
Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Viewing Systems II: Orientations and Quaternions

✻

�
�

�
�

�
�

��✠

✘✘✘✘✘✘✘✘✘✘✿

PPPPPPPPPPPPq

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙❙♦

x

y

z

w

uv

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

✻

�
�

�
�

�
��✠

✘✘✘✘✘✘✘✘✘✿

PPPPPPPPPPPq

x

y

z

w
✚
✚
✚
✚
✚
✚
✚
✚✚❃❉

❉
❉
❉

w′

θx

(a) Rotate about x so that

w lies in xz-plane.

✻

�
�

�
�

�
��✠

PPPPPPPPPPPq

x

y

z
✻

❇
❇
❇
❇
❇
❇
❇
❇▼
�
�
�

w

w′

θy

(b) Rotate about y so that

w coincides with z.

✻

�
�

�
�

�
��✠

PPPPPPPPPPPq

x

y

z = w′

❆
❆
❆
❆
❆
❆
❆❆❯

✟✟✟✟✟✟✟✟✟✟✟✯

✟✟
❆
❆

u

v

θz

(c) Rotate about z so that

u and v coincide with x

and y.
Rotating a frame to coincide with the standard frame

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

✻

✏✏✏✏✏✏✏✏✏✮

PPPPPPPPPq

✏✏✏✏✏✏✏✏✶

❏
❏

❏
❏

❏
❏

❏
❏
❏❪

✁
✁
✁

✁
✁☛

✒

x

z

y

G

H

z

x

y

Smooth Interpolation of Frames

It is possible to perform any change of orientation about an arbitrary axis with three rotations,

one about each of the coordinate axes, by a triple of three angles, (θx, θy, θz). These define

a general rotation matrix, by composing the three basic rotations:

R(θx, θy, θz) = Rz(θz)Ry(θy)Rx(θx).

These three angles are called the Euler angles for the rotation. Thus, we can parameterize

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

any rotation in 3-space as triple of numbers, each in the range α ∈ [0, 2π].

With ca = cos(θa) and sa = sin(θa),

R(θx, θy, θz) =









cycz cysz −sy 0

sxsycz − cxsz sxsysz + cxcz sxcy 0

cxsycz + sxsz cxsysz − sxcz cxcy 0

0 0 0 1









= Rz(θz)Ry(θy)Rx(θx),

where Rx(θx), Ry(θy) and Rz(θz) are the standard rotation matrices.

Given a point P represented as a homogeneous row vector, the rotation of P is given by P ′ =

PR(θx, θy, θz). Animation between two rotations involves interpolating independently the

three angles θx, θy and θz.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

The standard rotation matrices are given by

Rx(θx) =









1 0 0 0

0 cx −sx 0

0 sx cx 0

0 0 0 1









Ry(θy) =









cy 0 sy 0

0 1 0 0

−sy 0 cy 0

0 0 0 1









Rz(θz) =









cz −sz 0 0

sz cz 0 0

0 0 1 0

0 0 0 1









The University of Texas at Austin 5

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Specifying Orientation using Quaternions are easier than Euler angles

glMatrixMode (GL_MODELVIEW); Quaternion = -0.46, -0.21, -0.41, 0.75

glRotatef(45, 1, 0, 0); Rotation Matrix =

glRotatef(45, 0, 1, 0); 0.55 0.82 0.06 0.00

glRotatef(45, 0, 0, 1); -0.43 0.22 0.87 0.00

glutAirPlane(1); 0.71 -0.51 0.48 0.00

0.00 0.00 0.00 1.00

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Quaternions:

i
2
= j

2
= k

2
= −1 ij = k, jk = i, ki = j.

Combining these, it follows that ji = −k, kj = −i and ik = −j. A quaternion is defined

to be a generalized complex number of the form

q = q0 + q1i + q2j + q3k.

