DEPARTMENT OF COMPUTER SCIENCES GRAPHICS — SPRING 2013 (LECTURE 10)

Curves, Surfaces and Segments, Patches
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DEPARTMENT OF COMPUTER SCIENCES

Conics: Curves and Quadrics: Surfaces
— Implicit form
— Parametric form

Rational Bézier Forms and Join Continuity
Recursive Subdivision of Bézier Curve segments

Recursive Subdivision of Bézier Surface patches
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Conic Curves

Conic Sections (Implicit form)

e Ellipse

22 y2

; —|— ﬁ =1 a, b > 0
e Hyperbola

2 2

Ty b> 0

? — ﬁ =1 a, >
e Parabola
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Conic Sections (Parametric form)

e Ellipse
1 —t°
t) =
(1) T
2t
y(t) = b1 e (—oo <t < +00)
e Hyperbola
1+t
t) =
(1) a3
2t
y(t) = br—0p (—00 <t < +00)
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e Parabola

z(t) = at’

y(t) = 2at (—oo <t < 400)
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Constructing Curve Segments

Linear blend:

e Line segment from an affine combination of points

Py(t) = (1 —t)Py + tP,

t (1-t)
r— - r—— "~~~ 7 1
O Cl O
P Pe P,
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Quadratic blend:

e Quadratic segment from an affine combination of line segments

Py(t) = (1—t)Py+tP
P (t) = (1—t)P +1tP;
P(t) = (1—t)Py(t) +tP(t)
P1
Py
Py >
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Cubic blend:

e Cubic segment from an affine combination of quadratic segments

Pi(t) = (1—t)Py+tP
Pl(t) = (1—t)P+tP,
P(t) = (1—1t)Py(t) +tP/(t)
Py(t) = (1—t)P,+1tP;
Pi(t) = (1—t)P (t)+tP,(t)
Fy(t) = (1—t)F;(t) +tPi(t)
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e The pattern should be evident for higher degrees
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Geometric view (de Casteljau Algorithm):

Join the points P; by line segments

Join the ¢ : (1 — t) points of those line segments by line segments

[ ]

[ ]

® Repeat as necessary

e Thet: (1 — t) point on the final line segment is a point on the curve
e

The final line segment is tangent to the curve at ¢
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Expanding Terms (Basis Polynomials):

e The original points appear as coefficients of Bernstein polynomials

P)(t) = Pl

Py(t) = (1—t)Py+th

Pi(t) = (1—1t)°Py+2(1 —t)tP,+t'P;

P(t) = (1—-1t)°’Py+3(1—t)°tP+3(1 —t)t°P,+t’Ps

P = S PBIH)

n n! n—ii n n—i,i
where Bi(t):(n—i)'i'(l_t) t :< ; )(1—75) t

e The Bernstein polynomials of degree m form a basis for the space of all degree-n
polynomials
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Recursive evaluation schemes:

e To obtain curve points (upward diagram):
— Start with given points and form successive, pairwise, affine combinations
P’ = P

P/ = (1-t)P/ ' +tP]

— The generated points Pz.j are the deCasteljau points
e To obtain basis polynomials (downward diagram):
— Start with 1 and form successive, pairwise, affine combinations

By = 1
B = (1-t)B/" +tB

where B? = 0 when 7 < Oorr > s
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Bernstein-Bézier (BB) Splines

Bernstein-Bézier (BB) Curve Segments and their Properties

Definition:

e A degree n (order n + 1) Bernstein-Bézier curve segment is
P(t) =S BB)
i=0

where the 15; are k-dimensional control points.
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Rational Quadratic BB Forms

Quadratic Rational BB Form:

e Homogeneous form

az(t) Xo X1 X2
y(t) = yo | Bot)+ | w1 | Bi(t)+ | w2 | B3(%)
w(t) Wo w1 w2

z0Bg(t) + 21 Bi(t) + x2B5(t)
= Yo By (t) + y1Bi(t) + y2B5(t)
woBg(t) + wiBi(t) + w2 B5(t) |
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Rational (projected) form

xOB(%(t)‘H?lB%(t)wLxQB%(t)
CE(t) L woBQ(t)—l—wlBQ(t)—l—wQB%(t)
y(t) N yoBE (1) +y1 B (t)+y2B3(t)

| woBZ(t)+wy BY(t)+waB3(t) |

L CEI B O Bl F=0

woBg(t) + w1 Bi(t) + w2 B;(t)
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Conversions:

