
Protein-protein recognition using F2Dock

Muhibur Rasheed

January 23, 2011

Contents

1 Introduction 4
1.1 Protein Docking/Virtual Screening . 4
1.2 Software suite . 4

2 Overview of F2Dock+GB-rerank 5
2.1 Overview . 6
2.2 Input Preparation . 8

2.2.1 Primary structure/atomic representation . 8
2.2.2 Molecular surface representation . 8
2.2.3 Quadrature points sampling and skin/core generation 8

2.3 Search . 8
2.3.1 Rotational Sampling. 8
2.3.2 Exhaustive Translational Search. 8

2.4 Score . 9
2.4.1 Shape Complementarity . 9
2.4.2 Electrostatics: . 9
2.4.3 Interface Propensity: . 10

2.5 Filter . 10
2.5.1 Lennard-Jones Filter: . 10
2.5.2 Fast (1 + ε)-Approximation of LJ(A,B) . 11
2.5.3 Clash Filter: . 12
2.5.4 Interface Propensity Filter: . 12
2.5.5 Residue-Residue Contact Filter: . 12
2.5.6 Antibody-Antigen Contact Filter: . 12
2.5.7 Glycine Filter: . 13
2.5.8 Interface Area Filter: . 13

2.6 Energy based reranking . 13
2.7 Dynamic Packing Grid Data Structure . 13

2.7.1 Description (Layout) of the Packing Grid Data Structure 14
2.7.2 Supported query/update . 15

3 Software Implementation 16
3.1 F2Dock . 16

3.1.1 libF2Dock . 16
3.1.2 libfftUtils, libfftw3, libvol . 17
3.1.3 libDPG . 17
3.1.4 libfastClash . 17
3.1.5 libfastLJ . 17
3.1.6 libfastHydro . 18
3.1.7 libfastGB . 18
3.1.8 libresCont . 18
3.1.9 libutils, libfastPQ, libmath . 18

3.2 GB-rerank . 18
3.2.1 libGBrerank . 19

1

3.2.2 libfastGB . 19
3.2.3 libfastDispersion . 19

3.3 TexMol . 19
3.3.1 Client/Server model of TexMol and F2Dock . 20
3.3.2 XML-RPC: the communication protocol . 20
3.3.3 F2Dock support classes in TexMol . 20

4 Input Preparation 22
4.1 Molecular representation . 22

4.1.1 PDB . 22
4.1.2 PQR . 22

4.2 Molecular surface representation . 23
4.2.1 RAW . 23
4.2.2 RAWN . 24

4.3 Internal files for docking and reranking . 24
4.3.1 F2D . 24
4.3.2 QUAD . 28

5 Docking 31
5.1 Docking from the command line: F2Dock basic . 31

5.1.1 The parameter file . 31
5.1.2 List of mandatory parameters . 32
5.1.3 List of optional/advanced parameters . 32
5.1.4 Making sense of the output file . 37
5.1.5 Scripts . 40

5.2 Docking via GUI: TexMol . 40
5.2.1 Job management . 40
5.2.2 Prepare and submit a docking job . 41
5.2.3 Summarizing the result . 42
5.2.4 Analyzing each conformation . 42
5.2.5 Visualizing each conformation . 42
5.2.6 Performance tips . 43
5.2.7 Command line version . 43

6 Reranking 47
6.1 Reranking from the command line: GB-rerank . 47

6.1.1 The parameter file . 47
6.1.2 List of mandatory parameters . 47
6.1.3 List of optional/advanced parameters . 48
6.1.4 Making sense of the output file . 48
6.1.5 Scripts . 48

6.2 Reranking via GUI: TexMol . 48
6.2.1 Job management . 48
6.2.2 Prepare and submit a reranking job . 48
6.2.3 Summarizing the result . 49
6.2.4 Analyzing each conformation . 49
6.2.5 Visualizing each conformation . 49
6.2.6 Performance tips . 49
6.2.7 Command line version . 49

7 Availability 52
7.1 Software . 52

7.1.1 License . 52
7.1.2 Download instructions . 52

7.2 Dataset . 52
7.2.1 License . 52

2

7.2.2 Download instructions . 52

8 Installation 53
8.1 Requirements . 53

8.1.1 Supported platforms . 53
8.1.2 Software dependencies . 53

8.2 Install . 53
8.2.1 F2Dock . 53
8.2.2 GB-rerank . 53
8.2.3 MolSurf . 53
8.2.4 TexMol . 53
8.2.5 F2Dock Server . 53

9 Comments 54
9.1 Known issues . 54
9.2 Work in progress . 54

3

Chapter 1

Introduction

1.1 Protein Docking/Virtual Screening

Several biological processes are mediated through proteins interacting and forming complexes. For ex-
ample, the formation of multi-protein complexes is central to the rubric of molecular machines such as
viral capsids, ribosomes, ion-channels. Protein-protein complexes are also critical to the immune target-
ing of infectious proteins, the specificity of enzymatic catalysis, and the precise hormonal control and
physiological effect of organs. Atomistically detailed models of proteins and their computer simulations
have become powerful assistive tools to wet lab experiments, for interpreting these complex interactions.
The simulations of protein-protein interactions yield important clues for developing therapeutic interven-
tions related to disease, such as cancer and metabolic disorders. In protein-protein docking, we seek to
determine the best relative transformation and conformation of two proteins (e.g., a target and potential
drug) that results in a stable complex reproducible in nature (if one exists).

1.2 Software suite

Performing and analyzing protein-protein docking experiments can be performing using a suite of software
developed in the CVC: F2Dock, GB-rerank , MolSurf , TeχMol , and the F2Dock server.

F2Dock F2Dock is the main molecular docking application. It efficiently scores conformations in the
space of relative rotations and translations between two proteins and returns a sorted list of the top
results.

GB-rerank GB-rerank is a post-process for the F2Dock program for re-ranking the top results based
on a (more computationally intensive) energy model including the Generalized Born solvation term.

MolSurf MolSurf is a suite tools for generating and manipulating molecular surfaces. Constructing
molecular surfaces is an important preprocess to molecular docking since some terms in the energy model
depend upon the molecular surface rather than just the atomic positions.

TexMol TeχMol is a graphical tool for visualizing protein models. It also contains an intuitive graphic
interface to F2Dock and allows for immediate visualization of the results.

F2Dock Server The F2Dock server is a program which passes information between the graphical
TeχMol interface and the other software tools. This allows to the graphical client and computationally
intensive tools to be run on separate computers (or for the latter, clusters of computers).

4

Chapter 2

Overview of F2Dock+GB-rerank

F2Dock uses an approximation of the binding free energy of the docked complexes to rank them. An
empirical model of the total free energy of a system with explicit solvent interactions, can be modeled
as-

E = EMM + Esol︸ ︷︷ ︸
potential energy

−TS,

where EMM is the classical molecular mechanical energy of the solute, Esol is the solvation energy, T is
the system temperature, and S is the solute entropy.

The molecular mechanical energy is defined as follows [28].

EMM = Ed + Eθ + Eϕ︸ ︷︷ ︸
bonded interactions

+ Evdw + Ecoul︸ ︷︷ ︸
nonbonded interactions

The first three terms represent bonded interactions: covalent bonds (Ed), valence bonds (Eθ), and
torsions around bounds (Eϕ). The last two terms represent nonbonded interactions: Lennard-Jones
potential for van der Waals forces (Evdw), and the Coulomb potential for electrostatics (Ecoul).

The solvation energy Esol consists of the energy to form cavity in the solvent (Ecav), the solute-solvent
van der Waals interaction energy (Evdw(s-s)), and the electrostatic potential energy change due to the
solvation (also known as the polarization energy, Epol) [15, 18, 20, 37, 38].

Esol = Ecav + Evdw(s-s)︸ ︷︷ ︸
nonploar

+Epol︸︷︷︸
polar

Now the binding free energy of a complex formed by two given molecules A and B is given by:

∆E = EA+B − (EA + EB),

where EA, EB and EA+B are the total free energy of molecule A, molecule B and the complex A+B,
respectively. Now assuming that the solvent temperature T and the solute entropy S are constants, and
the two molecules are mostly rigid (i.e., negligible conformational change upon binding), we have,

∆E ≈ ∆Evdw + ∆Ecoul + ∆Esol

Hence, for rigid-body docking ∆E has three major components.

- ∆Evdw : The Lennard-Jones 12-6 dispersion-repulsion potential due to van der Waals forces is
given by

∑
i∈A,j∈B

(
aij
r12ij
− bij

r6ij

)
, where rij is the distance between two given atoms, and aij and bij

are constants based on atom types. Shape or curvature complementarity along the docked interface
is a related measure, and is considered one of the primary measures of docking quality.

- ∆Ecoul : The long-range electrostatic potential is given by
∑
i∈A,j∈B

qiqj
ε(rij)rij

, where qi and qj are
Coulombic charges, and ε(rij) is a distance dependant dielectric constant. Inter-molecular hydrogen
bonds and disulphide bonds are responsible for short-range electrostatic interactions.

5

- ∆Esol : Desolvation free energy is defined as the change in energy due to the displacement of solvent
molecules from the interface. For rigid molceules the non-polar part of ∆Esol can be approximated
with a quantity proportional to the change in solvent accessible surface area upon binding. Ex-
istance of large hydrophobic area at the interface is often considered a favorable condition for
docking. The polar part of ∆Esol measures how the electrostatic interaction between the solvent
and the solute changes due to the change in the induced polarization in the solvent as a result of
complex formation. This part can be approximated using Generalized Born (GB) theory [39].

In [9] we described a Non-equispaced Fast Fourier Transform (NFFT) based rigid-body protein-
protein docking algorithm for efficiently performing the initial docking search (based on shape and
electrostatics complementarity). In [5] we extended our NFFT-based docking algorithm to F2Dock (F 2

= Fast Fourier) which included an adaptive search phase (both translational and rotational) for faster
execution.

Finally, the latest version of F2Dock [12] includes improved shape-complementarity and electrostatics
functions as well as a new on-the-fly affinity function based on interface propensity and hydrophobicity.
The current version uses uniform FFT, but exploits the sparsity of FFT grids for faster execution, and also
restricts its search within a narrow band around the larger molecule. It also includes a clustering phase
for penalizing docking poses that are structurally very similar to poses with better scores, and a set of
efficient on-the-fly filters1 based on Lennard-Jones potential, steric clashes, interface propensity, interface
area, residue-residue contact preferences, antibody active sites, and glycine richness at the interface
for enzymes. The filters are implemented using fast multipole type recursive spatial decomposition
techniques [13]. A solvation energy based reranking program called GB-rerank has also been implemented
which uses an approximation scheme, and so can be tuned to obtain any suitable speed-accuracy trade-
off. Both F2Dock and GB-rerank have been implemented as multithreaded programs for faster execution
on multicore machines. Our molecular visualization software TeχMol serves as a front-end to F2Dock in
a client-server mode of execution. F2Dock has been calibrated based on an extensive experimental study
on the rigid-body complexes from ZDock Benchmark 2.0 [31].

2.1 Overview

Let A and B are two proteins with MA and MB atoms respectively and without loss of generality we
assume that MA ≥MB , i.e., A is the larger of the two proteins.

Figure 2.1 gives a very high level overview of our docking algorithm which consists of two separate
phases:

- Phase I (Input Processing using MolSurf): From equations to , it is clear that to evaluate
the scoring terms for docking, one needs different accurate representations of the molecules. For
example, electrostatics and VdW potentials are computed based on atom centers, radii and charges
only. In other words, a primary structure representation is enough. However, for the shape com-
plementarity and solvation energy computations, a quality smooth (SES) surface representation.
Moreover, as will be further explained when we discuss the solvation energy based reranking, a
discrete approximation of the polarization energy requires the sampling of Gaussian integration
points on the smooth molecular surface.

- Phase II (Docking Search with F2Dock): We perform exhaustive 6D search in discretized
rotational and translational space. During this search molecule A is kept stationary while molecule
B is assumed to be moving in the sense that relative transformations are applied to its coordinates.
The rotational space is discretized using uniformly sampled Euler angles while the translational
space is sampled on a uniform 3D grid. For each sampled rotation we first rotate molecule B
around its geometric center, and then score all docking poses involving A and the rotated B where
their relative translations are sampled from a uniform 3D grid. The scoring function includes shape
complementarity, electrostatics and interface propensity, and scores for all grid points are computed
simultaneously using FFT (Fast Fourier Transform) based 3D convolution.

1for penalizing potential false positives

6

��

�������	
����

�
�
���
����
��
����
	����	

����		
���
��������	

���������
��	��������

�����
�����	

������	

� ����	
�	

� �������� ����	
���������
�
�����
�������
�
���������
������	���

� ���������
����
� ��������
�������
� �������
���
��		

� ���������
�������
����������	

	����

�����

��������	

�
�
�

	�����

�������� 	����

������ �
�� ��

	���� ����	������	

�� �� !�!�!�
�	���
���

��	

���

���� �"
�"
� ���� ����

�������� �����
�
#
� $
	����
��
�
�
��	� %

��������
��������	

� 	
���
���������������
� �������	�����	
�
�
����
���������������
�
�����
�������
�
���������
������	���

����

��������	&

�����' �
� ���'��� ��	�	
�� �
��	�� �� �
����
�� 	��(����� ������

������ �
�

�����'�� ���'���

��	�	 ���� �"
� ����

���

���	� �������� �

��� ��)
����	������	
#
� %

��*� �������� �

��	

�
�	� �

#
����+,
%

�
�	� ��

#
����-�./, %������0� ���������
���	�

��	���(�	 ��
�
��	�� ��

(�����	
������	

������0� ���������
���	�

��	���(�	 ��
�
��	�� ��

���*�����
���	������

Figure 2.1: High level overview of rigid-body protein-protein docking using F2Dock and GB-rerank.

