
Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

Viewing I: Model Transformations

Matrix Representation of Transformations

• Let A0 and A1 be affine spaces.

Let T : A0 7→ A1 be an affine transformation.

Let F0 = (~i0,~j0,O0) be a frame for A0.

Let F1 = (~i1,~j1,O1) be a frame for A1.

• Let P = x~i0 + y~j0 + O0 be a point in A0.

The coordinates of P relative to A0 are (x, y, 1).

This can also be represented in vector form as P =
[

~i0 ~j0 O0

]





x

y

1





The University of Texas at Austin 1



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• What are the coordinates (x′, y′, 1) of T(P ) relative to F1?

– An affine transformation is characterized by the image of a frame in the domain.

T(P ) = T(x~i0 + y~j0 + O0)

= xT(~i0) + yT(~j0) + T(O0)

– T(~i0) must be a linear combination of~i1 and ~j1,

say T(~i0) = t1,1~i1 + t2,1~j1.

– Likewise T(~j0) must be a linear combination of~i1 and ~j1,

say T(~j0) = t1,2~i1 + t2,2~j1.

– Finally T(O0) must be an affine combination of~i1,
~j1, and O1, say T(O0) = t1,3~i1 + t2,3~j1 + O1.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

– Then by substitution we get

T(P ) = x(t1,1~i1 + t2,1~j1) + y(t1,2~i1 + t2,2~j1) + t1,3~i1 + t2,3~j1 + O1

=
[

t1,1~i1 + t2,1~j1 t1,2~i1 + t2,2~j1 t1,3~i1 + t2,3~j1 + O1

]





x

y

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
0 0 1









x

y

1





Using MT to denote the matrix, we see that F0 = F1MT

• Let T(P ) = P ′ = x′~i1 + y′~j1 + O1

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

In vector form this is

P
′

=
[

~i1 ~j1 O1

]





x′

y′

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
0 0 1









x

y

1





So we see that




x′

y′

1



 =





t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
0 0 1









x

y

1





We can write this in shorthand – p′ = MTp

• MT is the matrix representation of T

– The first column of MT represents T(~i0)

– The second column of MT represents T(~j0)

– The third column of MT represents T(O0)

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Translation

– Points are transformed as
[

x′ y′ 1
]T

= [x y 1]
T
+ [∆x ∆y 0]

T
.

– Vectors don’t change.

– Translation can be applied to sums of vectors and vector-point sums.

– Matrix formulation:





x′

y′

1



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

1



 =





x + ∆x

y + ∆y

1









x′

y′

0



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

0



 =





x

y

0





– Shorthand for the above matrix: T (∆x,∆y)

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Example

glTranslatef(.7, .5, 0);

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 6



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Scale

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [xSx ySy 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [xSx ySy 0]
T
.

– Matrix formulation:





x′

y′

1



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

1



 =





xSx

ySy

1









x′

y′

0



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

0



 =





xSx

ySy

0





– Shorthand for the above matrix: S(Sx, Sy)

– Note that this is origin sensitive.

– How do you do reflections?

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Example using OpenGL 2.5

glScalef(0.3, 1, 1);

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Rotate

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 1]T .

– Vectors transform as
[

x′ y′ 0
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 0]
T
.

– Matrix formulation:





x′

y′

1



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

1



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

1









x′

y′

0



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

0



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

0





– Shorthand for the above matrix: R(θ)

– Note that this is origin sensitive.

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Example

glRotatef(45, 0, 0, 1); /* camera by default is along z

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Shear

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x + αy, y + βx, 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [x + αy, y + βx, 0]
T
.

– Matrix formulation:





x′

y′

1



 =





1 α 0

β 1 0

0 0 1









x

y

1



 =





x + αy

y + βx

1









x′

y′

0



 =





1 α 0

β 1 0

0 0 1









x

y

0



 =





x + αy

y + βx

0





– Shorthand for the above matrix: Sh(α, β)

The University of Texas at Austin 11



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Example

float ShearMatrix[] = {

1, 1, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1 };

Traspose(ShearMatrix);

glMultMatrixf(ShearMatrix);

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Composition of Transformations

– Now we have some basic transformations, how do we create and represent arbitrary

affine transformations?