GRAPHICS — SPRING 2013 (LECTURE 10)

e Conic parameterization elements in BB form

2t
1 — ¢
1+ ¢
t2
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B2(t) + 2B2(t)

Bj(t) + Bi(t)

Bj(t) + Bi(t) + 2B3(t)
B3 (t)
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Conics as Rational Bézier Curves

Conics as NURBS (Ellipse)

e Rational Bézier

a(l — t?)
s0] = e

aBg(t) + aBi(t) + 0B5(t)
0BZ(t) + bBi(t) + b2B3(t)
Bg(t) + Bi(t) 4+ 2B;(t)

_ s el Be |, B
B2(t) + BX(t) + 2B2(t)
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which implies
Wwo

w2

THE UNIVERSITY OF TEXAS AT AUSTIN

N =

Lo
L1
L2

Yo
Y1
Y2
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Conics as NURBS (Hyperbola)

e Rational Bézier

9] - Ll
Y

b(2t)
1 — ¢°

aBg(t) + aB3(t) + a2B5(t)
0B;(t) + bB;i(t) + b2B3(t)
B;(t) + B(t)

BECH I
Bi(t) + Bi(t) + 0B;(t)

which implies

wo =1 x9g=a Yo = 0
wi =1 x1=a y1 = b
we =0 Ty =2a 1y =2b
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Conics as NURBS (Parabola)

e Rational Bézier

9] - L]

0B;(t) + aBi(t) + a2B3(t)
By (t) + B (t) + By(t)

[ 0B3(t) + 0B} (t) + aB3(t) ]

Bg(t) + Bi(t) + B;(t)

[ : ] Bo(®) [ . ] Bi(t) [ 20 } B3(1)

which implies

’wO:]. 330:() y():O
wi =1 x1=0 vy =a
we =1 xT2=a Yy =2a
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Not Unique

e x,y,w are not unique
— Numerator and denominator can be multiplied by a common (positive) factor

e The following example is a common alternative form:

[ :cgti } B [ zz ] wo By (t) + { Z ]wle(t) n [ z; }szg(t)
Yy(t

woBg(t) + w1 B (t) + w2 B5(t)

which derives from rewriting

8l

— W

E e 8
—
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Bernstein-Bézier Curve Properties

Convex Hull:

> B!'(t) =1, Bl'(t) > 0 fort € [0, 1]
1=0

— P(t) is a convex combination of the P; for ¢t € [0, 1]

— P(t) lies within convex hull of B, for ¢ € [0, 1]
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Affine Invariance:

e A Bernstein-Bézier curve is an affine combination of its control points

e Any affine transformation of a curve is the curve of the transformed control points

T <Z R:B?(t)) = > T(P)BW

e T his property does not hold for projective transformations!

Interpolation:

Bp(0) = 1,BJ(1) = 1,3 BI(t) = 1, B)(t) > 0 for t € [0, 1]
1=0

— B"(0) =0ifi#0,B'(1)=0ifi#n

— P(0) = P, P(1) = P,
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Derivatives:
%B”(t) =n (Bin__ll(t) - B?_l(t))

(2

— P'(0) = n(P, — By, P'(1) = rg(ﬁn — P,4)

THE UNIVERSITY OF TEXAS AT AUSTIN
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Smoothly Joined Curve Segments (G' continuity)

o lLet P, 1, P, be the last two control points of one segment

o Let Dy, Q1 be the first two control points of the next segment

P, = Qo
(Pn - Pn—l) — /B(Ql - QO) for some B >0
Pn-l F?,]
2
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Recurrence, Subdivision:
Br(t) = (1 — )B} ™" + tB (1)

—> deCasteljau’s algorithm:

P(t) = PJ(t)
Pi(t) = (1—t)P'(t)+t Pl (1)
P’ = p

1

Use to evaluate point at ¢, or subdivide into two new curves:

o Pg, Pol, ... P are the control points for the left half
° P?S, p!

n—1°

... Py are the control points for the right half
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Quadric Surfaces

Implicit form

e Ellipsoid
—+——|—Z—: 1 a,b,c >0
e Hyperboloid

2 2 22 . .
;—i—ﬁ—g— a, ,C>O
e Hyperbolic Paraboloid
2 2 2
T z
__y___:1 a,b,c >0

e Parabolic
y2 = 4dax a >0

Parametric form
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e Ellipsoid
1 — 5% —¢*
) =
p(s,0) = oo
2s
y(s,t) = b1 FRpCT (—oo < s < +00)
2t
z(s,t) = b1+32—|—t2 (—oo <t < +00)
e Paraboloid
z(s,t) = a(s®+t)
y(s,t) = as (—oo < s < +00)
z(s,t) = at (—oo <t < 400)
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Tensor Product Bernstein-Bézier Patches