The top several thousand poses from this FFT-based scoring phase are then examined for structural
similarity2, and a docking pose is penalized provided a structurally very similar docking pose with
a better score already exists.

The resulting list is then passed through several filters in order to eliminate/penalize potential false
positives. Results are filtered based on Lennard-Jones potential, number of steric clashes, interface
area, interace propensity, residue-residue contact preferences, antibody active sites, and frequency
of glycine residues at the interface for enzymes. Filters are implemented using fast multipole-type
octree-based hierarchical spatial decomposition techniques [13] with a view to evaluating any given
docking pose more accurately than FFT-based scoring but in a reasonable time so that they can
still be used on-the-fly during docking.

- Phase III (Solvation Energy Based Reranking with GB-rerank): The ranked docking
poses obtained from phase I are rescored and reranked based on the change in solvation energy
caused by each pose. The polar part of the solvation energy is approximated using the surface-
based formulation of Generalized Born (GB) energy [6], and implemented using a fast octree-based
approximation scheme we describe in detail in [13]. Among the non-polar parts the dispersion
energy is also approximated using octrees while the cavity forming is approximated by computing
an approximate interface area of the two molecules using our fast linear-space Dynamic Packing
Grid (DPG) data structure described in [4].

2based on how close the geometric centers of B are when A for the poses are superimposed

7

2.2 Input Preparation

In this section we briefly describe the different files types and how they are generated. Details of the file
formats, the generation algorithm and software usage are presented in Chapter 4.

2.2.1 Primary structure/atomic representation

The primary structure representation, and the only input, used by F2Dock is the PDB files of the receptor
and the ligand. PDB files are the most widely used format to represent proteins, and these are easily
and freely available. However, the PDB files sometimes are missing some atoms, specially Hydrogens,
and often contains extra crysllazied water. So, the files are curated first.

The curated PDBs contains the atom centers, atom types, the residue, chain and secondary structure
hierarchy etc. But it does not mention the radii and charges. We use PDB2PQR to generate a PQR file,
which uses different force fields to compute the raii and charges. See Section 4.1.2 for details.

2.2.2 Molecular surface representation

Then we use our inhouse software MolSurf to generate a smooth molecular surface, improve the mesh
quality and approximate the normals at the vertices. MolSurf provides many ways of generating and
representing the SES and SAS (for example, sum of Gaussians, or a mesh with normals, or a signed
distance function in a grid can be used). See Section 4.2 for details.

2.2.3 Quadrature points sampling and skin/core generation

MolSurf also provides interfaces for sampling the Gaussian quadrature points on the surface (details in
Section 4.3.2). Finally, for the shape complementarity analysis, F2Dockneeds to identify the exposed
and internal atoms of the ligand, and grow a layer of pseudoatoms as a skin for the receptor. Both these
computations are also supported by MolSurf (details in Section 4.3.1).

2.3 Search

Pairwise protein-protein docking can be viewed as a search in the 6D relative translational (3D) and
rotational (3D) space of the two proteins involved for a stable (energetically most favorable) complex.
However, a more efficient and possibly adaptive sampling of this 6D search space is required to keep the
scoring computations feasible. F2Dock splits the search space into a rotational and a translational part,
i.e the space is SO3 ×R3. The following sections details how the spaces are subsampled.

2.3.1 Rotational Sampling.

The rotation space is sampled using uniformly distributed Euler angles as in [33, 30, 11]. Table 2.1 shows
the different sampling intervals supported by F2Dock along with the approximate size of the sample set
in each case. The rotation samples were obtained from [32].

Sampling Interval 20◦ 15◦ 12◦ 10◦ 8◦ 6◦ 4◦

Number of Samples (NR) 1,900 4,400 8,600 14,900 29,000 68,800 232,000

Table 2.1: Rotational sampling based on uniformly distributed Euler angles [30, 11].

2.3.2 Exhaustive Translational Search.

As mentioned before, the translational search is performed on a 3D grid, and the various affinity functions
used for the search are defined in such a way that FFT-based fast 3D convolution algorithms can be
used for evaluating all grid points.

Figure 2.2 gives a high level overview of FFT-based scoring of the translational grid which involves
two forward (forward FFT for the receptor is performed only once) and one inverse FFT computations.

8

Figure 2.2: Fast Fourier Transform (FFT) based convolution for scoring of discrete translational space.

Current version of F2Dock uses uniform FFT but exploits the sparsity of the input and the output grids
for faster computation.

2.4 Score

A brief overview of the affinity functions used by F2Dock (phase I) for FFT-based exhaustive translational
search is as follows. Please refer to [12] for details.

2.4.1 Shape Complementarity

This is an improved version of the traditional double-skin layer based shape complementarity function
[26]. Unlike the traditional model the receptor skin atoms do not touch the receptor surface, the weight
assigned to a receptor core atom is a function of its depth from the surface, and the weight assigned to
a receptor skin atom is a function of surface curvature. The position and thickness of the skin layers are
carefully chosen for accuracy of predictions via the benchmark training set.

Let A′ denote molecule A with its grown skin layer. If the weight assigned to an atom/pseudo-atom k
(of molecule P ∈ {A′, B}) is cSCk = cSCk,Re+ i ·cSCk,Im, then the affinity function for shape complementarity
is:

fSCP (x) =
∑
k∈P

(√
wss · cSCk,Re + i ·

√
wcc · cSCk,Im

)
· gSCP,k(x),

where, gSCP,k(x) = e
−β
„

(x−ck)2

r2
k

−1

«
with blobbiness β = 2.3.

The overall shape complementarity score for translation t and rotation r is:

HSC
A,B(t, r) = Re

(
FSCA,B(t, r)

)
+

wsc√
wss · wcc

· Im
(
FSCA,B(t, r)

)
,

where, FSCA,B(t, r) =
∫
x
fSCA (x)Tt

(
∆r

(
fSCB (x)

))
with T and ∆ being the translation and the rotation

operator, respectively.
For further details about the rasterization and weight assignment, refer to [12].

2.4.2 Electrostatics:

This is based on the approximate Coulombic interaction function introduced by Gabb et al. [17], but
designed to reduce discretization errors on the grid. In the current version of F2Dock, we define for
P ∈ A,B,

9

gEP,k(x) = e
−β
„

(x−ck)2

γ2
−1

«
,

where, γ > 0 is a constant, and blobbiness β = 2.3. In our experiments the new definition of gEP,k(x)
with γ = 3.4Å performed much better than the original Gabb et al. formulation. Smoothing with the
Gaussian function as above has the effect of reduced discretization error on the grid.

The overall electrostatics score for translation t and rotation r is:

HE
A,B(t, r) = wE ·Re

(
FEA,B(t, r)

)
,

where, FEA,B(t, r) =
∫
x
fEA (x)Tt

(
∆r

(
fEB (x)

))
, and wE is the user-specified weight given to electrostatics

interaction.

2.4.3 Interface Propensity:

The interfaces between the two molecules are scored based on statistical information on the relative
frequencies (henceforth called, interface protepsity) of different residues in the interfaces of protein
complexes [23, 24]. Let IP (R) denote the natural logarithm of the interface propensity value of a
residue R. Suppose A + Bt,r is a docking pose obtained by rotating molecule B by r and translating
by t. Let iAtom+

t,r(P) and iAtom−t,r(P) denote the set of atoms in the interface of P ∈ {A,B} in
this docking pose that have positive and negative IP values, respectively. Also let iAtoms

t,r(A,B) =
iAtoms

t,r(A) + iAtoms
t,r(B), for s ∈ {+,−}. Then we assign the following interface propensity score to

the docking pose:

IP -scoret,r(A,B) = −

∑
a∈iAtom+

t,r(A,B) IP (a)

min
(
IPε,

∑
a∈iAtom−t,r(A,B) IP (a)

) ,
where IPε = maxIP (R)<0 IP (R).We also penalize for very small interfaces by setting IP -score to a

negative value when |iAtom+
t,r(A,B)| is below a user-defined threshold.

2.5 Filter

The functions of the various filters used by F2Dock are as follows. Again, the details can be found in
[12].

2.5.1 Lennard-Jones Filter:

Penalize if the Lennard-Jones potential of a docking pose is above some user-defined threshold. We
approximate the Lennard-Jones (LJ) potential between molecules A and Bt,r given by the following
expression.

LJ(A,Bt,r) =
∑

i∈A,j∈Bt,r

(
aij
r12
ij

− bij
r6
ij

)
,

where rij is the distance between atoms i ∈ A and j ∈ Bt,r, constants aij and bij depend on the type
(e.g., C, H, O, etc.) of the two atoms involved. For any fixed pair of atom types aij and bij are fixed,
and are calculated from the Amber force field.

Observe that direct computation of LJ(A,B) requires O (MAMB) time, where MA (resp. MB) is the
number of atoms in molecule A (resp. B). However, since the terms in the summation diminish quickly
with the increase of rij , one can evaluate LJδ−(A,B) =

∑
i ∈ A, j ∈ B, rij ≤ δ lj(i, j) as an approximation

of LJ(A,B), where δ is a given distance cutoff.
Suppose MA > MB . Then one can evaluate LJδ−(A,B) in O ((MA +MB) logMB +m) time and

O (MA +MB) space, where m is the total number of 〈i ∈ A, j ∈ B〉 pairs within distance δ. The trick is
to use an octree [21] to store the atoms of B, and then use it to locate the atoms of B within distance δ
from each atom of A (see [13] for details). Use of a 3D grid instead of an octree may result in Θ

(
MB

3
)

space usage in the worst case [13].

10

Figure 2.3: Approximation of LJ potential in 2D using quadtrees [16] (i.e., 2D variant of octrees): In the
leftmost figure the bounding box of molecule A (resp. B) represents the root node of the quadtree storing
A (resp. B). The smallest boxes in the middle and the rightmost figures represent quadtree nodes at
levels 2 (i.e., children of the root) and 3, respectively. Let us assume for simplicity that if two nodes of
the two quadtrees do not intersect they are far enough so that the LJ potential between their atoms can
be approximated by treating them as pseudo-atoms. In the leftmost figure the two root nodes (nodes
A and B) intersect, and so we move to their children nodes in the middle figure. In the middle figure
only nodes A2 and B3 intersect, and so while the potential between the atoms of all other 〈Ai, Bj〉 pairs
can be approximated, we need to move to the children of A2 and B3 in order to compute the potential
between them (see the rightmost figure).

2.5.2 Fast (1 + ε)-Approximation of LJ(A,B)

Observe that LJ(A,B) = LJδ−(A,B) + LJδ+(A,B), where LJδ+(A,B) =
∑

i ∈ A, j ∈ B, rij > δ lj(i, j).
We outline below how to obtain an error-bounded approximation of LJ(A,B) through a fast approx-
imation of LJδ+(A,B) in addition to the exact evaluation of LJδ−(A,B). More precisely, given any
user-defined constant ε > 0, we will approximate LJ(A,B) to within a (1 + ε) factor of its exact value.

In the expression of LJ(A,B), aij and bij are fixed for any fixed pair of atom types, and can be
calculated from the Amber force field using well depths µXY and equivalence contact distances of homo-
geneous pairs reqm,XY , where X = atomType(i ∈ A) and Y = atomType(j ∈ B)) [42, 34]. By definition,
aij/bij = r6

eqm,XY /2 (see [34]). We assume X,Y ∈ {C, H, N, O, P, S}.
Let MX denote the subset of atoms of type X in molecule M ∈ {A,B}. Then LJ(A,B) =∑
X,Y ∈{C, H, N, O, P, S} LJ(AX , BY), where, LJ(AX , BY) = LJδ−XY

(AX , BY)+LJδ+XY
(AX , BY), for some

constant δXY ≥ 0 (to be defined later). We outline below how to approximate LJ(AX , BY) for a given
pair 〈X,Y 〉. We evaluate LJδ−XY (AX , BY) exactly, and approximate LJδ+XY (AX , BY) to within a factor
of (1 + ε) of its exact value.

Let δXY ≥ (1/2 + 1/ε)1/6
reqm,XY . If we approximate each bij/r

6
ij with rij > δXY to within a factor

of 1 + ε/(2 + ε), simple algebraic manipulations show |lj(i, j)| <
[
bij/r

6
ij

]
approx

< (1 + ε)|lj(i, j)|.
In order to approximate LJ(AX , BY) as mentioned above, we construct two octrees TAX and TBY

from the atoms in AX and BY , respectively, and compute a (1 + ε)-approximation of LJ(AX , BY) by
simultaneous recursive traversals of TAX and TBY starting from their root nodes. Suppose at some point
we are at node x of TAX and node y of TBY . If both x and y are leaf nodes, potential between the atoms
contained in x (say,Mx) and y (say,My) is computed exactly. Otherwise if x and y are far enough (i.e.,
at least δXY apart), and small enough3 the potential betweenMx andMy is approximated by assuming
that x and y are single pseudo atoms centered at the center of gravity of Mx and My, respectively,
and taking |Mx||My|

(
bij/r

6
xy

)
as the approximated potential, where rxy is the distance between the

centers of the two pseudo atoms. Otherwise we subdivide x and/or y (i.e., move to their children), and
approximate the potential recursively. Figure 2.3 explains the approach in 2D. The pseudocode is given
in Figure 2.4.

See [13] for a proof of the upper bound on the approximation time.

3i.e., rx,y + (rx + ry) < (1 + ε/(2 + ε))
1
6 (rx,y − (rx + ry)), where, rx (resp. ry) is the radius of the smallest ball centered

at the atom centers of x (resp. y) that encloses all atom centers of x (resp. y).

