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Piecewise polynomials of fixed degree and continuously differentiable up to some order are known
as splines or finite elements. Splines are used in applications ranging from computer-aided design,
computer graphics, data visualization, geometric modeling, and image processing to the solution of
partial differential equations via finite element analysis. The spline-fitting problem of constructing
a mesh of finite elements that interpolate or approximate multivariate data is by far the primary
research problem in geometric modeling. Parametric splines are vectors of a set of multivariate poly-
nomial (or rational) functions while implicit splines are zero contours of collections of multivariate
polynomials.

The various spline methods may be distinguished by several criteria:

• Implicit or parametric representations.
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Figure 1: (x2 + y2)3 − 4x2y2 = 0

• Algebraic and geometric degree of the spline basis.

• Number of surface patches required.

• Computation (time) and memory (space) required.

• Stability of fitting algorithms.

• Local or nonlocal interpolation.

• Splitting or nonsplitting of input mesh.

• Convexity or nonconvexity of the input and solution.

• Fairness of the solution (first- and second-order variation).

1 Plane Curves

1.1 Computation of Topology

Given a real algebraic plane curve C: f(x, y) = 0 of degree d and of arbitrary genus, a box B
defined by {(x, y)|α ≤ x ≤ β, γ ≤ y ≤ δ}, an error bound ε > 0, and integers m, n with m+ n ≤ d
construct a C−1, C0 or C1 continuous piecewise rational ε-approximation of all portions of C within
the given bounding box B, with each rational function Pi

Qi
of degree Pi ≤ m and degree Qi ≤ n.

Here C−1 means no continuity condition is imposed between the different pieces, C0 implies there
are no gaps and C1 implies that the first derivatives are continuous at the common end points of
adjacent pieces. The ε-approximation here means that the approximation error is within given ε.
The input curve f(x, y) = 0 may be reducible and have several real components but we assume it
has components of only single multiplicity i.e. polynomial f(x, y) has no repeated factors.

We use a combination of both algebraic and numerical techniques to construct a C1-continuous,
piecewise (m,n) rational ε-approximation by two different approaches, of a real algebraic plane
curve. At singular points we rely on the classical resolution of plane curves [1, 29] based on
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Figure 2: x4 + y4 + z = 0 and y2 + z = 0
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the Weierstrass Preparation Theorem [33] and Newton power series factorizations[21], using the
technique of Hensel lifting[15]. These, together with modified Padé approximations [23], are used
to efficiently construct locally approximate, rational parametric representations for all real branches
of an algebraic plane curve. Besides singular points we obtain an adaptive selection of simple points
about which the curve approximations yield a small number of pieces yet achieve C1 continuity
between pieces. The simpler cases of C−1 and C0 continuity are also handled in a similar manner.
Details of the implementation of all these algorithms in GANITH [8] are also provided.

Sketch of Algorithm Input Given a real algebraic curve C of degree d, a bounding box B, a
finite precision real number ε and integers m, n with m+ n ≤ d.

Output A C−1, C0 or C1 continuous piecewise rational ε-approximation of all portions of C within
the given bounding box B, with each rational function Pi

Qi
of degree Pi ≤ m and degree Qi ≤ n and

m+ n ≤ d.

Algorithm We state the algorithm for a C1 continuous piecewise rational ε-approximation. The C−1

and C0 are similar and simpler.

1. Compute all intersections of the given real plane curve C within the given bounding box B
and also the tracing direction at these points. Let the curve within the box B be denoted by
CB. Next, compute all singular points S and x-extreme points T on the bounded plane curve
CB. The set of points T act as starting points for smooth ovals of the curve C completely
inside B.

2. Compute a Newton factorization for each singular point (xi, yi) in S and obtain a power series
representation for each analytic branch of C at (xi, yi) and given by{

X(s) = xi + ski

Y (s) =
∑∞

j=0 c
(i)
j s

j , c
(i)
0 = yi

(1)

or {
Y (s) = yi + ski

X(s) =
∑∞

j=0 c̃
(i)
j s

j , c̃
(i)
0 = xi

(2)

3. Without loss of generality, we only consider the case where the analytic branch at the sin-
gularity is of type (1). Compute Pmn(s)

Qmn(s) the (m,n) Padé approximation of Y (s). That is
Pmn(s)
Qmn(s) − Y (s) = O(sm+n+1)

4. Compute β > 0 a real number, corresponding to points (x̃i = X(β), ỹi = Y (β)) and (x̂i =
X(−β), ŷi = Y (−β)) on the analytic branch of the original curve C, such that Pmn(s)

Qmn(s) is
convergent for s ∈ [−β, β] (see sub-sections (3.3.2) and (3.3.4) for details).

5. Modify Pmn(s)/Qmn(s) to P̃mn(s)/Q̃mn(s) such that P̃mn(s)/Q̃mn(s) is C1 continuous ap-
proximation of Y (s) on [0, β], similarly modify Pmn(s)/Qmn(s) to P̂mn(s)/Q̂mn(s) such that
P̂mn(s)/Q̂mn(s) is C1 continuous approximation of Y (s) on [−β, 0](see subsections (3.3.1)
and (3.3.3) for details).

6. Denote the set of all the points (x̃i, ỹi), (x̂i, ŷi), the set T and the boundary points of CB by
V . The curve CB yields a natural multigraph1 G having V as its vertex set and the set of
curve segments of CB joining any pair of points in V , as its edge set E. Now starting from
each (simple) point (xi, yi) in V we trace out the multigraph G, approximating each of its

1A graph with perhaps multiple edges between a pair of vertices
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edges by C1 continuous piecewise rational curves as in the following:
Compute the Taylor expansion that yields (without loss of generality) the single analytic
branch given, by

X(s) = xi + s

Y (s) =
∞∑
j=0

c
(i)
j s

j , c
(i)
0 = yi

Exactly the same steps as above are used for determining the Padé approximation, β and
modified Padé approximants for a C1 ε-approximation of these analytic branches. The C1

continuity here is achieved at the point (x̃i = X(β), ỹi = Y (β)) between the original curve
and the ε-approximation and the multigraph is updated with only this single vertex till all
edges are visited exactly once in the Euler tour. For each visited edge the C1 piecewise
approximation rational curves are stored in a separate list and finally output.

Details and Correctness of Algorithm

1.1.1 Expansion at Simple Points

Let f(x, y) =
∑
aijx

iyj = 0 be an algebraic curve and (x0, y0) be a simple point on it. By a
simple translation x = x̃ + x0, y = ỹ + y0 we may assume that (x0, y0) = (0, 0), i.e., f(0, 0) = 0.
Since (0, 0) is a simple point of the curve, we assume without loss of generality, that fy(0, 0) 6= 0.
Consider f(x, y) in its recursive canonical form (RCF) form as a polynomial in y with coefficients
polynomials in x:

f(x, y) = a0(x) + a1(x)y + · · ·+ ad(x)yd, (3)

with ai(x) =
∑mi

j=0 aijx
j , i = 0, 1, . . . , d and by the earlier assumption a1(0) = a10 6= 0. Let

y(x) =
∑∞

i=1Aix
i =

∑∞
i=1A(1)ixi Then

yj(x) =
∞∑
i=j

A(j)ixi (4)

where A(j)i =
∑

i1+···+ij=iAi1Ai2 , . . . , Aij . Hence A(j + 1)i =
∑i−1

k=j A(j)kAi−k. Substituting (4)
into f(x, y) = 0, we have

0 = a0(x) +
∑d

j=1 aj(x)
∑∞

i=j A(j)ixi

= a0(x) +
∑d

j=1

∑∞
i=j B(j)ixi

=
∑m1

i=1 a0ix
i +
∑∞

i=1B(1)ixi +
∑∞

i=2(
∑min{i,d}

j=2 B(j)i)xi
(5)

where

B(j)i =
min{i−j,mj}∑

s=0

ajsA(j)i−s, j = 1, 2, . . . , i ≥ j (6)

It follows from (5) that
B(1)1 + a01 = 0 (7)

B(1)i + a0i +
min{i,d}∑
j=2

B(j)i = 0, i = 2, 3, . . . , (8)

Since B(1)i =
∑min{i−1,m1}

s=0 a1sAi−s = a10Ai +
∑min{i−1,m1}

s=1 a1sAi−s, it follows from (7) and (8)
that

A1 = −a01/a10

Ai = −
[∑min{i−1,m1}

s=1 a1sAi−s + a0i +
∑min{i,d}

j=2 B(j)i
]
/a10, i = 2, 3, . . .

(9)
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1.1.2 Expansion at Singular Points

We rely on the classical resolution of algebraic plane curves [1, 29] based on the Weierstrass Prepa-
ration Theorem [33] and Newton power series factorizations[21], using the technique of Hensel
lifting[15]. We repeat it here for the sake of completeness and to point out the modifications re-
quired for the special case of computing only the real branches at real singularities of the plane
curve.

1.1.3 Newton Factorization

Consider h(x, y), a monic polynomial in y of degree e, with no repeated factors and with coefficients
polynomial or power series or meromorphic series in x (like the “distinguished” polynomial of the
Weierstrass factorization)

h(x, y) = ye + ae−1(x)ye−1 + · · · + a0(x)

Then it is possible to factor h(x, y) into real linear factors of the type

h(x, y) = Πe
i=1 (y − ηi((t)))

with tm = x and m a positive integer and ηi((t)) a real power series or meromorphic series. This
factorization is also achieved via Hensel lifting. We precondition the curve so that it admits a
non-trivial base factorization, i.e. having at least two real coprime factors which can be lifted.

Step 1: Cancel the term ae−1(x) via the substitution ỹ = y + ae−1(x)
e . Note, that the

case when all other ai(x) terms also vanish under this substitution is when the original h(x, y) =
(y − ae−1(x)

e )e (a repeated factor which does not occur for our input curves).
Step 2: Ensure some ae−i(0) 6= 0 for i ≥ 2 via the substitution y̆ = ỹ

xλ
with λ = min(2≤i≤e)

αi
i

and αi = ordxae−i(x). Then h(0, y̆) = h0(y̆) has at least two distinct roots. If the only roots are
complex, return “No real branches at the origin” and skip Step 3.

Step 3: Use Hensel lifting to lift the factorization h0(y̆) = g0(y̆) h̆0(y̆) with g0 being linear, to
h(x, y̆) = g(x, y̆) h̆(x, y̆) and apply the inverse of the coordinate substitutions in Steps 1 and 2.
Repeat Steps 1-3 until all factors of h are linear or all real factors are obtained.

1.1.4 Local Parametrization

If the given curve C has a singularity with non-rational (algebraic) coordinates, we first com-
pute a rational approximation to the singularity as well as determine the multiplicity order of the
singularity. This order e is the minimum order of the partials which are greater than machine
precision. Next we translate the curve to make the singularity to be at the origin, and also discard
all monomial terms of degree less than e.

Hence, consider an implicit plane algebraic curve C : f(x, y) = 0, with no repeated factors,
and with a singularity at the origin. To compute a local parametric approximation of each of the
curve’s branches incident at the origin, we execute the following steps:

1. Compute a Weierstrass power series factorization of f(x, y) into f = gh, where g(x, y) is a
unit power series and h(x, y) is a polynomial in y with coefficients non-unit power series in x.
The equation h = 0 corresponds to the curve’s branches at the origin while the power series
equation g = 0 corresponds to the portion of the plane curve away from the origin.
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2. Recursively apply the Newton factorization to h(x, y) till all factors are linear in y or all real
factors are obtained. Each of these power series factors represent a local branch parametriza-
tion of the type x = tm and y = bi((t)) where bi is a power series. The minimum of m and
ordt((bi)), say k, is known as the order of the branch, with k > 1 implying a singular branch
of the curve.

1.1.5 C1 Continuous Padé Approximation

C1-continuity—Approach I Let Pmn(s)/Qmn(s) be the (m,n) Padé approximation of Y (s),
That is Pmn(s)

Qmn(s) − Y (s) = O(sm+n+1). Let β > 0 be a real number, corresponding to a point on

the analytic branch of the original curve C, such that Pmn(s)
Qmn(s) is convergent for s ∈ [0, β]. This β is

determined in Section 1.1.5.
Consider

P̃mn(s)
Qmn(s)

=
Pmn(s) + sk(a+ bs)

Qmn(s)
, 2 ≤ k < m (10)

Note that the above choice of P̃mn(s) change neither the degree of the approximation nor the order
of the approximation error (shown in subsection 1.1.5). On the other hand, it is easy to see that

Y (s)− P̃mn(s)
Qmn(s)

= O(sk)

Any choice of k within the allowed range suffices and we have currently left that as a parameter in
our implementation. For a fixed choice of k, determine a and b such that

P̃mn(β)
Qmn(β)

= Y (β), C0 continuity (11)

and further (
P̃mn
Qmn

)′
(β) = Y ′(β), C1 continuity (12)

Hence, for C0 continuity, we have

a =
Y (β)Qmn(β)− Pmn(β)

βk
, (13)

and b = 0. For C1 continuity, it follows from (11) and (12) that

a+ bβ =
Y (β)Qmn(β)− Pmn(β)

βk
, (14)

ka+ (k + 1)bβ =
(Y Qmn − Pmn)′(β)

βk−1
. (15)

Since the matrix
[

1 β
k (k + 1)β

]
is nonsingular for β 6= 0, equations (14) and (15) have a unique

solution and

a =
(k + 1)(Y Qmn − Pmn)(β)− β(Y Qmn − Pmn)′(β)

βk
,

b =
β(Y Qmn − Pmn)′(β)− k(Y Qmn − Pmn)(β)

βk+1

For C−1 continuity , i.e no continuity constraints, a = b = k = 0. For C0 continuity , i.e no
gaps, b = 0 and a is computed as (13) for some fixed k such that 1 ≤ k ≤ m.
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Approximation Error Bound—Approach I We now compute β > 0 a real number, corre-
sponding to a point on the analytic branch of the original curve C, such that the segment Pmn(s)

Qmn(s) is
convergent for s ∈ [0, β]. The following error analysis is based on the functional distance between
the curve branch and the approximating segment. Similar error analysis can also be achieved for
more geometric distance measures.

Note that P̃mn(s) = Pmn(s) + sk(a + bs), where a and b are chosen to enforce C1 continuity.
Since

Y (s)− P̃mn(s)
Qmn(s)

=
Y (s)Qmn(s)− Pmn(s)− sk(a+ bs)

Qmn(s)
,

sk(a+ bs) can be regarded as an C1 interpolating polynomial of Y (s)Qmn(s)− Pmn(s) at points 0
and β. Hence we have

Y (s)− P̃mn(s)
Qmn(s)

=
(Y Qmn − Pmn)(k+2)(ξ)

Qmn(s)(k + 2)!
sk(s− β)2, ξ ∈ (0, β).

where (Y Qmn − Pmn)(k+2) is the (k + 2)th derivative of the power series. Since

|sk(s− β)2| ≤ 4kkβk+2

(k + 2)(k+2)
, s ∈ [0, β],

we have ∣∣∣∣∣Y (s)− P̃mn(s)
Qmn(s)

∣∣∣∣∣ ≤
∣∣∣∣∣(Y Qmn − Pmn)(k+2)(ξ)

Qmn(s)(k + 2)!

∣∣∣∣∣ 4kkβk+2

(k + 2)(k+2)

From (Y Qmn − Pmn)(s) =
∑∞

i=m+n+1 eis
i, we have∣∣∣∣∣(Y Qmn − Pmn)(k+2)(ξ)

(k + 2)!