We will see that quaternions bear a striking resemblance to our notation for angular

displacement. In particular, we can rewrite the quaternion notation in terms of a scalar and

vector as

q = (s, ~u) = s + uxi + uyj + uzk.

Furthermore define the product of quaternions to be

q1q2 = (s1s2 − (~u1 · ~u2), s1~u2 + s2~u1 + ~u1 × ~u2).

Define the conjugate of a quaternion q = (s, ~u) to be q̄ = (s,−~u). Define the magnitude

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

of a quaternion to be the square root of this product:

|q|2 = qq̄ = s2 + |~u|2.

A unit quaternion is one of unit magnitude, |q| = 1. A pure quaternion is one with a 0

scalar component

p = (0, ~v).

Any quaternion of nonzero magnitude has a multiplicative inverse, which is

q
−1

=
1

|q|2
q̄.

Quaternion and Rotation:

Define the rotation operator

Rq(p) = qpq
−1

.

Rq(p) = (0, (s2 − (~u · ~u))~v + 2~u(~u · ~v) + 2s(~u × ~v)).

Unit quaternions can be shown to be isomorphic to orientations and given by

q = (cos θ, (sin θ)~u), where |~u| = 1.

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

This is equivalent to a rotation by an angle 2θ around the axis ~u.

Thus, in summary, we encode points in 3-space as pure quaternions

p = (0, ~v),

and we encode a rotation by angle θ about a unit vector u → as a unit quaternion

q = (cos(θ/2), sin(θ/2)~u),

then the image of the point under this rotation is given by the vector part of the result of

the quaternion rotation operator Rq(p) = qpq−1.

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

x

y

z

Rotation example.

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Composing Rotations:

Given two unit quaternions q and q′, a rotation by q followed by a rotation by q′ is equivalent

to a single rotation by the product q′′ = q′q. That is,

Rq′Rq = Rq′′ where q
′′
= q

′
q.

This follows from the associativity of quaternion multiplication, and the fact that (qq′)−1 =

q−1q′−1
, as shown below.

Rq′(Rq(p)) = q
′
(qpq

−1
)q

′−1

= (q′q)p(q−1q′−1)

= (q′q)p(qq′)−1

= q
′′
pq

′′−1

= Rq′′(p).

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Matrices and Quaternions:

Given a unit quaternion

q = (cos(θ/2), sin(θ/2)~u) = (w, (x, y, z))

what is the corresponding affine transformation (expressed as a rotation matrix). By simply

expanding the definition of Rq(p), it is not hard to show that the following (homogeneous)

matrix is equivalent









1 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy 0

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx 0

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2 0

0 0 0 1









To convert from an orthogonal rotation matrix to a unit quaternion, we observe that if

M = [mi,j] is the affine transformation in homogeneous form,

trace(M) = 4 − 4(x
2
+ y

2
+ z

2
) = 4w

2
.

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Once we have w, we can find the order quantities by cancelling symmetric terms:

x =
m32 − m23

4w
,

y =
m13 − m31

4w
,

z =
m21 − m12

4w

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Pitch

Rotation Axis = 1, 0, 0, 0

Rotation Angle = ±π/4

Quaternion Vector = ±0.382683 0.000000 0.000000 0.923880

The University of Texas at Austin 14

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Yaw

Rotation Axis = 0, 1, 0, 0

Rotation Angle = ±π/4

Quaternion Vector = 0.000000 ±0.382683 0.000000 0.923880

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Roll

Rotation Axis = 0, 0, 1, 0

Rotation Angle = ±π/4

Quaternion Vector = 0.000000 0.000000 ±0.382683 0.923880

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Additonal Examples

The following web-page contains a good quaternion intro and C++ source codes:

http://www.lboro.ac.uk/departments/ma/gallery/quat/intro.html

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Spring 2013 (Lecture 7)

Reading Assignment and News

Before the next class please review Chapter 3 and its practice exercises, of the recommended

text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 18

