
Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Fractals

Consider a complex number z = a + bi as a point (a, b) or vector in the Real Euclidean

plane [1, i] with modulus |z| the length of the vector and equal to
√
a2 + b2.

Complex arithmetic rules:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

z → z2

All numbers with modulus 1 will stay at modulus 1 and is the attractor set or fixed-point of

this iterated function system.

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Julia Set for the point c: The attractor set of the iterated function system z → z2 + c

with c a complex constant

Julia Set for c = −0.62 − 0.44i

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Mandelbrot Set: Color the point c black if Julia (c) is connected, and white otherwise.

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Fractal Dimension:

N(A, ǫ) = smallest number of ǫ-balls needed to cover A.

Object A has dimension d if N(A, ǫ) grows as C(1/ǫ)d for constant C

Fractal dimension d = lim
ǫ→0

lnN(A, ǫ)

ln(1/ǫ)

A fractal is an object which is self-similar at different scales and has a non-integer fractal

dimension

d = lim
ǫ→0

lnN(A, ǫ)

ln(1/ǫ)

= lim
k→∞

lnN(A, (1/2k))

ln(1/(1/2k))

= lim
k→∞

ln 3k

ln 2k
= lim

k→∞

k ln 3

k ln 2

= lim
k→∞

ln 3

ln 2
=

ln 3

ln 2
≈ 1.58496.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

The Sierpinski triangle covered by 3k (1/2k)-balls

Repeated Subdivision rule:

Replace each piece of length x by b nonoverlapping piece of length x/a.

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Fractal dimension is

d =
ln b

ln a
For object below the area doesn’t change but boundary length does. The fractal dimension

is
ln 4

ln(2
√
2)

= 1.3333.

An object with a fractal boundary via repeated subdivision.

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

L-Systems (Lindenmayer-Systems)

• Aristid Lindenmayer, a botanist, initially developed this as a mathematical theory for

modeling plants

• Przemyslaw Prusinkiewicz (Dr. P.) fleshed this out for Graphics Modeling applications

• Central concept is of string rewriting, using productions or rewriting rules (e.g. F → F

+ F - - F + F with all symbols +, - as characters not operators)

• Longer strings can be generated by repeated applications of the productions, starting

from an axiom (e.g. F → F + F - - F + F → F + F - - F + F + F + F - - F + F - - F

+ F - - F + F + F + F - - F + F)

• See (http://mathforum.org/advanced/robertd/lsys2d.html) for other examples.

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

String Re-Writing and Turtle Graphics

• Turtle is a hypothetical drawing cursor on the screen or object coordinate system. Initially

assume Turtle at origin (0,0) and facing UP.

• Interpret F as “Move turtle forward one unit and draw a line segment”

• Interpret - by “Turn counter-clockwise (ccw) by π
3”

• Interpret + “Turn clockwise (cw) by π
3”

• So then the string - F - - F - - F intepreted in Turtle graphics shall draw a triangle.

• Applying the production (or rule) F → F + F - - F + F once to the axiom (- F - - F - -

F) yields a Star.

• Iterated applications of this rule, yields the Koch snowflake fractal.

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Using Recursion

A rewriting rule can be captured by a recursive function. Implement the turtle as the matrix

which describes the current object coordinate system, and ”turn left” and ”turn right”

functions turn the turtle by an angle π
3 .

drawbump(i){

if(i==0){ draw line() }

else {

drawbump(i-1); turn left (); drawbump(i-1); turn right (); turn right ();

drawbump(i-1); turn left (); drawbump(i-1) }

}

and the initial triangle (drawflake) is the function that starts the recursion

drawflake(i){

initialize(); turn left (); drawbump(i); turn right (); turn right ();

drawbump(i); turn right (); turn right (); drawbump(i) }

}

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Constructing Trees

2. L1 −> F [− F L1] F [+ F T] F L1

1. L0 −> F [− F L1] F [+ F L2] F L0

3. L2 −> F [− F T] F [+ F L2] F L2

F − Move Forward
L0, L1, L2 − Draw Leaf
T − Draw Terminating Leaf
"+" − Turn Right
"−" − Turn Left
"[" − Push
"]" − Pop

(left half of tree)

(right half of tree)

(center branch)

Depth 1 Depth 2 Depth 3

Axiom: L0

• The Turtle can make wiggly paths, but not branching.

• For branching we use a Stack, and the L-system symbols [for Push, and] as Pop

• A stack can be implemented using OpenGl operators PushMatrix() and PopMatrix () or

the Program Stack implicit in Recursion).

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Constructing Trees II

Recursive psuedo code an example L-system for constructing trees.

drawleaf(i){

if(i==0){ actual-draw-leaf() }

else {

drawbranch(i-1); pushState() ; turn left (); drawleaf (i-1); popState();

pushState(); turn right (); drawleaf(i-1); popState() }

}

drawbranch(i){

if(i==0){ actual-draw-branch() }

else { grow(); drawbranch(i-1)}

}

drawtree(i){

initialize(); drawleaf(i) }

}

Note ”actual-draw-branch” changes turtle position, while ”actual-draw-leaf” does not.

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Model Transformations

• Model Turtle (position, direction, size) by a Matrix C

• We use OpenGL by loading C into MODELVIEW matrix.

• Assume Turtle initially at origin (0,0) and facing UP :(0,1). This initial position is

captured in C by the identity matrix

• Now we wish to find the model transformation that moves Turtle to (50,100) and facing

an angle 5π
6 measured ccw from the x-axis.

• One easy way is by the sequence of Modelling transformations T(50,100) R(π3) applied

to C. Remember, the transformations need to be applied in the correct right2left order.

• Next if we wish to move the turtle foward by 10 units in the direction its facing, we

mutiply the sequence of transformations by another translation T(8.66,5).

• Note carefully, how we derived these transformations !

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Using Program Stack for Recursion

• Use Recursion to replace PushMatrix (), PopMatrix() pairs with save and restore of the

current matrix in the resolution of recursive calls by the Program Stack. For example

replace

PushMatrix()

TurnRight() DrawLeaf(i-1)

PopMatrix()

• with a call to a new function, say DrawRightleaf(i) which would be something like:

DrawRightLeaf(i) Double[9]SavedMatrix;

Copy(C,SavedMatrix); TurnRight(); DrawLeaf(i-1); copy(SavedMatrix,C)

• Here the DrawRightLeaf() function does not change C. Note that some L-system functions

do change C; for example ”turn left”, ”turn right”, ”grow”, ”shrink”, and you need to

keep track. The best way to remember of course while programming is via your code

comments.

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Spring 2013 (Lecture 9)

Reading Assignment and News

Before the next class please review Chapter 10 and its practice exercises, of the recommended

text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 14

