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• Coordinate Systems

– MCS: Modeling Coordinate System

– WCS: World Coordinate System

– VCS: Viewer Coordinate System

– NDCS: Normalized Device Coordinate System

– DCS or SCS: Device Coordinate System or, equivalently, Screen Coordinate System

Keeping the coordinate systems straight is an important key to understanding a rendering

system.

• Pipeline stages: Transform - Clip - Project - Rasterize

– Convert primitives in the MCS to primitives in the WCS.

– Add derived information: shading, texture, shadows.

– Remove invisible primitives as convertion to VCS.

– Project primitives from VCS to NDCS

– Convert primitives into the DCS (from NDCS) to pixels in a raster image.

• Transformations: Coordinate system conversions can be represented with matrix-vector

multiplications. Matrices are of size 4x4 for 3D graphics
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Rendering Primitives

Models are typically composed of a large number of geometric primitives. The only rendering

primitives typically supported in hardware are

• Points (single pixels)

• Line segments

• Polygons (usually restricted to convex polygons).

Modeling primitives include these, but also

• Piecewise polynomial (spline) curves

• Piecewise polynomial (spline) surfaces

• Implicit surfaces (quadrics, blobbies, etc)

• Other...

A software renderer may support these modeling primitives directly, or they may be converted

into polygonal or linear approximations for hardware rendering.
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Algorithms

A number of basic algorithms are needed:

• Transformation: convert representations of primitives from one coordinate system to

another.

• Clipping/Hidden Surface Removal: Remove primitives and parts of primitives that are not

visible on the display.

• Rasterization: Convert a projected screen-space primitive to a set of pixels.

Later, we will look at some more advanced algorithms:

• Picking: Select a 3D object by clicking an input device over a pixel location.

• Shading and Illumination: Simulate the interaction of light with a scene.

• Texturing and Environment Mapping: Enhancing the realism

• Animation: simulate movement by rendering a sequence of frames.
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Application Programming Interfaces

• Application Programming Interfaces (APIs) provide access to rendering hardware:

– Xlib: 2D rasterization.

– PostScript: 2D transformations, 2D rasterization

– GL, OpenGL: 3D pipeline

•• APIs hide which parts of the rendering are actually implemented in hardware by simulating

the missing pieces in software, usually at a loss in performance.

• For 3D interactive applications, we might modify the scene or a model directly or just the

viewing information.

• After each modification, usually the images needs to be regenerated.

• We need to consider how to interface to input devices in an asynchronous and device

independent fashion. APIs have also been defined for this task; we will be using X11

through Glut
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Pixels

• Pixel: Intensity or color sample.

• Raster Image: Rectangular grid of pixels.

• Rasterization: Conversion of a primitive’s geometric representation into

– A set of pixels.

– An intensity or color for each pixel (shading, antialiasing).

• For now, we will assume that the background is white and we need only change the color

of selected pixels to black.
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Pixel Grids

• Pixel Centers: Address pixels by integer coordinates (i, j)

• Pixel Center Grid: Set of lines passing through pixel centers.

• Pixel Domains: Rectangular semi-open areas surrounding each pixel center:

Pi,j = (i − 1/2, i + 1/2) × (j − 1/2, j + 1/2)

• Pixel Domain Grid: Set of lines formed by domain boundaries.
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Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

• A geometric specification, usually “calligraphic.”

• A pixel (rasterized) representation.

Standard device-level geometric specifications include:

Point: A = (xA, yA) ∈ RR2.

Line Segment: ℓ(AB) specified with two points, A and B. The line segment ℓ(AB) is the

set of all collinear points between point A and point B.

Polygon: Polygon P(A1A2 . . . An) specified with an ordered list of points A1A2 . . . An.

A polygon is a region of the plane with a piecewise linear boundary; we connect An to A1.

This “list of points” specification is flawed... a more precise definition will be given later.

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Spring 2013 (Lecture 2)

Line Segments

• Let ℓ(AB) = {P ∈ RR2|P = (1 − t)A + tB, t ∈ [0, 1]}
• Problem: Given a line segment ℓ(AB) specified by two points A and B,

• Decide: Which pixels to illuminate to represent ℓ(AB).

• Desired properties: Rasterization of line segment should

1. Appear as straight as possible;

2. Include pixels whose domains contain A and B;

3. Have relatively constant intensity (i.e., all parts should be the same brightness);

4. Have an intensity per unit length that is independent of slope;

5. Be symmetric;

6. Be generated efficiently.
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Line Segment Representations

1. Given AB, choose a set of pixels L1(AB) given by

L1(AB) = {(i, j) ∈ ZZ
2|ℓ(AB) ∩ Pi,j}
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Unfortunately, this results in a very blotchy, uneven looking line.
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2. Given AB, choose a set of pixels L2(AB) given by

L2(AB) =






|xB − xA| ≥ |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = (i, [y]), (i, y) ∈ ℓ(AB), y ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

|xB − xA| < |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = ([x], j), (x, j),∈ ℓ(AB), x ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

Where [z] = ⌊z + 1/2⌋, and ⌊w⌋ is the greatest integer less than or equal to w.
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Line Equation Algorithm

Based on the line equation y = mx + b, we can derive:

LineEquation (int xA, yA, xB, yB)

float m, b;

int xi, dx;

m = (yB - yA)/(xB - xA);

b = yA - m∗xA;
if ( xB - xA > 0 ) then dx=1;

else dx = -1;

for xi = xA to xB step dx do

y = m∗xi + b;

WritePixel( xi, [y] );

endfor

Problems:

• One pixel per column so lines of slope > 1 have gaps
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• Vertical lines cause divide by zero

To fix these problems, we need to use x = m−1(y − b) when m > 1.

