
Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Models, Architecture, Graphics Rendering Pipeline

Model

Model

Model

(MCS)

Transformations
Modeling

3D World
Scene

3D View

Viewing
Transformations

Scene

(WCS)
(VCS)

2D Device
Scene

Rasterization

and Viewport
Mapping

(NDCS) (DCS or SCS)

2D Image

Projection

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Coordinate Systems

– MCS: Modeling Coordinate System

– WCS: World Coordinate System

– VCS: Viewer Coordinate System

– NDCS: Normalized Device Coordinate System

– DCS or SCS: Device Coordinate System or, equivalently, Screen Coordinate System

Keeping the coordinate systems straight is an important key to understanding a rendering

system.

• Pipeline stages: Transform - Clip - Project - Rasterize

– Convert primitives in the MCS to primitives in the WCS.

– Add derived information: shading, texture, shadows.

– Remove invisible primitives as convertion to VCS.

– Project primitives from VCS to NDCS

– Convert primitives into the DCS (from NDCS) to pixels in a raster image.

• Transformations: Coordinate system conversions can be represented with matrix-vector

multiplications. Matrices are of size 4x4 for 3D graphics

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Rendering Primitives

Models are typically composed of a large number of geometric primitives. The only rendering

primitives typically supported in hardware are

• Points (single pixels)

• Line segments

• Polygons (usually restricted to convex polygons).

Modeling primitives include these, but also

• Piecewise polynomial (spline) curves

• Piecewise polynomial (spline) surfaces

• Implicit surfaces (quadrics, blobbies, etc)

• Other...

A software renderer may support these modeling primitives directly, or they may be converted

into polygonal or linear approximations for hardware rendering.

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Algorithms

A number of basic algorithms are needed:

• Transformation: convert representations of primitives from one coordinate system to

another.

• Clipping/Hidden Surface Removal: Remove primitives and parts of primitives that are not

visible on the display.

• Rasterization: Convert a projected screen-space primitive to a set of pixels.

Later, we will look at some more advanced algorithms:

• Picking: Select a 3D object by clicking an input device over a pixel location.

• Shading and Illumination: Simulate the interaction of light with a scene.

• Texturing and Environment Mapping: Enhancing the realism

• Animation: simulate movement by rendering a sequence of frames.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Application Programming Interfaces

• Application Programming Interfaces (APIs) provide access to rendering hardware:

– Xlib: 2D rasterization.

– PostScript: 2D transformations, 2D rasterization

– GL, OpenGL: 3D pipeline

•• APIs hide which parts of the rendering are actually implemented in hardware by simulating

the missing pieces in software, usually at a loss in performance.

• For 3D interactive applications, we might modify the scene or a model directly or just the

viewing information.

• After each modification, usually the images needs to be regenerated.

• We need to consider how to interface to input devices in an asynchronous and device

independent fashion. APIs have also been defined for this task; we will be using X11

through Glut

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Pixels

• Pixel: Intensity or color sample.

• Raster Image: Rectangular grid of pixels.

• Rasterization: Conversion of a primitive’s geometric representation into

– A set of pixels.

– An intensity or color for each pixel (shading, antialiasing).

• For now, we will assume that the background is white and we need only change the color

of selected pixels to black.

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Pixel Grids

• Pixel Centers: Address pixels by integer coordinates (i, j)

• Pixel Center Grid: Set of lines passing through pixel centers.

• Pixel Domains: Rectangular semi-open areas surrounding each pixel center:

Pi,j = (i − 1/2, i + 1/2) × (j − 1/2, j + 1/2)

• Pixel Domain Grid: Set of lines formed by domain boundaries.

1 2 3 1 2 3

2

1

3

2

1

3

00

0 0

Pixel center grid Pixel domain grid

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

• A geometric specification, usually “calligraphic.”

• A pixel (rasterized) representation.

Standard device-level geometric specifications include:

Point: A = (xA, yA) ∈ RR2.

Line Segment: ℓ(AB) specified with two points, A and B. The line segment ℓ(AB) is the

set of all collinear points between point A and point B.

Polygon: Polygon P(A1A2 . . . An) specified with an ordered list of points A1A2 . . . An.

A polygon is a region of the plane with a piecewise linear boundary; we connect An to A1.

This “list of points” specification is flawed... a more precise definition will be given later.

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Line Segments

• Let ℓ(AB) = {P ∈ RR2|P = (1 − t)A + tB, t ∈ [0, 1]}
• Problem: Given a line segment ℓ(AB) specified by two points A and B,

• Decide: Which pixels to illuminate to represent ℓ(AB).

• Desired properties: Rasterization of line segment should

1. Appear as straight as possible;

2. Include pixels whose domains contain A and B;

3. Have relatively constant intensity (i.e., all parts should be the same brightness);

4. Have an intensity per unit length that is independent of slope;

5. Be symmetric;

6. Be generated efficiently.

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Line Segment Representations

1. Given AB, choose a set of pixels L1(AB) given by

L1(AB) = {(i, j) ∈ ZZ
2|ℓ(AB) ∩ Pi,j}

1 2 3

2

1

3

0

0 4 5 6 7 8

Unfortunately, this results in a very blotchy, uneven looking line.

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

2. Given AB, choose a set of pixels L2(AB) given by

L2(AB) =






|xB − xA| ≥ |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = (i, [y]), (i, y) ∈ ℓ(AB), y ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

|xB − xA| < |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = ([x], j), (x, j),∈ ℓ(AB), x ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

Where [z] = ⌊z + 1/2⌋, and ⌊w⌋ is the greatest integer less than or equal to w.

