b4Y + c4Z + d4H). To
eliminate the Y 2 term we choose b4 = 1 and ( b1, b2) to be a point on either the conic ax2 + by2

+ dxy + gxz + hyz + jz2 = 0 with b3 = 0 or a point on the conic ax2 + by2 + dxy + (e+ g)xz
+ (f + h)yz + (c + i + j)z2 = 0 with b3 = 1. Real values exist for b1 and b2 if there exists a real
point on either of the above conics.

Step (5) Finally choose the remaining coefficients ai’ s, ci’ s, and di’ s, ensuring that the ap-
propriate transformation is well defined. In the case of a linear transformation, this corresponds to
ensuring that the matrix  a1 b1 c1

a2 b2 c2

a3 b3 c3


is non-singular. Here the di’ s can be chosen to be 0. Further a2 = 1, c3 = 1 if b1 is non-zero

or else a1 = 1, c3 = 1 if b2 is non-zero or else a1 = 1, c2 = 1, with the rest set to 0. In the case of
a homogeneous linear transformation one needs to ensure that the matrix

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


is non-singular. Here a1 = 1, c3 = 1, d2 = 1 with the rest set to 0 suffices. These remaining coef-

ficients provide a measure of local control for the surface and may also be chosen in a way that gives
specific local parameterizations for pieces of the surface, appropriate for particular applications.

7.3.2 Rational Fields

As seen from the previous sections one obtains parameterizations over the reals or the complex
numbers if the corresponding coefficients of the appropriate transformations are over the fields of
reals or complex numbers respectively. The coefficients themselves correspond to finding real or
complex points on various conic equations. Thus the question of whether the rational parameter-
ization for conics and conicoids is possible over Q, the field of rationals, reduces to the question
of whether there exists a rational root of a certain conic equation with integral coefficients, (or an
integral root of the homogenized conic equation). The answer to the latter question is given by
a succint criterion of Smith (1864) involving the equality of Legendre quadratic symbols. When
such an integral root exists one can obtain it by solving an appropriate diophantine equation of the
type x2 - D ∗ y2 = N , for integer D and N , as we illustrate below. (Such a diophantine equation
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has come to be known as Pell’s equation, though could also be accredited to Bhaskaracharya, the
Indian mathematician of 1150 A.D ).

To compute an integral point on a homogeneous conic, C(X,Y, Z) = aX2 + bY 2 + cXY +
dXZ + eY Z + fZ2 = 0, one could find the point at infinity ( Z = 0), or at finite distances
( Z = 1). Such an integral point exists at infinity if c2 − 4ab is a perfect square. Finding
integral points at finite distances is equivalent to finding rational points of the dehomogenized conic
C(X,Y, 1). This corresponds to finding a rational solution (b1, b2) of the equation, ab21 + (cb2 +
d)b1 + (bb22 + eb2 + f) = 0. A solution exists when the discriminant of the equation is a perfect
square, (equal to y2 for integer y). This reduces to finding a rational solution of the equation,
(c2 − 4ab)b22 + 2(cd − 2ae)b2 + (d2 − 4af − y2) = 0, where such a rational solution again
exists when its discriminant is a perfect square, (equal to x2 for integer x). Hence we need to solve
the equation x2 - Dy2 = N , for diophantine solutions x and y, with D = c2 − 4ab and N =
(cd − 2ae)2 − (c2 − 4ab)(d2 − 4af). If D is negative or a perfect square there are only a
finite number of solutions to this equation. If D is positive, solutions can be obtained by simple
continued fractions, Niven and Zuckerman (1972).

To compute an integral point on a homogeneous conicoid, C(X,Y, Z,W ) = aX2 + bY 2 + cZ2

+ dXY + eXZ + fY Z + gXW + hYW + iZW + jW 2 = 0, one could again find the point at
infinity ( Z = 0), or at finite distances ( Z = 1). Finding an integral point at infinity reduces
to the above case of finding an integral root of a homogeneous conic aX2 + bY 2 + dXY + eXZ
+ fY Z + cZ2 = 0. Finding integral points at finite distances also reduces to the earlier case of
solving for a rational point of a conic ax2 + by2 + dxy + gx + hy + j2 = 0, or a rational point of
the conic ax2 + by2 + dxy + (e+ g)x + (f + h)y + (c+ i+ j)2 = 0.

Conclusion Both implicit and parametric representations for curves and surfaces have their in-
herent advantages. It thus becomes crucial to be able to go efficiently from one form to the other,
especially when surfaces of an object are automatically generated in one of the two representations,
see Hoffmann and Hopcroft (1985), Bajaj and Kim (1986). Also simpler algorithms are at times
possible when both representations are available. For example a straightforward method for com-
puting surface - surface intersections exists when one of the surfaces is in its implicit form and the
other in its parametric form.

For surfaces of degree higher than three no rational parametric forms exist in general, although
parameterizable subclasses can be identified. For low degree curves and surfaces, in this paper and in
Abhyankar and Bajaj (1986a) procedures have been developed and implemented for parameterizing
implicit forms. The approach has been extended to parameterize planar curves of higher degree
and special space curves, Abhyankar and Bajaj (1986b). These methods can be specialized to work
over rational or real fields. Currently efforts are being made to obtain explicit parameterizations
of special families of quartic surfaces and surfaces of higher degree which would prove useful for
representing blending surfaces.

7.4 Automatic Parametrization of Degree 3 Curves and Surfaces

Rational algebraic curves and surfaces can be represented by implicit or parametric equations. A
general algebraic curve of degree three (cubics) is represented implicitly by

C(x, y) = ax3 + by3 + cx2y + dxy2 + ex2 + fy2 + gxy + hx + iy + j = 0,

All singular cubics are rational, or stated equivalently, they can also be represented by a pair of
rational parametric equations x = u(t)/w(t) and y = v(t)/w(t), where u, v and w are no
more than cubic polynomials. Non-singular cubics are not rational and the best one can achieve
is a parameteric representation with a single square root of rational functions. Next, a general
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algebraic surface of degree three (cubicoids) has an implicit equation given by

C(x, y, z) = ax3 + by3 + cz3 + dx2y + ex2z + fxy2 + gy2z + hxz2 + iyz2 + jxyz

+ kx2 + ly2 + mz2 + nxy + oxz + pyz + qx + ry + sz + t = 0.

All singular cubicoids are rational as are all non-singular cubicoids except cones and cylinders with
non-singular cubic generating curves. Rational cubicoids can also be represented by a triad of
rational parametric equations x = u(s, t)/q(s, t), y = v(s, t)/q(s, t), and z = w(s, t)/q(s, t) with
again u, v, w and q being no more than cubic polynomials. Also, non-rational cubicoids can be
represented by a parameteric representation with a single square root of rational functions.

Both implicit and parametric representations for curves and surfaces have their inherent advan-
tages. The rational parametric form of representing a surface allows greater ease for transforma-
tion and shape control, Tiller (1983), Mortenson (1985). The implicit form is preferred for testing
whether a point is on the surface and is conducive to the direct application of algebraic techniques.
It thus becomes crucial to be able to go efficiently from one form to the other, especially when
surfaces of an object are automatically generated in one of the two representations, see Hoffmann
and Hopcroft (1985), Bajaj and Kim (1987a,b). Also simpler algorithms are at times possible when
both representations are available. For example a straightforward method for computing surface
- surface intersections exists when one of the surfaces is in its implicit form and the other in its
parametric form.

While rational curves are of the same parametric and implicit degree, rational surfaces of para-
metric degree n in general may have a corresponding implicit degree of n2, Sederberg, et. al. (1985).
The process of conversion from implicit representations to parametric, also known as parameteri-
zation, becomes then of added importance for rational surfaces as it yields in general lower degree
representations. Computational methods for parameterizations have been given for degree two
surfaces by Levin (1976), intersection curves of two degree two surfaces by Ocken, et. al. (1983),
degree two curves and surfaces by Abhyankar, Bajaj (1987a), degree three surfaces by Sederberg,
Snively (1987) and a general method for rational algebraic curves of arbitrary degree by Abhyankar,
Bajaj (1987b).

We describe specific algorithms to obtain rational and special parametric equations for the
cubics and cubicoids, given their implicit equations. The algorithm for parameterizing cubics is
based on the simple idea of mapping a point on a curve to infinity via a linear transformation
and consequently is very efficient. Parameterizing non-singular cubicoids relies on being able to
generate rational curves (straight lines, conics or singular cubics) on the cubicoid surface and uses
a novel and efficient method of intersecting the surface with tangent planes. The parameterization
method for cubicoids of Sederberg, Snively (1987) is restricted to generating straight lines on the
cubicoid surface which are computed by intersecting a parametric line with the cubicoid and then
simultaneously solving a nonlinear system of four equations in four unknowns.