11

ApproxLJ(x, y)

(Inputs are two octree nodes x ∈ TAX and y ∈ TBY , and the the output is a floating point number V such that U ≤ V ≤ (1+ε) ·U ,

where U =
P

i ∈ Mx ∧ j ∈ My

“
aij/r

12
ij − bij/r

6
ij

”
. By child(x) (resp. child(y)) we denote the set of non-empty octree nodes

obtained by subdividing node x (resp. y). We denote by bXY the value of the constant bij for atom types X and Y , and by rx,y
the distance between the centers of x and y.)

1. if leaf(x) ∧ leaf(y) then return
P
i∈Mx∧j∈My

„
aij

r12
ij

−
bij

r6
ij

«
{exact value}

2. else if rx,y − (rx + ry) > δXY ∧ rx,y+(rx+ry)
rx,y−(rx+ry) <

“
1 + ε

2+ε

” 1
6 then return − Mx·My·bXY

(rx,y−(rx+ry))6
{approximation}

3. else if leaf(x) return
P

cy ∈ child(y) ApproxLJ(x, cy) {recursive approximation}

4. else if leaf(y) return
P

cx ∈ child(x) ApproxLJ(cx, y) {recursive approximation}

5. else return
P

cx ∈ child(x) ∧ cy ∈ child(y) ApproxLJ(cx, cy) {recursive approximation}

ApproxLJ Ends

Figure 2.4: Recursive approximation of
P

i∈Mx∧j∈My

`
aij/r

12
ij − bij/r6ij

´
to within a factor of 1 + ε. The initial

call is ApproxLJ(root(TAX), root(TBY)) for the approximation of
P

i∈AX∧j∈BY

`
aij/r

12
ij − bij/r6ij

´
.

2.5.3 Clash Filter:

Penalizes all docking poses with the number of steric (atom-atom) collisions above some user-defined
threshold. Two atoms a ∈ A and b ∈ B with van der Waals radii ra and rb, respectively, are said to be in
a clash provided the distance between their centers is smaller than α(ra + rb), where α is a user-defined
positive constant. F2Dock counts the total number of atomic clashes between molecules A and Bt,r as
follows.

Clasht,r(A,B) = |{b|(b ∈ Bt,r) ∧ ∃a∈A(ra,b < α(ra + rb))}|

Searching for clashes is sped up using spatial decomposition based on Octrees to isolate neighboring
octree nodes and then DPG is used to locally search for clashed within the neighboring octree nodes
only. Details of the technique is quite similar to the Lennard JOnes filter described above and can be
found in [12].

2.5.4 Interface Propensity Filter:

Using statistical information from [24] it computes a score for each pose which from a high level can be
viewed as the ratio of the interface area of the pose corresponding to residues that typically appear in
high frequencies in protein interfaces to the interface area corresponding to residues that appear in low
frequencies. A docking pose is penalized if this ratio is below a user-defined threshold.

2.5.5 Residue-Residue Contact Filter:

Penalizes potential false positives based on statistical information on residue-residue contact preferences
described in [19]. Given a docking pose A+Bt,r, we identify all residue-residue contacts at the interface
of the two molecules using a fast algorithm similar to the one in clash filter. Two residues are considered
to be in contact if the distance between their Cβ atoms (Cα for Gly) is less than 6 Å. See [12] for further
details.

2.5.6 Antibody-Antigen Contact Filter:

This filter uses statistical information on antibody-antigen contact preferences derived in [29, 1]. It is
based on the observation that in each antibody each of the following three regions will make at least one
antigen contact4: (1) either CDR-L1 or CDR-H1, (2) CDR-L3, and (3) CDR-H3. An atom a is considered
to be in close neighborhood of another atom b provided the distance between the centers of a and b is

4a contact is defined as burial by at least 1 Å2 change in solvent accessibility

12

at most 2(ra + rb). F2Dock computes three quantities: NL1∪H1, NL3 and NH3, denoting the number of
antigen atoms that are in the close neighborhood of any atom in the antibody regions CDR-L1/CDR-H1,
CDR-L3 and CDR-H3, respectively. F2Dock penalizes a docking pose provided NL1∪H1 < µL1∪H1 or
NL3 < µL3 or NH3 < µH3.

2.5.7 Glycine Filter:

This filter exploits the observation that enzyme active sites are rich in glycines, particularly G-X-Y and
Y-X-G oligopeptides, where X and Y are polar and non-polar residues, respectively, and G is glycine
[43]. F2Dock counts such motifs on the interface and penalizes a docking pose if this count is below a
user-specified threshold, and can also reward poses with higher G-X-Y/Y-X-G frequency at the interface.
Similar to the clash filter, the motifs are identified using an efficient algorithm based on DPG and octree
based spatial decomposition.

2.5.8 Interface Area Filter:

Penalizes a docking pose if the interface area is outside some user-defined range. Weighted quadra-
ture/integration points from the surface of each molecule (see Section 4.3.2). Sum of the weights of all
such integration points is equal to the molecular surface area up to quadrature approximation error, and
each integration point can be treated as the center of a small surface patch with its weight being the
patch area. Hence we approximate the interface area as a sum of the weights of all integration points
of one molecule within a user-specified cutoff distance from any integration point on the other molecule.
We use our DPG data structure to compute this sum in time linear to the total number of atoms in the
two molecules.

2.6 Energy based reranking

The solvation energy Esol consists of three parts:

Esol = Ecav + Evdw(s-s)︸ ︷︷ ︸
nonploar

+Epol︸︷︷︸
polar

The first two terms are often modeled as [15, 40]

Ecav = pV +
∑
i

γiAi and Evdw(s-s) = ρ0

∑
i

∫
ex

u
(att)
i (xi, r)d3r

where p is the solvent pressure, V is the molecular volume, Ai is the solvent accessible surface area of
atom i and γi is its solvation parameter, ρ0 is the bulk density, and u(att)

i is the van der Waals dispersive
component of the interaction between atom i and the solvent.

The last term, Epol, can be approximated using Generalized Born (GB) theory [39].

Epol = −τ
2

∑
i,j

qiqj√
r2
ij +RiRje

−
r2
ij

4RiRj

, (2.1)

where τ = 1− 1
ε , and Ri is the effective Born radius of atom i.

GB-rerank approximates each of these terms as described in the following sections, and reranks the list
of top docking poses produced by F2Dock based on the resulting ∆Esol values. In order to approximate
∆Esol, GB-rerank precomputes the Esol values for molecules A and B, and then computes Esol for each
docking pose. See [12] for details.

2.7 Dynamic Packing Grid Data Structure

The Dynamic Packing Grid (DPG) is a neighborhood data structure for maintaining and manipulating
flexible molecules. It can be used to efficiently maintain the molecular surface and to compute binding
affinities and other molecular properties.

13

Assuming that the centers of two different balls in the collection cannot come arbitrarily close to
each other, on a RAM with w-bit words, the DPG data structure can report all balls intersecting a given
ball or within O (rmax) distance from a given point in O (log logw) time with high probability (w.h.p.),
where rmax is the radius of the largest ball in the collection. It can also answer whether a given ball is
exposed (i.e., lies on the union boundary) or buried within the same time bound. At any time the entire
union boundary can be extracted from the data structure in O (m) time in the worst-case, where m is
the number of atoms on the boundary.

2.7.1 Description (Layout) of the Packing Grid Data Structure

DPG represents the entire 3-space as a 2rmax-grid, and maintain the non-empty grid-planes, grid-lines
and grid-cells. Note that a grid component (i.e., cell, line or plane) is non-empty if it contains the center
of at least one ball in M . The data structure can be described as a tree with 5 levels: 4 internal levels
(levels 3, 2, 1 and 0) and an external level of leaves (see Figure 2.5). The description of each level follows
(further details are available in ([2])).

The Leaf Level “Ball” Data Structure (DPG−1). The data structure stores the center c =
(cx, cy, cz) and the radius r of the given ball B. And other application specific details. For exam-
ple, for surface maintenance, we compute the spherical arrangement on the surface of the ball and store
the patches, for solvation energy computations, we store the Born radius etc.

Figure 2.5: Hierarchical structure of DPG

The Level 0 “Grid-Cell” Data Structure (DPG0). A grid-cell maintains a list of pointers to data
structures of the O (1) balls whose centers lie inside the cell. Since we create “grid-cell” data structures
only for non-empty grid-cells, there will be at most n (and possibly � n) such data structures.

The Level 1 “Grid-Line” Data Structure (DPG1). We create a “grid-line” data structure for a
(b, c)-line provided it contains at least one non-empty grid-cell. Each (a, b, c)-cell lying on this line is
identified with the unique integer a, and the identifier of each such non-empty grid-cell is stored in an
integer range search data structure RR described by Mortensen et al. ([35]). We augment RR to store
the pointer to the corresponding “grid-cell” data structure with each identifier it stores.

The Level 2 “Grid-Plane” Data Structure (DPG2). A “grid-plane” data structure is created for
a c-plane provided it contains at least one non-empty grid-line. Similar to the “grid-line” data structure
it identifies each non-empty (b, c)-line lying on the c-plane with the unique integer b, and stores the
identifiers in a range reporting data structure RR.

The Level 3 “Grid” Data Structure (DPG3). This data structure maintains the non-empty grid-
planes in an integer range reporting data structure RR in a similar way where each c-plane is identified
by the unique integer c.

14

2.7.2 Supported query/update

Let M be a collection of n balls with radii r1, . . . , rn and centers at c1, . . . , cn. Let rmax = maxi {ri} and
let dmin = mini,j {d(ci, cj)}, where d(ci, cj) is the Euclidean distance between ci and cj . DPG supports
the following queries and functions (the time complexities are mentioned in Table 2.2)-

Queries

1. Intersect(c, r): Returns all balls intersecting B = (c, r).

2. Range(p, δ): Returns all balls with centers within distance δ of point p. We assume that δ =
O(rmax).

3. Exposed(c, r): Returns true if the ball B = (c, r) ∈ M contributes to the boundary of the union
of the balls in M .

4. Surface(): Returns the outer boundary of the union of the balls in M . If there are multiple
disjoint outer boundaries defined by M , the routine returns one of them.

5. Add(c, r): Adds a new ball B = (c, r) to the set M .

6. Remove(c, r): Removes the ball B = (c, r) from M .

7. Move(c1, c2, r): Moves the ball with center c1 and radius r to a new center c2.

Time Complexity (w.h.p.)

Operations
Assuming

tq = O (log logw)
tu = O (logw)

Assuming
tq = O (log logn)

tu = O
“

log n
log log n

”
Range, Intersect,

Exposed
O (log logw) O (log logn)

Add, Remove,
Move

O (logw) O
“

log n
log log n

”
Surface O (#balls on surface) (worst-case)

Assumptions: (i) RAM with w-bit Words,
(ii) Collection of n Balls, (iii) δ = O (rmax) and,

(iv) rmax = O (min. dist. between two balls)

Table 2.2: Time complexities of the operations supported by the packing grid data structure.
See [4] for details of each update/query, surface maintenance and energetics computations.

15

Chapter 3

Software Implementation

3.1 F2Dock

The implementation of F2Dock follows a simple pattern. Each part of the docking pipeline discussed in
Sections 2.3 to 2.5 have been implemented as separate dynamically linked libraries. A single controller
class is also implemented which uses these libraries and follows the pathway shown in the flowchart in
Figure 2.1.

Figure 3.1: Dependency diagram of F2Dock. The overall pipeline is controlled by the library named
libF2Dock. Individual components are implemented in the other corresponding libraries.

In Figure 3.1 we show the major libraries of F2Dock. A brief overview of the functions of these
libraries are presented here-

3.1.1 libF2Dock

This library parses the parameters values passed to it as a file (see Section 5.1.1 for details), and based
on the selected values, it decides which parts of the pipeline are to be eecuted. This library also parses
the input files including pqr, pdb and f2d files (see Chapter 4) and populates internal data structures.
After the pipeline is completed, this library also has the job of preparing and storing the output file.

16

3.1.2 libfftUtils, libfftw3, libvol

These libraries acts as wrappers to enable the libF2Dock to use the FFTW3 software package by preparing
the FFTW related parameters and grid-values. These libraries also support inverse-FFT as well as fast
multiplication routines for the FFT grids. In other words, the shape-complementarity and electrostatics
scoring are carried out with the functions implmented in these libraries.

3.1.3 libDPG

This library implements the Dynamic Packing Grids data strucure for molecular surface maintenance and
nearest neighbor queries. The library is heavily used in all the filtering computation including Lennard-
Jones filter, Clash Filter, Hydrophobicity filter, Residue Contact filter as well as the hydrophobicity,
solvation energy based scoring terms.

Figure 3.2: The class diagram for DPG

Figure 3.2 shows the class diagram of DPG. Note that it is possible to inherit the Point class to
maintain application specific information. Also, this implementation builds on binary search trees,
dynamic perfect hashing, and y-fast trees. However, instead of dynamic perfect hashing we used “cuckoo
hashing” ([36]).

3.1.4 libfastClash

This library computes the number of clashes between two proteins in a given pose. Two atoms a ∈ A
and b ∈ B with van der Waals radii ra and rb, respectively, are said to be in a clash provided the distance
between their centers is smaller than α(ra + rb), where α is a user-defined positive constant. Clashes are
identified by first applying hierarchical subdivision (oct-tree) to identify neighbor nodes of the tree and
then libDPG is used locally to detect atom-atom clash.

3.1.5 libfastLJ

This library approximates the Lennard-Jones (LJ) potential between molecules A and Bt,r given by the
following expression.

LJ(A,Bt,r) =
∑

i∈A,j∈Bt,r

(
aij
r12
ij

− bij
r6
ij

)
,

17

where rij is the distance between atoms i ∈ A and j ∈ Bt,r, constants aij and bij depend on the type
(e.g., C, H, O, etc.) of the two atoms involved. A positive value indicates a electrostatic clash in a
docked pose. However for unbound-unbound docking, it allows soft filtering to allow some clashes.