∣∣∣∣∣ ≤
∞∑

i=m+n+1

|ei|aik+2β
i−k−2.

Let Q−1
mn(s) =

∑∞
i=0 qis

i and |Q−1
mn(s)| ≤

∑∞
i=0 |qi|βi, then∣∣∣∣∣(Y Qmn − Pmn)(k+2)(ξ)

Qmn(s)(k + 2)!

∣∣∣∣∣ ≤
∣∣∣∣∣(Y Qmn − Pmn)(k+2)(ξ)

(k + 2)!

∣∣∣∣∣ |Q−1
mn(s)| = (

∞∑
i=0

riβ
i)βm+n−k−1

Therefore from the above analysis and the previous subsection we have

Theorem 1. Let

∞∑
i=0

riβ
i = (

∞∑
i=m+n+1

|ei|aik+2β
i−m−n−1)(

∞∑
i=0

|qi|βi).

Then

1∗
(
P̃mn
Qmn

)(i)

(0) = Y (i)(0), i = 0, 1, · · · , k − 1.

2∗
(
P̃mn
Qmn

)
(β) = Y (β),

(
P̃mn
Qmn

)(1)

(β) = Y (1)(β).
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3∗
∣∣∣∣∣Y (s)− P̃mn(s)

Qmn(s)

∣∣∣∣∣ ≤ (
∞∑
i=0

riβ
i)

4kkβm+n+1

(k + 2)(k+2)
, s ∈ [0, β]. (16)

An interesting property of (16) is that the order of the approximation does not depends on
k. Further, the error bound depends on Pmn/Qmn but not a and b. Hence (16) can be used to
compute the approximation range β after Padé approximation is obtained. For C0 continuity, a
similar bound can be obtained.

In our implementation, we take
∑∞

i=0 riβ
i ≈ r0 + r1β and then determine β1 such that

(r0 + r1β1)
4kkβm+n+1

1

(k + 2)(k+2)
≤ ε

Next compute the smallest pole of the rational function, i.e.

β2 = ζ ∗min{zi : Qmn(zi) = 0, zi ∈ IR}

for some positive constant ζ < 1 and take β3 = min{β1, β2}. From the point on the Padé approxi-
mation (X(β3), Pmn(β3)/Qmn(β3)) we compute via Newton’s method the nearest point (x̃i, ỹi) on
the analytic branch

X(s) = xi + ski

Y (s) =
∑∞

j=0 c
(i)
j s

j

of the original curve f(x, y) = 0. Finally we determine β from the equation βki = x̃i − xi.

C1-continuity—Approach II The second method for getting C1 (or C0) continuous Padé ap-
proximation is to first modify the Y (s) as Ỹ (s):

Ỹ (s) =
∞∑
i=0

c̃isi =


Y (s) for C−1

Y (s) + asm+n for C0

Y (s) + sm+n−1(b+ as) for C1
(17)

and then compute (m,n) Padé approximation Pmn(s)/Qmn(s) for Ỹ (s). After that determine a
and b such that Pmn(s)/Qmn(s) is C1 (or C0) continuous on [0, β]. If n = 0, the problem is reduced
to the approach one of last subsection with k = m − 1. Now assume n > 1. From the expression
of Padé approximation:

Pmn(s, a, b) = det


cm+1 cm · · · cm−n+1

· · · · · · · · · · · ·
cm+n + a cm+n−1 + b · · · cm∑m

i=0 c̃is
i
∑m−1

i=0 c̃is
i+1 · · ·

∑m−n
i=0 c̃is

i+n



Qmn(s, a, b) = det


cm+1 cm · · · cm−n+1

· · · · · · · · · · · ·
cm+n + a cm+n−1 + b · · · cm

1 s · · · sn

 ,
we know that Pmn(s, a, b), Qmn(s, a, b) is linear in a, degree at most 2 in b. Then by(

Pmn(s)
Qmn(s)

)
s=β

= Y (β),
(
Pmn(s)
Qmn(s)

)′
s=β

= Y ′(β)
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We have {
Pmn(β, a, b)− Y (β)Qmn(β, a, b) = 0
P ′mn(β, a, b)− Y (β)Q′mn(β, a, b)− Y ′(β)Qmn(β, a, b) = 0

(18)

From the first equation, we get a = d0b
2 + d1b + d2 for some constant d′s. Substitute a into the

second equation, we get degree 2 equation a0b
2 + a1b + a2 = 0 of b. It has two solutions. At

this moment one may immediately ask the question: Which solution do you choose from? Is the
problem of modified Padé approximation equivalent to rational Hermite interpolation problem at
points 0 and β? Now we try to answer the questions.

Lemma 1. Denote

A(m/n) = det

 cm cm−1 · · · cm−n+1

· · · · · · · · · · · ·
cm+n−1 cm+n−2 · · · cm


Then if A(m− 1/n− 1) is nonsingular when n > 1, then there exists uniquely a and b such that

rank

 cm+1 cm · · · cm−n+1

· · · · · · · · · · · ·
cm+n + a cm+n−1 + b · · · cm

 < n, for n > 0

Proof. If n = 1, take a = −cm+n, b = −cm+n−1. Then the matrix considered is reduced to zero.
Hence the needed conclusion holds. Now suppose n > 1 and let A be the above matrix and A1 be
the last n columns of A. Then by the assumption of the lemma we know that there exists uniquely

b = (−1)n
A(m/n)

A(m− 1/n− 1)

such that the matrix A1 is singular. For such b there exists uniquely a such that the last row of A
can be expressed by the first n− 1 rows and this complete the proof of the lemma. ♦

From the expression of Padé approximation and this lemma we know that there exists uniquely
a and b such that Pmn = Qmn = 0. Therefore equation (18) is satisfied by this trivial solution and
this solution is not what we wanted. We should choose the solution which does not make Qmn to be
zero. After knowing which solution we should choose, we can answer the second question. Since the
solution of the rational Hermite interpolation problem is unique, the modified Padé approximation
must be the rational Hermite interpolant. On the other hand, expanding the rational Hermite
interpolant into power series at origin and then computing the Padé approximant of the power series,
we would get the same rational function by the uniqueness of the Padé approximation. Hence the
modified Padé approximation problem is equivalent to the rational Hermite interpolation problem.
The computation approach here is easier than the known methods for computing the rational
Hermite interpolant.

Theorem 2. Let Rmn(s, a, b) = Pmn(s, a, b)/Qmn(s, a, b) be the Padé approximation of Ỹ (s) =∑∞
i=0 c̃is

i defined as (17) and A(m− 1/n− 1) and A(m/n) are not zero.

1. Then for any b, exists a such that

Rmn(β, a, b) = Y (β), β 6= 0 (19)

if Qm−1,n−1(β) 6= 0 and rm−1,n−1(β) 6= 0.

2. If the above condition is satisfied, then there exist a and b such that

R′mn(β, a, b) = Y ′(β), β 6= 0 (20)
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if
(
srm−2,n−2(s)
rm−1,n−1(s)

)′
s=β
6= 0 and

A2(m− 1/n− 1)
(

rm,n(s)
srm−1,n−1(s)

)′
s=β
6= A2(m/n)

(
srm−2,n−2(s)
rm−1,n−1(s)

)′
s=β

(21)

where rmn(s) = Y (s)Qmn(s)− Pmn(s) and A2 = A ∗A.

Proof. From the determinant expression of Padé approximation, we have

Pmn(s, a, b) = (−1)n−1asPm−1,n−1(s) + b2s(sPm−2,n−2(s)) + · · ·+ Pmn(s)
Qmn(s, a, b) = (−1)n−1asQm−1,n−1(s) + b2s(sQm−2,n−2(s)) + · · ·+Qmn(s)

where · · · part is a linear monomial in b and (sPm−2,n−2(s), sQm−2,n−2(s)) = (−sm−1, 0) for n = 1.
Then (19) holds if arm−1,n−1(β) = (−1)n[b2βrm−2,n−2(β) + · · · + rmn(β)] . Hence there exists a
such that this equality holds for any b if rm−1,n−1(β) 6= 0. This is conclusion one.

Substitute P ′mn and Q′mn into the second equation of (18), after some computations, one get
the following equation

(−1)n−1a(srm−1,n−1(s))′ + b2(s2rm−2,n−2(s))′ + · · ·+ (rmn(s))′ = 0.

It follows from

a = (−1)n
[
β2rm−2,n−2(β)
βrm−1,n−1(β)

b2 + · · ·+ rmn(β)
βrm−1,n−1(β)

]
that (

s2rm−2,n−2(s)
srm−1,n−1(s)

)′
s=β

b2 + · · ·+
(

rmn(s)
srm−1,n−1(s)

)′
s=β

= 0 (22)

From Lemma 1 we know that this equation has a trivial solution which makes Pmn = Qmn = 0. It
has two solutions if and only if the highest coefficient of the equation is not zero. Let the quadratic
equation (22) be denoted as α2b

2 + α1b + α0 = 0 with roots r1 and r2 then since r1 ∗ r2 = α0
α2

, we
know that in order to make the two solutions of (22) be distinct, it suffices to satisfy the inequality
(21). ♦

1.1.6 The Computation of the Singularity

The computation of the singularity consists of two sub-problems. One is to find the singular points,
the other is to determine the order of the singular points. The singular points computed should
have good accuracy such that the correct order can be determined from which.

For finding the singular points, we solve the equations{
f(x, y) = 0
αfx(x, y) + βfy(x, y) = 0

(23)

using multivariate resultants and based on the method of birational maps [3], where the constants
α and β are chosen such that f and αfx + βfy are coprime. In this method, we are led to solving
a system of equations in the following form:{

φ0(X) = 0
Y = φ1(X)

(24)

with (X,Y ) and (x, y) are linearly related, where φ0 is a polynomial and φ1 is a rational function.
The first equation of (24) can be solved by calling C-library to get the initial approximate values
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and then using iterative methods to get the higher precision solutions. Then the solution of (23) is
received by the second equation of (24) and the linear relation between (X,Y ) and (x, y).

In this approach, the equation (24) is produced by symbolic computation. After the initial
value is got by numerical methods, the refinement afterwards is also symbolic. In the development
of the following, we shall determine the required precision of the refinement. This precision will
guarantee that the order of the singular point is correctly determined.

Let p∗ = (x∗, y∗) be a singular point of f(x, y) = 0. Then the order of it is the minimal integer
k, for which fij(p∗) 6= 0 for at least one pair (i, j) with i + j = k, where fij = ∂i+jf

∂xi∂xj
. In order

to determine the correct order from the approximate singular point of p∗, we need to know the
minimal value of |fij(p∗)| if it is nonzero. The lower bound of this value can be estimated by the
following gap theorem:
Gap Theorem. Let P(d, c) be the class of integral polynomials of degree d and maximum coefficient
magnitude c. Let fi(x1, · · · , xn) ∈ P(d, c), i = 1, · · · , n be a collection of n polynomials in n
variables which has only finitely many solutions when homogenized. If (α1, · · · , αn) is a solution of
the system, then for any j either αj = 0, or |αj | > (3dc)−nd

n

For a given integer pair (i, j), let z∗ = fij(p∗), then using Gap Theorem to the following system:
f(x, y) = 0
fx(x, y) = 0
z − fij(x, y) = 0

(25)

with a known solution (x∗, y∗, z∗), we know that if z∗ 6= 0, then |z∗| > (3dcij)−3d3 , where d is the
degree of f and cij is the maximum coefficient magnitude of the left hand side of (25). By this
inequality, we can get the following criterion for testing whether fij(p∗) is zero:

Test Criterion. Let gap = (3dcij)−3d3

|fij(p)− fij(p∗)| <
1
2
gap (26)

then fij(p∗) = 0 if and only if |fij(p)| < 1
2gap.

Proof. If |fij(p)| < 1
2gap, then

|fij(p∗)| ≤ |fij(p)|+ |fij(p)− fij(p∗)| < gap

Hence fij(p∗) = 0. On the other hand, if fij(p∗) = 0, then (26) implies the required inequality.

The Precision of the Singular Points. It follows from the test criterion above that, for knowing
whether fij(p∗) = 0 or not, the computed singular point should have such a precision that the
inequality (26) holds. Suppose the singular point is in the given bounding box B = {(x, y) : a1 ≤
x ≤ a2, b1 ≤ y ≤ b2} in which the rational approximations are constructed, then by the Mean Value
theorem, we have

|fij(p)− fij(p∗)| ≤
√
fi+1,j(p+ θp∗) + fi,j+1(p+ θp∗)‖p− p∗‖

≤Mij‖p− p∗‖

where θ ∈ (0, 1), Mij =
√∑

ij(|bi+1,j |s+ |bi,j+1|t)sitj , bij is defined by fij(x, y) =
∑

ij bijx
iyj ,

s = max{|a1|, |a2|} and t = max{|b1|, |b2|}. Therefore, (26) holds if

‖p− p∗‖ ≤ gap

2Mij

That is, the computation of p∗ should make p∗ to have the accuracy gap
2Mij

and therefore the com-
putation should use −log( gap

2Mij
)/log2 binary bits.
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1.1.7 Implementation Issues

The rational approximation algorithms has been implemented in its entirety as part of GANITH, an
X-11 based interactive algebraic geometry toolkit, using Common Lisp for the symbolic computation
and C for all numeric and graphical computation. The input curve is assumed to have integral
coefficients, which are considered to be exact. Floating point coefficients are allowed in the input
curve representations, which are then converted to rational numbers and then converted to integers.

The Hensel power series computations of section 3, as well as its use in sections Weierstrass and
Newton factorizations are based on a robust implementation of the fast Euclidean HGCD algorithm
[9]. Rational Padé approximants are also computed based on the same HGCD algorithm, [9]. Power
Series are stored as truncated sparse polynomials, as are the polynomials representing the original
algebraic curves, in recursive canonical form. In this form, a polynomial in the variables x1, . . . , xn
is represented either as a constant, or as a polynomial in xn whose coefficients are (recursively)
polynomials in the remaining variables x1, . . . , xn−1. A strength of this form (for purposes of
implementation) is that multivariates “look like” univariates, making it easy to modify algorithms
for univariate polynomials to handle multivariates. All these computations can be numerical.

In Newton factorizations, user options are provided to compute only real branch factorizations.
This is achieved by not allowing complex conjugate roots of the appropriate univariate polynomial,
to split in the base case of the Henselian computation. Singularity computations(see section 4) as
well as the extreme points computations are done in GANITH using multivariate resultants and
based on the method of birational maps [3]. The intersection points of the curve with the bounding
box are computed by letting x or y to be constant and then solving one unknown equation. In
these computations, symbolic as well as numerical computations are used.

1.2 Newton Iterations

While tracing a surface-surface intersection curve SC, at simple (regular) points of SC we need
to solve an undetermined nonlinear system that has more unknowns than equations. At singular
points on the curve, we need to solve an overdetermined nonlinear system that has more equations
and less unknowns. Consider in general an arbitrary system of nonlinear equations

F (x) =

 f1(x1, . . . , xm)
· · · · · · · · · · · ·
fn(x1, . . . , xm)


We need to determine solution of the system F (x) = 0 by Newton iterations from a given initial
value p0 ∈ IRm. In our tracing procedure these initial values are points on the local expansion
curves, within an adaptively computed step length. These initial values are then refined back to
the original intersection curve SC to yield the actual interpolating points for the rational curve
segment approximation. The Newton iteration used is

∇F (pk)∆k = −F (pk), pk+1 = pk + ∆k (27)

where ∇F =
[
∂F

∂x1

∂F

∂x2
. . .