7.4.1 Cubics

Geometric Viewpoint The idea of parametrizing a conic was to fix a point on the conic and
take lines through that point, which intersects the conic in only one additional point, Abhyankar
and Bajaj (1987a). The conic was thus rationally parametrized by a pencil of lines with parameter
t corresponding to the slope of the lines. A cubic is a curve which intersect most lines in three
points. However if we consider a singular cubic then lines through the singular point, (a double
point), give a rational parameterization for the curve as again these lines of slope t intersect the
cubic in only one additional point. Such is not the case for non-singular cubic curves and they
correspond to the cubics which do not have a rational parameterization. Intersecting a curve by a
pencil of lines through a point P on the curve can algebraically also be achieved by mapping the
point P to infinity along one of the coordinate axis. The pencil of lines then become parallel lines
to that coordinate axis all passing through the point P at infinity.
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Algebraic Method A plane cubic curve is given by

C(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fy2 + gxy + hx + iy + j

Make it nonregular in y ( by eliminating the y3 term through a coordinate transformation).
If there exists a real point at infinity then a linear transformation suffices. Recall that, points at
infinity are given by the degree form of C(x, y), (terms of highest degree). For conics, we have
real points at infinity only in the case of parabolas and hyperbolas. However all cubics have a real
point at infinity. The reason being: the degree form always has a real root as it is of degree 3
and complex roots occur in conjugate pairs. The degree form on dehomogenizing ( y = 1), gives
f(x) = ax3 + bx2 + cx + d which always has a real root (if a ! = 0). When a is zero, the
cubic C(x, y) is already nonregular in x. Thus to make C(x, y) nonregular in y we may use a linear
transformation given by

x 7→ αx̄+ βȳ
y 7→ γx̄+ δȳ

(69)

To make the ȳ3 term to be zero, we set its coefficient (aβ3 + bβ2 + cβ + d) = 0 by
taking δ = 1 and β to be the real point at infinity. The remaining parameters alpha and γ are
then chosen to ensure alphaδ − βγ ! = 0, (for a well formed linear transformation). Additionally
the parameters may also be chosen appropriately to obtain suitable desired parameterizations for
specific pieces of the cubic.

Now the transformed cubic, in a somewhat rearranged fashion, is given by

C(x̄, ȳ) = (ux̄ + v)ȳ2 + (px̄2 + qx̄ + r)ȳ + (kx̄3 + lx̄2 + mx̄ + n)

which is the usual quadratic equation. Using the old Indian method of Shreedharacharya (5th
century), of solving the quadratic equation, (”multiply by 4 times the coefficient of the square term
and add the square of the coefficient of the unknown, and the rest follows”), we obtain

4(ux̄ + v)2ȳ2 + 4(ux̄ + v)(px̄2 + qx̄ + r)ȳ + 4(ux̄ + v)(kx̄3 + lx̄2 + mx̄ + n) = 0

which on completing the square becomes

[2(ux̄ + v)ȳ + (px̄2 + qx̄ + s)]2 = (px̄2 + qx̄ + s)2 − 4(ux̄ + v)(kx̄3 + lx̄2 + mx̄ + n)

If we let
y∗ = [2(ux̄ + v)ȳ + (px̄2 + qx̄ + s)] (70)

then equation (70) becomes of the type

y∗2 = g(x̄), deg. g(x̄) ≤ 4 (71)

We only need to analyze (71) and see if we can obtain a parametrization for x̄ and y∗ for then
using transformations (69) and (70) we obtain directly the parameterization for x and y. To do
this we consider several cases as follows: g(x̄) = 0 has only one distinct root, g(x̄) has two distinct
roots, ... etc., where both real and imaginary roots of g(x̄) = 0 are considered. In the case of
multiple roots, we may use the following general method to get rid of them.

Suppose

y∗2 = [
d∏

i = 1

(x̄ − µi)2]Ω(x̄) d = 1 or 2

so each root µi occurs an even number of times and Ω(x) has no multiple roots. Then if we let

y∗∗ =

[
y∗∏d

i = 1(x̄ − µi)

]
(72)
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then equation (71) reduces to
y∗∗2 = Ω(x̄) (73)

If deg.Ω(x̄) <= 2, then the above equation (73) is a conic and a rational parametrization
is always possible, Abhyankar and Bajaj (1987a). This then, together with transformations (69),
(70) and (72), gives a parameterization for x and y of the original curve. Otherwise, g(x̄) has
either 3 or 4 distinct roots, and a rational parametrization is not possible. This case arises for
the non-singular cubics, also known as elliptic curves or curves of genus 1 which do not have a
rational parametrization. Genus 0 is both a necessary and sufficient condition for rational curves,
see Abhyankar and Bajaj (1987b). However, by solving the above equation (73), quadratic in y∗∗

when g(x̄) has 3 or 4 distinct roots, a parameterization for the non-singular cubic is obtained and
is of the type that includes a single square root of rational functions. The above parameterizations
obtained are global, and of degree at most 3 with the parameter t ranging from (−∞,∞) and
spanning the entire curve.

7.4.2 Cubicoids

Geometric Viewpoint If we intersect a cubicoid with a plane we get a cubic curve in general.
However if we intersect it with a tangent plane (for a point on the cubicoid) then something special
happens, namely, we get a singular cubic curve or a reducible curve (either a straight line and a
conic, or three straight lines). In general we obtain a singular cubic curve as there are only a finite
number of real straight lines on a cubic surface, see Henderson (1911). In either of the three cases,
a straight line, a conic or a singular cubic, the intersection curve is always rational and can be
parameterized by a single parameter.

To obtain a rational parameterization of the cubicoid we need to generate two rational curves
on its surface. Let t and τ correspond to independent parameterizations of the two chosen rational
curves. Then the net of lines defined by two varying points t and τ (a variable point t on one
rational curve and a variable point τ on the other), intersect the cubic surface in one additional
point giving a rational parameterization of the cubicoid. For two non-intersecting rational curves
on the cubicoid with independent parameterization parameters t and τ , a point ( x, y, z) on the
rational cubic surface can be seen to correspond to a single pair (t, τ) yielding what is known
as a 1-fold parameterization or a 1-fold covering of the plane. Higher fold parameterizations are
obtained for arbitrary choices of rational curves on the cubicoid.

One algorithm for obtaining two different rational curves on the cubicoid is to repeat the
tangent plane intersection method for two different simple (non-singular) points on the cubicoid.
Alternatively, one can generate two non-intersecting straight lines from the twenty seven lines
on a cubicoid, (first found by Cayley and Salmon in 1849). All possible configurations as well
as the number of real and imaginary straight lines on cubicoids have been accurately classified
by various authors in the past, see Blythe (1905), Henderson (1911) and Segre (1942). Straight
lines on the cubicoid can be computed again by the method of tangent plane intersections. Here
points are carefully chosen such that the tangent planes to the surface at these point yield reducible
intersections with the cubicoid. Each point on the cubicoid can yield one or three straight lines lying
on the same tangent plane. However two specific points are chosen to yield two non-intersecting
straight lines of the cubicoid lying on different tangent planes.

Algebraic Method A general degree three surface has an implicit equation given by

C(x, y, z) = ax3 + by3 + cz3 + dx2y + ex2z + fxy2 + gy2z + hxz2 + iyz2 + jxyz

+ kx2 + ly2 + mz2 + nxy + oxz + pyz + qx + ry + sz + t = 0
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Take a simple (non-singular) point (x0, y0, z0) on it. Most points on the cubicoid are simple, so
this is not a problem. Bring the simple point to the origin by a simple translation x = x′ + x0,
y = y′ + y0 and z = z′ + z0.

C(x′, y′, z′) = a′x′ + b′y′ + c′z′ + . . .+ terms of higher degree.

Next rotate the tangent plane to the surface at the origin, given by the order form (terms of
lowest degree), to the z = 0 plane. This by using a simple rotation, x′ = x, y′ = y and
z′ = 1overc′z − a′overc′x − b′overc′y which gives

C(x, y, z) = z + [f2(x, y) + f1(x, y)z + f0z
2]

+ [g3(x, y) + g2(x, y)z + g1(x, y)z2 + g0z
3]

where fi(x, y) and gi(x, y) are appropriate terms of degree i. Its intersection with the tangent plane
z = 0 is simply,

f2(x, y) + g3(x, y) = 0 (74)

which is either a reducible curve or a cubic curve with a double point at the origin (lowest degree
terms in (74) are ≥ 2). In all cases the curve (74) can be rationally parameterized with a single
independent parameter t and rational functions K and L

x = K(t)
y = L(t)
z = 0

which can also be expressed in terms of the original x, y, z coordinates by using the above
linear transformations. At this stage the above procedure can be repeated for a second simple
point (x1, y1, z1) on the cubicoid. Alternatively to obtain non-intersecting straight lines on the
cubicoid we need to choose the second point carefully. To do this we bring a general point specified
by parameter t on this parameterized curve to the origin again by a simple translation

x = x̄ + K(t)
y = ȳ + L(t)
z = z̄

(75)

Since this point also lies on the cubic surface C(x, y, z), the surface equation has a zero constant
term and is given by

C(x̄, ȳ, z̄) = ā(t)x̄ + b̄(t)ȳ + c̄(t)z̄ + . . .+ terms of higher degree.