Tensor Patches:

e The control polygon is the polygonal mesh with vertices P; ;

e The patch basis functions are products of Bézier curve basis functions

P(s,t) = Z Z Pi,jBij(Sa t)

i=0 =0

where
B, (s,t) = B, (s)B; (t)

THE UNIVERSITY OF TEXAS AT AUSTIN
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Properties:

e Tensor Bernstein-Bézier Patch basis functions sume to one

> > Bl(s)BI(t) =1

i=0 j=0
e Patch basis functions are nonnegative on [0, 1] x [0, 1]
B (s)Bj(t) > 0for0 <s,t <1

—> Surface patch is in the convex hull of the control points
—> Surface patch is affinely invariant
(Transform the patch by transforming the control points)

Subdivision, Recursion, Evaluation:

e As for curves in each variable separately and independently

e Normals must be computed from partial derivatives

THE UNIVERSITY OF TEXAS AT AUSTIN
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Partial Derivatives:

e Ordinary derivative in each variable separately’:

T p(s,1) = ZZPJ[ LA

1=0 75=0

%P(s,t) — ZZP,JB (8)[ B; (t)}

=0 5=0

e Each of the above is a tangent vector in a parametric direction
e Surface is regular at each (s, t) where these two vectors are linearly independent

e The (unnormalized) surface normal is given at any regular point by

(2000 x 2ptot)

(the sign dictates what is the outward pointing normal)
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e |n particular, the cross-boundary tangent is given by
(e.g., for the s = 0 boundary):

nY > (Pi;— Py;)Bj(t)

i=0 =0

(and similarly for the other boundaries)
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Smoothly Joined Tensor Bernstein-Bézier Patches:

P Py

e Can be achieved by ensuring that

(Pin — Pin—1) = B(Qin — Q1,0) for 5 > 0

(and correspondingly for other boundaries)

THE UNIVERSITY OF TEXAS AT AUSTIN
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Rendering via Subdivision:

e Divide up into polygons:
1. By stepping

s = 0,0,24,...,1
t = 1,v,2v,...,1

and joining up sides and diagonals to produce a triangular mesh
2. By subdividing and rendering the control polygon
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Barycentric Triangular Bernstein-Bézier Patches

de Casteljau Revisited Barycentrically:

e Linear blend expressed in barycentric terms
(1—t)P0—|—tP1:’l”P0—|—tP1 where r+t=1

e Higher powers and a symmetric form of the Bernstein polynomials:

P(t) = Z P, <Z'(n — @)'> (1—¢)" "¢
_ Z P, (n—'> t'r! where r4+t=1

141
el 5!
120,520
z : n
1+7=n
120,520

THE UNIVERSITY OF TEXAS AT AUSTIN 39



DEPARTMENT OF COMPUTER SCIENCES GRAPHICS — SPRING 2013 (LECTURE 10)

e Examples

{Biy(r, 1)} = {1}
{Bgy(r, 1), Byy(r, 1)} = {r, t}
{B,(r,t), B{,(r,t), B3,(r,t)} = {r?, 2rt, t°}
(B, (r,t), B, (r,t), By, (r,t), Boy(r,t)} = {r°, 3r’t, 3rt>, t*}

THE UNIVERSITY OF TEXAS AT AUSTIN
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Surfaces — Barycentric Blends on Triangles:

e Formulas

P(r,s,t)

lggk(rasat)'_

THE UNIVERSITY OF TEXAS AT AUSTIN

2.

i+j+k=n
120,720,k>0

P,;.B
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Z.k(r, s, t)
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Triangular Bézier Surface Patches

Triangular deCasteljau:

e Join adjacently indexed P;;; by triangles
e Find r : s : t barycentric point in each triangle
e Join adjacent points by triangles
® Repeat
— Final point is the surface point P(r, s, t)
— final triangle is tangent to the surface at P(r, s, t)

e Triangle up/down schemes become tetrahedral up/down schemes
Properties:
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e Each boundary curve is a Bézier curve

e Patches will be joined smoothly if pairs of boundary triangles are planar as shown

I:Z)I.OZ

P11

P20

Fyos
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Reading Assignment and News

Before the next class please review Chapter 10 and its practice exercises, of the recommended

text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th
edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http: //www.cs.utexas.edu/users/bajaj/graphics2012 /cs354 /)
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