Similar to Clash filter, this also uses Oct-tree and libDPG to compute the clashes optimally in O(n)
time instead of O(n2).

3.1.6 libfastHydro

This library implements fast interface propensity computations optimized using spatial decomposition
and nearest neighbor queries to detect residue-residue contacts on the interface. Details can be found in
[12].

3.1.7 libfastGB

This library computes the difference of polarization energy between the proteins in isolation and in a
docked pose. Epol is approximated using Generalized Born (GB) theory [39].

Epol = −τ
2

∑
i,j

qiqj√
r2
ij +RiRje

−
r2
ij

4RiRj

, (3.1)

where τ = 1− 1
ε , and Ri is the effective Born radius of atom i given by Equation (3.2).

1
R3
i

=
3

4π

∫
ex

1
|r− xi|6

d3r, i ∈ [1,M]. (3.2)

However, we approximate the Born radii from the discrete approximation by applying the divergence
theorem and Gaussian quadrature on Equation (3.2).

1
Ri

3 ≈
1

4π

N∑
k=1

wk
(rk − xi) · ~nk
|rk − xi|6

. (3.3)

First all Born radii of the molecule/complex are computed using a fast approximation scheme de-
scribed in [13]. A fast algorithm for estimating Epol [13] from the approximated Born radii is also
implemented.

3.1.8 libresCont

This filter uses statistical information on residue-residue contact preferences described in [19] in order
to penalize potential false positives. These contact preferences were derived from a nonredundant set
of 621 protein-protein interfaces of known high resolution structures. The implementation is similar to
that of the interface propensity (hydrophobicity) filter.

3.1.9 libutils, libfastPQ, libmath

These libraries contain utility routines for basic mathematical operations, string comparisons and parsing,
memory management etc.

3.2 GB-rerank

GB-rerank reranks a list of candidate docking poses based on approximate solvation free energy of
binding. It coinsists of the libraries shown in Figure 3.3, and explained in the next few sections.

18

Figure 3.3: Dependency diagram of GB-rerank. Some libraries are shared with F2Dock.

3.2.1 libGBrerank

libGBrerank computes solvation energy as

Esol = Ecav + Evdw(s-s)︸ ︷︷ ︸
nonploar

+Epol︸︷︷︸
polar

It uses the libfastGB explained in Section 3.1.7 to compute the polarization energy Epol and a
separate library named libfastDespersion to compute the other two terms.

Finally it uses a weighted sum of the score of F2Dock and the solvation free energy to produce a
score with which the candidate poses are reranked.

3.2.2 libfastGB

See Section 3.1.7.

3.2.3 libfastDispersion

The solute-solvent van der Waals interaction energy (also known as dispersion energy) is modeled by the
following equation derived from the model of [15, 40]

Evdw(s-s) ≈ ρ0
4π
3

M∑
i=1

1
R3
i

(3.4)

where Ri is the discrete approximation of Born radii with the R6 model. Hence the computation follows
from the computation of fast Born radii (see Section 3.1.7).

To compute ∆Ecav, Instead of computing Ecav for A, B and each A+Bt,r separately, we approximate
it with the buried surface area of A + Bt,r which is approximated using the same algorithm used for
interface propensity filter in Section 3.1.6.

3.3 TexMol

TexMol is a software package for molecular computations and visualization.
It has built in support for visualizing proteins and RNA in a number of ways including Van der Waals

surface, Lee Richards surface, Solvent excluded surface. It can open files in PDB, PQR, XYZ or XYZR
format. TexMol is also capable of volume rendering.

TexMol also provides a front-end to many other in-house software including MolSurf, F2Dock, MolEn-
ergy and Pocket/Tunnel extraction. MolSurf provides libraries for constructing hierarchical models of
molecules, extracting/identifying interface atoms, computing molecular surface representation, meshing
and mesh refinements etc. MolEnergy provides libraries for efficient computations of molecular poten-
tials amd forces including electrostatics (Lennard-Jones), solvation energy in genralized Boltzman (GB)
model, or the Poisson Boltzman (PB) model. And finally, it includes a front-end for F2Dock.

The complete TexMol package is too large to describe in the scope of this tutorial. Hence we shall only
concentrate on TexMol’s GUI support for F2Dock. Interested users can refer to [3] for details about the
visualization pipeline of TexMol. Details about other supported software (MolSurf/MolEnergy), tutorials
and link to publications can be found at http : //www.cs.utexas.edu/ bajaj/cvc/software.shtml.

19

3.3.1 Client/Server model of TexMol and F2Dock

TexMol does not include F2Dock as a library. Rather, F2Dock, GB-rerank, MolSurf as well as other re-
quired software are installed on a remote computing cluster. TexMol provides GUI to let users prepare dif-
ferent parameters related to surface generation, docking, reranking etc., selecting molecules (PDB/PQR)
and submit jobs. TexMol communicates the parameters as well as the necessary input files to the a server.
The server, named F2Dock server, recieves the job requests and executes the required softeware on the
cluster. The folw is shown in Figure 3.4.

Figure 3.4: Client-server communication between TexMol and F2Dock server

3.3.2 XML-RPC: the communication protocol

TexMol communicates with the F2Dock server using the XML-RPC protocol. The XML-RPC protocol
encapsulates the data as well as the command in XML format and invokes a remote procedure call
(RPC) to a designated network address and port. If another XML-RPC capable server installed at that
address is programmed to listen to that port, then it receives the XML encoded message, executes the
corresponding routine, and returns an appropriate response. We have chosen to use this protocol because
it is available open source and also able to seamlessly communicate between software written in different
languages. In other words, the F2Dock server has the ability to communicate with TexMol (written in
C++) as well as a web server (written in java).

3.3.3 F2Dock support classes in TexMol

TexMol provides a number of GUI as well as command line interfaces for preapaing, submitting, moni-
toring and displaying docking jobs and results. See Sections 5.2, 6.2 and Chapter 4 for details about the
usage of those UI. In this section we provide a very high level list of the classes and their functions.

Figure 3.5: High level sketch of the F2Dock support classes in TexMol

20

Figure 3.5 shows the list of classes in the F2DockClient library of TexMol and the main comunication
pattern between them. Note that, this is neither a standard class diagram, nor a data flow diagram.
Please refer to the software documentation for further technical details.

The classes are designed based on the Model-View-Control (MVC) framework. There is a user inter-
face class (View) for each of the major functions, namely- Job Management, Docking Parameter Selection,
Reranking Parameter Selection, F2d/Quad Generation, Viewing the Results and finally Rendering the
results. The data modified/used by each of these UI are defined in separate data classes (Model). The
data classes provide functions to set up default values, update/retrieve values, check for consistency and
validity etc. And finally, for each of the UI, a controller class (Control) is defined, which enables com-
munication between the UI and the Data classes and also communicates with other control classes. The
control class also ensures that a proper sequence of actions is followed, and prevents crashes/exceptions.
However, there are also a few control classes which deal with XMLRPC communication support with
the server.

Below we briefly discuss the tasks of the classes-

• F2DockMasterDialog, F2DockMasterControl, JobParams, BasicParams: The F2DockMasterDialog
lets the user create, load, save and manage a number of jobs. The F2DockMasterControl class sup-
ports the operations of the dialog as well as acts as the launcher of other dialogs. It also acts as
the conduit for communication between other classes and the XMLRPC client. The Job and Basic
params classes are used to manage job and machine specific data.

• DockDialog, DockControl, DockingParams: DockDialog is used to display the default pa-
rameters to the user, letting the user to modify the parameters and specifying input/output file
paths. The DockingControl class verifies that all necessary input have been received and notifies
the F2DockMasterControl class. DockingParams are used to manage and verify the values of the
parameters of F2Dock (see Section 5.1.2 for a list).

• RerankDialog, RerankControl, RerankingParams: Similar to docking.

• F2dGenDialog, F2dGenControl, F2dGenParams: Similar to docking.

• QuadGenDialog, QuadGenControl, QuadGenParams: Similar to docking.

• ResultDialog, ResultControl, SummaryResults, DetailedResult: THe Dialog displays the
docking/reranking result as summaries and as detailed tabular lists. The dialog also displays pose
specific statictics like docking scores, energies, interface area, residue contacts etc. If a pose is
selected and a visualization mode is specified, it sends a update request to TexMol’s main window
via the F2DockMaster. The main window then displays the selected conformation. SummaryRe-
sults parses the docking/reranking output files, mines for summary and also prepares a list of
DetailedResults.

• F2DockClient, ConnectionParams F2Dock client implements a XML-RPC client and connects
to a remote server using the information from the ConnectionParams class. It sends the parameters
and inputs files and retrieves servre responses. It also supports a multi-threaded ‘Nagger’ class
which polls the server for updates regarding active jobs.

• FileManager FileManager retrieves and stores required output files from the server with the help
of F2DockClient class.

• CommandLineControl This class is instantiated instead of the F2DockMasterControl when
users use the command line version of TexMol. CommandLineControl takes the parameters from
the command line and, based on the type of job, works with the corresponding control class,
F2DockClient and FileManager to verify, prepare, submit and retrieve a job and its output.

21

Chapter 4

Input Preparation

4.1 Molecular representation

In this section we elaborate two schemes of representing molecules, namely the PDB file and the PQR
file.

4.1.1 PDB

This is probably the most common and widely used textual representation of proteins and other large
biomolecules. PDB is short for protein data bank, which maintains a database of solved protein structures
in a uniform format.

Format

In the PDB file, there is an optional header containing details about the biochemical properties, classi-
fication etc. of the molecule. It also contains transformation/replication matrices to build the complete
structure of the symmetric structure (and the structure of the assymetric unit is detailed in the body).

The most important part for the purpose of docking is the body of the file which consists of a
hierarchical list of atoms grouped into residues which in turn are grouped into chains. Each atom is
described by a single line of text.

Each line contains a unique serial number of the atom, its chain and residue number, the residue
type, atom type and the position of the atom center in Cartesian (XYZ) coordinates. The width and
position of each dataitem is fixed, which makes it easy to parse.

Preparation

For the purposes of docking, PDB files can be considered as input available at the outset, and hence
there is no need to prepare the file as a whole. The PDB files are usually prepared by crystallographers
and uploaded to the RSCB PDB database.

However, sometimes the PDB file may have missing atoms or residues which are later ‘inserted’ as
part of a curation process. Also some steric clashes might be present initially or as a result of such
insertions and hence residue locations (coordinates, not sequence) might need to be updated by looking
up rotamer libraries. Another curation step is the removal of crystallized water (solvent) molecules from
the structure.

4.1.2 PQR

PQR [14] files augment the PDB files by adding a radius and charge to each atom. Optionally, it is
possible to perform some of the curations listed in the previous section as well as adding Hydrogen
atoms to the residues.

22

Format

The PQR format leaves the original PDB format, in terms of the positions and width of each field,
unchanged. It appends the radius and charge as two new columns at the end of each line. However,
by default, the PQR file removes the chain ID and leaves the position blank. This can be addressed by
using a ‘–chain’ option while running the PDB2PQR software. But in that case, the resulting PQR file
sorts the atoms based on their residue ids and may not maintain the same ordering of atoms as the PDB
files.

Preparation

To prepare a PQR file from a PDB, one needs to install the PDB2PQR software. PDB2PQR is a software
packaged written in Python and available at http : //www.poissonboltzmann.org/pdb2pqr

The above website contains all the details about installing and running PDB2PQR.

4.2 Molecular surface representation

Many of computations in docking/reranking including solvation energy, shape complementarity etc.
depend on a smooth surface approximation of the proteins. Hence, the quality of the surface repreentation
is highly important. We use our inhouse software package MolSurf to compute such high quality surfaces
(RAW) and also approximate normals on them (RAWN).

4.2.1 RAW

The RAW file (with a file extension .raw) represents a surface mesh. The mesh is triangular by default,
but it is also possible to produce quad or hex meshing. The mesh itself is a collection of points and a
collection of simplices formed by connecting those points.

Format

The files starts by a single number n, representing the number of points on the mesh. This line is followed
by n lines of three floating point values representing the Cartesian coordinates of a point on the surface.

The second part of the file starts with the number of simplices m followed by m lines, each line
describing a single simplex. A simplex is a ordered list of vertices of the simplex. The vertices are
ordered counterclockwise when seen from the outside. Each vertex is referred to using a single integer
id between 0 and n− 1 corresponding to its position in the list of vertices.

Preparation

MolSurf includes a number of ways for generating a smooth surface from a PDB or PQR, including
techniques based on the Adaptive Grids, the High order level set, basic Gaussian blurring etc. We refer
the reader to the corresponding papers for further details of each method.

In the next section we detail the procedure of using MolSurf or TexMol to generate the RAW files.
However, the generated might contain ‘bad’ triangles or triangles containing angles which are too

acute. These might cause problems in some calculations including normal approximation and Gaussian
quadrature points sampling. So, MolSurf has additaional tools to improve the quality of any given mesh
and produce a triangulation containing well behaved triangles only.

To prepare the surface, one needs to install MolSurf or TexMol. See the installation instructions in
Sections 8.2.3 and 8.2.4. Though, we only mention MolSurf in the following examples, the Command is
exactly the same for TexMol. All that needs to be changed in the name of the program.

Preparing the surface The command shown in Figure 4.1 can be used.
The command requires a path to the input PDB file, the path where the generated surface should be

stored and an integer grid size g. The grid size specifies the the number of gridcells in a g × g × g grid.
Higher values of g would produce a better approximation of teh surface at the cost of a large number of
vertices and simplices. We suggest using g = 128 for molecules of the size of an average protein.