Next a simple rotation
x̄ = x̂
ȳ = ŷ

z̄ = 1
c̄(t) ẑ −

ā(t)
c̄(t) x̂−

b̄(t)
c̄(t) ŷ

(76)

makes the tangent plane to the surface at the origin to be the ẑ = 0 plane, resulting again in

C(x̂, ŷ, ẑ) = ẑ + [f̂2(x̂, ŷ) + f̂1(x̂, ŷ)ẑ + f̂0ẑ
2]

+ [ĝ3(x̂, ŷ) + ĝ2(x̂, ŷ)ẑ + ĝ1(x̂, ŷ)ẑ2

+ ĝ0(x̂, ŷ)ẑ3]

Its intersection with ẑ = 0 plane will give

f̂2(x̂, ŷ) + ĝ3(x̂, ŷ) = 0 (77)
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which is a plane curve with coefficients involving t. For certain values of t, the plane curve is
reducible, which then gives the lines on the cubic surface. Specifically (77) is reducible for those
values of t for which the two polynomials f̂2(x̂, ŷ) and ĝ3(x̂, ŷ) have a linear or quadratic common
factor. One way of obtaining these t values is as follows. Consider f̂2(x̂, ŷ) = 0 the homogeneous
equation of degree 2 with coefficients involving t. It has two linear factors ŷ = m1(t)x̂ and
ŷ = m2(t)x̂. Substituting either of these into the homogeneous equation g3(x̂, ŷ) = 0 yields a
cubic equation of the form p(t)x̂3 = 0 where p(t) is a function of t. Specific solutions t of the
equation p(t) = 0 can easily be obtained by using known methods for obtaining roots of univariate
polynomial equations, by either numerical methods, see Jenkins and Traub (1972), or by symbolic
methods, see Collins and Loos (1982). With (75) and (76) and for two appropriate choices of t one
obtains the equations of two distinct lines on the cubicoid.

Having obtained two rational curves on the cubicoid, say parameterized respectively by x1 = f1(t),
y1 = f2(t), z1 = f3(t) and x2 = g1(τ), y2 = g2(τ), z2 = g3(τ), consider next the net of
straight lines passing through a point on each of the two curves. This in space is given by two
equations

z − z1

x − x1
=

z2 − z1

x2 − x1
(78)

y − y1

x − x1
=

y2 − y1

x2 − x1
(79)

and defines a two parameter family (a net) of straight lines for varying t and τ . Substituting for y
and z in terms of x in the equation of the cubic surface C(x, y, z) = 0 yields a cubic equation in
x with coefficients in t and τ , viz., G(x, t, τ) = 0. However both x = x1 and x = x2 satisfy this
equation and thus

G(x, t, τ)
(x − f1(t))(x − g1(τ))

= 0

is linear in x, yielding x as a rational function of t and τ . Together with (78) and (79) this yields
a rational parameterization of the cubic surface in terms of the independent parameters t and τ .
The rational parameterization obtained are global and of degrees at most 3, with parameters t and
τ both ranging from (−∞,∞) and spanning the entire cubicoid (except the two rational curves on
the surface).

It suffices to mention that non-rational cubicoids can be parameterized by single square roots
of rational functions in a way exactly similar to non-rational cubics. By mapping any point on the
cubicoid to infinity along the Z axis by a real linear transformation, the cubicoid equation can be
made non-regular in z (equation with no z3 term). What remains then is the transformed cubicoid
equation which is quadratic in z and from which z can be easily expressed in terms of square roots
of rational functions of x and y using the quadratic equation formula.

Various computational issues in extending the above algorithmic methods approach to param-
eterize planar algebraic curves of arbitrary degree are discussed in Abhyankar and Bajaj (1987b).
For surfaces of degree higher than three no rational parametric forms exist in general, although
parameterizable subclasses can be identified. For example degree four surfaces with a triple point
such as the Steiner surfaces or degree four surfaces with a double curve such as the such as the
Plucker surfaces are rational, Jessop (1916). Currently efforts are being made to obtain explicit
parameterizations of special families of quartic and higher degree surfaces which prove useful for
representing blending surfaces.

7.5 Parameterizations of Real Cubic Surfaces

Low degree real algebraic surfaces (quadrics, cubics and quartics) play a significant role in construct-
ing accurate computer models of physical objects and environments for purposes of simulation and
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prototyping[10]. While quadrics such as spheres, cones, hyperboloids and paraboloids prove suffi-
cient for constructing restricted classes of models, cubic algebraic surface patches are sufficient to
model the boundary of objects with arbitrary topology in a C1 piecewise smooth manner [11].

Real cubic algebraic surfaces are the real zeros of a polynomial equation f(x, y, z) = 0 of degree
three. In this representation the cubic surface is said to be in implicit form. The irreducible cubic
surface which is not a cylinder of a nonsingular cubic curve, can alternatively be described explicitly
by rational functions of parameters u and v:

x =
f1(u, v)
f4(u, v)

, y =
f2(u, v)
f4(u, v)

, z =
f3(u, v)
f4(u, v)

, (80)

where fi, i = 1 . . . 4 are polynomials. In this case the cubic surface is said to be in rational
parametric form.

Real cubic algebraic surfaces thus possess dual implicit-parametric representations and this
property proves important for the efficiency of a number of geometric modeling and computer
graphics display operations [10, 27]. For example, with dual available representations the inter-
section of two surfaces or surface patches reduces simply to the sampling of an algebraic curve in
the planar parameter domain [8]. Similarly, point-surface patch incidence classification, a prereq-
uisite for boolean set operations and ray casting for graphics display, is greatly simplified in the
case when both the implicit and parametric representations are available [8]. Additional examples
in the computer graphics domain which benefit from dual implicit-parametric representations are
the rapid triangulation for curved surface display and image texture mapping on curved surface
patches.

Deriving the rational parametric form from the implicit representation of algebraic surfaces,
is a process known as rational parameterization. Algorithms for the rational parameterization of
cubic algebraic surfaces have been given in [4, 37], based on the classical theory of skew straight
lines and rational curves on the cubic surface [15, 26]. One of the main results of our current
paper is to constructively address the parameterization of cubic surfaces based on the reality of the
straight lines on the real cubic surface. In doing so we provide an algorithm to construct all twenty-
seven straight lines (real and complex) on the real nonsingular cubic surface. We prove that the
parameterizations of the real cubic surface components are constructed using a pair of real skew lines
for those three families which have them, and remarkably using a complex conjugate pair of skew
lines, in a fourth family. There does not appear to be a similar rational parameterization for the fifth
family that covers all or almost all of the surface, so instead we use two disjoint parameterizations
which involve one square root each. A rational parameterization that covers part of the surface is
described in [37]. In that scheme points which lie on tangent planes through points on a real line
are covered, but these points do not necessarily comprise most of the surface, and the covering is
in general two-to-one instead of one-to-one. All of the parameterizations described are one-to-one,
meaning that for any point on the cubic surface there can be just one set of values (u, v) which
give rise to that point.

We also analyze the image of the derived rational parameterization for both real and complex
parameter values, together with “base” points where the parameterizations are ill-defined. These
base points cause a finite number (at most five) of lines and points, and possibly two conic sections
lying on the surface, to be missed by the parameterizations. One of these conics can be attained by
letting u→ ±∞ and the other with v → ±∞ separately, or by using projective coordinates {u, u∗}
and {v, v∗} instead of (u, v) and setting v = 0 and u = 0, respectively.

One of the gems of classical algebraic geometry has been the theorem that twenty-seven distinct
straight lines lie completely on a nonsingular cubic surface [33]. Schläfi’s double-six notation ele-
gantly captures the complicated and many-fold symmetry of the configurations of the twenty-seven
lines. He also partitions all nonsingular cubic surfaces f(x, y, z) = 0 into five families F1, . . . , F5

based on the reality of the twenty-seven lines. Family F1 contains 27 real straight lines, family F2
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contains 15 real lines, and family F3 contains 7 real lines while families F4 and F5 contain 3 real
lines each. What distinguishes F4 from F5 is that while 6 of the 12 conjugate complex line pairs
of F4 are skew (and 6 pairs are coplanar), each of the 12 conjugate pairs of complex line pairs of
F5 is coplanar. When a nonsingular cubic surface F tends to a singular cubic surface G (with an
isolated double point or a double line) 12 of F ’s straight lines (constituting a double six) tend to
6 lines through a double point of G. Hence singular cubic surfaces have only twenty-one distinct
straight lines.

Alternatively a classification of cubic surfaces can be obtained from computing all ‘base’ points
of its parametric representation,

x =
f1(u, v)
f4(u, v)

, y =
f2(u, v)
f4(u, v)

, z =
f3(u, v)
f4(u, v)

,

Base points of a surface parameterization are those isolated parameter values which simultaneously
satisfy f1 = f2 = f3 = f4 = 0. It is known that any nonsingular cubic surface can be expressed as a
rational parametric cubic with six base points. The classification of nonsingular real cubic surfaces
then follows from:

1. If all six base points are real, then all 27 lines are real, i.e. the F1 case.

2. If two of the base points are a complex conjugate pair then 15 of the straight lines are real,
i.e. the F2 case.

3. If four of the base points are two complex conjugate pairs then 7 of the straight lines are real,
i.e. the F3 case.

4. If all base points are complex then three of the straight lines are real. In this case the three
real lines are all coplanar, i.e. the F4 and F5 cases.

7.5.1 Real and Rational Points on Cubic Surfaces

We first begin by computing a simple real point (with a predefined bit precision) on a given real
cubic surface f(x, y, z) = 0. For obvious reasons of exact calculations with bounded precision it is
very desirable to choose the simple point to have rational coordinates. Mordell in his 1969 book
[29] mentions that no method is known for determining whether rational points exist on a general
cubic surface f(x, y, z) = 0, or finding all of them if any exist. We are unaware if a general criterion
or method now exists or whether Mordell’s conjecture below has been resolved.