∂F

∂xm

]
=

 ∇f1
...
∇fn

 is a n×m matrix.

Case A: m = n + 1. Here equation (27) is a under-determined linear system. Suppose the set of
∇fi is linearly independent, then the general solution of (27) is

∆k = αkt+∇F (pk)Tβk (28)
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where t ∈ ∇F (pk)⊥, αk ∈ IR is arbitrary and βk ∈ IRn satisfies the following equation

∇F (pk)∇F (pk)TX = −F (pk) (29)

This has a unique solution since ∇F (pk) is of full rank. Finally, αk is chosen as follows:

1. IIS case
In this case, m = 3, n = 2 and t in (28) is the tangent direction of the curve. The change
of pk in the direction of t should be as small as possible. Therefore, we set αk = 0.

2. IPS case
Now m = 4, n = 3 and p = (x1, x2, x3, x4)T := (u1, v1, u2, v2)T

fi(x1, x2, x3, x4) = Gi1(x1, x2)−Gi2(x3, x4), i = 1, 2, 3

The initial value is given by (59), i.e., p0 = (Q1(s0)T , Q2(s0)T )T , where s0 is the step
length of the approximation of r(s). In order to determine αk in (28), we project
pk+1 ∈ IR4 (domain space) into IR3 (value space) by

X1(p(1)
k ) +∇X1(p(1)

k )∆(1)
k

where p(1)
k (or p(2)

k ) and ∆(1)
k (or ∆(2)

k ) are the first (or last) two components of pk and
∆k, respectively. Let

n1 = X1u1(p(1)
k )×X1v1(p(1)

k ), n2 = X2u2(p(2)
k )×X2v2(p(2)

k )

and n3 = n1 × n2. Then there exist α̃k ∈ IR, β̃k ∈ IR2 such that

X1(p(1)
k ) +∇X1(p(1)

k )∆(1)
k = α̃kn3 + [n1, n2]β̃k

and β̃k is determined uniquely by[
nT1X1(p(1)

k )
nT2X2(p(2)

k )

]
= [n1, n2]T [n1, n2]β̃k

and
α̃k = nT3X1(p(1)

k ) + nT3∇X1(p(1)
k )∆(1)

k

= nT3X1(p(1)
k ) + nT3∇X1(p(1)

k )[αkt(1) +∇F (1)(pk)Tβk]
= a(pk)αk + b(pk)

where a(pk) and b(pk) are constants depending on pk. For the same reason as IIS, we
take α̃k = 0. Hence αk = − b(pk)

a(pk)
.

Case B: n > m. This case happens when we arrive at a singular point on the intersection
curve SC (see Section 9). Now system (27) is over-determined. So we find the least squares
approximate solution, i.e.,

∇F (pk)T∇F (pk)∆k = −∇F (pk)TF (pk) (30)
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1.3 Rational Curve Hermite Interpolation between Simple Points

Let r1(u), r2(v) be two space curves, where u and v are arc lengths of the curves measured from
some point on the respective curve. At point u = u0, v = v0, if

r
(i)
1 (u0) = r

(i)
2 (v0), i = 0, 1, . . . , k

we say that r1 and r2 are k-frame connected, or the composite curve is k-frame continuous. In
particular, if k = 3, we say the curve is frame continuous.

Given a point p0 on the curve r(s), which is either IIS, IPS or PC, the arc length s is measured
from p0 (i.e., r(0) = p0) in the given direction.

Step Length

From the approximation r(s) ≈
k+1∑
i=0

r(i)(0)
si

i!
, we compute a trial step length β > 0 such that

‖r(k+1)(0)‖βk+1

(k + 1)!
/ ‖

k∑
i=0

r(i)(0)βi

i!
‖ < ε (31)

For such a β, using
k+1∑
i=0

r(i)(0)βi/i! (for IIS), or [
k+1∑
i=0

Q
(i)
1 (0)Tβi/i!,

k+1∑
i=0

Q
(i)
2 βi/i!]T (for IPS) as initial

value, we compute a new point p1 on the curve by Newton iterations (section 6 ).
We then construct rational approximations as follows:

A. Rational Hermite interpolation
Let m, n be two nonnegative integers and m + n = 2k + 1. We construct a rational vector

function R(s) = [R1(s), R2(s), R3(s)]T , where Ri(s) = Pmi(s)/Qni(s), i = 1, 2, 3 are (m,n) type
rational functions, such that

R(i)(s) = r(i)(s), i = 0, 1, . . . , k (32)

for s = 0 and s = β.
If either Qni(s) has zeros in [0, β] or the error max

s∈[0,β]
||r(s) − R(s)|| > ε, we halve the β. The

approximation error is bounded in the following way:
Since

ei(s) = ri(s)Qni(s)− Pmi(s) = O(sk+1(s− β)k+1),

by the remainder formula of Hermite interpolation, we have

ei(s) = [s(s− β)]k+1(riQni)[0, . . . , 0︸ ︷︷ ︸
k+1

β, . . . , β︸ ︷︷ ︸
k+1

, s],

where f [t0, . . . , tr] stands for divided difference of f on t0, . . . , tr. Hence

|ri(s)−Ri(s)| ≤
(
β

2

)2k+2 |Dki(s)|
mins∈[0,β] |Qni(s)|

(33)

where Dki(s) = (riQni)[0, . . . , 0, β, . . . , β, s] is a function in s. That can be bounded approximately
by either

|Dki(0)|+ |Dki(β)| or max
s∈[0,β]

|D̃ki(s)|
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where D̃ki(s) is the interpolation polynomial of degree 2 at Dki(0), Dki(
β
2 ) and Dki(β). Let g =

ri/Qni. Then the divided difference can be computed by the following well known recurrence

g[t0, . . . , tk] =


g(k)(t0)/k! if t0 = . . . = tk

g[t0, . . . , tr−1tr+1, . . . , tk]− g[t0, . . . , ts−1, ts+1, . . . , tk]
ts − tr

if tr 6= ts

B. Rational Vector Hermite Interpolation
We construct a rational function

R(s) = [Pm1(s), Pm2(s), Pm3(s)]T /Qn(s)

such that (32) holds and

m+ n/3 = 2k + 1 (34)

where n is divisible by 3. Now each component of the vector rational function has the same
denominator. But the degree m+ n of each component is higher than the previous case. However,
if we transform the vector rational function in case 1 into a rational function that has common
denominator, then the degree is higher than in case 2. This transform is necessary when we
represent the curve in rational Bernstein-Bézier form.

The error bound of the approximation can be estimated in the same way as before.

C. Two Point Padé Approximation
The two point Padé approximation method discussed here consists of the following two steps.

First, compute the Padé approximation Pm1i(s)/Qn1i(s) at s = 0, such that

ri(s)− Pm1i(s)/Qn1i(s) = O(sk+1), i = 1, 2, 3

and

m1 + n1 = k. (35)

Second, compute the Padé approximation Pm2i(s)/Qn2i(s) at s = β to the function r̃i(s) = (ri(s)
Qn1i(s)− Pm1i(s))/s

k+1 such that

r̃i(s)− Pm2i(s)/Qn2i(s) = O((s− β)k+1), i = 1, 2, 3

and

m2 + n2 = k (36)

The required two point approximation is

Ri(s) =
Pm1i(s)Qn2i(s)− sk+1Pm2i(s)

Qn1i(s)Qn2i(s)

which is (max{m1 + n2, k +m2 + 1}, n1 + n2) type rational function and satisfies condition (32).
For example, if k = 3, take m1 = m2 = 2, n1 = n2 = 1, then Ri(s) is a (28) type rational function.
Since the denominator of Ri(s) is a product of two polynomials, it is easy to check the appearance
of the poles of Ri(s) in [0, β] when ni is small, say ni ≤ 2.

Denote Qni(s) = Qn1i(s)Qn2i(s) (n = n1 + n2), the error can be estimated as in the rational
Hermite interpolation case.
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D. Two Point Vector Padé Approximation
Similar to the rational vector Hermite interpolation, we can also consider a two point vector

Padé approximation. Now conditions (35) and (36) should be replaced by

m1 + n1/3 = k, m2 + n2/3 = k

respectively, and further we require that n1 and n2 are divisible by 3. The error can be computed
as before.

1.4 Rational B-spline Representation

To interactively control the shape of the piecewise approximating curve or to interface to existing
B-spline modelers, we represent each of the rational functions as rational B-splines. The first step
is to transform the rational function into Bernstein-Bézier form. Let

r(s) = [x(s), y(s), z(s)]T /w(s)

be a space curve on the interval [a, b], where x(s), y(s), z(s) and w(s) are polynomials of degree n.
Since

ti =
n∑
j=i

Cji
Cni

Bn
j (t)

with
t =

s− a
b− a

∈ [0, 1], Bn
j (t) = Cni t

j(1− t)n−j , Cni =
n!

i!(n− i)!
we have, for any polynomial p(s) of degree n

p(s) =
∑n

i=0 cit
i

=
∑n

i=0(
∑i

j=0

Cij
Cnj
cj)Bn

i (t)

=
∑n

i=0 b
′
iB

n
i (t)

where b′i =
∑i

j=0

Cij
Cnj
cj . Therefore r(s) can be expressed as

r(s) =
n∑
i=0

wibiB
n
i (t)/

n∑
i=0

wiB
n
i (t) =

n∑
i=0

wibiN
n
i (s)/

n∑
i=0

wiN
n
i (s)

where wi ∈ IR, bi ∈ IR3 is Bézier point and Nn
i (s) = Bn

i (t).
Let T = {t0, ..., tn, tn+1, ..., t2n+1}, where ti = a for i = 0, ..., n, ti = b for i = n + 1, ..., 2n + 1.

Then it is easy to show that the normalized B-spline over T is Nn
i (s) defined above. Therefore, the

Bézier point is also the de Boor point in this special case. For the general B-spline

F (s) =
m∑
i=0

diN
n
i (s) (37)

over
T = {t0 = ... = tn ≤ tn+1 ≤ ... ≤ tm+1 = ...tm+n+1}

with m ≥ n and ti < ti+n+1. Most operations on splines, such as evaluation by the de Boor
algorithm and knot insertion, do not need the explicit expression of Nn

i (s) but the knot sequence
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T and the de Boor points. So these two sets are enough to represent the B-spline. For example,
the evaluation of the B-spline F (s) in (37) goes as follows: For s ∈ [tl, tl+1),

b0i = di, i = 0, 1, ...,m

dri =
(

1− s− ti
ti+n+1−r − ti

)
dr−1
i−1 +

s− ti
ti+n+1−r − ti

dr−1
i

l − n+ r ≤ i ≤ l, r = 1, 2, ..., n
F (s) = dnl

and inserting a point t with tl ≤ t < tl+1 to T , we have the following algorithm for the new de Boor
points d∗i , for i = 0, 1, ...,m+ 1:

d∗i = aidi + (1− ai)di−1

where

ai =


1 if i ≤ l − n
t−ti

ti+n−ti if l − n+ 1 ≤ i ≤ l
0 if l + 1 ≤ i

Standard NURB Representation
Quite often geometric designers and engineers using NURBS (Rational B-splines with non-

uniform knot spacing) like to have NURBS in a standard form, where the denominator polynomial
has only positive coefficients. This assumption is quite strong, but rids the curve of real poles
(roots of the denominator polynomial) and gives the rational B-spline its convex hull property. In
this subsection we show how to convert a curve in BB form (or normalized B-spline form) into a
finite number of C∞ standard NURB curve segments. We also show that for a degree d B-spline
the number of NURB segments is bounded above by n(n−1)

2 .
We only need to show the transformation for the denominator polynomial of the rational curve.

Given a denominator polynomial P (t) =
n∑
i=0

biB
n
i (t) t ∈ [0, 1] we divide the interval [0,1] into

subintervals, say, 0 = t0 < t1 < . . . < tk = 1, such that the BB-form of P (t) on each of the
subintervals P (t)|[titi+1] = Pi(t) → Pi

(
s−ti

ti+1−ti

)
= P̃i(s) =

∑
bijB

n
i (s) has positive coefficients.

Without loss of generality we assume P (t) > 0 over [0,1], as this can be achieved for any polynomial
by a simple translation. First we show how to compute the first breakpoint t1 = c. By the
subdivision formula Bn

i (ct) =
∑n

j=0 Bj
i (c)B

n
j (t) We have on [0,c], (s = ct; t ∈ [0, 1])

P (s) = P (ct) =
∑n

i=0 biB
n
i (ct)

=
∑n

i=0 bi
∑n

j=0 Bj
i (c)B

n
j (t)

=
∑n

j=0

(
n∑
i=0

biB
j
i (c)

)
︸ ︷︷ ︸B

n
j (t) (Bj

i = 0 if i > j)

=
∑n

j=0 qj(c)B
n
j (t)

where qj(c) =
∑j

i=0 biB
j
i (c) is a degree j polynomial in BB form.

Note that the limc→0 qj(c) = b0. This is because Bj
0(0) = 1, Bj

i (0) = 0, i > 0. Therefore if
we assume P (t) > 0 for t ∈ [0, 1] then p(0) = b0 > 0. Hence find a root of qj(c) in [0,1] and take
c < min{all roots of qj(c) in [0, 1]}. This c will guarantee all qj(c) are positive. The number of
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roots of all qj(c) is bounded by n(n−1)
2 which is then also a bound on the number of subintervals

required.
The initial Bézier or de Boor coefficients over [0,1] are

bb[0] = 1.000000 bb[1] = −0.200000 bb[2] = 0.200000
bb[3] = 0.100000 bb[4] = −0.200000 bb[5] = 0.500000

of which two coefficients are negative. The above conversion yields two pieces in standard NURB
over [0,1] with 0.640072 as the breakpoint. The new coefficients of the two NURB pieces are

bb[0] = 1.000000 bb[1] = 0.231913 bb[2] = 0.119335
bb[3] = 0.111575 bb[4] = 0.060781 bb[5] = 0.060781

and

bb[0] = 0.060781 bb[1] = 0.060781 bb[2] = 0.076842
bb[3] = 0.125649 bb[4] = 0.248051 bb[5] = 0.500000

1.5 Isolating the Singular Points

During the tracing of an intersection space curve, one may encounter singular points. Near these
points, the coefficient matrix of the systems (3.8) for IIS, (62) and (63) for IPS, are nearly singular.
When a near singular condition of the coefficient matrix is detected, the tracing procedure is
temporarily suspended and the singular point is accurated isolated as follows.
A. Singular Point of IIS

Let p0 = (x0, y0, z0)T ∈ IR3 be a singular point of the intersection curve of fi(p) = 0, i = 1, 2.
That is fi(p0) = 0, i = 1, 2 and

α1F
(1)
1 (p− p0) = α2F

(1)
2 (p− p0) (38)

where α1, α2 are constants, |α1| + |α1| 6= 0, fi(p) =
∑

s=0 F
(s)
i (p − p0) and F

(s)
i (u, v, w) is a

homogeneous polynomial of degree s. If the order of the singularity is greater than one, then
equation (38) is replaced by

α1F
(s)
1 (p− p0) = α2F

(s)
2 (p− p0), s = 1, 2, . . . , L

or equivalently

α1
∂sf1(p0)
∂xi∂yj∂zk

= α2
∂sf2(p0)
∂xi∂yj∂zk

, ∀(i, j, k) (39)

with i+ j + k = s, s = 1, 2, . . . , L.