23

MolSurf -surfaceUsingAdaptiveGrid <input pqr file> <output raw file> <grid size>

Figure 4.1: Preparing surface (RAW) using MolSurf

MolSurf -qualityImprove <input raw file> <output raw file>

Figure 4.2: Improving surface quality using MolSurf

Note that, it is possible to produce the surface using the other techniques like Gaussian blurring.
Refer to TexMol’s manual for details about such methods. We have only mentioned the ablve technique
because it is the one used to prepare the dataset we have used with F2Dock.

Quality improvement The following command (Figure 4.2) accepts a mesh and produces a quality
improved mesh.

4.2.2 RAWN

The RAWN file adds normals to the surface mesh by approximating outward pointing normals at each
vertex of the mesh. Normals are neccessary while sampling Gauss quadrature points for solvation energy
computaion (see Section 4.3.2) as well as for generating the extra skin layer outside the surface of the
receptor (see section 4.3.1).

Format

The format is the same as the RAW format. The only difference is that each line describing a vertex
contains six floating point values, the first three gives the position of the vertex and the other three
represents the normal on that point.

Preparation

MolSurf (amd TexMol) provides tools to approximate the normals and produce a RAWN file. The
following command (Figure 4.3) accepts a mesh and approximates normal on the vertices.

Example

In Figure 4.4 we show the VdW surfaces of the ligand and receptor of the complex 1A2K. And side by
side we show the smooth solvent excluded surface (SES) generated by the methods described in this
section.

4.3 Internal files for docking and reranking

In this section we detail some file formats representing either the molecule or the surface in some formats
which are internally used by F2Dock or GB-rerank.

4.3.1 F2D

The F2D files is used to identify the skin and core regions of a protein, which are used to maximize skin-
skin overlap in F2Dock’s shape complementarity scoring (see Section 2.4 for details about this scoring
term).

Given a receptor A and a ligand B- we define the skin and core regions as follows.

MolSurf -normals -average <input raw file> <output rawn file>

Figure 4.3: Approximating normal at mesh vertices using MolSurf

24

(a) (b) (c)

(d) (e)

Figure 4.4: (a) The VdW surface rendered from the PQR file of the ligand of the complex with
PDBID=1A2K. (b) The corresponding smooth surface (SES). (c) The surface colored by Mean cur-
vature values. (d) The VdW surface rendered from the PQR file of the receptor of the complex with
PDBID=1A2K. (e) The corresponding smooth surface.

• All atoms of B, which are partially exposed to the solvent (contributes to the SES) are marked as
skin. The remaining atoms of B are marked as core atoms.

• All atoms of A are considered core atoms. A separate floating layer (slightly offset from the SES)
of atoms are artifically added and are considered the skin.

Generating the F2D files involve the detection of surface atoms for the ligand and the population of
the grown skin for the receptor. Both these functions are implemented as part of MolSurf.

The original version of F2Dock used the traditional double skin layer approach for shape comple-
mentarity. Two skin regions are defined (see Figure 4.5): (1) the complementary region of A, defined by
a grown skin region, by introducing a 1-layer of pseudo-atoms on the surface of A, each with the same
radius which is chosen to make its size comparable to that of a solvent molecule, and (2) the surface
skin of B, which consists of the surface atoms of B.

The current version of F2Dock uses an improved version of the traditional double-skin layer approach
described above which differs from the traditional approach in the following ways (see Figure 4.6). The
receptor skin layer does not touch the receptor van der Waals surface (i.e., there is a gap between the
skin and the core regions), and also the radius of those skin atoms differ from that in the traditional
approach. In our experiments pseudo skin atoms of radius 1.1Å with their centers placed at a distance

25

Figure 4.5: Traditional double
skin-layer approach for shape
complementarity [41, 22, 27, 10]
which is also used in the first ver-
sion of F2Dock [5].

Figure 4.6: Skin and core definitions and weights in the current version of F2Dock.

of 1.7Å from the receptor vdW surface (so there is a gap of 0.6Å) performed much better than the
traditional approach where pseudo atoms of radius 1.4Å are placed touching the receptor vdW surface.

Format

The F2D file format is the same as a PQR file with an additional column added at the end. This
additional column contains a characted I/E, where I stands for internal (i.e. core atom) and E stand
for external (i.e. skin atom).

Additionally, the F2D file of the receptor contains extra (groen skin) atoms at the end. Their types
are specified as ‘HETATM’. The atom ID continues in increasing order from the highest atom ID of the
original molecule. Similar rule is applied for the residue and chain IDs. The position (XYZ coordinates)
are determined by the algorithm we discuss in the next section. The radii of all the grown atoms is the
same and can be defined by the user while generating the F2D files.

Preparation

Growing the floating skin for receptor The function in Figure 4.7 of MolSurf generates the grown
floating skin layer for a receptor-

Given a pqr file and a quality improved surface with normals (rawn), the function places pseudo-skin
atoms r+ f distance away along the normal from each point on the surface, where r is the user-specified
radius of the pseudo-atoms and f is the width of the floating band. It uses a neighborhood data structure

MolSurf -populateSASUsingMesh <pqr file> <rawn file> <xyz output file> <r> <f> <g> 0

Figure 4.7: Creating a floating skin layer outside the receptor surface using MolSurf

26

MolSurf -getSurfaceAtoms <input pqr file> <output xyz file>

Figure 4.8: Identifying the surface atoms of the ligand using MolSurf

MolSurf -generateF2d <pqr file> <xyz file> <f2d file> <receptor=1/ligand=0> 0

Figure 4.9: Identifying the surface atoms of the ligand using MolSurf

(DPG) to ensure that centers of any two of the added pseudoatoms are at least g distance apart from
each other. The output is a list of positions for the pseudo-atoms.

Identifying the surface atoms of the ligand The function in Figure 4.8 of MolSurf identifies the
surface atoms of a ligand.

This function takes the pqr file of the ligand and produces a list of atoms each marked as inter-
nal/external.

Creating F2d After the XYZ files have been produced by the either of above two schemes, generating
the F2D file only requires consolidating the information present in the PQR and the XYZ files. The
following function is available to do it.

Generating F2D using TexMol

TexMol also provides easy to use methods for generating F2D files directly from the PDB files. The user
can optionally store the intermediate files (PQR, XYZ, RAWN etc.). TexMol submits the PDB files to a
remote server which is running MolSurf and retrieves the outputs when they are ready. TexMol provides
both a graphical and a command line interface for this.

Using TexMol in command line To produce f2d files from pdbs, the following command need to
be executed.

./TexMol -f2dgen <>.inp

Figure 4.10: Generating f2d files using the command line interface of TexMol

The input file (which must have a .inp extension) contains exactly three lines.

staticMoleculePDB <>.pdb
movingMoleculePDB <>.pdb
resolution <int>

staticMoleculePDB and movingMoleculePDB specify the pdb file of the receptor and the ligand
respectively. resolution specifies the size of the grid used and should be 64, 128 or 256. After completion,
the pqr and f2d files are stored.

Using TexMol with graphical interface The interface shown in Figure 4.11 can be launched from
the main window (see Section 5.2.1) of F2Dock in TexMol.

The user can select two pdb files (receptor and ligand) and a resolution (fine = 256x256x256, medium
= 128x128x128 and coarse = 64x64x64), and choose to save the generated f2d and/or pqr files.

Example

In Figure 4.12 we show the VdW surfaces of the ligand of the complex 1A2K. The ligand’s surface atoms
and internal atoms are then detected by the methods decribed above to produce an F2D file. In the
same figure we show the core (extracted from the F2D file) atoms of the ligand separately. The skin
atoms are the remaining ones.

27

Figure 4.11: F2d Generation using the graphical interface of TexMol

(a) (b)

Figure 4.12: (a) The VdW surface rendered from the PQR file of the ligand of the complex with
PDBID=1A2K. (b) The core atoms of the ligand

In Figure 4.13 we show the VdW surfaces of the receptor of the complex 1A2K. A floating layer of
pseudoatoms are added outside the molecule to form a skin layer and the information is stored in the
F2D file. The figure shows the original receptor molecule (Figure 4.13(a)) and with the grown skin which
encapsulates all the original atoms (Figure 4.13(b)). Then Figure 4.13(c) shows the core and the skin
together by clipping the skin at x = 20. Figure 4.13(d) shows a zoomed in view to highlight the empty
band between the skin and the core.

4.3.2 QUAD

The QUAD files contains Gaussian integration (quadrature) points sampled on a smooth surface. See
[7, 13] for details about the sampling procedure. The sampled points themselves are used for Born
radii approximation and solvation enrgy computation in the Generalized Born model (see Section 2.6 for
details).

Format

Each line of the quadrature points file contains the description of an integration point on the surface of
the molecule. Each such line consists of 7 floating point numbers: the first three are the co-ordinates of
the point followed by three floating point numbers giving the x, y and z components, respectively, of the
unit outward surface normal at that point, while the last one is the weight given to that point.

28

(a) (b)

(c) (d)

Figure 4.13: (a) The VdW surface rendered from the PQR file of the receptor of the complex with
PDBID=1A2K. (b) The receptor with a grown skin layer. (c) The skin and core of the receptor (core
colored by residue types for better visualization). (d) A close up view of the skin-core separation.

Preparation using MolSurf

The following command (Figure 4.14) accepts a mesh with normals and samples integration points.

Preparation using TexMol

Both the command line and the graphical interface for QUAD file generation in TexMol is quite similar
to the F2D file generation.

Using TexMol in command line To produce quad files from pdbs, the following command need to
be executed.

The input file format is the same as f2d generation. After completion, the pqr, rawn (surface) and
quad files are stored.

29

MolSurf -aSpline -quad <input rawn file> gaussian 1 <output quad file>

Figure 4.14: Sampling Gaussian integration points on a surface mesh using MolSurf

./TexMol -f2dgen <>.inp

Figure 4.15: Generating quad files using the command line interface of TexMol

Using TexMol with graphical interface Same as F2d generation.

Example

In the example in Figure 4.16 we show the quadrature points generated by the above mentioned methods
for the receptor of the 1A2K complex.

(a) (b) (c)

Figure 4.16: (a) The VdW surface rendered from the PQR file of the receptor of the complex with
PDBID=1A2K. (b) The corresponding smooth surface (SES). (c) Gaussian integration points sampled
on the smooth surface.

30

Chapter 5

Docking

The docking pipeline consisting search, score and filter (as explained in Section 2) are implemented in
the F2Dock software. The basic version of this software has a command line interface only. Users can
execute the program by passing it a file which lists the parameters and location of input files. However,
we have also developed a user-friendly graphical user interface which can be used to interactively prepare
the inputs and other parameters, run F2Dock, retrieve/store the results, and also analyze and visualize
the results in detail. This graphical interface is part of TexMol.

This chapter describes both of these in detail.

5.1 Docking from the command line: F2Dock basic

Once the F2Dock executable is properly installed (see Section 8.2.1 for installation instructions), it can
be executing simply by the following command-

The command would start executing F2Dock’s pipeline and at the end produce a output file containing
details of the predicted conformations.

The format of the parameter file, explanation of the parameters and the format and content of the
output file are explained with examples in the next subsections.

5.1.1 The parameter file

The parameter file contains a sequence of lines. Each line specifies the value of a parameter. Each line
starts by mentioning the name of the parameter and then provides a value for it.

A few parameters, like locations of input files, are mandatory and must be present in the parameter
file (Section 5.1.2). Other parameters are optional, and can be used to assign non-default values to
internal variables of F2Dock (Section 5.1.3). For example, F2Dock uses the clash filter by default, but
it is possible to turn it off. It is also possible to tweak the weights of the scoring terms.

In the next two subsections, the types, default values and purpose of the parameters are explained.
In the description, the following symbols are used to specify the types-

C: single character/letter
S: string of characters/letters
I: integer

F: floating point
B: Boolean (true/false)

F2Dock <paramFileName>

Figure 5.1: Executing F2Dock

31

movingMoleculePQR data/PQR/1A2K_l_u.pqr
staticMoleculePQR data/PQR/1A2K_r_u.pqr
complexType A
outFile output/1A2K_dock.out
...

Figure 5.2: Example parameter file for F2Dock

5.1.2 List of mandatory parameters

These parameters must be specified to execute F2Dock. For each file name parameter below the name
of the file must be specified with full path if it is not in the current folder. Details of these filetypes are
explained in Section 4.

- staticMolecule (S): Name of the F2D file for the molecule that is to be held stationary during docking.
Typically the static molecule is the larger of the two molcules to be docked.

- staticMoleculePQR (S): Name of the PQR file for the static molecule. Current version of F2Dock
only works on PQR files without chain information

- staticMoleculeQUAD (S): Name of the quadrature points file for the static molecule.

- movingMolecule (S): Name of the F2D file for the molecule that is to be moved around during
docking. Typically the smaller of the two molcules to be docked is treated as the moving molecule for
performance reasons.

- movingMoleculePQR (S): Name of the PQR file for the moving molecule.

- movingMoleculeQUAD (S): Name of the quadrature points file for the moving molecule.

- outFile (S): Name of the file to which F2Dock will output the potential docking solutions (poses).

5.1.3 List of optional/advanced parameters

F2Dock have been trained to learn default values (for different type of complexes) for the parameters
listed here. The values optimize the performance of F2Dock on ZDock 2.0 benchmark. However, we
have still kept the parameters open to the advanced users.

Complex Type

F2Dock’s default parameters were trained for four different complex types: antibody-antigen, enzyme-
inhibitor or enzyme-substrate, neither antibody nor enzyme, and unknown. The type itself can be
specified in the parameter file so that F2Dock can choose proper default values for other parameters.