The following theorems and conjecture exhibit the difficulty of this problem, and are repeated
here for information.
Theorem[[29],chap 11]: All rational points on a cubic surface can be found if it contains two lines
whose equations are defined by conjugate numbers of a quadratic field and in particular by rational
numbers.
Theorem[[29],chap 11]: The general cubic equation (irreducible cubic and not a function of two
independent variables nor a homogeneous polynomial in linear functions of its variables) has either
none or an infinity of rational solutions.
Mordell Conjecture[[29],chap 11]: The cubic equation F (X,Y, Z,W ) = 0 is solvable if and only
if the congruence F (X,Y, Z,W ) ≡ 0 (mod pr) is solvable for all primes p and integers r > 0 with
(X,Y, Z,W, p) = 1.

We present a straightforward search procedure to determine a real point on f(x, y, z) = 0, and
if lucky one with rational coordinates.

Collect the highest degree terms of f(x, y, z) and call this homogeneous form F3(x, y, z). Re-
cursively determine if F3(x, y, z) = 0 has a rational point. Being homogeneous, one only needs to
check for F3(x, y, 1) = 0 and F3(x, y, 0) = 0, which are both polynomials in one less variable, and
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hence the recursion is in dimension. Now for a univariate polynomial equation g(x) = 0 we use the
technique of [28] to determine the existence and coordinates of a rational root. If not, one computes
a real root having the desired bit precision as explained below.

Additionally, if the highest degree terms of f(x, y, z) do not yield a rational point, we compute
the resultant and linear subresultants of f and fx, eliminating x to yield new polynomials f1(y, z)
and xf2(y, z)+f3(x, y, z) (see [9] for details of this computation). Recursively compute the rational
points of f1(y, z) = 0, using the equation xf2(y, z) + f3(x, y, z) = 0 to determine the rational x
coordinate given rational y and z coordinates of the point.

In the general case, therefore, we are forced to take a real simple point on the cubic surface.
We can bound the required precision of this real simple point so that the translations and resultant
computations in the straight line extraction and cubic surface parameterization algorithm of the
next section, are performed correctly. The lower bound of this value can be estimated as in [20] by
use of the following gap theorem:
Gap Theorem ([20],p70). Let P(d, c) be the class of integral polynomials of degree d and maximum
coefficient magnitude c. Let fi(x1, · · · , xn) ∈ P(d, c), i = 1, · · · , n be a collection of n polynomials in
n variables which has only finitely many solutions when homogenized. If (α1, · · · , αn) is a solution
of the system, then for any j either αj = 0, or |αj | > (3dc)−nd

n
.

7.5.2 Algebraic Reduction

Given two skew lines l1(u) =

 x1(u)
y1(u)
z1(u)

 and l2(v) =

 x2(v)
y2(v)
z2(v)

 on the cubic surface f(x, y, z) = 0,

the cubic parameterization formula for a point p(u, v) on the surface is :

p(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 =
al1 + bl2
a+ b

=
a(u, v)l1(u) + b(u, v)l2(v)

a(u, v) + b(u, v)
(81)

where
a = a(u, v) = ∇f(l2(v)) · [l1(u)− l2(v)]
b = b(u, v) = ∇f(l1(u)) · [l1(u)− l2(v)]

The total degree of the numerator of the parameterization formula in {u, v} is 4 while the denom-
inator total degree is 3. Note that if the lines are coplanar, formula (81) can only produce points
on the plane of the lines, hence the search for skew lines on the cubic surface.

Following the notation of [4], a real cubic surface has an implicit representation of the form

f(x, y, z) = Ax3 +By3 + Cz3 +Dx2y + Ex2z + Fxy2 +Gy2z +Hxz2 + Iyz2 + Jxyz

+Kx2 + Ly2 +Mz2 +Nxy +Oxz + Pyz +Qx+Ry + Sz + T = 0 .

Compute a simple (nonsingular) point (x0, y0, z0) on the surface. We can move the simple point to
the origin by a translation x = x′ + x0, y = y′ + y0, z = z′ + z0, producing

f ′(x′, y′, z′) = Q′x′ +R′y′ + S′z′ + . . . terms of higher degree.

Next, we wish to rotate the tangent plane to f(x′, y′, z′) at the origin to the plane z′′ = 0. This
can be done by the transformation

x′ = x′′, y′ = y′′, z′ = (z′′ −Q′x′′ −R′y′′)/S′ if S′ 6= 0
x′ = x′′, y′ = (z′′ −Q′x′′)/R′, z′ = y′′ if S′ = 0 and R 6= 0
x′ = z′′/Q′, y′ = x′′, z′ = y′′ if S′ = 0, R′ = 0, and Q′ 6= 0 .
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Fortunately Q′, R′, and S′ cannot all be zero, because then the selected point (x0, y0, z0) would be
a singular point on the cubic surface.

The transformed surface can be put in the form

f ′′(x′′, y′′, z′′) = z′′+[f2(x′′, y′′)+f1(x′′, y′′)z′′+f0z
′′2]+[g3(x′′, y′′)+g2(x′′, y′′)z′′+g1(x′′, y′′)z′′2+g0z

′′3] ,

where fj(x′′, y′′) and gj(x′′, y′′) are terms of degree j in x′′ and y′′. In general, this surface intersects
the tangent plane z′′ = 0 in a cubic curve with a double point at the origin (as its lowest degree
terms are quadratic). This curve can be rationally parametrized as

x′′ = K(t) = − L′′t2 +N ′′t+K ′′

B′′t3 + F ′′t2 +D′′t+A′′

y′′ = L(t) = tK(t) = − L′′t3 +N ′′t2 +K ′′t

B′′t3 + F ′′t2 +D′′t+A′′
(82)

z′′ = 0 ,

where A′′, B′′, . . . are the coefficients in f ′′(x′′, y′′, z′′) that are analogous to A,B, . . . in f(x, y, z).
In the special case that the singular cubic curve is reducible (a conic and a line or three lines), a
parameterization of the conic is taken instead.

We transform the surface again to bring a general point on the parametric curve specified by t
to the origin by the translation

x′′ = x+K(t)
y′′ = y + L(t)
z′′ = z .

The cubic surface can now be expressed by

f̄(x, y, z) = Q(t)x+R(t)y + S(t)z + · · · terms of higher degree .

We make the tangent plane of the surface at the origin coincide with the plane ẑ = 0 by applying
the transformation

x = x̂

y = ŷ

z = − Q(t)
S(t)

x̂− R(t)
S(t)

ŷ +
1

S(t)
ẑ .

The equation of the surface now has the form

f(x̂, ŷ, ẑ) = ẑ + [f̂2(x̂, ŷ) + f̂1(x̂, ŷ)ẑ + f̂0ẑ
2] + [ĝ3(x̂, ŷ) + ĝ2(x̂, ŷ)ẑ + ĝ1(x̂, ŷ)ẑ2 + ĝ0ẑ

3] .

The intersection of this surface with ẑ = 0 gives

f̂2(x̂, ŷ) + ĝ3(x̂, ŷ) = 0 . (83)

Recall that x̂ and ŷ, and hence f̂2 and ĝ3, are functions of t. As shown in [4], equation (83) is
reducible, and hence contains a linear factor, for those values of t for which f̂2(x̂, ŷ) and ĝ3(x̂, ŷ)
have a linear or quadratic factor in common. These factors correspond to lines on the cubic surface,
and our goal is to find the values of t which produce these lines.

The values of tmay be obtained by taking the resultant of f̂2(x̂, ŷ, t) and ĝ3(x̂, ŷ, t) by eliminating
either x̂ or ŷ. Since f̂2 and ĝ3 are homogeneous in {x̂, ŷ} it does not matter with respect to which
variable the resultant is taken[40]; the result will have the other variable raised to the sixth power
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as a factor. Apart from the factor of x̂6 or ŷ6, the resultant consists of an 81st degree polynomial
P81(t) in t. At first glance it would appear that there could be 81 values of t for which a line on
the cubic surface is produced, but this is not the case:

Theorem 1: The polynomial P81(t) obtained by taking the resultant of f̂2 and ĝ3 factors as
P81(t) = P27(t)[P3(t)]6[P6(t)]6, where P3(t) = B′′t3 + F ′′t2 + D′′t + A′′, the denominator of K(t)
and L(t), and P6(t) is the numerator of S(t) (P6(t) = S(t)[P3(t)2]).

Sketch of proof: This proof was performed through the use of the symbolic manipulation
program Maple. When expanded out in full, P81(t) contains hundreds of thousands of terms, so a
direct approach was not possible. Instead, P81(t) was shown to be divisible by both [P3(t)]6 and
[P6(t)]6.

When f̂2 and ĝ3 were expressed in terms of the numerators of Q(t), R(t), and S(t), it was
possible to take the resultant without overflowing the memory capabilities of the machine. The
resultant could be factored, and [P6(t)]6 was found to be one of the factors.

The factor [P3(t)]6 proved to be more difficult to obtain. After the factor [P6(t)]6 was removed,
the remaining factor was split into several pieces, according to which powers of Q(t), R(t), and
S(t) they contained. These pieces were each divided by [P3(t)]6, and the remainders taken. The
remainders were expressed as certain polynomials times various powers of P3(t), as in a0(t) +
a1(t)P3(t) + a2(t)[P3(t)]2 + a3(t)[P3(t)]3 + a4(t)[P3(t)]4 + a5(t)[P3(t)]5. We were able to show that
a0(t) is in fact divisible by P3(t). Then we could show that a0(t)/P3(t) + a1(t) is also divisible by
P3(t), and so on up the line until we could show the whole remaining factor is divisible by [P3(t)]6.