In order to eliminate α1 and α2, use one equation, of (39 α2
∂f2(p0)
∂x

= α1
∂f1(p0)
∂x

to obtain

fi,j,k(p0) =
∂f2(p0)
∂x

∂sf1(p0)
∂xi∂yj∂zk

− ∂f1(p0)
∂x

∂2f2(p0)
∂xi∂yj∂zk

= 0

for ∀(i, j, k) ∈ {(i, j, k) : i+ j + k = s, s = 1, 2, . . . , L} \ {1, 0, 0}.
Now use Newton iterations (Section 6) to solve the system of equations{

fi(p) = 0
fi,j,k(p) = 0, i+ j + k ≤ s (40)

19



Use s = 1 if the resulted matrix is nonsingular, otherwise increase s by 1 until the matrix is
nonsingular.

B. Singular Points of IPS
Let Q∗1, Q

∗
2 ∈ IR2 be the points such that X1(Q∗1) = X2(Q∗2), i.e., p∗ = X1(Q∗1) on the intersection

curve. We use the definition of the singularity for IIS curve to define the singularity for an IPS
curve. For this we need to determine the partial derivatives of parametric surfaces, as described
below. We exhibit this for for surface X1. Surface X2 can be treated in the same way.

Suppose
∂X1(Q∗1)
∂u1

and
∂X1(Q∗1)
∂v1

are linearly independent. For smooth, parametric surfaces

with faithful parameterizations, the Jacobian matrix

J(G11, G21) =


∂G11(Q∗1)

∂u1

∂G11(Q∗1)
∂v1

∂G21(Q∗1)
∂u1

∂G21(Q∗1)
∂v1


is nonsingular and invertible. The inverse functions of

x = G11(u1, v1), y = G21(u1, v1) (41)

also exist and are given by

u1 = G̃11(x, y) v1 = G̃21(x, y) (42)

around Q∗1. Substitute (42) into z = G31(u1, v1), to obtain an implicit representation of the
parametric surface.

f1(x, y, z) = G31(G̃11(x, y), G̃21(x, y))− z = 0 (43)

Now compute the partial derivatives of f1. The derivative about z is trivial, so consider ∂f1
∂x first.

It follows from (43) and (41) that

∂f1

∂x
=
∂G31

∂u1

∂u1

∂x
+
∂G31

∂v1

∂v1
∂x

(44)

and

J(G11, G21)
[

∂u1
∂x
∂v1
∂x

]
=
[

1
0

]
(45)

Solving (45), we get ∂u1
∂x , ∂v1

∂x , from (44) we get ∂f1
∂x . Similarly, ∂f1

∂y can be computed.
Knowing the partials one can compute the singular points as in in the IIS case. For higher

order singularities the higher order partial derivatives can be computed similar to the computation
of second order derivatives shown below.

From (44), we have

∂2f1
∂x∂y =

(
∂2G31

∂u2
1

∂u1
∂y + ∂2G31

∂u1∂v1
∂v1
∂y

)
∂u1
∂x + ∂G31

∂u1

∂2u1
∂x∂y

+
(

∂2G31
∂u1∂v1

∂u1
∂y + ∂2G31

∂v21

∂v1
∂y

)
∂v1
∂x + ∂G31

∂v1
∂2v1
∂x∂y

(46)

and from (41), we have

J(G11G21)

 ∂2u1
∂x∂y

∂2v1
∂x∂y

 = −

 v1

v2

 (47)
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where

vi =
(
∂2Gi1
∂u2

1

∂u1

∂y
+

∂2Gi1
∂u1∂v1

∂v1
∂y

)
∂u1

∂x
+
(

∂2Gi1
∂u1∂v1

∂u1

∂y
+
∂2Gi1
∂v2

1

∂v1
∂y

)
∂v1
∂x

From (47) we get ∂2u1
∂x∂y , ∂2v1

∂x∂y , from (46) we get ∂2f1
∂x∂y .

1.6 The Local Approximation at Singular Points

At the singular points, simple Taylor series expansions fail and we must use special methods to
tackle the approximation problem.

1. IIS.

Let p0 = (x0, y0, z0)T ∈ IR3 be a singular point on the curve. since the matrix ∇fi(p0) 6= 0,
we may assume, WLG, that ∂f1

∂z 6= 0. Then we can express z by a power series z = φ(x, y)
in x and y from f1(x, y, z) = 0 around the point p0. Substitute z into f2(x, y, z) = 0, we
get h(x, y) = f(x, y, φ(x, y)) = 0 As in the plane curve case, expanding h(x, y) = 0 at point
(x0, y0)T by Weierstrass and Newton factorization, we obtain{

x = x0 + tki

y = ψi(t)
i = 0, 1, . . . ,m

where ψi(t) is a power series in t and m is the number of the branches of the curve h(x, y) = 0.
We then have

z = φ(x0 + tki , ψi(t))

= θi(t),
i = 0, 1, . . . ,m

Therefore we get the local parametric form of the space curve as
x = x0 + tki

y = ψi(t) i = 0, 1, . . . ,m
z = θi(t)

For each branch, use the two point interpolating condition to get a rational approximation.

2. IPS

Let Q∗1 = (u∗1, v
∗
1)T , Q∗2 = (u∗2, v

∗
2) be the points in IR2 such that X1(Q∗1) = X2(Q∗2) and

X1(Q∗1) is a singular point of the curve IPS. Since the matrices ∇X1(Q∗1) and ∇X2(Q∗2) are
full rank in column, we may assume J(G11, G21) is not singular at Q∗1. By one of the first
two equations, say the first, G11(u1, v1) = G12(u2, v2), we can express u1 as

u1 = φ(1)(v1, u2, v2) (48)

Substituting it into another equation of the first two, we get

v1 = φ(2)(u2, v2) (49)

Substituting u1 and then v1 into the last equationG31(u1, v1) = G32(u2, v2), we have φ(3)(u2,
v2) = 0. Now, use plane curve factorization techniques for dealing with the singularities, we
get

u2 = u∗2 + tki

v2 = φi(t), i = 0, 1, . . . ,m
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Substitute then back to (49) and (37), we have

v1 = φ(2)(u∗2 + tki , φi(t))
= ψi(t)

u1 = φ(1)(ψi(t), u∗2 + tki , φi(t))
= θi(t)

Then the local parameterization is obtained by

ri(t) = X1(θi(t), ψi(t))
or X2(u∗2 + tki , φi(t)), i = 0, 1, . . . ,m

The next step for getting approximation is the same as IIS.

Implementation Details

1. Starting Points

In order to trace the intersection curve SC, we need to provide a starting point on each
real component of the curve. Besides the boundary points which are straightforward roots of
univariate or coupled bivariate polynomial equations one computes a starting point on each
real component completely inside the given box. For IIS this can be done by projecting the
intersection curve (via resultant elimination) into a plane and then finding a coordinate axis
extreme point on the projection curve of that component. See [4] for details of such resultant
elimination schemes. For IPS, papers [10] [20] provide some numerical methods for computing
these starting points.

2. Curve Interpolations Points

When we march along the curve, we encounter precomputed points on the way. An encoun-
tered point may be a boundary point, a starting point on a closed loop or may be an end
point of the prior segment tracing. Suppose p0 ∈ IR3 is a point on the curve, r(s) (s ∈ [0, β])
is a segment of the curve, which approximates the original curve. Then a possible question
is whether r(s) passes through p0 within the allowable error? We answer this question by
computing the distance between p0 and r(s):

dis(p0, r) = min
s∈[0,β]

||r(s)− p0|| (50)

Since r(s) is a rational function in s, the minimum point of (50) can be computed by
d

ds
||r(s)−

p0||2 = 0. If s = s∗ ∈ [0, β] is the minimum point, then if ||r(s∗)−p0|| < ε, r(s) passes through
p0. Then we modify r(s) such that r(s) is frame continuous at s∗ and replaces β by s∗.
Otherwise, r(s) does not pass through p0.

3. Solving Linear System of Equations

In all the cases we always solve the linear system Ax = b with a positive definite coefficient
matrix A. The size of matrix A is as small as one, and as large as four. A stable method
to solve this equation is to use singular value decomposition A = UTΣU , where U is an
orthogonal matrix and Σ is a diagonal matrix. The solution is x = UTΣ−1Ub.

4. Tangent Direction

In Sections 4 and 5, we have mentioned that the sign of the tangent vector t at an expansion
point should be properly chosen. Now we will make this point clear.
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a. If the expansion point is a boundary point, then t points to the interior of the box.

b. If the point is a starting point on a loop, then the sign can be any.

c. If the point is an end point of a previous approximation r̃(s) =
k+1∑
i=0

r(i)(0)si /i! (s ∈ [0, β]),

then we choose the sign of t such that r̃′(β)T t ≥ 0.

2 Space Curves

2.1 Piecewise Parameterization of Surface-Surface Intersection Curves

Given a real intersection space curve SC which is either

(a). the intersection of implicit surfaces (IIS) defined by f1(x, y, z) = 0, f2(x, y, z) = 0, and
within a bounding box B = {(x, y, x) : x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1}

(b). the intersection of parametric surfaces(IPC) defined by

X1(u1, v1) = [G11(u1, v1) G21(u1, v1), G31(u, v1)]T

X2(u2, v2) = [G12(u2, v2) G22(u2, v2), G32(u2, v2)]T

and within a bounding box

B = {(u1, v1, u2, v2) : u10 ≤ u1 ≤ u11, v10 ≤ v1 ≤ v11

u20 ≤ u2 ≤ u21, v20 ≤ v2 ≤ v21}

and an error bound ε > 0, a continuity index k, construct a Ck (or Gk) continuous piecewise
parametric rational ε-approximation of all portions of SC within the given bounding box B.

The Outline of the Algorithm
The approximation process is a tracing procedure along the curve. It consists of the following

steps:

1. Form a starting point list (SPL) by computing the boundary points containing the intersection
points of the curve SC and the bounding box B. Further SPL is made to contain at least
one point for each inner loop component of SC i.e. a curve loop completely inside the given
box B. Tracing direction are also provided at each of these points in SPL. (See section 11 for
implementation details).

2. Test if SPL is empty. If yes, the tracing is finished. Otherwise, starting from a point p in
SPL, trace the curve along the given direction until either of the following tests in step 3 or
step 4 are true. The tracing step consists of the following sub-steps:

(a). Compute an arc length based power series expansion (see sections 4 and 5) up to k+ 1
terms at the given point p.

(b). Determine a step-length and a point q̂ on the above expansion curve in the tracing
direction within a step-length of p. and then starting from q̂ refine to a new point q on
the curve SC by Newton iterations (see section 6).

(c). Compute an arc length power series expansion up to k + 1 terms at the new point q.
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(d). Construct an approximating rational parametric curve segment by Ck Hermite inter-
polation (see section 7 ) of the two end points p and q and convert it into a rational
B-spline or standard NURBS with positive denominator polynomial (see section 8).

(e). Add the rational curve approximant into the piecewise approximation list and return
to step 2, to continue the tracing from the the newly constructed point q.

3. Test if a singular point is met. If yes, stop the present tracing and put the end point of the
tracing into SPL (we may delete a few approximation segments from the present approxima-
tion list, because the step length near a singular point is small). Then locate the singular
point(see section 9), obtain a finite set of power series expansion at the singular point corre-
sponding to the distinct curve branches (see section 10). Trace each branch one or two steps,
and then put the end points of the tracing into SPL. Then return to Step 2.

4. Test if another point in SPL is met(see §12). If yes, we have stitched together one continuous
segment of the curve. Delete the two end points of the traced segment from SPL and return
to Step 2.

2.2 Notation for Space Curves

We will express a space curve as a power series, locally at point and with its arc length as a
parameter. We refer to [12] for some intrinsic parameters of space curves.

Let r(s) = [x(s), y(s), z(s)]T be a space curve, where s is arc length of the curve measured from
some fixed point. The tangent vector t(s) = r′(s) has unit length; k(s) = ||r′′(s)|| is the curvature,
where || · || is the Euclidean norm in IR3. Further, n(s) = r′′(s)/k(s) is the principle normal;
b(s) = t(s)× n(s) is the binormal, where × denotes the cross product of two vectors. Finally, the
number T (s) defined by b′(s) = −T (s)n(s) is the torsion. The three orthogonal vectors t(s), n(s)
and b(s) form the so called Frenet frame. These vectors are related by the following Frenet formulas

t′ = kn, b′ = −Tn, n′ = −kt+ Tb

The derivatives of r(s) are therefore given by

r′(s) = t, r′′(s) = kn, r′′′(s) = k′n+ kTb− k2t (51)

Since t = r′(s), k = ||r′′(s)|| and T = r′(s) × r′′(s) · r′′′(s)/||r′′(s)||2 then the curve is obviously
tangent, or curvature or torsion continuous if r′(s), or r′(s) and r′′(s), or r′(s), r′′(s) and r′′′(s) is
continuous respectively. We construct a piecewise approximation of the given curve such that the
composite curve is tangent (t(s)), normal (n(s)) and binormal (b(s)) continuous.

Among the various local parameterizations of the space curve, taking arc length as parameter
has several advantages.

A. If r(s) is the parametrization of the given curve and s is arc length start from some point, the
r′(s), r′′(s), r′′′(s) is equivalent to t(s), n(s), b(s) in the sense that the continuity of r′(s),
r′′(s), r′′′(s) are equivalent to the continuity of t(s), n(s), b(s) where the triple t(s), n(s),
b(s) is the Frenet frame. Therefore, we need only to force the composite curve’s first three
derivatives to be continuous at the break points without considering the connection matrix
as in the case of geometric continuity.

B. Since the arc length of the curve is independent of any coordinate system, then the expansion
of power series may have larger convergence radius. This will, in turn, lead to less segments
of approximation.

C. In geometry point of view, the frame of Frenet continuous is the most natural and useful
requirement. It keeps the tangent, principle normal and binormal varying continuously, while
other geometric continuity can not achieve this conclusion.
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2.3 Local Expansion of the Intersection Curve of Implicit Surfaces

Let f1(p), f2(p) be two algebraic polynomials with p = [x, y, z]T ∈ IR3. The intersection of implicit
defined the surfaces(IIS) f1(p1) = 0, f2(p1) = 0 is defined by f1(p) = f2(p) = 0. We assume the
defining surfaces are smooth, i.e., the normals of the surfaces are not equal to zero at any point
on the surface. Now let F (p) = [f1(p), f2(p)]T , p0 ∈ IR3 be a point on the intersection curve r(s),
where s is the arc length measured from p0 = r(0) with prescribed direction. Then, r′(0), r′′(0) and
r′′′(0) are computed as follows:

F (r)(s) = F (r)(0) + s
dF (r)(0)

ds
+
s2

2!
d2F (r)(0)

ds2
+ . . . (52)

where
dkF (r)(0)

dsk
= Vk(0) +∇F (p0)r(k)(0) (53)

V1(s) = 0

Vk(s) = V ′k−1(s) + [∇F (r)]′r(k−1)(s), k = 1, 2, . . .

∇F (p) =
[
∂F (p)
∂x , ∂F (p)

∂y , ∂F (p)
∂z

]
∈ IR2×3

(54)

It follows from F (r(s)) ≡ 0 that

∇F (p0)r(k)(0) = −Vk(0) (55)

The system of equation (55) has three unknowns and two equations. It has in general infinite many
solutions. Now we assume ∇f1(p0) and ∇f2(p0) are linearly independent and illustrate how to get
r(k)(0) such that the equations in the last section are satisfied.