DDA (int xA, yA, xB, yB)

int length, dx, dy, i;

float x,y,xinc,yinc;

dx = xB - xA;

dy = yB - yA;

length = max ( |dx| > |dy| );

xinc = dx/length; # either xinc or yinc is -1 or 1

yinc = dy/length;

x = xA; y = yA;

for i=0 to length do

WritePixel( [x], [y] );

x += xinc;
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y += yinc;

endfor
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Bresenham’s Algorithm

• Completely integer;

• Will assume (at first) that xA, yA, xB, yB are also integer.

• Only addition, subtraction, and shift in inner loop.

• Originally for a pen plotter.

• “Optimal” in that it picks pixels closest to line, i.e., L2(AB).

• Assumes 0 ≤ (yB − yA) ≤ (xB − xA) ≤ 1 (i.e., slopes between 0 and 1).

• Use reflections and endpoint reversal to get other slopes: 8 cases.
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A

NE[i]
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• Suppose we know at step i − 1 that pixel (xi, yi) = Pi−1 was chosen.

Thus, the line passed between points A and B.

• Slope between 0 and 1 ⇒
line must pass between points C and D at next step ⇒
Ei = (xi + 1, yi) and N Ei = (xi + 1, yi + 1) are only choices for next pixel.

• If Mi above line, choose Ei;
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• If Mi below line, choose N Ei.
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• Implicit representations for line:

y = ∆y
∆xx + b

F (x, y) = (2∆y)
︸ ︷︷ ︸

Q

x + (−2∆x)
︸ ︷︷ ︸

R

y + 2∆xb︸ ︷︷ ︸
S

= 0

where

∆x = xB − xA

∆y = yB − yA

b = yA − ∆y

∆x
xA ⇒ S = 2∆xyA − 2∆yxA

Note that

1. F (x, y) < 0 ⇒ (x, y) above line.

2. F (x, y) > 0 ⇒ (x, y) below line.

3. Q,R, S are all integers.

• The mystery factor of 2 will be explained later.
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• Look at F (Mi). Remember, F is 0 if the point is on the line:

– F (Mi) < 0 ⇒ Mi above line ⇒ choose Pi = Ei.

– F (Mi) > 0 ⇒ Mi below line ⇒ choose Pi = N Ei.

– F (Mi) = 0 ⇒ arbitrary choice, consider choice of pixel domains...

• We’ll use di = F (Mi) as an decision variable.

• Can compute di incrementally with integer arithmetic.
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• At each step of algorithm, we know Pi−1 and di...

• Want to choose Pi and compute di+1

• Note that

di = F (Mi) = F (xi−1 + 1, yi−1 + 1/2)

= Q · (xi−1 + 1) + R · (yi−1 + 1/2) + S

• If Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2) + S

= di + Q

• If N Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2 + 1)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2 + 1) + S

= di + Q + R
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• Initially, we have

d1 = F (xA + 1, yA + 1/2)

= QxA
+ RyA

+ S + Q + R/2

= F (xA, yA) + Q + R/2

= Q + R/2

• Note that F (xA, yA) = 0 since (xA, yA) ∈ ℓ(AB).

• Why the mysterious factor of 2?

It makes everything integer.
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Bresenham (int xA, yA, xB, yB)

int d, dx, dy, xi, yi

int incE, incNE

dx = xB - xA

dy = yB - yA

incE = dy<<1 /∗ Q ∗/
incNE = incE - dx<<1; /∗ Q + R ∗/
d = incE - dx /∗ Q + R/2 ∗/
xi = xA; yi = yA

WritePixel( xi, yi )

while ( xi < xB )

xi++

if ( d < 0 ) then /∗ choose E ∗/
d += incE

else /∗ choose NE ∗/
d += incNE

yi++

endif
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WritePixel( xi, yi )

endwhile
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• Some asymmetries (choice when ==).

• Did we meet our goals?

1. Straight as possible: yes, but depends on metric.

2. Correct termination.

3. Even distribution of intensity: yes, more or less, but:

4. Intensity varies as function of slope.

– Can’t do better without gray scale.

– Worst case: diagonal compared to horizontal (same number of pixels, but
√
2

longer line).

5. Careful coding required to achieve some form of symmetry.

6. Fast! (if integer math fast ...)

• Interaction with clipping?

• Subpixel positioning of endpoints?

• Variations that look ahead more than one pixel at once...

• Variations that compute from both end of the line at once...

• Similar algorithms for circles, ellipses, ...

(8 fold symmetry for circles)
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HW: Reading Assignment, Practice Exercises, and News

Before the next class please, review Chapter 2 and its assoc practice exercises, and Appendices:

A,B,C,D of the recommended text. We shall start using the iclicker for in class quizzes.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)
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