The solutions of P27(t) = 0 correspond to the 27 lines on the cubic surface. A method of partial
classification is suggested by considering the number of real roots of P27(t): if it has 27, 15, or 7
real roots the cubic surface is F1, F2, or F3, respectively, and if P27(t) = 0 has three real roots the
surface can be either F4 or F5. However, this is not quite accurate. In exceptional cases, P27(t)
may have a double root at t = t0, which corresponds to f̂2 and ĝ3 sharing a quadratic factor. If
this quadratic factor is reducible over the reals, the double root corresponds to two (coplanar) real
lines; if the quadratic factor has no real roots it corresponds to two coplanar complex conjugate
lines.

Theorem 2: Simple real roots of P27(t) = 0 correspond to real lines on the surface.
Proof: Let t0 be a simple real root of P27(t) = 0. Since P27(t) is a factor of the resultant of f̂2

and ĝ3 obtained by eliminating x̂ or ŷ, f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0) must have a linear or quadratic
factor in common. If f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0) have just a linear factor in common, then that factor
is of the form c1x̂ + c2ŷ where c1 and c2 are real constants since all the coefficients of f̂2(x̂, ŷ, t0)
and ĝ3(x̂, ŷ, t0) are real and f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0) are homogeneous in x̂ and ŷ. In this case
the real line c1x̂+ c2ŷ = 0 lies on the surface.

If f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0) have a quadratic factor in common, then that factor is of the form
c1x̂

2 + c2x̂ŷ + c3ŷ
2. We will show that if this is the case, then P27(t) has at least a double root at

t = t0. This will be sufficient to prove that simple roots of P27(t) can only correspond to common
linear factors of f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0), and hence real lines on the cubic surface.

If we write f̂2(x̂, ŷ, t) = Q1(t)x̂2 + Q2(t)x̂ŷ + Q3(t)ŷ2 and ĝ3(x̂, ŷ, t) = Q4(t)x̂3 + Q5(t)x̂2ŷ +
Q6(t)x̂ŷ2 +Q7(t)ŷ3, then the resultant of f̂2(x̂, ŷ, t) and ĝ3(x̂, ŷ, t) obtained by eliminating x̂ is

R(f̂2, ĝ3) =

∣∣∣∣∣∣∣∣∣∣∣

Q1(t) Q2(t) Q3(t) 0 0
0 Q1(t) Q2(t) Q3(t) 0
0 0 Q1(t) Q2(t) Q3(t)

Q4(t) Q5(t) Q6(t) Q7(t) 0
0 Q4(t) Q5(t) Q6(t) Q7(t)

∣∣∣∣∣∣∣∣∣∣∣
ŷ6 . (84)

We need to show that if f̂2(x̂, ŷ, t) and ĝ3(x̂, ŷ, t) have a quadratic factor in common when
t = t0, then R(f̂2, ĝ3)/ŷ6 has a double root at t = t0. This is equivalent to showing that
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Figure 4: An F2 cubic surface with two skew lines out of its 15 real straight lines (left), and a
zoom-in on that surface showing the Bézier patch with its bounding tetrahedron, determined by
the two skew lines as opposite edges (right).

R(f̂2(t0), ĝ3(t0)) = 0 and (d/dt)[R(f̂2(t0), ĝ3(t0))] = 0. If f̂2(x̂, ŷ, t0) and ĝ3(x̂, ŷ, t0) have a
quadratic factor in common, then ĝ3(t0) = k(c1x̂ − c2ŷ)f̂2(t0) for some real constants k, c1,
and c2. Thus Q4(t0) = kc1Q1(t0), Q5(t0) = k[c1Q2(t0) − c2Q1(t0)], Q6(t0) = k[c1Q3(t0) −
c2Q2(t0)], and Q7(t0) = −kc2Q3(t). Making these substitutions in (84), we find that indeed both
R(f̂2(t0), ĝ3(t0)) = 0 and (d/dt)[R(f̂2(t0), ĝ3(t0))] = 0.

To summarize, the simple real roots of P27(t) = 0 correspond to real lines on the cubic sur-
face. Double real roots may correspond to either real or complex lines, depending on whether the
quadratic factor f̂2(x̂, ŷ, t) and ĝ3(x̂, ŷ, t) have in common is reducible or not over the reals. Higher
order roots indicate some type of singularity. Complex roots can only correspond to complex lines
in nonsingular cases. If t0, a complex root of P27(t) = 0, corresponded to a real line c1x̂ − c2ŷ on
the surface, then t0 would correspond to the same line, as a real line is its own complex conjugate.
Thus one real line would be leading to two distinct values for t0.

When the cubic surface is of class F1, F2, or F3, it contains at least two real skew lines, and
the parameterization in [4] is used. Having obtained skew lines l1(u) = [x1(u) y1(u) z1(u)] and
l2(v) = [x1(v) y1(v) z1(v)], we consider the net of lines passing through a point on each. This is
given by

z − z1

x− x1
=
z2 − z1

x2 − x1

y − y1

x− x1
=
y2 − y1

x2 − x1
.

Solving these for y and z in terms of x, and substituting into the cubic surface f(x, y, z) = 0 gives
a cubic equation in x with coefficients in u and v, say G(x, u, v) = 0. Since x = x1 and x = x2

satisfy this equation, G(x, u, v) is divisible by x− x1 and x− x2, and we have that

H(u, v, x) =
G(x, u, v)

[x− x1(u)][x− x2(v)]
(85)

is a linear polynomial in x. This is solved for x as a rational function of u and v. Rational functions
for y and z are obtained analogously.

The parameterization (80) is then computed as in (81):

(x, y, z) = (x(u, v), y(u, v), z(u, v)) = (f1(u, v)/f4(u, v), f2(u, v)/f4(u, v), f3(u, v)/f4(u, v))
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where

f1(u, v) = a(u, v)x1(u) + b(u, v)x2(v)
f2(u, v) = a(u, v)y1(u) + b(u, v)y2(v)
f3(u, v) = a(u, v)z1(u) + b(u, v)z2(v) (86)
f4(u, v) = a(u, v) + b(u, v) ,

with
a(u, v) = ∇f(l2(v)) · [l1(u)− l2(v)] , b(u, v) = ∇f(l1(u)) · [l1(u)− l2(v)]

In this notation −f1(u, v) and f4(u, v) are the coefficients of x0 and x1, respectively, in H(u, v, x).
The symbolic manipulation program Maple was used to verify that the expressions f1(u, v)/f4(u, v),
f2(u, v)/f4(u, v), and f3(u, v)/f4(u, v) do simplify to x, y, and z respectively.

Using floating-point arithmetic, it may be the case that some terms with very small coefficients
appear in f1(u, v), f2(u, v), f3(u, v), and f4(u, v) when the coefficients should in fact be zero.
Specifically, these are the terms containing u3, v3, u4, v4, u3v and uv3 in f1, f2, and f3, and
terms containing u3 and v3 in f4. These coefficients were shown to be zero using Maple, so in the
algorithm they are subtracted off in case they appear in the construction of f1, f2, f3, and f4.

7.5.3 Parameterizations without Real Skew Lines

When the cubic surface is of class F4 or F5 it does not contain any pair of real skew lines. In the
F4 case we derive a parameterization using complex conjugate skew lines, and in the F5 case we
obtain a parameterization by parametrizing conic sections which are the further intersections of
the cubic surface with planes through a real line on the surface.

The F4 Case In this case there are 12 pairs of complex conjugate lines. For 6 of these pairs, the
two lines intersect (at a real point). In the other 6 pairs, the two lines are skew. Let one pair of
complex conjugate skew lines be given by (x1(u+vi), y1(u+vi), z1(u+vi)) and (x1(u−vi), y1(u−
vi), z1(u− vi)). Here x1, y1, and z1 are (linear) complex functions of a complex variable, and x2,
y2, z2 may be considered to be the complex conjugates of x1, y1, z1. Also the real parameters u and
v are unrestricted. Then the parameterization is again given by (86). Even though the quantities
xi, yi, and zi are complex, the expressions for x(u, v), y(u, v), and z(u, v) turn out to be real when
x2, y2, and z2 are the complex conjugates of x1, y1, and z1. The symbolic manipulation program
Maple was used to verify that the quantities f1(u, v)/i, f2(u, v)/i, f3(u, v)/i and f4(u, v)/i are all
real when (x1, y1, z1) and (x2, y2, z2) are complex conjugates.

Using floating-point arithmetic, it may be the case that some terms with very small coefficients
appear in f1(u, v), f2(u, v), and f3(u, v) when the coefficients should in fact be zero. Specifically,
these are the terms containing u3v and uv3. These coefficients were shown to be zero using Maple,
so in the algorithm they are subtracted off in case they appear in the construction of f1, f2, and
f3.

Theorem 3: The algorithm provides a valid parameterization of an F4 cubic surface when u
and v are related as follows: u is unrestricted (both real and imaginary parts), and v is the complex
conjugate of u. Each real point on the F4 surface, except for those corresponding to base points of
the parameterization, is obtained for exactly one complex value of u.

Lemma: Given two skew complex conjugate lines l1(u) = (A + Bi, C + Di, E + Fi) + (G +
Hi, I +Ji, K+Li)u and l1(v) = (A−Bi, C−Di, E−Fi) + (G−Hi, I −Ji, K−Li)v, then for
an arbitrary real point p = (x, y, z), there exists a unique complex value u0 such that the points p,
l1(u0), and l1(u0) are collinear.