Let t be a vector such that

t ∈ ∇F (p0)⊥, ||t|| = 1 (56)

and its sign is so chosen that t gives the correct direction along the same line we are going. Then
for any vector x ∈ IR3 there exist unique α ∈ IR and y ∈ range(∇F (p0)T ), such that x = αt + y.
Let

r(k)(0) = αmt+∇F (p0)Tβm (57)

Then by (55), we have βm is uniquely defined by

∇F (p0)∇F (p0)Tβm = −Vk(0) (58)

and αm is arbitrary. Now we determine αm (m = 1, . . . , 4), such that r(m)(0) (m = 1, . . . , 4) satisfy
(51).

A. m = 1. Since V1(0) = 0, then β1 = 0. Hence r′(0) = α1t. According to the definition of t, we
choose α1 = 1.

B. m = 2. Since we want the r′′(0) orthogonal to r′(0) = t, i.e., r′′(0) ∈ range(∇F (p0)T ), the
only choice is α2 = 0. We then have k = ||r′′(0)||.

C. m = 3. It follows from (51) that k′n + kTb ∈ range(∇F (p0)T ). Then α3 = −k2, and further
k′ = r′′(0)T r′′′(0)/k

D. m = 4. From (51)

r(4)(s) = (k′′ − kT 2 − k3)n+ [k′T + (kT )′]b− 3kk′t.

Then α4 = −3kk′.

Finally we obtain the approximate expansion r(s) ≈
∑4

i=0(r(i)(0)/i!)si
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2.4 Local Expansion of the Intersection Curve of Parametric Surfaces

Let
X1(u1, v1) = [G11(u1, v1) G21(u1, v1), G31(u, v1)]T

X2(u2, v2) = [G12(u2, v2) G22(u2, v2), G32(u2, v2)]T

be two parametric surface, where Gij are given smooth functions. The intersection curve of the
parametric surface (IPS) is defined by

r(s) = X1(u1(s), v1(s)) (or X2(u2(s), v2(s)))

with X1(u1(s), v1(s)) = X2(u2(s), v2(s)) where the parameter s is the arc length measured from
some point on the curve.

Let Q1 = (u1, v1)T , Q2 = (u2, v2)T , and Q∗1, Q
∗
2 be the points in IR2 such that X1(Q∗1) = X2(Q∗2).

At point X1(Q∗1), we want to expand r(s) into power series r(s) = r(0) + r′(0)s+ r′′(0)
2 s2 + . . . On

the curve r(s), Q1 and Q2 are functions of s, we can express them as

Qj(s) =
∞∑
i=0

Q
(i)
j (0)
i!

si, j = 1, 2 (59)

As the case of IIS, we expand Xj(Qj(s))

Xj(Qj(s)) = Xj(Qj)(0) +
dXj(Qj)(0)

ds
s+

d2Xj(Qj)(0)
ds2

s2

2
+ . . .

for j = 1, 2,

dkXj(Qj)(0)
dsk

= Vkj(0) +∇Xj(Q∗j )Q
(k)
j (0), j = 1, 2 (60)

where
V1j(s) = 0, j = 1, 2

Vkj(s) = d
dsVk−1,j(s) + d

ds [∇Xj(Qj)]Q
(k−1)
j (s).

By X1(Q1(s)) ≡ X2(Q2(s)), we have

∇X1Q
(m)
1 −∇X2Q

(m)
2 (0) = Vm1(0)− Vm2(0).

Let

ni = Xiui ×Xivi , Xiui =
[
∂G1i

∂ui
,
∂G2i

∂ui
,
∂G3i

∂ui

]
Then n1, n2 are the normals of the two surfaces. Suppose n1 and n2 are linearly independent. Let
t ∈ IR3 such that t ∈ [n1n2]⊥, ||t|| = 1, and its sign is properly chosen such that it points to the
correct direction. Then we have the expression

∇X1Q
(m)
1 (0) + Vm1(0) = ∇X2Q

(m)
2 (0) + Vm2(0)

= αmt+ [n1, n2]βm
(61)

Since nT1∇X1 = 0, nT2∇X2 = 0, we have from (61)

[n1, n2]T [n1, n2]βm =
[

nT1 Vm1

nT2 Vm2

]
. (62)

Therefore βm is uniquely determined by the nonsingularity of the matrix [n1, n2]T [n1, n2], and αm
is arbitrary. From (61), we determine αm, such that r(m)(0) = αmt+ [n1, n2]βm. This can be done
exactly the same as the case of IIS by regarding [n1, n2] as ∇F (p0)T .
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After r(m)(0) are received, we can compute Q(m)
j (0), j = 1, 2. From (61),

∇XT
j ∇XjQ

(m)
j (0) = ∇XT

j (r(m)(0)− Vmj(0)), j = 1, 2. (63)

Solving these equations, we get Q(m)
j (0).

The purpose of computing Q(m)
j (0) is to compute the approximate value of Qj(s) by (59). This

approximate value serves as the initial value for the Newton method to get accurate value Qj on
the curve.

3 Surfaces

3.1 Blending by Hermite Interpolation / Approximation

3.1.1 Hermite Interpolation using Real Algebraic Surfaces

The Problem: Construct a real algebraic surface S, which smoothly interpolates a collection of k
points pi in R3 with associated fixed “normal” unit vectors mi, and l given space curves Cj in
R3 also with associated “normal” unit vectors nj , varying along the entire span of the curves,
(i = 1 . . . k, j = 1 . . . l). Both points and space curves have an infinity of potential “normal” vector
directions. While for points the mi may be chosen arbitrarily, for space curves Cj , the varying
unit vectors nj are chosen to be always orthogonal to the tangent vector tj , that is, tj · nj = 0,
along the entire curve. Our emphasis being algebraic space curves, the variance of the curves
“normals” are restricted to univariate polynomials of some degree. Also, we assume that any of
the vectors mi and nj are never identically zero, a phenomenon that occurs at point and curve
singularities. By smoothly interpolates we shall mean that S contains each of the points and curves
and furthermore has its gradient in the same direction as the “normal” vectors mi and nj . This is
a natural generalization of Hermite interpolation, applied to fitting curves through point data, and
equating derivatives at those points. As we shall see later, the choice of the associated “normal”
direction, in each case is dictated by the use of the Hermite interpolated surface, (eg, in “blending”
or “joining” or “fleshing”).
Related Work: Sarraga in [26] presents techniques for constructing a C1-continuous surface of
rectangular Bézier (parametric) surface patches, interpolating a net of cubic Bézier curves. Other
approaches to parametric surface fitting and transfinite interpolation are also mentioned in that
paper, as well as in [34]. An excellent exposition of exact and least squares fitting of algebraic
surfaces through given data points, is presented in [24]. Meshing of given algebraic surface patches
using control techniques of joining Bézier polyhedrons is shown in [27]. Surface blending consisting
of “rounding” and “filleting” surfaces (smoothing the intersection of two primary surfaces), a special
case of Hermite interpolation, has been considered for polyhedral models in [13] and for algebraic
surfaces in [17, 16, 19, 22, 25, 31, 32, 34].

Results: We show in Sections 3, 4 and 5 that the problem of generalized Hermite interpolation of
points and curves with algebraic surfaces, reduces to solving systems of linear equations, albeit at
times with symbolic coefficients. In particular for an algebraic surface of degree n, to smoothly
contain k points and l space curves of degree d with assigned “normal” directions, varying as a
polynomial of degree m, the number of linear equations to be satisfied is 3k+ (2n+m− 1)dl+ 2l.
This number reduces to 3k + (2n − 1)dl + ml + 2l when all the space curves and “normals” are
represented parametrically. Since the number of independent coefficients (unknowns) of a general
algebraic surface of degree n is

(
n+3

3

)
− 1, the number of linear equations stated above, yields both

necessary and sufficiency conditions on Hermite interpolated algebraic surfaces, for a variety of
point and curve data configurations. As applications of this simple vector space characterization
of Hermite interpolated algebraic surfaces, we show, in section 5., for example, that:
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• Two space lines with constant-direction normals can be Hermite interpolated with a real
quadric if and only if the lines are parallel or intersect at a point, and the normals are not
orthogonal to the plane containing them. The real quadric is a “cylinder” when the lines are
parallel and a “cone” when the lines intersect.

• Two skewed lines with constant-direction normals cannot be Hermite interpolated with real
quadrics. The only real quadratic surface which satisfies both containment and tangency
conditions reduces into two planes.

• The minimum degree of a real algebraic surface, which Hermite interpolates two lines in space,
one with a constant direction normal, the other with a linearly varying normal is three.

• Two lines with linearly varying normals can be Hermite interplated by a quadric in only some
special cases. In general, a surface of at least degree three is needed. When real quadric
surface interpolation is possible, the real quadric is either a hyperboloid of one sheet (the two
lines may be parallel, intersecting, or skewed) or a hyperbolic paraboloid (the two lines can
only be intersecting or skewed).

Lines in space with constant-direction normals, occur naturally as edges of polyhedra, with the
Hermite interpolating surfaces being used to “smooth” planar faces containing those edges. Lines
with linearly-varying normals occur on real quadric and cubic surfaces. Similar results to the ones
above, are also derived in sections5. and 6., for Hermite interpolation of conics and cubics in space.
Since these rational curves lie on quadrics, cubic surfaces and higher degree algebraic surfaces, our
method gives a powerful way of automatically, generating low degree “blending” and “joining” and
“fleshing” surfaces with tangent continuity at intersections.

Preliminaries For any multivariate polynomial f , partial derivatives are written by subscripting,
for example, fx = ∂f/∂x, fxy = ∂2f/(∂x∂y), and so on. Since we consider algebraic curves and
surfaces, we have fxy = fyx etc. Vectors and vector functions are denoted by bold letters. The
inner product of vectors a and b is denoted a · b. The length of the vector a is ‖a‖ =

√
a · a.

The gradient of f(x, y, z) is the vector ∇f = (fx, fy, fz). A point p = (x0, y0, z0) is a simple
point of f if the gradient of f at p is not null; otherwise the point is singular. An algebraic surface
is non-singular or smooth if all its points are simple.

Definition 3.1. Let p = (a, b, c) be a point with an associated “normal” m = (mx,my,mz) in R3.
An algebraic surface S : f(x, y, z) = 0 is said to smoothly contain p if
(1) f(p) = f(a, b, c) = 0, (containment condition)
and
(2) ∇f(p) is not zero and ∇f(p) = αm, for some nonzero α. (tangency condition)

Definition 3.2. Let C be an algebraic space curve with an associated varying “normal” n(x, y, z) =
(nx(x, y, z), ny(x, y, z), nz(x, y, z)), defined for all points on C. An algebraic surface S : f(x, y, z) =
0 is said to smoothly contain C if
(1) f(p) = 0 for all points p of C. (containment condition)
and
(2) ∇f(p) is not identically zero and ∇f(p) = αn(p), for some nonzero α and for all points p of
C. (tangency condition)

Definition 3.3. An algebraic surface S : f(x, y, z) = 0 is said to Hermite interpolate a given
collection of data points with associated “normals”, and data curves with associated “normals”, if
S smoothly contains all the data points and curves.

The following is one form of Bezout’s theorem (the oldest theorem of algebraic geometry).
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Theorem 3.4. An algebraic curve C of degree d intersects an algebraic surface S of degree n in
at most nd points, or else it must intersect it infinitely often, that is, a component of C must lie
entirely on S.

Interpolation of Points

Containment There exist applications in object reconstruction in geometric design, when there
is need to construct a surface which interpolates a given set of data points. From the containment
condition of definition 3.1 it directly follows that any algebraic surface S : f(x, y, z) = 0, whose
coefficients satisfy the linear equation f(p) = 0 will contain the point p. For a set of k data
points this yields k linear equations. For an algebraic surface of degree n, having K =

(
n+3

3

)
− 1

independent coefficients, various types of exact fits can be obtained by choosing the smallest n such
that K ≥ r, where r, (≤ k) is the rank of the system of k linear equations. Details of methods for
constructing such real algebraic surfaces can be found in [24].

Containment with Tangency Quite often one also needs a low degree algebraic surface which
not only contains a set of data points but is also tangent to a prespecified plane at each of those
points. A point p = (a, b, c) with a “normal” m = (mx,my,mz) determines a unique plane
P : mxx+myy+mzz−(mxa+myb+mcc) = 0, at the point p. An algebraic surface S : f(x, y, z) = 0
of degree n that Hermite interpolates a point p, can be computed as follows:

1. (containment condition) For point p set up the linear equation f(p) = 0 in the unknown
coefficients of S.

2. (tangency condition) One of the following cases is selected.

(a) If mx 6= 0, use the equations mxfy(p)−myfx(p) = 0 and mxfz(p)−mzfx(p) = 0.

(b) If my 6= 0, use the equations myfx(p)−mxfy(p) = 0 and myfz(p)−mzfy(p) = 0.

(c) If mz 6= 0, use the equations mzfx(p)−mxfz(p) = 0 and myfz(p)−mzfy(p) = 0.

3. We also ensure that the coefficients of f(x, y, z) = 0 satisfying the above three linear equations,
additionally satisfy the linear constraints ∇f(p) 6= 0, since non-tangency at p may occur if
S turns out to be singular at p.

The proof of correctness of the above algorithm follows from the following lemma.

Lemma 3.5. The equations of the above algorithm satisfy defintion 2.1 of point containment and
tangency.

Proof : The first linear equation f(p) = 0 satisfies containment by definition. We now show
that the remaining equations satisfy ∇f(p) = α ·m for a nonzero α. Since m is never taken to be
the (0, 0, 0) vector, without loss of generality we may assume that mx 6= 0 in step 2. above. Other
cases of my 6= 0 or mz 6= 0 can be handled symmetrically. Now let α = fx

mx
, assuming mx 6= 0. Then

fx = α ·mx and susbtituting it in the selected linear equation mxfy −myfx = 0 yields fy = α ·my

and substituing it again in the other selected linear equation mxfz −mzfx = 0 yields fz = α ·mz.
Hence ∇f(p) = α ·m. Finally, note that fx = 0 for mx 6= 0, in the selected linear equations of step
2 (a)., would cause ∇f(p) = 0, which we ensured would not happen in step 3 of the algorithm.
Hence fx 6= 0 and so α 6= 0 and the lemma is proved.
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Interpolation of Curves The varying “normal” associated with a space curve C can be defined
implicitly by the triple n(x, y, z) = (nx(x, y, z), ny(x, y, z), nz(x, y, z)) where nx, ny and nz are
polynomials of maximum degree m and defined only for all points p = (x, y, z) along the curve
C. For the special case of a rational curve, as defined earlier, and which we shall treat separately
in sections 4.1.2 and 4.2.2, the varying “normals” can also be defined parametrically as n(s) =
(nx(s), ny(s), nz(s)), with nx, ny and nz now rational functions in s.

Containment

Algebraic Curves: Implicit Definition Let C : (f1(x, y, z) = 0, f2(x, y, z) = 0) implicitly
define an irreducible algebraic space curve of degree d. The irreducibility of the curve is not
really a restriction, since reducible curves can be handled similarly by treating each irreducible
component in turn. The situation is slightly more complicated if in the real setting, we may wish
to achieve separate containment of each real component of an irreducible curve. We defer a solution
to this problem, and for the time being consider it reduced to the problem of choosing appropriate
clipping surfaces to isolate that real component, after the interpolated surface is computed. Note
for parametrically defined curves, this problem does not arise.