- complexType (C): Type of the docked complex: A (antibody-antigen), E (enzyme-inhibitor or
enzyme-substrate), G (neither A nor E), and U (unknown). The default value is U in which case
F2Dock tries to identify the complex type itself (very successfully for antibody-antigen, and with mod-
erate success for enzyme-inhibitors and enzyme-substrates).

Output related parameters

- numSolutions (I): A positive integer giving the upper bound on the number of top docking poses
F2Dock should output. Default value is 20, 000.

- rmsdAtoms (S): Name of a text file containing the coordinates of the atoms of the moving molecule
that must be included in the RMSD calculation. If this parameter is not specified RMSD values will not
be calculated.

32

Parameter complexType
A E G

peaksPerRotation 3 2 4

Table 5.1: Default values for peaksPerRotation based on complexType.

Parameter complexType
A E G

skinSkinWeight 0.73 0.78 0.57
skinCoreWeight -0.31 -0.08 -0.23
coreCoreWeight 31.00 5.00 5.00

curvatureWeightingRadius 4.5 6.0 4.5

Table 5.2: Default values for various shape complementarity related parameters based on complexType.

Search space parameters

These parameters control the sampling of the R3×SO3 search space. These can be modified to trade-off
between speed and accuracy.

- rotFile (S): Name of a text file containing the rotations to be applied to the moving molecule during
docking. Each line of the file contains one rotation specified by three Euler angles.

- numRot (I): The top numRot rotations from rotFile are used. If left unspecified all rotations will be
used.

- peaksPerRotation (I): Only the top peaksPerRotation peaks will be retained for each rotation.
Default values are given in Table 5.1.

- gridSpacing (F): A positive floating point value giving an upper bound on the spacing (in Å) between
adjacent grid points in the 3D spatial FFT grid. F2Dock consults the effGridFile file in order to compute
a grid size so that the grid spacing does not exceed the upper bound provided by the user, and at the
same time FFT can be computed as efficiently as possible. Thus numFreq parameter depends on this
approximated grid spacing. The default upper bound is 1.2 Å.

- numFreq (I): A positive integer n specifying the number of frequencies n3 to be used during FFT
computations. If this parameter is not specified it is computed from the gridSpacing parameter.

- sparseFFT (B): If set to true the sparsity of the input and the output grids will be exploited for
faster computation. Default value is true.

- narrowBand (B): If set to true only the positions of the moving molecule that lie within a narrow
band around the static molecule will be considered for finding potential solutions, othewrise the entire
3D grid is searched. Default value is true.

Shape Complementarity

These parameters are used to control the weights of the shape complementarity terms and to specify the
nature of the skins. See [12] for details.

- skinSkinWeight (F): A positive floating point value specifying the reward given to unit skin-skin
overlap during shape-complementarity scoring. See Table 5.2 for default value.

- skinCoreWeight (F): Specifies the wight (reward or penalty) given to skin-core overlaps during
shape-complementarity scoring. Default value is given in Table 5.2.

- coreCoreWeight (F): A positive floating point value specifying the penalty given to unit core-core
overlaps during shape-complementarity scoring. See Table 5.2 for default value.

33

Parameter complexType
A E G

elecWeight 0.72 0.15 0.72
elecKernelVoidRad 0.0 3.0 0.0
elecKernelValLow 4.0 1.0 4.0

Table 5.3: Default values for various electrostatics related parameters based on complexType.

- singleLayerLigandSkin (B): If set to false the core atoms adjacent to the skin atoms of the moving
molecule are also considered part of the skin. Default value is false.

- curvatureWeightedStaticMol (B): If set to true the skin atoms of the static molecule are weighted
based on curvature. Default value is true.

- curvatureWeightedMovingMol (B): If set to true the skin atoms of the moving molecule are
weighted based on curvature. Default value is false.

- bandwidth (F): The width of the onion shell type bands of core atoms constructed for computing
depth-dependant core weights. Default value is 2 Å.

- gradFactor (F): The weight of the core atoms in any given shell is a factor of gradFactor more than
the weights of the core atoms in the shell just outside of it. Default value is 1.1.

Electrostatics

These parameters are used to control the electrostatics scoring.

- elecWeight (F): The weight given to the electrostatics score computed by F2Dock. See Table 5.3 for
default value.

- elecKernelVoidRad (F): Specifies the d0 distance in computing the distance-dependant dielectric
constant E(x) using Equation 5.1 given below (a generalization of the Gabb et al. expression [17]).
Default value is given in Table 5.3.

E(x) =


0 if ||x|| ≤ d0,
vl if d0 < ||x|| ≤ dl,
c1||x||+ c2 if dl < ||x|| ≤ dh,
vh if dh < ||x||,

(5.1)

where, c1 = vh−vl
dh−dl , and c2 = vl − dlc1.

- elecKernelDistLow (F): Specifies the dl distance in Equation 5.1. Default value is 6 Å.

- elecKernelDistHigh (F): Specifies the dh distance in Equation 5.1. Default value is 8 Å.

- elecKernelValLow (F): Specifies the vl value in Equation 5.1. See Table 5.3 for default value.

- elecKernelValHigh (F): Specifies the vh value in Equation 5.1. Default value is 80.

- elecRadiusInGrids (F): A positive floating point value specifying the constant radius of each atom
within which its charge is diffused using a Gaussian during electrostatics scoring. Default value is 2.9.

Hydrophobicity

- hydrophobicityWeight (F): Weight given to the ratio rh = interface hydrophobic score
interface hydrophilic score computed by

F2Dock. Default value is given in Table 5.4.

- hydrophobicityProductWeight (F): Weight given to the product rh × interface hydrophobic score
computed by F2Dock. Default value is 0.001.

34

Parameter complexType
A E G

hydrophobicityWeight 8.5 9.0 8.5
hydroRatioTolerance 8.0 8.0 10.0

hydroMinRatio 1.5 1.22 0.5
hydroRatioNumeratorLow 1.25 2.0 2.0

hydroRatioDenominatorLow 0.45 1.0 0.2
hydroRatioDenominatorHigh 2.5 7.0 6.0

Table 5.4: Default values for various hydrophobicity related parameters based on complexType.

- hydroRatioTolerance (F): A positive floating point value giving the upper bound on rh. If rh
exceeds this value rh is set to hydroPenalty (hydroPenalty = −10 in the current version). See Table 5.4
for default value.

- hydroMinRatio (F): A nonnegative floating point value giving the lower bound on rh. If rh is below
this value rh is set to hydroPenalty. Table 5.4 gives the default value.

- hydroRatioNumeratorLow (F): Lower bound on interface hydrophobic score. If this value is below
the lower bound rh is set to hydroPenalty. See Table 5.4 for default value.

- hydroRatioNumeratorHigh (F): Upper bound on interface hydrophobic score. If this value is above
the upper bound rh is set to hydroPenalty. Default value is 100.0.

- hydroRatioDenominatorLow (F): Lower bound on interface hydrophilic score. If this value is below
the lower bound rh is set to hydroPenalty. See Table 5.4 for default value.

- hydroRatioDenominatorHigh (F): Upper bound on interface hydrophilic score. If this value is
above the upper bound rh is set to hydroPenalty. Table 5.4 gives the default value.

- twoWayHydrophobicity (B): If set to false only the hydrophobicity of the atoms of the static
molecule is considered, otherwise both molecules are considered. Default value is true.

- useInterfacePropensity (B): If set to true interface propensity values from [24] are used, othewise
hydrophobicity values from [8] are used. Default value is true.

- perResidueHydrophobicity (B): If set to true per residue hydrophobicity values from [8] are used,
per atom hydrophobicity values [25] are used. Default value is true. If useInterfacePropensity is set to
true this parameter is ignored (i.e., always assumed to be true).

- staticMolHydroDistCutoff (F): A non-negative floating point value giving the maximum distance
from the surface of a core atom of the static molecule to the center of any skin atom in order to consider
that core atom for hydrophobicity calculation. Default value is 4.0 Å.

Other scoring terms

- hbondWeight (F): The weight given to the hydrogen bonding score computed by F2Dock. Default
value is 0.0.

- hbondDistanceCutoff (F): A positive floating point value specifying the surface to surface distance
upper bound between any pair of donor and acceptor atoms. The default value is 2 Å.

- simpleChargeWeight (F): Weight given to the simple charge complementarity score computed by
F2Dock. Default value is given in Table 5.5.

- simpleRadExt (F): The radius of each atom is extended by this value for simplified charge comple-
mentarity computation. Default value is 1.5 Å.

35

Parameter complexType
A E G

simpleChargeWeight 0.1 5.5 2.0

Table 5.5: Default values for various simple charge complementarity related parameters based on complexType.

Parameter complexType
A E G

clashTolerance 2 9 10
clashWeight -30 -0.5 -0.5

Table 5.6: Default values for various clash filter related parameters based on complexType.

Clash Filter

- applyClashFilter (B): If set to true clash filter is applied. Default value is true.

- eqmDistFrac (F): Two atoms are considered to be in a clash if the distance between the atom centers
is less than eqmDistFrac fraction smaller than the sum of their radii. Default value is 0.5.

- clashTolerance (I): Upper bound on the number of atomic clashes permitted. Default value is given
in Table 5.6.

- clashWeight (F): Weight given to each clash when added to the total score. See Table 5.6 for default
value.

Lennard-Jones Filter

- applyVdWFilter (B): If set to true Lennard-Jones filter is applied. Default value is true.

- vdWCutoffLow (F): If #clashes < clashTolerance / 2, poses with vdW potential ¿ vdWCutoffLow
are penalized. Default value is 0.0.

- vdWCutoffHigh (F): If #clashes ≥ clashTolerance / 2, poses with vdW potential ¿ vdWCutoffHigh
are penalized. Default value is given in Table 5.7.

- vdWEqmRadScale (F): All reqm values are multiplied by this factor. Default value is 0.3.

- epsilonLJ (F): Error control parameter (∈ (0, 1]) for Lennard-Jones potential. Default value is 0.5.

- useSSE (B): Is set to true SSE (Streaming SIMD Instructions) will be used for faster execution.
Default is false.

Hydrophobicity Filter

- applyPseudoGsolFilter (B): If set to true hydrophobicity filter will be applied. Default value is
true.

- pseudoGsolWeight (F): Weight given to the value (interface hydrophobic score)2

interface hydrophilic score computed by the hy-
drophobicity filter which is then added to the total score. Default value is 0.0. This parameter is now
redundant and will be removed.

Parameter complexType
A E G

vdWCutoffHigh 0.0 20.0 5.0

Table 5.7: Default values for various Lennard-Jones filter related parameters based on complexType.

36

- useInterfacePropensity (B): Same as in Hyrophobicity scoring term.

- perResidueHydrophobicity (B): Same as in Hyrophobicity scoring term.

Dispersion Filter

- applyDispersionFilter (B): If set to true dispersion filter will be applied. Default value is false.

- dispersionEnergyLimit (F): If the computed dispersion energy has value larger than dispersionEn-
ergyLimit it is set to dispersionEnergyLimit, and if it has value smaller than -dispersionEnergyLimit it
is set to -dispersionEnergyLimit. Default value is 1000.0.

- dispersionMinAtomRadius (F): Smallest permitted atom radius during dispersion energy calcula-
tion. Default value is 0.1 Å.

- dispersionWeight (F): Weight given to the dispersion energy value computed which is then added
to the total score. Default value is 0.0.

- epsilonBR (F): Error control parameter (∈ (0, 1]) for dispersion energy approximation. Default value
is 0.3.

Reranking

F2Dock has a built-in ‘soft’-reranking procedure. It uses the scores of the filters and a coarse grained
solvation energy computation to rerank the results. The parameters are-

- rerank (B): If set to true the output of F2Dock will be reranked based on various filters. Default
value is false.

- numRerank (I): Number of top solutions to rerank. Default value is 2000.

- applyAntibodyFilter (B): If set to true antibody filter will be applied which filters based on the
active sites on the antibody. Default value is true.

- applyEnzymeFilter (B): If set to true enzyme filter will be applied which filters based on the
abundance of Glycine residues. Default value is true.

- applyResidueContactFilter (B): If set to true filtering will be done based on residue contact pref-
erences (from Table III, page 94 of [19]). Default value is true.

- rerankerF2DockScoreWeight (F): Weight given to the original F2Dock score. Default value is
100.0.

- rerankerPseudoGsolWeight (F): Weight given to the value (interface hydrophobic score)2

interface hydrophilic score computed by
the hydrophobicity filter. Default value is 1.0.

Other params

- clusterTransRad (F): The radius of the level i ∈ [1, 3] cluster is i · clusterTransRad. Default value is
1.2 Å.

- clusterTransSize (F): Maximum number of docking poses (i.e., geometric center of the moving
molecule) in cluster i ∈ [1, 3] is i · clusterTransSize + ci, where c1 = 0, c2 = 1 and c3 = 3. Default value
is 1.

- numThreads (I): A positive integer specifying the number of concurrent threads to use. Default value
is 4.

- scoreScaleUpFactor (F): F2Dock scores are scaled up by this factor. Default value is 10, 000.

5.1.4 Making sense of the output file

The output file of F2Dock has some distinct parts, which are described in the following subsections.

37

The input header

The input header lists all the input parameters, both the defaults and the user-specified ones. The header
starts with the tag “INPUT PARAMETERS” and looks like Figure 5.3.

INPUT PARAMETERS:
#
numThreads = 4
breakDownScores = 0
numberOfPositions = 20
gridSize = 432
...

Figure 5.3: The input header in F2Dock’s output file

The output header

The results of docking are reported in tabular format. Each row of the result corresponds to a candidate
hit/conformation. The output header describes the format of table (i.e. the columns) by mentioning the
columnheaders and the type of variable it represents. See Figure 5.4.