Proof of Lemma: The points p, l1(u0), and l1(u0) will be collinear if and only if the vectors
p− l1(u0) and p− l1(u0) are parallel. Setting the cross product of these two vectors equal to zero
and splitting u0 into real and imaginary parts as a0 + b0i, we find that there is a solution when

49



a0 =
M1M3 +M2M4

M2
1 +M2

2

and b0 =
M2M3 −M1M4

M2
1 +M2

2

, (87)

and

M1 =

∣∣∣∣∣∣
B G H

D I J

F K L

∣∣∣∣∣∣ M2 =

∣∣∣∣∣∣
x−A G H

y − C I J

z − E K L

∣∣∣∣∣∣
M3 =

∣∣∣∣∣∣
B x−A H

D y − C J

F z − E L

∣∣∣∣∣∣ M4 =

∣∣∣∣∣∣
B G x−A
D I y − C
F K z − E

∣∣∣∣∣∣
The denominators M2

1 + M2
2 are positive because M1 is nonzero exactly when l1 does not

contain a real point. l1 contains a real point if and only if the vectors [B D F ]T , [G I K]T , and
[H J L]T are linearly dependent, and this is equivalent to M1 = 0.

There certainly cannot be two distinct complex values u1 and u2 such that p, l1(u1), and l1(u1)
are collinear and also p, l1(u2), and l1(u2) are collinear as that would imply l1(u1), l1(u2), l1(u1)
and l1(u2) are coplanar, which is impossible as l1 and l1 are skew.

Proof of Theorem 3: Given an arbitrary real point (x0, y0, z0) on the cubic surface, Equa-
tion (87) can be used to obtain a specific parameter value u0 = (a0, b0). This value of (a0, b0), when
inserted into the parameterization (86), gives back (x0, y0, z0), unless (a0, b0) happens to make the
fractions in (86) 0/0, which means that (a0, b0) is a base point of the parameter map.

As will be shown in Section 6, there are five base points in this F4 parameterization, with one
of them being real. The points on the cubic surface which may be missed include one real line,
which corresponds to the real base point. The other base points correspond to two pair of complex
conjugates lines. For each pair, if the two lines are coplanar, and thus have a real point in common,
that point is also missed in the parameterization. Skew complex lines corresponding to base points
result in no missed real surface points.

It may seem odd that a real line may be missed by this parameterization, but in fact the real
line does intersect the two skew complex conjugate lines. Here an extended notion of a real line
is used: a line may be of the form p = du where p is a real 3D point and d is a real 3D vector,
but in the context here we have to allow u to take on all complex values. With this understanding
it is possible for an apparent real line to intersect both complex conjugate skew lines in complex
points, and when it does, the points of intersection are complex conjugates. All points on this real
line map into the same (a0, b0).

The F5 Case When the cubic surface is of class F5 it does not have any complex conjugate
skew lines. One could attempt to use one real line and one complex line, or two non-conjugate
complex skew lines, and proceed as before. However, there is no simple way to describe the values
the parameters u and v may take on. In the F1, F2, and F3 cases, u and v were unrestricted
real parameters. In the F4 case, when we let u = <(u) + =(u)i and v = <(v) + =(v)i, we
obtained a parameterization in which <(u) and =(u) are unrestricted, and then <(v) = <(u)
and =(v) = −=(u). If we try the same idea with one real and one complex line, or two complex
lines which are not conjugates, and let <(u) and =(u) be unrestricted, then <(v) and =(v) are
complicated functions of <(u) and =(u), typically seventh degree polynomials.

In [37], a rational parameterization based on tangent planes at points lying on a real line is
given. However, in general this only parametrizes part of the cubic surface. Points on the surface
which do not lie on any tangent plane through a point on the chosen real line are missed, and these
may account for a substantial portion of the surface. Since our goal is to parametrize the entire
surface we instead parametrize the surface by parametrizing planes through one of the real lines
on the surface, and then by parametrizing the conic sections which are the further intersections
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of these planes with the cubic surface. The parameterization of the conics will be that of [3].
One cost of parametrizing the whole surface is that we now have to use a square root in the
parameterization. Another drawback of this parameterization is that there are typically two values
of (u, v) corresponding to points on the cubic surface, instead of the one-to-one map resulting when
both curves used in the parameterization are line, as in the F1 through F4 cases. Also, we have to
use two distinct parameterizations; one which works when the conics are ellipses and the other for
hyperbolas.

The procedure for finding the parameterization starts out like the ones for the F1 through F4

cases. In this case three coplanar real lines and 24 complex lines are determined, and the complex
lines are found to come in 12 coplanar conjugate pairs. Since the methods of the other cases
involving skew lines do not work here, one of the real lines is chosen to be mapped into the x-axis
and the plane of the three real lines is mapped into the xy-plane. Specifically, suppose a real line
l is given by l(u) = (A + Bu,C + Du,E + Fu) and that the normal to the plane is given by
N = (N1, N2, N3). N is obtained by taking the cross product of the (unit) direction vectors of two
of the real lines, or by taking any unit vector perpendicular to the real lines if they are all parallel.
Next, let B = (B1, B2, B3) be the cross product of the direction vector of l with N. We move a
point on l to the origin by the translation x = x′ +A, y = y′ + C, z = z′ + E, and then apply the
transformation

x′ = (B2N3 −B3N2)x′′ + (FN2 −DN3)y′′ + (DB3 − FB2)z′′

y′ = (B3N1 −B1N3)x′′ + (BN3 − FN1)y′′ + (FB1 −BB3)z′′ (88)
z′ = (B1N2 −B2N1)x′′ + (DN1 −BN2)y′′ + (BB2 −DB1)z′′ .

This brings l to the x′′ axis and the plane of the real lines to z′′ = 0.
Planes through the x′′-axis can be parametrized by z′′ = uy′′ for real values of u. All planes

through the x′′-axis are obtained except for z′′ = 0, the plane containing the three real lines
already found. The cubic surface now has an equation of the form f ′′(x′′, y′′, z′′) = 0, and satisfies
f ′′(x′′, 0, 0) = 0. If we now make the substitution z′′ = uy′′ into f ′′(x′′, y′′, z′′), we obtain and
equation that factors as y′′g′′(x′′, y′′) = 0, where g′′(x′′, y′′) is a quadratic in x′′ and y′′. The
factor of y′′ indicates that the line y′′ = 0 is in the intersection of the cubic surface and the
plane z′′ = uy′′ for any real u. The conic section g(x′′, y′′) = 0 is parametrized as in [3]: Let
g(x′′, y′′) = ax′′2 + by′′2 + cx′′y′′+ dx′′+ ey′′+ f , and the discriminant k = c2− 4ab. The quantities
a through f are polynomials in u.

If k < 0, the conic is an ellipse, and is parametrized by

x′′ =
[af(ce− 2bd)− d(t2 + t3)]v2 + [df(ce− 2bd)− 2ft3]v + f2(ce− 2bd)

a(t1 + t3)v2 − df(c2 − 4ab)v + f(t1 − t3)

y′′ =
f(c2 − 4ab)(av2 + dv + f)

a(t1 + t3)v2 − df(c2 − 4ab)v + f(t1 − t3)
,

where
t1 = ae2 + bd2 − cde , t2 = t1 + f(c2 − 4ab) , t3 =

√
t1t2 .

This gives real points only when the terms t1 and t2 have the same sign or are zero. If t1 and
t2 have opposite sign, g(x′′, y′′) = 0 has no real points, and geometrically this means that the
plane z′′ = uy′′ intersects the cubic surface only in the x′′-axis. Thus values of u should be
restricted to those that give non-negative values for t1t2. Upon back substitution using z′′ = uy′′

and (88), in the final parameterization x, y, and z are given by quotients of functions of the form
Q1(u, v) +Q2(u, v)

√
Q9(u), where Q1(u, v) is of degree six in u and two in v, Q2(u, v) is of degree

one in u and two in v, and Q3(u) is of degree nine in u alone. Due to the use of floating-point
arithmetic, a nonzero coefficient for u10 may appear in Q3(u), and this is subtracted off in case it
does show up.
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If k ≥ 0, the conic is a hyperbola or parabola, and is parametrized by

x′′ =
a(c+

√
c2 − 4ab)v2 + 2aev + f(c−

√
c2 − 4ab)

2a
√
c2 − 4ab v + 2ae− cd+ d

√
c2 − 4ab

y′′ =
−2a(av2 + dv + f)

2a
√
c2 − 4ab v + 2ae− cd+ d

√
c2 − 4ab

.

Here real values are given for all u and v for which the denominators are nonzero. In the final param-
eterization x, y, and z are given by quotients of functions of the form [Q1(u, v) +Q2(u, v)

√
Q3(u)]

/[Q4(u, v) + Q5(u, v)
√
Q3(u)], where Q1(u, v) is of degree three in u and two in v, Q2(u, v) is of

degree one in u and two in v, Q3(u) is of degree four in u alone, Q4(u, v) is of degree three in u
and one in v, and Q5(v) is of degree one in each of u and v.

7.5.4 Classification and Straight Lines from Parametric Equations

We also consider the question of deriving a classification and generating the straight lines of the
cubic surface given its rational parametric equations (equation (80) above):

x =
f1(u, v)
f4(u, v)

, y =
f2(u, v)
f4(u, v)

, z =
f3(u, v)
f4(u, v)

,

Note that given an arbitrary parameterization, the fact that it belongs to a cubic surface can
be computed by determining the parameterization base points and multiplicities.