An interpolating surface S : f(x, y, z) = 0 of degree n for containment of C, is then computed
as follows:

1. Choose a set Lc of nd+ 1 points on C, Lc = {pi = (xi, yi, zi)|i = 1, · · · , nd+ 1}2. The set Lc
may be computed, for example, by tracing the intersection of f1 = f2 = 0, see for e.g., [6].

2. Next, set up nd+1 homogenous linear equations f(pi) = 0, for piεLc. Any nontrivial solution
of this linear system will represent an algebraic surface which interpolates the entire curve C.

The proof of correctness of the above algorithm is captured in the following Lemma.

Lemma 3.6. To satisfy the containment condition of an algebraic curve C of degree d by an
algebraic surface S of degree n, it suffices to satisfy the containment condition of nd+ 1 points of
C by S.

Proof: This is essentially a restatement of Bezout’s theorem of section 2. By making S contain
nd + 1 points of C, ensures that S must intersect C infinitely often and since C is irreducible, S
must contain the entire curve.

Remember S : f(x, y, z) = 0 of degree n has K =
(
n+3

3

)
− 1 independent coefficient unknowns.

Let r be the rank of the system of nd+ 1 linear equations. There are non-trivial solutions to this
homogeneous system if and only if K > r and a unique non-trivial solution when K = r. Hence,
again an interpolating surface can be obtained by choosing the smallest n such that K ≥ r.

Rational Curves : Parametric Definition When a curve is given in rational parametric
form, its equations can be used directly to produce a linear system for interpolation, instead of first
computing nd+1 points on the curve. Let C : (x = G1(t), y = G2(t), z = G3(t)) be a rational curve
of degree d. An interpolating surface S : f(x, y, z) = 0 of degree n which contains C is computed
as follows:

1. Substitute (x = G1(t), y = G2(t), z = G3(t)) into the equation f(x, y, z) = 0.

2. Simplify and rationalize to obtain Q(t) = 0, where Q is a polynomial in t, of degree at most
nd, and with coefficients which are linear expressions in the coefficients of f . For Q to be
identically zero, each of its coefficents must be zero, and hence we obtain a system of at most
nd+1 linear equations, where the unknowns are the coefficients of f . Any non-trivial solution
of this linear system will represent a surface S which interpolates C.

2Thus, alternatively, an algebraic curve may be given as a list of points.
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The proof of correctness of the algorithm follows from the lemma below.

Lemma 3.7. The containment condition is satisfied by step 2. of the above algorithm

Proof: We omit this here and refer the reader to the full paper.

Containment with Tangency In order to Hermite interpolate an algebraic curve C with asso-
ciated “normals” n by an algebraic surface S, we need to again solve a homogenous linear system,
whose equations stem from both the containment condition and the tangency conditions of defini-
tion 3.2.

Algebraic Curves with Normals: Implicit Definition As before, let C : (f1(x, y, z) =
0, f2(x, y, z) = 0) implicitly define an irreducible algebraic space curve of degree d, together with
associated “normals” defined implicitly by the triple n(x, y, z) = (nx(x, y, z), ny(x, y, z), nz(x, y, z))
where nx, ny and nz are polynomials of maximum degree m and defined for all points p = (x, y, z)
along the curve C. A Hermite interpolating surface S : f(x, y, z) = 0 of degree n which smoothly
contains C is then computed as follows:

1. Choose a set Lc of (n+m− 1)d+ 1 points on C, Lc = {pi = (xi, yi, zi)|i = 1, · · · , (n+m−
1)d+ 1}. The set Lc may be computed, as before, by tracing the intersection of f1 = f2 = 0,
see for e.g., [6].

2. Construct the list Lt of (n+m−1)d+1 point-normal pairs on C, Lt = {[(xi, yi, zi), (nxi, nyi, nzi)]|i =
1, · · · , (n+m− 1)d+ 1}3, where (nxi, nyi, nzi) = n(pi) for piεLc.

3. (containment condition) Next, set up nd+ 1 homogenous linear equations f(pi) = 0, for
piεLc and i = 1, · · · , nd+ 1.

4. (tangency condition)

(a) Compute t(x, y, z) = ∇f1(x, y, z)×∇f2(x, y, z). Note t = (tx, ty, tz) is the tangent vector
to C.

(b) One of the following cases is selected.

i. If tx 6= 0, use the equation fy · nz − ny · fz = 0.
ii. If ty 6= 0, use the equation fx · nz − nx · fz = 0.

iii. If tz 6= 0, use the equation fx · ny − nx · fy = 0.

Substitute each point-normal pair in Lt into the above selected equation to yield addi-
tionally (n+m− 1)d+ 1 linear equations in the coefficients of the f(x, y, z).

5. In total we obtain a homogeneous system of (2n+m−1)d+2 linear equations. Any non-trivial
solution of the linear system, for which additionally ∇f is not identically zero for all points
of C, (that is, the surface S is nonsingular at all points along the curve C), will represent a
surface which Hermite interpolates C.

The proof of correctness of the above algorithm follows from Lemma 3.6 and the following
lemma, which shows why the selected equation of step 4.(b) evaluated at (n+m− 1)d+ 1 point-
normal pairs, are sufficient.

Lemma 3.8. To satisfy the tangency condition of an algebraic curve C of degree d with “normal”
n of degree m, by an algebraic surface S of degree n, it suffices to satisfy the tangency condition at
(n+m− 1)d+ 1 points of C by S as in step 4. of the above algorithm.

3Thus, alternatively, an algebraic curve C and its associated “normals” n may (either or both) be given as a list
of points or point-normal pairs.
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Proof : In step 4.(b) above, assume without loss of generality that tx 6= 0. Then the selected
equation

fy · nz − ny · fz = 0 (64)

We first show that even though equation (64) is evaluated at only (n + m − 1)d + 1 points of C
in step 4.(b) above, it holds for all points on C. Equation 64 defines an algebraic surface T of
degree (n + m− 1) which intersects C of degree d at (n + m− 1)d real points. Invoking Bezout’s
theorem, and from the irreducibility of C, it follows that C must lie entirely on the surface T .
Hence equation (64) is valid along the entire curve C.

We now show that step 4. of the above algorithm, satisfies the tangency condition as specified in
definition 3.2. Since t of step 4.(a) is a tangent vector at all points of C, and the surface S : f = 0
contains C, the gradient vector ∇f is orthogonal to t, which yields the equation :

fx · tx + fy · ty + fz · tz = 0 (65)

valid for all points of C. Next, from the definition of a “normal” of a space curve,

nx · tx + ny · ty + nz · tz = 0 (66)

valid for all points of C. Now it is impossible that both ny(x, y, z) and nz(x, y, z) are identically
zero along C, since if they were then equation (66) would imply that nx · tx = 0, and as we had
assumed that tx 6= 0, would in turn imply that also nx = 0 along C, which would contradict the
earlier assumption that n is not identically zero. Hence, at least, one of ny and nz must also be
nonzero. Without loss of generality, let ny 6= 0. Also, let α(x, y, z) = fy

ny
. Then,

fy = α · ny (67)

and substituting into equation (64) yields

fz = α · nz (68)

for all points on C. From equations (65), (67) and (68) we obtain,

fx · tx + α · ny · ty + α · nz · tz = 0 (69)

By multiplying α to equation (66) and subtracting equation (69) from it, we obtain

fx · tx = α · nx · tx (70)

and since tx 6= 0, finally obtain
fx = α · nx (71)

valid at all points of C. Hence equations (67), (68), and (71) together imply that ∇f(x, y, z) = α ·n
for all points C and some nonzero α4. Hence, the tangency condition of definition 3.2 is met.

Rational Curves with Normals : Parametric Definition When both a space curve and its
associated “normal” are given in rational parametric form, their equations can be used directly
to produce a linear system for interpolation, instead of first computing (n + m − 1)d + 1 points
on the curve. Let C : (x = G1(s), y = G2(s), z = G3(s)) be a rational curve of degree d with
associated “normals” n(s) = (nx(s), ny(s), nz(s)) of degree m. A Hermite interpolating surface
S : f(x, y, z) = 0 of degree n which smoothly contains C is computed as follows:

4From equation (69) we see that α(x, y, z) must not be identically zero along C, for otherwise, ∇f = (0, 0, 0) for
points along C and would contradict the fact that we chose a non-trivial solution for the surface S : f = 0 which was
nonsingular at all points along C.
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1. (containment condition) Substitute (x = G1(s), y = G2(s), z = G3(s)) into the equation
f(x, y, z) = 0. This results in nd+ 1 homogenous linear equations as in section 4.1.2.

2. (tangency condition)

(a) Compute ∇f(s) = ∇f(G1(s), G2(s), G3(s)) and t(s) = ( dxds ,
dy
ds ,

dz
ds ). Note t = (tx, ty, tz)

is the tangent vector to C.

(b) i. If tx 6= 0, use the equation fy(s) · nz(s)− ny(s) · fz(s) = 0.
ii. If ty 6= 0, use the equation fx(s) · nz(s)− nx(s) · fz(s) = 0.

iii. If tz 6= 0, use the equation fx(s) · ny(s)− nx(s) · fy(s) = 0.
In each case, the numerator of the simplified rational function equation is set to zero.
This yields ,additionally (n−1)d+m+1 linear equations in the coefficients of the surface
S : f(x, y, z) = 0.

3. In total we obtain a homogeneous system of (2n−1)d+m+2 linear equations. Any non-trivial
solution of the linear system, for which additionally ∇f is not identically zero for all points
of C, (that is, the surface S is not singular along the curve C), will represent a surface which
Hermite interpolates C.

The proof of correctness of the above algorithm follows from Lemma 3.7 and the following
lemma, which shows why the selected equation of step 2. satisfies the tangency condition.

Lemma 3.9. If we choose a nontrivial solution for which the resulting Hermite interpolating surface
S is nonsingular along the given curve C, then the step 2. guarantees that the tangency condition
of definition 3.2 is met.

Proof : The proof is similar to the proof of lemma 3.5 with minor modifications. We omit this
here and refer the reader to the full paper.

Applications: Mixed Points and Space Curve Data The basic mechanics of Hermite inter-
polation using algebraic surfaces, as presented in the algorithms of sections 3. and 4., are

1. properties of a surface to be designed are described in terms of a combination of points,
curves, and possibly associated “normal” directions,

2. these properties are translated into a homogeneous linear system of equations with extra
surface constraints, and then

3. nontrivial solutions of the above system are computed using the smallest surface degree

In particular the total number of linear equations generated for a possible algebraic surface of
degree n to smoothly contain k points with fixed constant “normal” directions and also to smoothly
contain l space curves of degree d with assigned “normal” directions, varying as a polynomial of
degree m, is 3k + (2n+m− 1)dl + 2l. This number reduces to 3k + (2n− 1)dl +ml + 2l when all
the space curves and associated “normals” are defined parameterically.

For a given configuration of points, curves and “normals” data the above interpolation scheme,
allows one to both upper and lower bound the degree of Hermite interpolated surfaces.

1. Lower Bound Let k be the rank of a homogenous system of linear equations, derived for the
given geometric configuration. The rank tells us the exact number of independent constraints
on the coefficients of our desired algebraic surface. Dependencies arise from spatial inter-
relationships of the given points and curves. From the rank then we can conclude that there
exists no algebraic surface of degree less than or equal to n0 where n0 is the largest n such
that K < k with K =

(
n+3

3

)
− 1.
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2. Upper Bound Alternatively, the smallest n can be chosen such that K ≥ k, where again
K is the number of independent coefficient unknowns and k is the rank of the above linear
system. The non-trivial real solutions of the linear system represents a K − k parameter
family of algebraic surfaces of degree n which interpolates the given geometric data. We then
select suitable real surfaces from this family, which additionally satisfy our nonsingularity and
irreducibility constraints5

We now enumerate some results which lower bound the degree of feasible Hermite interpolated
surfaces.

1. Two skewed lines in space with constant-direction normals cannot be Hermite interpolated
with real quadrics. The only real quadric which satisfies both containment and tangency
conditions reduces into two planes.

2. Two lines in space with constant-direction normals can be Hermite interpolated with a real
quadric if and only if the lines are parallel or intersect at a point, and the normals are not
orthogonal to the plane containing them. The real quadric is a “cylinder” when the lines are
parallel and a “cone” when the lines intersect.

3. The minimum degree of a real algebraic surface, which Hermite interpolates two lines in space,
one with a constant direction normal, the other with a linearly varying normal is three.

4. Two lines with linearly varying normals can be Hermite interpolated by a quadric in only
some special cases. In general, a surface of at least degree three is needed. When real quadric
surface interpolation is possible, the real quadric is either a hyperboloid of one sheet (the two
lines may be parallel, intersecting, or skewed) or a hyperbolic paraboloid (the two lines can
only be intersecting or skewed).

We exhibit the method of generating tight upper bounds on the degree, by constructing the
lowest degree Hermite interpolated surfaces for “blending” and “joining” primary surfaces of solid
models as well as for “fleshing” curved wireframe models of physical objects.

Example 3.10. A Hyperboloid Patch for Smoothing the Intersection of Two Cylindrical Surfaces

The case of two circular cylinders is a common test case for “blending” algorithms. Various
different ways have been given, (for e.g. see [17, 25, 32]) for computing a suitable surface which
“smoothes” or “blends” the intersection of two equal radius cylinders, S1 : x2 + y2 − 1 = 0 and
S2 : x2 + z2 − 1 = 0. We consider an ellipse C1 on S1 (it is the intersection with the plane
3x + y = 0), defined parameterically, C1 : ( 2t

1+t2
, −6t

1+t2
, 1−t2

1+t2
) with associated rational “normal”

n1(t) = ( 4t
1+t2

, 0, 2−2t2

1+t2
), and the ellipse C2 on S2 defined implicitly, C2 : ((y2+z2−1 = 0, x+3y = 0)

with associated “normal” n2(x, y, z) = (0, 2y, 2z). Both C1 and C2’s “normals” are respectively
chosen in the same direction as the gradients of thier corresponding containing surfaces S1 and
S2. This ensures that any Hermite interpolating surface for C1 and C2 will also meet S1 and S2

smoothly along these curves. As a possible Hermite interpolant we consider a degree two algebraic
surface S : f(x, y, z) = ax2+by2+cz2+dxy+eyz+fzx+gx+hy+iz+j = 0. Applying the method
of section 4.2.2, to S and C1 results in 8 equations, 5 from the containment condition and 3 from
the tangency condition. ( Note: 5 equations are supposed to be generated, but 2 of these turn out
to be degenerate). For C2, we use the method of section 4.2.1, and first compute Lc = {(0, 0, 1),
(-3, 1, 0), (3, -1, 0), (-2.4, 0.8, -0.6), (2.4,, -0.8, -0.6)} and Lt = {[(0, 0, 1), (0, 0, 2)], [(-3, 1, 0), (0, 2,

5However some of these interpolating surfaces might still not be suitable for the design application they were
intended to benefit. These problems arise when the given points or curves are smoothly interpolated, however lie on
separate real components of the same nonsingular, irreducible algebraic surface. We consider this problem again in
section 7.
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0)], [(3, -1, 0), (0, -2, 0)], [(-2.4,0.8,-0.6), (0,1.6,-1.2)], [(2.4,-0.8,-0.6), (0,-1.6,-1.2)]}. For these lists,
we get 10 equations, 5 from the containment condition and another 5 from the tangency condition.
Hence, overall the linear system consists of 9 independent unknowns and 18 equations. The rank of
this system is 9, and hence we get the unique surface soution f(x, y, z) = x2+y2−8z2+6xy+8 = 0.
This real quadric satisfies both the nonsingularity and irreducibility constraints. It is a hyperboloid
of one sheet and the lowest degree surface which “blends” the intersection of the two cylinders. See
Figure 1. at the end of the paper.