OUTPUT FORMAT: 29
COLNAME rank int
COLNAME score float
COLNAME shape float
COLNAME ssr float
COLNAME ccr float
COLNAME scr float
COLNAME elec float
COLNAME hbond float
COLNAME hydrophobicity float
COLNAME smplcomp float
COLNAME vdw float
COLNAME clashes int
COLNAME pgsol float
COLNAME pgsolh float
COLNAME deldispe float
COLNAME mat1 float
COLNAME mat2 float
COLNAME mat3 float
COLNAME mat4 float
COLNAME mat5 float
COLNAME mat6 float
COLNAME mat7 float
COLNAME mat8 float
COLNAME mat9 float
COLNAME mat10 float
COLNAME mat11 float
COLNAME mat12 float
COLNAME conf int
COLNAME rmsd float

Figure 5.4: The output header in F2Dock’s output file

We explain each column below-

• rank = the rank of the hit (rank determined by score)

38

• score = total score (weighted sum of the terms)

• shape = score of shape-complementarity terms

• ssr = skin-skin overlap score

• scr = skin-core overlap score

• ccr = core-core overlap score

• elec = score of electrostatics term

• hbond = score of hydrogen bond term

• hydrophobicity = score of hydrophobicity term

• vdw = score of vdw filter

• clashes = number of clashes found in clash filter

• pgsol, pgsolh, deldispe = values found in interface-propensity filter

• mat1-mat12 = the transformation matrix that places the ligand to this specific conformation

• rmsd = the root mean squared distance between the locations of the interface atoms of the known
solution (if specified using the rmsdAtoms parameter), and the locations of those same atoms in
the current conformation

Detailed outputs These are N rows in the above mentioned format where N is the total number of
solutions. The solutions are listed by decreasing order of their rank. The section starts with a “START
PEAKS” tag.

START PEAKS
20 -13.48773 192.29153 0.00000 0.00000 ...

Figure 5.5: Detailed list of candidate solutions in F2Dock’s output file

The summary

The summary lists the number of hits (rmsd < 5Å) in the specific ranges of the ranked outputs. And
then also reports the highest ranked hit and the lowest rmsd hit.

Hits in Range:
[1, 1] --> 1
[1, 10] --> 4
[1, 100] --> 7
[1, 1000] --> 11
[1, 10000] --> 11
[1, 100000] --> 11
good peaks under 5 A: count = 2 highest rank = 1 min RMSD = 4.200000
#
best peak: rmsd = 3.600000 rank = 11 score = 158.247224

Figure 5.6: Summary of docking in F2Dock’s output file

39

5.1.5 Scripts

5.2 Docking via GUI: TexMol

TexMol provides a user-friendly interactive graphical interface to prepare, submit, manage docking jobs
and analyze the results. The docking (and reranking) dialogs can be launched by selecting ‘Dock’ from
the utilities menu of TexMol.

5.2.1 Job management

Once launched, the dialog shown in Figure 5.7 shows up. This dialog provides options to create new
docking/reranking and pqr/f2d/rawn/quad file generations, save created jobs, load previously saved jobs
and viewing available results.

Figure 5.7: Job management

The most important content of this dialog is the tabular list of active jobs. The list displays the
following for each job-

• Job Id: A unique integer id assigned by the server when the job was submitted.

• Job Type: The job could be of four possible types, namely Docking, Reranking, F2d Genera-
tion and Quad generation. The first two types are obvious, the last two types represent jobs for
generating the input files (see Section 4) only.

• Job Title: It is a string given by the user to refer to the job. It is useful for keeping track of jobs
if multiple jobs are submitted. If the user does not provide a title, TexMol generates a title basd
on time and date during the job submission phase.

– The title is used to store/load already created jobs. Each saved job corresponds to a file titled
‘Jobtitle.job’.

– The parameter list for docking (see Section 5.1.1), reranking etc. are created as ‘Jobtitle.inp’.

• Job Status: This column reports the status of a job. The status can be one of the following-

– Submitted: Once successfully created and submitted to the server, a job shows up on the list
and its status is set to Submitted. TexMol polls the server in the background for all incomplete
jobs in the list.

– Running: The status is updated to Running when the job exits the queue on the server and
actually starts executing.

40

– Complete: The status changes to Complete when the execution ends. Once it is completed,
the client (TexMol) automatically retrieves all required files/outputs from the server, stores
them.

– Available: The job status is changed to Available if all the required output is successfully
retrived frm the server and stored. The results of a job can be viewed when it is in Available
state.

– Error: Indicates that there was an error on the server side. If the error happens due to
connection problems, then it would be back to other non-error status, once the connection
working again. However, if the status remains Error for an extended period of time, then it
means that there must be something wrong with the input which is preventing F2Dock server
to process the job properly. In such cases, the user is requested to recheck the inputs and
resubmit.

• Files: Gives the name (and path) of the receptor pdb or pqr. This is mentioned only to provide
a easy for the user.

The buttons on this interface are explained below-

• Load/Save: Jobs can be saved anytime irrespective of the state and loaded in the future. Closing
a job would save it and remove it from the list. All these files are stored in the current directory.
Once a saved job is loaded, the status of the job dictates which functions is available for it and
whether TexMol would poll the server for updates. So, in effect users can simple submit a job,
save it and close TexMol. They can launch TexMol in the future, load the job and see the results
(if the server has processed the job already).

• Job submission: There are four buttons for submitting the four types of jobs. Each button
launches the corresponding dialog for preparing parameters and submitting jobs. Each of these are
described in separate sections, for example submitting docking jobs is described in Section 5.2.2.

• Dislay Result: This button is only active when an Available job is selected from the list. Once
clicked, the result UI is launched which enables the user to see the summary of the results (Section
5.2.3), the details about each candidate solution (Section 5.2.4) and visualize the conformations
(Section 5.2.5).

5.2.2 Prepare and submit a docking job

Figure 5.8 shows the first tab of the docking UI. Only the basic and essential options are exposed here.
The users can select two pdbs and submit it immediately with default values for other parameters.
Intermediate input files (pqr, f2d, rawn, quad) are autogenerated on the server. Note that, if an rmsd
file is specified, f2dock can compute and report the rmsd values and identify the number of hits on its
own.

The remaining three tabs provide more advanced options for finetuning to parameters and also for
making the jobs more efficient.

If the user intends to use the same pdb files for multiple docking jobs, then it is better to generate
the intermediate files once and use them later to reduce the computation time.

In Figure 5.9, the third and fourth tabs are shown- which can be used to pass and save intermediate
files respectively. If intermediate files are specified, then the server does not need to reproduce them and
hence it saves time. This is specially useful if the user intends to run several docking jobs with different
parameter values for the same complex. However, the user must be careful to ensure that the files are
consistent with each other. Note that, the fourth tab is used for specifying which of in intermediate
files (either user specified or generated at the server) need to be stored/retrieved once the docking job
completes. These files are stored using the same path as the given pdbs and only the file type extension
is modified.

Finally, the second tab (Figure 5.10) exposes some advanced parameters (see Section 5.1.3 for details
about these parameters).

Note that sometimes it becomes tedious to select/change the values of parameters one by one. So,
there is also an option to upload a user-defined .inp file directly.

41

Figure 5.8: Basic Options for docking

5.2.3 Summarizing the result

Once the results are available, they are displayed in the UI shown in Figure 5.11. The table on the left
lists all the results by mentioning the rank, score and rmsd (if available). If it was a reranking job, then
the new rank and new score are also shown.

On the right panel, the summary of the result is displayed. It reports the number of hits in different
ranges, the best hit, the topranked hit and the time.

5.2.4 Analyzing each conformation

Individual results can be selected from the list on the left to see details about that result. These details
are displayed in the tab shown in Figure 5.12. The details include breakdown of the scores of different
scoring terms and filters and the transformation. The selected result can be stored as a transformed
pdb of the ligand. This is useful if the user is interested in doing further informatics like binding affinity
calculations, area/volume estimation etc.

Interface statistics including interface area, interface planarity, interface distance/volume etc., statis-
tics of residue-residue contact on the interface, presence of hydrophilic voids between interfaces etc. are
detailed in the interface details tab.

5.2.5 Visualizing each conformation

Selected conformations are immediately rendered on TexMol’s main interface. By default, all the selected
conformations are displayed together in Union of balls mode of rendering. However, the user can control
the rendering by changing several options from the visualization parameters tab.

Specifically, the user may select to render in either union of balls (NURBS based rendering) mode
(Figure 5.13(a)), or the smooth molecular surface (Figure 5.13(b)). If the user selects the smooth
molecular surface, then there is further options to color the surface by different potentials. The user is
also able to select whether only one ligand position is displayed at a time, or several is displayed at the
same time (which might be a better choice for comparison purposes).

42

Figure 5.9: Intermediate file management. Top: passing intermediate files to the server. Bottom:
choosing to store intermediate files so that they can be used in later docking runs

5.2.6 Performance tips

5.2.7 Command line version

TexMol also provides a command line interface which is useful to submit batch docking jobs to a remote
server. The following command submits a remote docking job to the server.

43

Figure 5.10: Advanced Options for docking

Figure 5.11: Summary of docking result

44

Figure 5.12: Details of individual results

45

Figure 5.13: Rendering selected conformations. (a) Union of Balls. (b) Smooth molecular surface.

./TexMol -dock <parameter file name>

Figure 5.14: Submitting remote docking job

46

Chapter 6

Reranking

Binding free energy based reranking (as explained in Section 2) is implemented in the GB-rerank software.
Along with a command line interface suitable for batch processing, we have developed a user-friendly
graphical user interface as part of TexMol. This chapter describes both of these in detail.

6.1 Reranking from the command line: GB-rerank

Once the GB-rerank executable is properly installed (see Section 8.2.2 for installation instructions), it
can be executing simply by the following command-

This procedure takes in the output of a docking software and produces a reranked list of the confor-
mations. The format of the parameter file, explanation of the parameters and the format and content of
the output file are explained with examples in the next subsections.

Currently, GB-rerank only accepts docking output files which conform to the format of F2Dock’s
output file (see Section 5.1.4 for details of the format). However, we have developed scripts which can
convert output files of other popular docking software into the format accepted by GB-rerank.

6.1.1 The parameter file

Similar to F2Dock, the parameter file of GB-rerank contains a sequence of lines. Each line specifies the
value of a parameter. Each line starts by mentioning the name of the parameter and then provides a
value for it.

A few parameters, like locations of input files (PDB/PQR, QUAD), and docking output file are
mandatory and must be present in the parameter file. Other parameters are optional, and can be used
to assign non-default values to internal variables.

6.1.2 List of mandatory parameters

- staticMoleculePQR (S): Name of the PQR file for the static molecule. Current version of F2Dock
only works on PQR files without chain information

- staticMoleculeQUAD (S): Name of the quadrature points file for the static molecule.

- movingMoleculePQR (S): Name of the PQR file for the moving molecule.

- movingMoleculeQUAD (S): Name of the quadrature points file for the moving molecule.

- dockingOutputFile (S): Name of the file to which F2Dock wrote the output containing the potential
docking solutions (poses).

GB-rerank <paramFileName>

Figure 6.1: Executing GB-rerank

47

movingMoleculePQR data/PQR/1A2K_l_u.pqr
staticMoleculePQR data/PQR/1A2K_r_u.pqr
numRerank 2000
dockingOutputFile output/1A2K_dock.out
rerankingOutputFile output/1A2K_rerank.out
...

Figure 6.2: Example parameter file for GB-rerank

- rerankingOutputFile (S): Name of the file to which GB-rerank will write the reranked list of poses.

6.1.3 List of optional/advanced parameters

- numRerank (I): Number of top solutions to rerank. Default value is 2000.

- rerankerF2DockScoreWeight (F): Weight given to the original F2Dock score. Default value is
100.0.

- spectrum (S): The spectrum parameter is a string of the form: “a1:b1-a2:b2-a3:b3...” which says that
the top a1 results in the reranked output must not have original F2Dock rank larger than b1, the next
a2 results must not have F2Dock rank larger than b2, and so on. By default this “spectrum” parameter
is empty (i.e., not set).

6.1.4 Making sense of the output file

The output file of GB-rerank has exactly the same distinct parts as F2Dock (described in Section 5.1.4).
However it adds four additional columns in the detailed list of conformations and sorts the conformations
based on their new ranks.

The additional columns are-

• new rank: rank of this docking result after GB based reranking

• new score: new score computed from delgpol and original F2Dock score

• delgpol: reduction in polarization energy in kcal/mol

• areaprop: approximation to constant * surfaceArea

6.1.5 Scripts

6.2 Reranking via GUI: TexMol

TexMol provides a user-friendly interactive graphical interface to prepare, submit, manage reranking
jobs and analyze the results. The dialogs can be launched by selecting ‘Dock’ from the utilities menu of
TexMol.

6.2.1 Job management

See Section 5.2.1

6.2.2 Prepare and submit a reranking job

Figure 5.8 shows the first tab of the reranking UI. Only the basic and essential options are exposed here.
The users can select two pdbs, and a docking output file and submit it immediately with default values
for other parameters. Intermediate input files (pqr, quad) are autogenerated on the server.

In Figure 6.4, the third and fourth tabs are shown- which can be used to pass and save intermediate
files respectively. If intermediate files are specified, then the server does not need to reproduce them and

48

Figure 6.3: Basic options for reranking

hence it saves time. This is specially useful if the user intends to run several docking jobs with different
parameter values for the same complex. However, the user must be careful to ensure that the files are
consistent with each other. Note that, the fourth tab is used for specifying which of in intermediate
files (either user specified or generated at the server) need to be stored/retrieved once the docking job
completes. These files are stored using the same path as the given pdbs and only the file type extension
is modified.

Finally, the second tab (Figure 6.5) exposes the optional parameters (see Section 6.1.3 for details
about these parameters).