The computation of real base points which are the simultaneous zeros of f1 = f2 = f3 = f4 =
0, are obtained by first computing the real zeros of f1 = f2 = 0 using resultants and subresultants,
via the method of birational maps [9] and then keeping those zeros which also satisfy f3 = f4 =
0. The classification follows from the reality of the base points, as detailed in the preliminaries
section.

Having determined the base points, the straight lines on the cubic surface are then determined
by the image of these points and combinations of them. In general there can be six real base
points for cubic surfaces. The image of each of the six base points under the parameterization map
yields a straight line on the surface. Next the fifteen pairs of base points define lines in the u, v
parameter space, whose images under the parameterization map also yield straight lines. Finally
the six different conics in the u, v parameter space which pass through distinct sets of five base
points, also yield straight line images under the parameterization map. See Bajaj and Royappa for
techniques to find parametric representations of the straight lines which are images of these base
points. The question of determining parametric representations of the straight lines which are the
images of parameter lines or parameter conics is for now, open.

Normally a cubic surface parameterization has six base points, but in the case of our parame-
terizations for the F1, F2, F3, and F4 surfaces, the number of base points is reduced to five. This
happens because the degree of the parameterization is sufficiently small: neither u nor v appears to
a power higher than the second. Consider the intersection of the parametrized surface with a line
in 3-space. Let the line be given as the intersection of two planes aix+biy+ciz+di = 0 for i = 1, 2.
Then when the substitutions x = f1(u, v)/f4(u, v), y = f2(u, v)/f4(u, v), z = f3(u, v)/f4(u, v) are
made into the equations of the lines, we obtain polynomials of degree two in each of u and v.
When resultants of these polynomials are taken to eliminate either u or v, univariate polynomials
of degree eight are obtained. This indicates that there could be as many as eight intersection points
of the line with the surface. However, a cubic surface will intersect the line in only three (possibly
complex) points, counting multiplicity and solutions at infinity. The difference between these two
results (eight and three) is the number of base points. A cubic parameterization would have led
to nine possible intersection points when considering the algebraic equations, and hence six, the
difference of nine and three, is the number of base points for such a parameterization.
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Let l1 and l2 be the two skew lines used in the parameterization, whether they be real or
complex. The base points (u, v) correspond to lines on the cubic surface which intersect both l1
and l2. Real base points correspond to real lines and complex base points correspond to complex
lines. One of the many useful results on nonsingular cubic surfaces is that given any two (real or
complex) skew lines on the surface, there are exactly five lines that intersect both . For an F1

surface, the five transversal lines, and the base points, are all real. Thus those five real lines are
missed by the parameterization (80). For an F2 surface, three of the base points are real and the
other two form a complex conjugate pair. The parameterization (80) consequently misses the three
real lines incident to both l1 and l2. In addition, if the two transversal complex conjugate lines
are coplanar and have a real intersection point, that point is also missed. For both F3 and F4

surfaces, one base point is real and the other four form two conjugate pairs. In each of these cases
there is one real line through both l1 and l2, and that line is missed. Again, if a pair of transversal
complex conjugate lines is coplanar, their real intersection point is missed, so there may be two
such isolated points for F3 and F4. As will be demonstrated in the example below, the missing
points on the surface can be approached as (u, v) approaches the corresponding base point in an
appropriate manner.

In addition to the transversal lines, two conic sections are also missed in the parameterization
of the F1, F2, and F3 surfaces. One conic is obtained as follows: take the intersection of the plane
containing l1(u) and perpendicular to l2(v) with the cubic surface. This intersection consists of l1
plus a conic. It turns out that the value of v at which l2 intersects this plane tends to ±∞. Thus
points on the conic are not obtained for finite values of v, even though the line l1 does turn out to be
reachable. The other missing conic is found by interchanging the roles of l1 and l2. These two conics
lie on parallel planes, and may be obtained if the parameterization uses projective coordinates as
indicated in the example below.

We have presented a method of extracting real straight lines and from there a rational param-
eterization of each of four families of nonsingular cubic surfaces. The parameterizations of the real
cubic surface components are constructed using a pair of real skew lines for those three families
which have them, and remarkably using a complex conjugate pair of skew lines, in a fourth family.
In each of these, the entire real surface is covered except for one, three, or five lines which intersect
both skew lines, one or two isolated points, and two conic sections. The missing conics can be
recovered through the use of projective instead of real coordinates. For the last family, in which
two real skew lines do not exist, in order to cover the whole surface we had to use two separate
parameterizations, each involving a square root. Fortunately many graphics applications, such as
the triangulation of a real surface, will involve only the classes of cubics which do contain real
skew lines. These real skew lines will correspond to non-intersecting edges of the tetrahedra. Open
problems remain in computing the images of curves containing the real base points in the parameter
plane.

An additional associated line of future research is in computing invariants for cubic surfaces
based on its straight lines. In Computer Vision, as pointed out by Holt-Netravali and Mundy-
Zisserman , it is essential to derive properties of curves and surfaces which are invariant to perspec-
tive projection and to be able to compute these invariants reliably from perspective image intensity
data. In connection with FFT (= First Fundamental Theorem of Invariant Theory), referring
to Abhyankar and Mundy-Zisserman for details, we attempt to calculate complete systems of
symbolic invariants of cubic surfaces. In doing these calculations, it is important to know all the
relations between a set of invariants which is the content of SFT (= Second Fundamental Theorem
of Invariant Theory).

Turning to our specific situation, we may derive projective invariants of a cubic surface from
simultaneous invariants of the 27 lines on it. Namely, by taking the coefficients of two planes through
a line in 3-space we get a 2×4 matrix whose 2×2 minors are the six Grassmann coordinates of the
line. Thus we get a 27× 6 matrix; its 6× 6 minors are invariants and pure covariants as well as dot
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products between them. This is the FFT of vector invariants. Since we have derived an effective
classification of cubic surfaces based on the line configurations, we can now derive these invariants
(symbolically). Details of this procedure are left to a subsequent paper.

7.5.5 Parameterization of general algebraic plane curves by A-splines

In general, a degree d curve can be parameterized if it satisfies the Cayley - Riemann criterion.
Consider a curve Cd, with a d − 1 singular point. By sending that point to infinity, we can draw
lines which intersect the curve at one point each. The slopes of these pencil of lines obtains the
parameterization of the curve.

An A-spline of degree n over the triangle [p1p2p3] is defined by

Gn(x, y) := Fn(α) = Fn(α1, α2, α3) = 0, (89)

where

Fn(α1, α2, α3) =
∑

i+j+k=n

bijkB
n
ijk(α1, α2, α3), Bn

ijk(α1, α2, α3) =
n!

i!j!k!
αi1α

j
2α

k
3 ,

and (x, y)T and (α1, α2, α3)T are related by x
y
1

 =
[

p1 p2 p3

1 1 1

] α1

α2

α3

 . (90)

Here the objective is to get an A-spline parameterization of the following form:

X(t) =
n∑
i=0

wiB
n
i (t)bi

/ n∑
i=0

wiB
n
i (t), t ∈ [0, 1], (91)

where bi ∈ R3, wi ∈ R, and Bn
i (t) = {n!/[i!(n − i)!]}ti(1 − t)n−i. Without loss of generality, we

may assume that w0 = 1 (otherwise we could divide through by t and have a parameterization of
one lower degree). Next, under the transformation

t =
t′ + at′

1 + at′
, a > −1, t′ ∈ [0, 1], (92)

the curve (91) will preserve its form, that is

X(t) =
n∑
i=0

(1 + a)iwiBn
i (t′)bi

/ n∑
i=0

(1 + a)iwiBn
i (t′), t′ ∈ [0, 1].

Therefore, we may assume further that wn = 1 by setting a = w
−1/n
n −1, which makes (1+a)nwn =

1, in the transformation (92).
We consider first convex C1 continuous A-splines (see Figure 5(a)). An A-spline being C1

implies that bn00 = b0n0 = bn−1,01 = b0,n−1,1 = 0, as shown in [14]. The C0 continuous A-splines
on the triangle [p1p2p3] can be made into C1 continuous A-splines on the triangle [p1p2p

′
3] (see

Figure 5(c)) through the use of the subdivision formula (see [24]). In our applications in the
parameterization of cubic (n = 3) A-patches, the coefficients a, b, c are fixed and d, e, f are
parameters to be determined, where

a = b210, b = b120, c = b111, d = b102, e = b012, f = b003.

The non-convex case (see Figure 5(b)) can be converted to the convex case by first computing the
intersection point p′2, which leads to a linear equation for n = 3, and then computing the tangent
of the curve at p′2. Note that this tangent does not depend upon the coefficients d, e, f .
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Figure 5: (a): Convex case; (b) Non-convex case; (c) C0 A-spline; (d) Quadratic A-spline.

Quadratic A-splines It is not difficult to see that the parametric form of a C1-continuous
quadratic A-spline should have the following form (see Figure 5(d)) since it interpolates the points
p1 and p2 and is tangent to the lines [p1p3] and [p2p3] at the points p1 and p2, respectively.