Example 3.11. A Cubic Interpolation Surface for Smoothly Joining Two Cylindrical Surfaces

Another example for an interpolated surfaces arises when we consider computing the lowest
degree surface which can smoothly join two truncated circular cylinders S1 : x2 + z2 − 1 = 0 for
y ≥ 2 and S2 : y2+z2−1 = 0 for x ≥ 2. Traditionally, this join has been achieved by using a quarter
section of a torus (a degree four algebraic surface). This example was considered in [32] where a
similar solution was obtained by finding low degree surface members in appropriate product ideals
of the section curves. Here, we illustrate the Hermite interpolation technique which also proves
that degree three, is the lowest degree algebraic surface to satisfy the smooth-join requirement for
this configuration. As before, we take a circle C1 : ( 2t

1+t2
, 2, 1−t2

1+t2
) on S1 with the associated rational

“normal” n1(t) : ( 4t
1+t2

, 0, 2−2t2

1+t2
) and the circle C2 : (2, 2t

1+t2
, 1−t2

1+t2
) on S2 with the associated rational

“normal” n1(t) : (0, 4t
1+t2

, 2−2t2

1+t2
). Again, both C1 and C2’s “normals” are respectively chosen in the

same direction as the gradients of their corresponding containing surfaces S1 and S2. This ensures
that any Hermite interpolating surface for C1 and C2 will also meet S1 and S2 smoothly along
these curves. A degree two algebraic surface does not suffice for Hermite interpolation, since the
rank of the resulting linear system is greater than 9, the number of independent unknowns. Next
as a possible Hermite interpolant consider a degree three algebraic surface with 19 independent
unknown coefficients. Applying the Hermite interpolation method of section 4.2.2, to the curves
results in 24 equations (28 equations are supposed to be generated, but 4 of the 28 are degenerate.).
The rank of this linear system is 19, and thus there is a unique cubic Hermite interpolating surface,
which is f(x, y, z) = x3 + y3 + x2y + xy2 + xz2 + yz2 − 4x2 − 4y2 − 4z2 − 4xy + 3x + 3y + 4. See
Figure 2. at the end of the paper.

Example 3.12. A Family of Cubic Surfaces which Flesh a Saddle Wireframe

Consider a wireframe of a solid model consisting of a circle, a parabola , and two lines. Using
Hermite interpolation, we find a 2 parameter family of cubic surfaces which “fleshes” this wire
frame. Again we can show that no degree two algebraic surface can contain all these curves
simultaneously. Consider the circle C1 : ( 2t

1+t2
, 1−t2

1+t2
,−1), the parabola C2 : (t,−2t2 + 2, 1), the line

C3 : (1, 0, t), and the line C4 : (−1, 0, t). As a possible Hermite interpolant consider a degree three
algebraic surface with 19 independent unknown coefficients. Applying the Hermite interpolation
method of section 4.1.2, we obtain a homogeneous linear system of 22 equations. The rank of
this system is 17, so there is a 2 parameter family of cubic Hermite interpolating surfaces which
is f(x, y, z) = −bx2z + a−b

2 y2z − a+b+4c
4 yz2 − ax2 − a−b

2 y2 − a+b
4 yz + cy + bz + a. A suitable real

solution surface from this family is obtained for a = 3, b = 2, and c = 1, yielding f(x, y, z) =
12 + 4y − 2y2 − 9yz2 − 8x2z + 2y2z − 12x2 − 5yz + 8z = 0. See Figure 3. at the end of the paper.

Extensions and Related Techniques: Meshing Quadric Surface Patches Solving a linear
system of equations plays a key role in Hermite interpolation. In what follows, we give another
approach of algebraic surface design where a nonlinear system of equations needs to be solved.

In Hermite interpolation, the linear equations generated represent the constraints to be met by
a single interpolating surface. The larger the number of independent containment and tangency
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constraints, the higher the degree of the resulting interpolating surface. The total number of
constraints depends largely on the degrees of the given curves and their “normals”.

Since the number of terms in an algebraic surface increases as the cube of its degree, computation
with high degree algebraic surfaces gets expensive and error prone. Hence, for good reasons we are
advised to keep the degrees of our “blending”, “joining” and “fleshing” surfaces as low as possible.
The problem considered in this section is to Hermite interpolate, conic curves in space with (not
necessarily one), but a combination of quadric surface patches which themselves meet smoothly
along thier intersection curves. Such “smooth” meshing has been largely addressed by [26, 27]
amongst others, using the Bézier representations of surfaces.

We first state a useful theorem from algebraic geometry, observed and used independently by
numerous authors in various alternate forms

Lemma 3.13. Let S : f(x, y, z) = 0 be an irreducible quadric surface, and Q : q(x, y, z) = 0 be a
plane which intersects S in a conic C. Then, another quadric surface S1 : f1(x, y, z) is tangent to S
along C if and only if there exists nonzero constants α, β (possibly complex) such that f1 = αf+βq2.

Proof: The proof may be found for example, in [24, 31].
Since we are interested in interpolation with real surfaces, we may restrict α and β to be real

numbers.
A related theorem can be derived for the quadric surface interpolation of two conics in space.

Lemma 3.14. Consider quadrics S1 : f1 = 0, S2 : f2 = 0 and planes Q1 : q1 = 0, Q2 : q2 = 0.
Let C1 : (f1 = 0, q1 = 0) and C2 : (f2 = 0, q2 = 0) be two conics in space. Then C1 and C2 can be
Hermite interpolated by a quadric surface S if and only if there exist nonzero constants α1, α2, β1,
and β2 (possibly complex) such that α1f1 + β1q

2
1 − α2f2 − β2q

2
2 = 0.

Proof: Trivial. (Just apply Lemma 3.13 twice.)
This theorem is constructive, in that, it again yields a system of equations and a direct way of

computing a Hermite interpolating quadric surface. Furthermore a solution to the above equations,
linear in the α’s and β’s, exists if and only if such an interpolating quadric surface exists. Again,
when real surfaces are favorable, we require α1, α2, β1, and β2 to be real numbers.

Example 3.15. Suppose C1 : (x2 + z2− 1 = 0, 3x+ y = 0), and C2 : (y2 + z2− 1 = 0, x+ 3y = 0).
We get the following equation from Lemma 3.14: (α1 + 9β1 − β2)x2 + (β1 − α2 − 9β2)y2 + (α1 −
α2)z2 + (6β1− 6β2)xy+ (α1−α2) = 0. This implies α1 = α2, β1 = β2, α1 = −8β1. When α1 = −8
and β1 = 1, the interpolating surface is x2 + y2 − 8z2 + 6xy + 8 = 0.

In the Lemma 6.2 and the example, the two conics on the given quadric surfaces, S1 and S2,
were fixed. If we have freedom to choose different intersecting planes Q1 and Q2 then we may be
able to find a family of quadric interpolating surfaces. In this case, the equations of planes Q1 and
Q2 would have unknown coefficients and the use of Lemma 3.14 would result in a nonlinear system
of equations, linear in terms of α1, α2, β1 and β2, and quadratic in terms of the unknowns of the
plane’s equations. Now, rather than trying to find a single quadric surface, we can also extend
the above Lemma, to construct two or more quadrics which smoothly contain two given conics in
space, and furthermore themselves intersect in a smooth fashion. The following Lemma, which is
constructive tells us how to go about this.

Lemma 3.16. Let C1 : (f1 = 0, q1 = 0) and C2 : (f2 = 0, q2 = 0) be two conics in space. These two
curves can be smoothly contained by two “smoothly intersecting” quadrics S1 : g1 = a1f1 + b1q

2
1 = 0

and quadrics S2 : g2 = a2f2 + b2q
2
2 if and only if there exist nonzero constants a1, a2, b1, b2, α, β,

and a plane Q : q(x, y, z) = 0 such that a1f1 + b1q
2
1 − α(a2f2 + b2q

2
2)− βq2 = 0.
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Proof: It follows from Bezout’s theorem for surface intersection, that two quadrics always
intersect smoothly in a plane curve (either an irreducible conic or straight lines). Let the intersection
curve lie on the unknown plane Q, then just apply Lemma 3.13 three times.

The final equation of the above Lemma results in a nonlinear (cubic) system of equations which
is linear in terms of the unknowns a1, a2, b1, b2, α, and β, and quadratic in terms of the unknown
coefficients of the plane Q : q = 0.

Example 3.17. Let conic C1 be given by f1 = x2 + y2− z2 + 4xy+ 4x+ 4y+ 3 = 0 (a hyperboloid
of one sheet) and q1 = x+ y + 1 = 0. Simiarly, let conic C2 be given by f2 = 19x2 + 10y2 − 9z2 +
38xy− 114x− 114y+ 180 = 0 (a hyperbooid of one sheet), q2 = x+ y− 3 = 0, and let the unknown
plane be P : ax+by+cz+d = 0. Then the equation for the system of smooth interpolating quadrics
a1f1 + b1q

2
1 − α(a2f2 + b2q

2
2) = β(ax+ by + cz + d)2 results in a nonlinear system of 10 equations:

−βc2 + 9a2α − a1 = 0, −2bβc = 0, −2aβc = 0, −2βcd = 0, −b2β − αb2 + b1 − 10a2α + a1 = 0,
−2abβ− 2αb2 + 2b1− 38a2α+ 4a1 = 0, −2bβd+ 6αb2 + 2b1 + 114a2α+ 4a1 = 0, −a2β−αb2 + b1−
19a2α+a1 = 0, −2aβd+ 6αb2 + 2b1 + 114a2α+ 4a1 = 0, and −βd2−9αb2 + b1−180a2α+ 3a1 = 0.
This nonlinear system has a nontrivial solution (in the sense that a1, a2, and α are nonzero) :
a1 = −a2β, b1 = 2a2β, a2 = −a2β

9α , b2 = 19a2β
9α , and b = c = d = 0.6 Hence, the two conics C1 and

C2 are smoothly contained by quadrics g1 = 0 and g2 = 0, respectively, and which in turn, smoothly
intersect in a conic in the plane Q. The real quadric g1 = x2 +y2 +z2−1 = 0 is a sphere, while the
other real quadric g2 = y2 + z2 − 1 is a cylinder. Note that the above solution implies that there is
only one pair of real quadric surfaces which smoothly contain the given conics. Also, for this case,
it can be shown that neither a single quadric nor a single cubic surface can Hermite interpolate the
two given conics. Geometrically then, the two hyperboloids of one sheet are smoothly joined by a
sphere and a cylinder. See Figure 4. at the end of the paper.

The above method of Lemma 3.16 can also be straightforwardly extended to finding a mesh of
n quadric surfaces which smoothly contain two given conics in space. Necessarily the complexity
of the nonlinear system of equations also goes up.

3.2 Surfaces of Revolution

From Bezout’s theorem[28], we realize that the intersection of two implicit surfaces of algebraic
degree d can be a curve of geometric degree O(d2). Furthermore the same theorem implies that
the intersection of two parametric surfaces of algebraic degree d can be a curve of degree O(d4).
Hence, while the potential singularities of the space curve defined by the intersection of two implicit
surfaces defined by polynomials of degree d can be as many as O(d4), the potential singularities of
the space curve defined by the intersection of two parametric surfaces defined by polynomials of
degree d can be as many as O(d8)[5]. Hence keeping the degree of fitting surfaces as low as possible
benefits both the efficiency and the robustness of post processing for modeling and display[2].

Algebraic Surfaces of Revolution Consider an algebraic surface which is obtained by revolving
an algebraic curve f(x, y) = 0 (on the xy plane) around the y axis. (See Figure 3.) Rather than
restricting ourselves to a circular rotation, we consider a more general elliptic revolution where the
rotation path is described by an ellipse E : x2 + z2

α2 = {r(y)}2 with α > 0. Here, r(y) is the x
coordinate of the point (x, y) on the curve C : f(x, y) = 0.

Now, the surface that results from revolving C along E is specified as “x2 + z2

α2 = {r(y)}2 sub-
ject to f(r(y), y) = 0.” The equation F (x, y, z) = 0 of the surface S, hence, becomes F (x, y, z) =

f(
√
x2 + z2

α2 , y) = 0 where F (x, y, z) is not necessarily algebraic due to introduction of the square

6This nonlinear system was solved with the aid of MACSYMA, on a Symbolics 3650
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Figure 3: Revolution of an Algebraic Curve along an Ellipse

root. By allowing only even-powered x’s (x0, x2, x4, · · · ) in f(x, y), we can force F (x, y, z) to be al-
gebraic. Geometrically, this restriction, imposed on the revolved curve, that maintains algebraicity,
means that the curve f(x, y) = 0 is symmetric to the y axis.

For quadric curves f(x, y) = 0, x2 is the only possible factor of terms in f . Hence, f includes
a 4-dimensional vector space V 2

f of polynomials over real numbers that is spanned by the basis
{x2, y2, y, 1}. In case of cubic curves f(x, y) = 0, the vector space V 3

f is spanned by the basis
{x2y, x2, y3, y2, y, 1} with dimension 6. Quartic curves f(x, y) = 0 can be chosen from a more

abundant vector space V 4
f of dimension 9, generated by the basis {x4, x2y2, x2y, x2, y4, y3, y2, y, 1}.

The bases of vector spaces V d
f for higher degree curves are formulated in the same fashion.

Each algebraic curve of degree d in V d
f , revolved around an ellipse, results in an algebraic surface

of the same degree. Then we naturally come to the following question : “Is a surface, generated
by revolving around an ellipse an algebraic curve that is not in V d

f , algebraic at all?” In fact,
the surface is algebraic, though the surface’s degree gets doubled. This doubling of the degree
arises from the single squaring required to remove the square root from odd-powered x factors. For
example, consider a circle f(x, y) = (x− 5)2 + (y− 5)2− 1 = x2− 10x+ y2− 10y+ 49 = 0 of radius
1, centered at (5, 5). This conic curve is not in V 2

f because of the term 10x. However, by moving
10x to the right hand side, and then squaring both sides, we can obtain a quartic curve in V 4

f

which generates a torus (of degree 4) by rotation. Intuitively, the squaring operation has an effect
of putting another circle of the same shape to the other side of the y axis in order to artificially
make the curve symmetric to the y axis. Any algebraic curve of degree d which is not in V d

f can be
made to be in V 2d

f by moving all terms with odd-powered x factors to one side, and squaring both
sides.

Remark 3.18. Let C : f(x, y) = 0 be an algebraic curve of degree d, and E : x2 + z2

α2 = {r(y)}2 be
an ellipse of a rotation path. Then, the algebraic surface S : F (x, y, z) = 0, resulting from revolving
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Figure 4: Two Quartic Algebraic Curves

Figure 5: Degree 4 and 8 Algebraic Surfaces of Revolution

C around E, has degree d if C is symmetric around the y axis, or 2d otherwise.