6.2.3 Summarizing the result

See Section 5.2.3 for details about the summary results. If the result UI is launched for a reranking job,
then on the right panel the number of hits in different ranges, the best hit, the topranked hit and the
time before and after reranking is mentioned.

6.2.4 Analyzing each conformation

Same as presented in Section 5.2.4.

6.2.5 Visualizing each conformation

Same as presented in Section 5.2.4.

6.2.6 Performance tips

6.2.7 Command line version

TexMol also provides a command line interface which is useful to submit batch reranking jobs to a remote
server. The following command submits a remote reranking job to the server.

49

Figure 6.4: Intermediate file management

50

Figure 6.5: Advanced Options for reranking

./TexMol -rerank <parameter file name>

Figure 6.6: Submitting remote reranking job

51

Chapter 7

Availability

7.1 Software

7.1.1 License

7.1.2 Download instructions

7.2 Dataset

7.2.1 License

7.2.2 Download instructions

52

Chapter 8

Installation

8.1 Requirements

8.1.1 Supported platforms

All software listed below has been built in Linux (Ubuntu 10.04.1) and Mac (OS X 10.5) operating
systems.

8.1.2 Software dependencies

All the software listed below uses the CMake build system, http://www.cmake.org/. This is commonly
part of many linux installations but may need to be downloaded and installed on other platforms.

MolSurf MolSurf requires the OpenGL libraries (due to some underlying data structures which are
shared with TeχMol).

Additionally some optional components of MolSurf (which are not needed for F2Dock depend on the
CGAL library, http://www.cgal.org/.

TexMol Building TeχMol from source requires Qt (version 4, http://qt.nokia.com/products/), the
boost libraries (http://www.boost.org/), OpenGL libraries, and Cg (NVIDIAs C for Graphics toolkit,
http://developer.nvidia.com/page/cg_main.html). Most of these are already part of a standard
linux installation.

Some optional components for performing energy computations in TeχMol have additional dependen-
cies, NFFT (non-uniform fast Fourier transform, http://www-user.tu-chemnitz.de/~potts/nfft/),
and PETSc (http://www.mcs.anl.gov/petsc/petsc-as/). These components are not necessary for
running F2Dock .

F2Dock Server Building the F2Dock server from source depends upon the FFTW library, http:
//www.fftw.org/.

8.2 Install

8.2.1 F2Dock

8.2.2 GB-rerank

8.2.3 MolSurf

8.2.4 TexMol

8.2.5 F2Dock Server

53

http://www.cmake.org/
http://www.cgal.org/
http://qt.nokia.com/products/
http://www.boost.org/
http://developer.nvidia.com/page/cg_main.html
http://www-user.tu-chemnitz.de/~potts/nfft/
http://www.mcs.anl.gov/petsc/petsc-as/
http://www.fftw.org/
http://www.fftw.org/

Chapter 9

Comments

9.1 Known issues

9.2 Work in progress

54

Bibliography

[1] Antibody-antigen contacts. http://www.bioinf.org.uk/abs/allContacts.html.

[2] C. Bajaj, R. Chowdhury, and M. Rasheed. A dynamic data structure for flexible molecular main-
tenance and informatics. Technical Report TR-10-31, ICES, UT Austin, July 2010.

[3] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. TexMol: Interactive visual exploration of
large flexible multi-component molecular complexes. In Proc. of the Annual IEEE Visualization
Conference, pages 243–250, Austin, Texas, 2004.

[4] Chandrajit Bajaj, Rezaul A. Chowdhury, and Muhibur Rasheed. A dynamic data structure for flex-
ible molecular maintenance and informatics (accepted). Bioinformatics, 2010. Preliminary version
appeared in the Proceedings of the ACM Symposium on Solid and Physical Modeling, 2009.

[5] Chandrajit Bajaj, Rezaul A. Chowdhury, and Vinay Siddavanahalli. F2Dock: Fast Fourier Protein-
Protein Docking (Accepted). IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2009.

[6] Chandrajit Bajaj and Wenqi Zhao. Fast molecular solvation energetics and forces computation.
SIAM Journal on Scientific Computing, 31(6):4524–4552, 2010.

[7] Chandrajit Bajaj and Wenqi Zhao. Fast molecular solvation energetics and forces computation.
SIAM Journal on Scientific Computing, 31(6):4524–4552, 2010.

[8] S.D. Black and D.R. Mould. Development of hydrophobicity parameters to analyze proteins which
bear post- or cotranslational modifications. Anal. Biochem., 193:72–82, 1991.

[9] Julio Castrillon-Candas, Vinay Siddavanahalli, and Chandrajit Bajaj. Nonequispaced fourier trans-
forms for protein-protein docking. ICES Report 05-44, The University of Texas at Austin, Austin
TX USA, October 2005.

[10] Rong Chen, Li Li, and Zhiping Weng. Zdock: An initial-stage protein-docking algorithm. Pro-
teins: Structure, Function, and Genetics, Special Issue: CAPRI - Critical Assessment of PRedicted
Interactions . Issue Edited by Jol Janin, 52(1):80–87, May 2003.

[11] Rong Chen and Zhiping Weng. A novel shape complementarity scoring function for protein-protein
docking. Proteins: Structure, Function, and Genetics, 51(3):397–408, March 2003.

[12] Rezaul Chowdhury, Donald Keidel, Maysam Moussalem, Muhibur Rasheed, Arthur Olson2, Michel
Sanner, and Chandrajit Bajaj. Protein-protein docking with F2Dock 2.0 and GB-rerank. Submitted
to Journal, 2011.

[13] Rezaul Alam Chowdhury and Chandrajit Bajaj. Algorithms for faster molecular energetics, forces
and interfaces. ICES report 10-32, Institute for Computational Engineering & Science, The Univer-
sity of Texas at Austin, Austin, TX, USA 78712., August 2010.

[14] T. Dolinsky, J. Nielsen, J.A. McCammon, and N. Baker. Pdb2pqr: an automated pipeline for the
setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32:665–667, 2004.

[15] D. Eisenberg and A. Mclachlan. Solvation energy in protein folding and binding. Nature (London),
319:199–203, 1986.

55

[16] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4:1–9, 1974.

[17] H. A. Gabb, R. M. Jackson, and M. J. E. Sternberg. Modelling protein docking using shape comple-
mentarity,electrostatics and biochemical information. Journal of Molecular Biology, 272(1):106–120,
1997.

[18] M. Gilson, M. Davis, B. Luty, and J.A. McCammon. Computation of electrostatic forces on solvated
molecules using the Poisson-Boltzmann equation. J. Phys. Chem., 97:3591–3600, 1993.

[19] Fabian Glaser, David M. Steinberg, Ilya A. Vakser, and Nir Ben-Tal. Residue frequencies and pairing
preferences at proteinprotein interfaces. PROTEINS: Structure, Function, and Genetics, 43:89–102,
2001.

[20] R. Hermann. Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water
with solvent cavity surface area. J. Phys. Chem., 76:2754–2759, 1972.

[21] Chris L. Jackins and Steven L. Tanimoto. Oct-trees and their use in representing three-dimensional
objects. Computer Graphics and Image Processing, 14(3):249–270, 1980.

[22] Fan Jianga and Sung-Hou Kim. ”soft docking”: Matching of molecular surface cubes. Journal of
Molecular Biology, 219(1):79–102, May 1991.

[23] Susan Jones and Janet M. Thornton. Principles of protein-protein interactions. Proceedings of the
National Academy of Sciences of the United States of America, 93(1):13–20, 1996.

[24] Susan Jones and Janet M. Thornton. Analysis of protein-protein interaction sites using surface
patches. Journal of Molecular Biology, 272(1):121–132, 1997.

[25] L. Kapcha and P. Rossky. Personal Communication, University of Texas at Austin.

[26] Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo, and
Ilya A. Vakser. Molecular surface recognition: determination of geometric fit between proteins and
their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the
United States of America, 89(6):2195–2199, 1992.

[27] Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo, and
Ilya A. Vakser. Molecular surface recognition: determination of geometric fit between proteins and
their ligands by correlation techniques. Proceedings of the National Academy of Sciences of the
United States of America, 89(6):2195–2199, March 1992.

[28] M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett. Potential energy function and parameters
for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comp. Phys.
Comm., 91:215–231, 1995.

[29] R.M. MacCallum, A.C.R. Martin, and J.M. Thornton. Antibody-antigen interactions: contact
analysis and binding site topography. Journal of Molecular Biology, 262(5):732–745, 1996.

[30] Jeffrey G. Mandell1, Victoria A. Roberts, Michael E. Pique, Vladimir Kotlovyi, Julie C. Mitchell,
Erik Nelson, Igor Tsigelny, and Lynn F. Ten Eyck. Protein docking using continuum electrostatics
and geometric fit. Protein Engineering, 14(2):105–113, February 2001.

[31] Julian Mintseris, Kevin Wiehe, Brian Pierce, Robert Anderson, Rong Chen, J. Janin, and Zhiping
Weng. Protein-protein docking benchmark 2.0: An update. Proteins: Structure, Function, and
Bioinformatics, 60(2):214–216, 2005.

[32] Julie C. Mitchell. Personal Communication, University of Wisconsin - Madison.

[33] Julie C. Mitchell. Sampling rotation groups by successive orthogonal images. SIAM Journal on
Scientific Computing, 30(1):525–547, 2008.

56

[34] Garrett M. Morris, David S. Goodsell, Ruth Huey, and Arthur J. Olson. Distributed automated
docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-
Aided Molecular Design, 10:293–304, 1996. 10.1007/BF00124499.

[35] C. W. Mortensen, R. Pagh, and M. Pǎtraçcu. On dynamic range reporting in one dimension.
In STOC ’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
104–111, 2005.

[36] P. Rasmus and R. Flemming. Cuckoo hashing. Journal of Algorithms, 51(2), 2004.

[37] K. Sharp. Incorporating solvent and ion screening into molecular dynamics using the finite-difference
Poisson-Boltzmann method. J. Comput. Chem., 12:454–468, 1991.

[38] T. Simonson and A. Bruenger. Solvation free energies estimated from macroscopic continuum theory:
An accuracy assessment. J. Phys. Chem., 98:4683 – 4694, 1994.

[39] W. Still, A. Tempczyk, R. Hawley, and T. Hendrickson. Semianalytical treatment of solvation for
molecular mechanics and dynamics. J. Am. Chem. Soc., 112:6127–6129, 1990.

[40] J. Wagoner and N.A. Baker. Assessing implicit models for nonpolar mean solvation forces: The
importance of dispersion and volume terms. 103:8331–8336, 2006.

[41] Huajun Wang. Grid-search molecular accessible surface algorithm for solving the protein docking
problem. Journal of Computational Chemistry, 12(6):746–750, 1991.

[42] Scott J. Weiner, Peter A. Kollman, David A. Case, U. Chandra Singh, Caterina Ghio, Guliano
Alagona, Salvatore Profeta, and Paul Weiner. A new force field for molecular mechanical simulation
of nucleic acids and proteins. Journal of the American Chemical Society, 106:765–784, 1984.

[43] B.X. Yan and Y.Q. Sun. Glycine residues provide flexibility for enzyme active sites. Journal of
Biological Chemistry, 272(6):3190, 1997.

57

	Introduction
	Protein Docking/Virtual Screening
	Software suite

	Overview of F2Dock+GB-rerank
	Overview
	Input Preparation
	Primary structure/atomic representation
	Molecular surface representation
	Quadrature points sampling and skin/core generation

	Search
	Rotational Sampling.
	Exhaustive Translational Search.

	Score
	Shape Complementarity
	Electrostatics:
	Interface Propensity:

	Filter
	Lennard-Jones Filter:
	Fast (1 +)-Approximation of LJ(A, B)
	Clash Filter:
	Interface Propensity Filter:
	Residue-Residue Contact Filter:
	Antibody-Antigen Contact Filter:
	Glycine Filter:
	Interface Area Filter:

	Energy based reranking
	Dynamic Packing Grid Data Structure
	Description (Layout) of the Packing Grid Data Structure
	Supported query/update

	Software Implementation
	F2Dock
	libF2Dock
	libfftUtils, libfftw3, libvol
	libDPG
	libfastClash
	libfastLJ
	libfastHydro
	libfastGB
	libresCont
	libutils, libfastPQ, libmath

	GB-rerank
	libGBrerank
	libfastGB
	libfastDispersion

	TexMol
	Client/Server model of TexMol and F2Dock
	XML-RPC: the communication protocol
	F2Dock support classes in TexMol

	Input Preparation
	Molecular representation
	PDB
	PQR

	Molecular surface representation
	RAW
	RAWN

	Internal files for docking and reranking
	F2D
	QUAD

	Docking
	Docking from the command line: F2Dock basic
	The parameter file
	List of mandatory parameters
	List of optional/advanced parameters
	Making sense of the output file
	Scripts

	Docking via GUI: TexMol
	Job management
	Prepare and submit a docking job
	Summarizing the result
	Analyzing each conformation
	Visualizing each conformation
	Performance tips
	Command line version

	Reranking
	Reranking from the command line: GB-rerank
	The parameter file
	List of mandatory parameters
	List of optional/advanced parameters
	Making sense of the output file
	Scripts

	Reranking via GUI: TexMol
	Job management
	Prepare and submit a reranking job
	Summarizing the result
	Analyzing each conformation
	Visualizing each conformation
	Performance tips
	Command line version

	Availability
	Software
	License
	Download instructions

	Dataset
	License
	Download instructions

	Installation
	Requirements
	Supported platforms
	Software dependencies

	Install
	F2Dock
	GB-rerank
	MolSurf
	TexMol
	F2Dock Server

	Comments
	Known issues
	Work in progress