X(t) =
p1B

2
0(t) + w1p3B

2
1(t) + p2B

2
2(t)

B2
0(t) + w1B2

1(t) +B2
2(t)

, t ∈ [0, 1], (93)

where w1 is a parameter to be determined. This is called a (2/2) rational parameterization because
the of the numerator and denominator are each of degree 2 in t. In order for the quadratic A-spline
to be rationally parameterizable, we must have

w1 =
√
− b110

2b002
≥ 0. (94)

Cubic A-splines We first show that an irreducible C1-continuous cubic A-spline never has a
(2/2) rational parameterization. If we substitute the αs defined by (90) into F3(α) = 0, we have∑6

i=0 ciB
6
i (t) ≡ 0, where

c0 = b300, c1 = b201w1, c2 =
1
5
b210 +

4
5
b102w

2
1, c3 =

3
5
b111w1 +

2
5
b003w

3
1,

c6 = b030, c5 = b021w1, c4 =
1
5
b120 +

4
5
b012w

2
1.

Since B6
i (t), i = 0, . . . , 6, are linearly independent, we have ci = 0, i = 0, . . . , 6. It then follows

that
a+ 4dw2

1 = 0, 3cw1 + 2fw3
1 = 0, b+ 4ew2

1 = 0

and hence w1 =
√
−a/4d. The coefficients of the A-spline must satisfy

d

a
=

f

6c
=
e

b
, (95)

where
a = b210, b = b120, c = b111, d = b102, e = b012, f = b003.

However, the substitutions (95) turn the A-spline F3(α) = 3aα2
1α2 +3bα1α

2
2 +6cα1α2α3 +3dα1α

2
3 +

3eα2α
2
3 + fα3

3 = 0 into F3(α) = (α1α2 + d/a α2
3)(aα1 + bα2 + 2cα3) = 0, which is the product of

a line and an ellipse. The parameterization covers the ellipse, and is essentially the same as the
(2/2) parameterization of a quadratic A-spline.

The (3/3) rational parametric form of a C1-continuous cubic A-spline should have the following
form in order to interpolate the points p1 and p2 and be tangent to the lines [p1p3] and [p2p3] at
p1 and p2, respectively:

X(t) =
p1B

3
0(t) + w1[p1 + α(p3 − p1)]B3

1(t) + w2[p2 + β(p3 − p2)]B3
2(t) + p2B

3
3(t)

B3
0(t) + w1B3

1(t) + w2B3
2(t) +B3

3(t)
, (96)
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where α, β, w1, w2 are parameters to be determined.
We will show that the equation

G[p1p2p3](a, b, c, d, e, f) = 48a3e3f2 − 9a2b2f4 + 72a2bcef3 − 72a2bde2f2 − 96a2c2e2f2

− 288a2cde3f + 432a2d2e4 + 72ab2cdf3 − 72ab2d2ef2 − 8abc3f3

− 552abc2def2 + 1152abcd2e2f − 864abd3e3 + 48ac4ef2 + 576ac3de2f (97)
− 864ac2d2e3 + 48b3d3f2 − 96b2c2d2f2 − 288b2cd3ef + 432b2d4e2

+ 48bc4df2 + 576bc3d2ef − 864bc2d3e2 − 288c5def + 432c4d2e2 = 0

gives a condition on the A-spline coefficients that guarantee the A-spline has a rational parameter-
ization. The proof of this is rather technical.

We will wish to construct rationally parameterizable cubic A-splines defined on a triangle
[p1p2p3] and passing through p1 and p2, that are not necessarily tangent to the edges [p1p3]
and [p2p3] at p1 and p2. This situation is illustrated in Figure 5(c), where the tangent lines at p1

and p2 intersect at some other point p′3. These cubic A-splines will have one degree of freedom, the
weight b003, which we will use to satisfy (97). In order to accomplish this we define a coordinate
system α′1α

′
2α
′
3 (where α′1 + α′2 + α′3 = 1) that has its origin (0, 0, 1) at p′3 instead of p3, while

keeping the points (1, 0, 0) and (0, 1, 0) fixed.
The general cubic curve passing through p1 and p2 is

3b210α
2
1α2 + 3b201α

2
1α3 + 3b120α1α

2
2 + 6b111α1α2α3 (98)

+ 3b102α1α
2
3 + 3b021α

2
2α3 + 3b012α2α

2
3 + b003α

3
3 = 0 .

The tangent lines to this curve at p1 and p2 are

b210α2 + b201α3 = 0
b120α1 + b021α3 = 0 ,

and these intersect at the point

(α1, α2, α3) =
(b210b021, b201b120,−b210b120)
b210b021 + b201b120 − b210b120

.

The linear transformation that maps
(α1, α2, α3) = (1, 0, 0), (0, 1, 0), (b210b021, b201b120,−b210b120)/(b210b021+b201b120−b210b120) into (α′1, α

′
2, α
′
3) =

(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively is

α1 = α′1 +
b210b021

b210b021 + b201b120 − b210b120
α′3

α2 = α′2 +
b201b120

b210b021 + b201b120 − b210b120
α′3 (99)

α3 = − b210b120

b210b021 + b201b120 − b210b120
α′3

with the inverse

α′1 = α1 −
b021

b120
α3

α′2 = α2 −
b201

b210
α3 (100)

α′3 = −b210b021 + b201b120 − b210b120

b210b120
α3

Thus the transformation (99) maps (98) into an equation of the form

a′α′1
2
α′2 + 3b′α′1α

′
2

2 + 6c′α′1α
′
2α
′
3 + 3d′α′1α

′
3

2 + 3e′α′2α
′
3

2 + f ′α′3
3 = 0 .
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7.5.6 Parameterization of algebraic space curves

Space curves are projected to planes to obtain plane curves, which are then parameterized by the
method described in the previous sections. It is shown that such a projection always exists. We
need to obtain a birational map, which maps the space curve to a plane curve which has the same
genus.

7.5.7 Inversion of Parameterizations

Parameterizations tell how to map a point in parameter space to a curve. The inversion of this map,
called a chart in differential topology, tells how to map a point on a curve to its parameter value.
Certain assumptions must be made on the parameterization in order for it to have a computable
inverse.

Similar to the case of curves, a parametric surface is a very special algebraic variety of dimension
2 in x, y, z, s, t space, since the surface lies in the 3-dimensional subspace defined by x, y, z and
furthermore points on the surface can be put in 1-to-1 rational correspondence with points on the
2-dimensional sub-space defined by s, t. Figure 2 depicts the relationship between parametric and
non-parametric surfaces.

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics)
and most degree three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic curves
and the cubic surface cone are of not rational.

Other examples of rational algebraic surfaces are Steiner surfaces which are degree four surfaces
with a triple point, and Plücker surfaces which are degree four surfaces with a double curve. In
general, a necessary and sufficient condition for the rationality of an algebraic surface of arbitrary
degree is given by Castelnuovo’s criterion: Pa = P2 = 0, where Pa is the arithmetic genus and P2 is
the second plurigenus [43]. Algorithms for symbolically deriving the parametric equations of degree
two and three rational surfaces are given in [5, 6, 35].

Both the parametric and the implicit representation of algebraic curve segments and algebraic
surface patches can be represented in either Bernstein-Bézier or B-spline bases.

Rational parametric algebraic surface The canonical representation of a rational parametric
algebraic surface patch in x, y, z space are given by

X = P1(s, t),
Y = P2(s, t),
Z = P3(s, t),
W = P4(s, t).

or 
x = X/W,

y = Y/W,

z = Z/W,

where the Pi are polynomials in any of the above appropriate bases and the variables/parameters
s, and t range over a finite interval (or canonically the unit interval [0,1], see [13]).

The domain of the mapping for rational algebraic parametric surfaces is usually one of the
following two kinds:

• Tensor domain: The parameters s, t are defined over the interval [0,1]. ( s ∈ [0, 1], t ∈ [0, 1] )

• Barycentric domain: This is a triangular domain, with the parameters ranging over a finite
interval and satisfying the condition: 0 ≤ s, t ≤ 1.
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Multi-sided patches:
Base points are isolated pairs of parameter values which satisfy P1 = P2 = P3 = P4 = 0 and

hence cause the parametric map to be ill-defined (0/0).
For example, in the hyperboloid of 1 sheet, we see a pair of lines being absent due to the

ill-formed mapping.
The image in x, y, z of the base points in the parameter domain, are in general curves, yielding

multi-sided patches.

Implicit Algebraic Surface Patches An implicit algebraic surface patch can be defined in
x, y, z space by :

w = P (x, y, z) ∧ w = 0

where the P is a polynomial in any of the above appropriate basis and the variables x, y, z range
over the unit interval [0,1]. Alternatively, the surface patch can be defined by a closed cycle of
trimming curves which may be defined with rational parametric equations or implicitly or both.
In section 3 the surfaces patches are defined implicitly with a closed triple (triangle) of rational
trimming curves.

As in the Rational parametric representation, we have many elements over which we can define
the patches. In general, the simplest polyhedron we consider are

• Cube (Tensor domain) The parameters x, y, z are defined over the interval [0,1]. ( x ∈
[0, 1], y ∈ [0, 1], z ∈ [0, 1] ) This yield a tensor product Bernstein-Bézier coordinate system for
trivariate polynomials.

• Tetrahedron The parameters x, y, z are defined with the condition: 0 ≤ x + y + z ≤ 1. This
yields a barycentric coordinate system for trivariate polynomials.

• Triangular prism The parameters x, y, z are now defined as follows: z is defined over the
interval [0,1]. ( z ∈ [0, 1] ) and x, y range over 0 ≤ x+ y ≤ 1

• Square pyramid The parameters x and y satisfy x ∈ [0, 1] and y ∈ [0, 1], while z satisfies the
condition 0 ≤ x+ y + z ≤ 1
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