A geometric interpretation to Remark 3.18 is as follows : Consider a line on the xy plane parallel
to the x axis. This line intersects with C at most d times. Now, imagine the intersection between
the line and S. When C is symmetric, the number of intersection remains the same. However, if
C is not symmetric, the number of intersection is doubled up because C, rotated by 180 degrees,
creates the same number of line-curve intersections.

It is important to understand that, the degrees of freedom, in choosing a curve f(x, y) = 0 of
degree d from V d

f , is dim(V d
f ) − 1 where dim(∗) is the dimension of a vector space. Since all the

polynomials on a line in V d
f that passes through f and 0 describe the same curve, we have one less

than dim(V d
f ) degrees of freedom. It is not hard to come up with the expression for dim(V d

f ) :

dim(V d
f ) =

{
(d+2)2

4 if d is even
(d+1)(d+3)

4 if d is odd

In many situations as will be shown later, the curve f(x, y) = 0 is to be designed such that it
satisfies given geometric requirements. We are interested in designing piecewise curves from given
digitized data, and revolving them in a complicated manner to model some class of objects with
low degree algebraic surfaces. It will be explained below how the degrees of freedom in piecewise
algebraic curves of a given degree limit the geometric continuity between them.

Example 3.19. Figure 4 (a) and (b) displays two quartic algebraic curves (x2+y2)2+3x2y−y3 = 0
and x4 +x2y2−2x2y−xy2 +y2 = 0, respectively [30]. The curves, after rotation, result in algebraic
surfaces of degree 4 and 8, respectively, and shown in Figure 5 (a) and (b).

Parametric Surfaces of Revolution Now, we get to a question : “Is it also possible to find
a restricted bases of rational parametric curves that result in rational parametric surfaces of the
same geometric degree after revolution around an axis?” Consider a rational parametric curve of
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degree d

C(t) =
(
X(t)
Y (t)

)
=

(
x(t)
w(t)
y(t)
w(t)

)
where the degrees of the polynomials x(t), y(t), and w(t) are at most d. The surface obtained by
revolving C(t) around y-axis along an ellipse E : x2 + z2

α2 = {r(y)}2 with α > 0 can be represented
as F (s, t) = (X(s, t), Y (s, t), Z(s, t)), where

X(s, t) =
2s

1 + s2
x(t)
w(t)

Y (s, t) =
y(t)
w(t)

Z(s, t) =
α(1− s2)

1 + s2
x(t)
w(t)

.

First, this representation answers that the revolved surface is always rational parametric. Then,
the second question on the degree of F (s, t) must be answered. We are interested in lowering both
the algebraic degree in the polynomials in F (s, t) and the geometric degree of F (s, t) (the maximum
possible intersection of F (s, t) with a line). In construction of rational parametric revolved surfaces,
we follow the same path we did in the previous subsection. From Remark 3.18, we know that an
algebraic curve of degree d generates an algebraic surface of the same degree only when it is
symmetric around an axis. Since every rational parametric curve of degree d is an algebraic curve
of degree d, we are led to the fact that F (s, t) is of degree d if C(t) is symmetric around the y-axis.

A rational parametric curve is symmetric if there is a parametrization C(t) = (X(t), Y (t)) =
( x(t)w(t) ,

y(t)
w(t)) such that X(t) = −X(−t) and Y (t) = Y (−t). That is,

x(t)
w(t)

= − x(−t)
w(−t)

(72)

y(t)
w(t)

=
y(−t)
w(−t)

(73)

The above conditions are met if either x(t) is an odd function (all the terms with nonzero coef-
ficients are odd-powered), and y(t), w(t) are even functions (all the terms with nonzero coefficients
are even-powered), or x(t) is an even function, and y(t), w(t) are odd functions. It is not difficult
to see that the polynomials in the second case can be converted into the first case polynomials by
multiplying t to both numerator and denominator, and vice versa. In fact, any polynomials that
satisfies the conditions (72) and (73) fall in the above two categories.

Lemma 3.20. Let x(t), y(t), and w(t) be polynomials in t such that x(t) and w(t) are relatively
prime, and y(t) and w(t) are relatively prime. Then, x(t) is an odd function, and y(t), w(t) are
even functions if and only if x(t)

w(t) = − x(−t)
w(−t) and y(t)

w(t) = y(−t)
w(−t) .

Proof : See [7]. �

From now on, we assume that x(t) is an odd function, and y(t) and w(t) are even functions
without loss of generality. Since a degree d curve C(t) = (X(t), Y (t)) = ( x(t)w(t) ,

y(t)
w(t)) is symmetric

around y-axis, the surface made by revolving it around y-axis is a surface of geometric degree d.
The surface equation F (s, t) given above is represented by degree d+2 polynomials. In [7] we show
it is possible to reduce the algebraic degree of the parametric surface equations to d by applying a
transformation to F (s, t).
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Remark 3.21. Let C : C(t) = ( x(t)w(t) ,
y(t)
w(t)) be a rational parametric curve of degree d where x(t) is an

odd function, and y(t), w(t) are even functions, and E : x2+ z2

α2 = {r(y)}2 be an ellipse of a rotation
path. Then, the algebraic surface S : F (s, t) = (X(s, t), Y (s, t), Z(s, t)) in the rational parametric
form, resulting from revolving C around E, has geometric degree d, and can be parameterized in
the way that X(s, t), Y (s, t), and Z(s, t) are degree d rational polynomials.

The class of the above rational parametric curves contains symmetric parametric curves that
intersect with y-axis. The set of all such curves is only a proper subset of all symmetric parametric
curves. Another interesting class of symmetric rational parametric curves is defined as C(t) =
(X(t), Y (t)) = ( x(t)w(t) ,

y(t)
w(t)) such that X(t) = −X(−1

t ) and Y (t) = Y (−1
t )

7. It still remains open
how to specify all the bases of symmetric rational parametric curves of a given degree.

Example 3.22. Recall the “three-leaf clover” in Example 3.19. Its parametric form is C(t) =
( t3−3t
t4+2t2+1

, t4−3t2

t4+2t2+1
). After circular revolution and the above mentioned reparametrization, the quar-

tic surface is F (u, v) = ( u(u2+v2−3)
(u2+v2)2+2(u2+v2)+1

, (u2+v2)2−3(u2+v2)
(u2+v2)2+2(u2+v2)+1

, v(u2+v2−3)
(u2+v2)2+2(u2+v2)+1

) and shown
in Figure 5 (a).

3.3 Construction of Piecewise Ck Continuous Revolved Objects

So far we have discussed about revolution of a single algebraic curve, represented in either the
implicit or the parametric form. A revolved object with a complicated shape, however, cannot be
modeled by rotating only one low degree curve. Instead, it is more appropriate to approximate a
revolved object using surface patches meeting together with some order of geometric continuity.
Hence, the revolved object design problem leads to the following basic problem: design piecewise
Ck continuous algebraic curve segments, with restricted bases.

We focus on the design of piecewise Ck continuous implicitly represented algebraic curve seg-
ments.8 Designing with parametric splines is explained in [11] in detail. Also, we shall exhibit that
designing with symmetric (restricted bases) implicit algebraic curves is no more difficult than with
the complete basis. The corresponding case of designing with symmetric parametric curves does
not directly follow from the general parametric case and is a an open problem for further research.

Algebraic Curves and Geometric Continuity In this subsection, we describe how to compute
two algebraic curves that meet with Ck continuity at a point. First of all, we assume the geometric
information about a point p is expressed in terms of a (truncated) power series C(t) of degree k,
where C(t) = (x(t), y(t)) = p+ c1t+ c2t

2 + · · ·+ ckt
k, and C(0) = p. This truncated power series

approximates the local geometric property (up to order k) of a curve about the point within a
radius of convergence. (We will discuss later how this power series is computed.)

Now, given a (truncated) formal power series C(t) about a point p, we find an algebraic curve
f(x, y) = 0 whose power series expansion at p is the same as C(t) at p. If all terms upto degree k
agree for f(x, y) = 0 and C(t) at p then f(x, y) = 0 is considered to meet C(t) with Ck continuity
at p. Let f(x, y) =

∑
i+j≤d aijx

iyj = 0 be an algebraic curve of degree d, and

C(t) =
(
x(t)
y(t)

)
=
(
px + c1xt+ c2xt

2 + · · ·+ ckxt
k

py + c1yt+ c2yt
2 + · · ·+ ckyt

k

)
be a given parametric polynomial such that C(0) = (px, py) ≡ p. The relations on the coefficients
of f(x, y) can be extracted by repeatedly differentiating f(C(t)) up to order k, making all the

7For example, a hyperbola is in this class.
8From now on, by “algebraic”, we mean “implicit algebraic”.
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derivatives vanish at t = 0 [14]. The first few partial derivatives are :

f(C(t)) |t=0 = f(p) = 0
df(C(t))

dt
|t=0 = fx(p)x

′
(0) + fy(p)y

′
(0)

= c1xfx(p) + c1yfy(p) = 0
d2f(C(t))

dt2
|t=0 = fxx(p)x

′
(0)

2

+2fxyx
′
(0)y

′
(0)

+fyy(p)y
′
(0)

2

+fx(p)x
′′
(0) + fy(p)y

′′
(0)

= c21xfxx(p) + 2c1xc1yfxy(p)
+c21yfyy(p) + c2xfx(p)
+c2yfy(p) = 0

· · ·

For each derivative of f(C(t)), a linear equation in terms of the unknown coefficients aij of f
is generated, hence, any solution of the homogeneous linear system of k + 1 equations becomes
coefficients of algebraic curves of degree d meeting C(t) with Ck continuity. Since an algebraic
curve segment needs to satisfy the Ck conditions at both end points, 2k+ 2 linear constraints must
be satisfied. Hence, in order for an algebraic curve of degree d to exist, d must be chosen such
that

(
d+2
2

)
− 1 ≥ 2k + 2, that is, the number of the degrees of freedom in coefficients of the curve

is greater than or equal to the constraints for Ck continuity. Exactly the same process is applied
for symmetric implicit algebraic curves of degree d with restricted bases, with the difference being
that the number of degrees of freedom is given by dim(V d

f )− 1 as shown in section 3.2.

Computation of a Truncated Power Series There are various forms of divided-difference
methods that extract geometric information around a point, from a given list of points [11]. In our
case, we choose a parabola to locally approximate the points about a junction point, and take out
tangential information from the parabola. The junction points themselves are for now, computed
using the dynamic programming scheme in [18] which minimizes the error for a piecewise linear
approximation (with fixed number of segments) to a set of digitized points. Consider a sequence of
points · · · , pi−2, pi−1, pi, pi+1, pi+2, · · · around the junction point pi and an imaginary power series
C(t) from which, we assume, the digitized points near pi arise, and whose parameter value is t = 0
for pi. Then, the tangent vector of C(t) at t = 0 can be approximated by the approximation :

C
′
(0) ≈ σi

dist(pi, pi+1)
(pi+1 − pi)

+
1− σi

dist(pi−1, pi)
(pi − pi−1)

where σi = dist(pi−1,pi)
dist(pi,pi+1)+dist(pi−1,pi)

and dist(∗, ∗) is the distance between two points.
Repeatedly applying this approximation formula, we introduce a divided-difference :

∆jpl =


pl if j = 0
1
j ( σl

dist(pl,pl+1)(pl+1 − pl)
+ 1−σl

dist(pl−1,pl)
(pl − pl−1)) if j > 0

Using this divide-difference operator, a truncated power series is represented as Ci(t) = ∆0pi +
∆1pit + ∆2pit

2 + · · · + ∆kpit
k. Note that the geometric information, stored in the coefficients of
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(a) (b)

Figure 6: Digitized Engine and Goblet with Truncated Power Series

the power series is extracted from a sequence of 2k+ 1 neighboring points, centered at the junction
point. This locality in the construction of a power series enables an interactive local modeling
operation.

Example 3.23. In Figure 6, two sets of digitized points are illustrated. (a) shows three lists of
points that model engine parts9, and (b) is a sequence of points that models a goblet. Each point
sequence is displayed with truncated power series of order two at junction points.

Families of Algebraic Curves f(x, y) In order to compute each curve segment fi(x, y) = 0 that
interpolates two truncated power series Ci(t) and Ci+1(t) at two end points pi and pi+1, respectively,
we construct a linear system MIx = 0 where the unknowns are coefficients of fi(x, y) = 0. The
linear system is made of 2(k+1) equations that are generated for both truncated power series. Note
that the rank of MI must be less than the number of unknowns for a nontrivial solution to exist.
Any nontrivial solution represents an algebraic curve that meets Ci(t) and Ci+1(t) at pi and pi+1,
respectively, with Ck continuity. One heuristic that we have often used is to select a nice curve
segment is to generate a sequence of additional points between the end points that approximate a
curve segment, and then, apply least-squares approximation to these additional points. In the case
of cubic algebraic curves, we derive a condition on the Bernstein-Bezier coefficients of cubic curves,
in either the general or the restricted basis, that guarantees a smooth single curve segment inside
a given control triangle.

In case all possible terms of degree d are used as a basis of fi(x, y) = 0, then there are
(
d+2
2

)
unknowns, and hence

(
d+2
2

)
− 1 degrees of freedom. However, if we choose a curve from V d

f , we
have fewer degrees of freedom due to restriction in the basis. There are only dim(V d

f )−1 degrees of
freedom for degree d, and this number must not be less than 2(k+ 2), the maximum possible rank
for a homogeneous linear system that needs to be satisfied for order k continuity. For instance, for
C1 continuity, symmetric cubic curves are necessary, while order 2 continuity requires symmetric
quartic curves.

Piecewise Ck Continuous Revolved Objects Figure 7 (a) displays piecewise C1 approxima-
tion with cubic algebraic curves in the restricted basis V 3

f . Note that a symmetric cubic curve in
V 3
f can have a tangent line parallel to x-axis only at points on the y-axis. Hence, the order of

geometric continuity is only 0 at the extreme junction points on the cowls around which the curve
segments make vertical turnabouts. With symmetric quartic algebraic curves in V 4

f , it is possible
to approximate the point data with C2 continuity everywhere. (See Figure 7 (b).) For the goblet

9This data originated from 3D scanned engine data from NASA.
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(a) (b)

Figure 7: Symmetric C1 Cubic and C2 Quartic Algebraic Splines

(a) (b)

Figure 8: Symmetric C1 and Arbitrary C2 Cubic Algebraic Splines

(a) (b)

Figure 9: C1 Cubic and C2 Quartic Revolved Surface Models

(a) (b)

Figure 10: C1 Cubic and C2 Sextic Revolved Surface Models
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data, cubic curves in V 3
f , again, successfully model the data with C1 continuity in Figure 8 (a).

Figure 8 (b) shows a C2 approximation of the same data with cubic curves in the general basis,
which, hence, may not be symmetric about the y-axis.

Once algebraic splines are constructed to fit the digitized data, their revolution surface models
are easily obtained, with the appropriate surface degree bounds. C1 approximation with cubic
algebraic surfaces is shown in Figure 9 (a) and are a revolution of the cubic splines in Figure 7 (a).
Quartic algebraic surfaces approximate the same object well with C2 continuity in Figure 9 (b)
and are a revolution of the quartic splines in Figure 7 (b). A C1 cubic algebraic surface goblet is
illustrated in Figure 10(a) and is obtained by revolving the symmetric cubic spline in Figure 8 (a).
The C2 goblet in Figure 10(b) is obtained by revolving the arbitrary cubic splines in Figure 8 (b),
and is made of degree 6 algebraic surfaces.
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