– We can derive an arbitrary affine transform as a sequence of basic transformations,

then compose the transformations

– Example — scaling about an arbitrary point [xc yc 1]
T

1. Translate [xc yc 1]
T
to [0 0 1] (T (−xc,−yc))

2. Scale
[

x′ y′ 1
]T

= S(Sx, Sy) [x y 1]
T

3. Translate [0 0 1]
T
back to [xc yc 1] (T (xc, yc))

– The sequence of transformation steps is

T (−xc,−yc) ◦ S(Sx, Sy) ◦ T (xc, yc)

The University of Texas at Austin 13



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

– Example

glTranslate(.7, .5, 0); glRotatef(45, 0, 0, 1);

glRotatef(45, 0, 0, 1); glTranslate(.7, .5, 0);

glBegin(GL_LINE_LOOP); glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0); glVertex2f(-1, 0);

glVertex2f(1, 0); glVertex2f(1, 0);

glVertex2f(1,1); glVertex2f(1,1);

glVertex2f(-1,1); glVertex2f(-1,1);

glEnd(); glEnd();

The University of Texas at Austin 14



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

– In matrix form this is





x′

y′

1



 =





1 0 xc

0 1 yc

0 0 1









Sx 0 0

0 Sy 0

0 0 1









1 0 −xc

0 1 −yc

0 0 1









x

y

1





=





Sx 0 xc(1 − Sx)

0 Sy yc(1 − Sy)

0 0 1









x

y

1





– Note that the matrices are arranged from right to left in the order of the steps.

– The order is important (why)?

The University of Texas at Austin 15



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Three Dimensional Transformations

– A point is p = [x y z 1], a vector ~v = [x y z 0]

– Translation:

T (∆x,∆y,∆z) =









1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1









– Scale:

S(Sx, Sy, Sz) =









Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1









– Rotation:

Rz(Θ) =









cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1









More on 3D Rotations later, especially using Quaternions!

The University of Texas at Austin 16



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

OpenGL Transformation Matrices
There are three matrices that are part of the OpenGl pipeline, and all are manipulated

by a common set of functions. To select the matrix type on which operations apply use

glMatrixMode function. For example,

glMatrixMode(GL_MODELVIEW); or glMatrixMode(GL_PROJECTION)

• The matrix applied to all primitives is the product of the ModelView matrix and the

Projection matrix.

• Matrix is loaded with function

glLoadMatrixfv(pointer_to_matrix)

• Matrix is altered with function

glMultMatrixfv(pointer_to_matrix)

• Translation is provided with function

glTranslatef(dx,dy,dz)

• Rotation is provided with function

glRotatef(angle,vx,vy,vz)

The University of Texas at Austin 17



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

• Scaling is provided with function

glScalef(sx,sy,sz)

• All three transformations alter the selected matrix by postmultiplication.

Order of Applying Transformations The rule in OpenGL: The transformation specified last

is the one applied first.

Consider the example sequence to form the required matrix for a 45-degree rotation about a

vector (1,2,3). The object frame’s origin is (4,5,6) and that is its center of rotation. The

sequence is to move the object’s frame to the origin (0,0,0), rotating about the origin, and

finally moving the rotated object back to its original location.

glMatrixModel(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(4.0,5.0,6.0);

glRotatef(45.0, 1.0,2.0,3.0);

glTranslatef(-4.0,-5.0,-6.0);

The University of Texas at Austin 18



Department of Computer Sciences Graphics – Spring 2013 (Lecture 6)

Reading Assignment and News

Before the next class please review Chapter 3 and its practice exercises, of the recommended

text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 19