1 2 3

2

1

3

0

0 4 5 6 7 8

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Line Equation Algorithm

Based on the line equation y = mx + b, we can derive:

LineEquation (int xA, yA, xB, yB)

float m, b;

int xi, dx;

m = (yB - yA)/(xB - xA);

b = yA - m∗xA;
if (xB - xA > 0) then dx=1;

else dx = -1;

for xi = xA to xB step dx do

y = m∗xi + b;

WritePixel(xi, [y]);

endfor

Problems:

• One pixel per column so lines of slope > 1 have gaps

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Vertical lines cause divide by zero

To fix these problems, we need to use x = m−1(y − b) when m > 1.

DDA (int xA, yA, xB, yB)

int length, dx, dy, i;

float x,y,xinc,yinc;

dx = xB - xA;

dy = yB - yA;

length = max (|dx| > |dy|);

xinc = dx/length; # either xinc or yinc is -1 or 1

yinc = dy/length;

x = xA; y = yA;

for i=0 to length do

WritePixel([x], [y]);

x += xinc;

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

y += yinc;

endfor

The University of Texas at Austin 14

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Bresenham’s Algorithm

• Completely integer;

• Will assume (at first) that xA, yA, xB, yB are also integer.

• Only addition, subtraction, and shift in inner loop.

• Originally for a pen plotter.

• “Optimal” in that it picks pixels closest to line, i.e., L2(AB).

• Assumes 0 ≤ (yB − yA) ≤ (xB − xA) ≤ 1 (i.e., slopes between 0 and 1).

• Use reflections and endpoint reversal to get other slopes: 8 cases.

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

A

NE[i]

D

M[i]
E[i]P[i-1]

B

C

M[i+1]

• Suppose we know at step i − 1 that pixel (xi, yi) = Pi−1 was chosen.

Thus, the line passed between points A and B.

• Slope between 0 and 1 ⇒
line must pass between points C and D at next step ⇒
Ei = (xi + 1, yi) and N Ei = (xi + 1, yi + 1) are only choices for next pixel.

• If Mi above line, choose Ei;

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• If Mi below line, choose N Ei.

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Implicit representations for line:

y = ∆y
∆xx + b

F (x, y) = (2∆y)
︸ ︷︷ ︸

Q

x + (−2∆x)
︸ ︷︷ ︸

R

y + 2∆xb︸ ︷︷ ︸
S

= 0

where

∆x = xB − xA

∆y = yB − yA

b = yA − ∆y

∆x
xA ⇒ S = 2∆xyA − 2∆yxA

Note that

1. F (x, y) < 0 ⇒ (x, y) above line.

2. F (x, y) > 0 ⇒ (x, y) below line.

3. Q,R, S are all integers.

• The mystery factor of 2 will be explained later.

The University of Texas at Austin 18

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Look at F (Mi). Remember, F is 0 if the point is on the line:

– F (Mi) < 0 ⇒ Mi above line ⇒ choose Pi = Ei.

– F (Mi) > 0 ⇒ Mi below line ⇒ choose Pi = N Ei.

– F (Mi) = 0 ⇒ arbitrary choice, consider choice of pixel domains...

• We’ll use di = F (Mi) as an decision variable.

• Can compute di incrementally with integer arithmetic.

The University of Texas at Austin 19

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• At each step of algorithm, we know Pi−1 and di...

• Want to choose Pi and compute di+1

• Note that

di = F (Mi) = F (xi−1 + 1, yi−1 + 1/2)

= Q · (xi−1 + 1) + R · (yi−1 + 1/2) + S

• If Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2) + S

= di + Q

• If N Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2 + 1)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2 + 1) + S

= di + Q + R

The University of Texas at Austin 20

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Initially, we have

d1 = F (xA + 1, yA + 1/2)

= QxA
+ RyA

+ S + Q + R/2

= F (xA, yA) + Q + R/2

= Q + R/2

• Note that F (xA, yA) = 0 since (xA, yA) ∈ ℓ(AB).

• Why the mysterious factor of 2?

It makes everything integer.

The University of Texas at Austin 21

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Bresenham (int xA, yA, xB, yB)

int d, dx, dy, xi, yi

int incE, incNE

dx = xB - xA

dy = yB - yA

incE = dy<<1 /∗ Q ∗/
incNE = incE - dx<<1; /∗ Q + R ∗/
d = incE - dx /∗ Q + R/2 ∗/
xi = xA; yi = yA

WritePixel(xi, yi)

while (xi < xB)

xi++

if (d < 0) then /∗ choose E ∗/
d += incE

else /∗ choose NE ∗/
d += incNE

yi++

endif

The University of Texas at Austin 22

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

WritePixel(xi, yi)

endwhile

The University of Texas at Austin 23

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

• Some asymmetries (choice when ==).

• Did we meet our goals?

1. Straight as possible: yes, but depends on metric.

2. Correct termination.

3. Even distribution of intensity: yes, more or less, but:

4. Intensity varies as function of slope.

– Can’t do better without gray scale.

– Worst case: diagonal compared to horizontal (same number of pixels, but
√
2

longer line).

5. Careful coding required to achieve some form of symmetry.

6. Fast! (if integer math fast ...)

• Interaction with clipping?

• Subpixel positioning of endpoints?

• Variations that look ahead more than one pixel at once...

• Variations that compute from both end of the line at once...

• Similar algorithms for circles, ellipses, ...

(8 fold symmetry for circles)

The University of Texas at Austin 24

Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

HW: Reading Assignment, Practice Exercises, and News

Before the next class please, review Chapter 2 and its assoc practice exercises, and Appendices:

A,B,C,D of the recommended text. We shall start using the iclicker for in class quizzes.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 25

