
Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

B-Splines and OpenGL/GLU

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Spline Curves

• Successive linear blend

• Basis polynomials

• Recursive evaluation

• Properties

• Joining segments

Tensor-product-patch Spline Surfaces

• Tensor product patches

• Recursive Evaluation

• Properties

• Joining patches

OpenGL and Glut Support

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Splines

If give up on small support, get natural splines; every control point influences the whole

curve.

If give up on interpolation, get cubic B-splines.

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

B-Splines

Need only one basis function, all Bi(t) are obtained by shifts: Bi(t) = B(t − i).

The basis function is piecewise polynomial:

B(t) =























































































0 t ≤ −2

1
6t

3 + 2t + 4
3 + t2 t ≤ −1

2
3 − t2 − 1

2t
3 t ≤ 0

2
3 − t2 + 1

2t
3 t ≤ 1

4
3 − 2t + t2 − 1

6t
3 t ≤ 2

0 2 ≤ t

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

B-Splines

The curve with control points p0, p1, p2, . . . pn is computed using

p(t) =
n

∑

i=0

pi B(t − i)

The allowed range of t is from 1 to n− 1; outside this interval our functions do not sum up

to 1, which means in particular that if we move control points together in the same way, the

curve outside the interval will not move rigidly.

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

B-Splines

The minimal number of points required is 4;

this corresponds to the interval for t of length 1.

This is inconvenient - but we can always add control points by reflection.

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

B-Splines

Adding control points by reflection:

1p

np

n+1p
0p

−1p

n−1p

reflected points

p−1 = 2p0 − p1; pn+1 = 2pn − pn−1

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Drawing B-Splines

Hardware typically can draw only line segments. Need to approximate B-spline with piecewise

linear curve. Simplest approach:

Choose small ∆t.

Compute points p(0), p(∆t), p(2∆t), . . .

Draw line segments connecting the points.

Not very efficient — have to evaluate a cubic polynomial (or several) at each point.

Can do better using a magic algorithm (subdivision). Next lecture!

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Another Formulation: Discontinuities in Bézier Splines

Bézier Discontinuities:

• Two Bézier segments can be completely disjoint

• Two segments join if they share last/first control point

P
4

P
1

P
3

2
P

0
P

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Common Parameterization and Blending Functions

• Joined curves can be given common parameterization

– Parameterize first segment with 0 ≤ t < 1

– Parameterize nest segment with 1 ≤ t ≤ 2, etc.

• Look at blending/basis polynomials under this parameterization

– Combine those for common Pj into a single piecewise polynomial

B
1 2

B
0

B B3 B4

1 20

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Combined Curve Segments

• Curve is P (t) = P0B0(t) + P1B1(t) + P2B2(t) + P3B3(t) + P4B4(t), where

B0(t) =

{

(1 − t)2 0 ≤ t < 1

0 1 ≤ t ≤ 2

B1(t) =

{

2((1 − t)t 0 ≤ t < 1

0 1 ≤ t ≤ 2

B2(t) =

{

t2 0 ≤ t < 1

(2 − t)2 1 ≤ t ≤ 2

B3(t) =

{

0 0 ≤ t < 1

2(2 − t)(t − 1) 1 ≤ t ≤ 2

B4(t) =

{

0 0 ≤ t < 1

(t − 1)2 1 ≤ t ≤ 2

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Curve Discontinuities from Basis Discontinuities

• P2 is scaled by B2(t), which has a discontinuous derivative

• The corner in the curve results from this discontinuity

2
B

1 20

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Spline Continuity

Smoother Blending Functions:

• Can B0(t), . . . , B4(t) be replaced by smoother functions?

– Piecewise polynomials on 0 ≤ t ≤ 2

– Continuous derivatives

• Yes, but we lose one degree of freedom

– Curve has no corner if segments share a common tangent

– Tangent is given by the chords P1P2, P2P3

– An equation constrains P1, P2, P3

P3 − P2 = P2 − P1 =⇒ P2 =
P1+P3

2

• This equation leads to combinations:

P0B0(t) + P1

(

B1(t) +
1

2
B2(t)

)

+ P3

(

1

2
B2(t) + B3(t)

)

+ P4B4(t)

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Spline Basis:

• Combined functions form a smoother spline basis

B0(t) = B0(t)

B1(t) =

(

B1(t) +
1

2
B2(t)

)

B2(t) =

(

1

2
B2(t) + B3(t)

)

B3(t) = B4(t)

The University of Texas at Austin 14

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

0
B B

1 2
B

0
B

1 20

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Smoother Curves:

• Control points used with this basis produce smoother curves.

3

0
P

P

P
1

P
2

General B-Splines:

• Nonuniform B-splines (NUBS) generalize this construction

• A B-spline, Bd
i (t), is a piecewise polynomial:

– each of its segments is of degree ≤ d

– it is defined for all t

– its segmentation is given by knots t = t0 ≤ t1 ≤ · · · ≤ tN

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

– it is zero for T < Ti and T > Ti+d+1

– it may have a discontinuity in its d − k + 1 derivative at tj ∈ {ti, . . . , ti+d+1}, if

tj has multiplicity k

– it is nonnegative for ti < t < ti+d+1

– Bd
i (t) + · · · + Bi+d(t) = 1 for ti+d ≤ t < ti+d+1, and all other Bd

j (t) are zero

on this interval

– Bézier blending functions are the special case where all knots have multiplicity d + 1

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Example (Quadratic):

t i t i+2 t i+3 t i+5
t i+1 t i+4

B B B
i i+1 i+2

The University of Texas at Austin 18

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Evaluation:

• There is an efficient, recursive evaluation scheme for any curve point

• It generalizes the triangle scheme (deCasteljau) for Bézier curves

• Example (for cubics and ti+3 ≤ t < ti+4):

The University of Texas at Austin 19

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

i+4t - t i+2

t - t

i+4t - t

t - t

t - t i+3

t - t i+3

t - t i+3

i+4t - t

t - t

i+4t - t

P
i+1

t - t

t - t

t - t

t - t

t - t

t - t i+3

t - t i+3

t t i+3

P
i+3P

i+2

i+2

i+2

i+5

i+5i+5

i+1

i+1

i+1

i+5

i+5 i+2

i+2

i+2

i+6

i+6 i+6i+5

i+4t - t

i+4t - t

t - t i+3i+4t t

i+4t t i+3 i+4t - t

P0

P

i

i

-

i+3-

-

P3
i+3

Pi+2
2 P2

P1 1 1

Pi+1
0 P 0 P 0

P

i+2

i+3Pi+2

i+3

i+1

i+3

The University of Texas at Austin 20

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Curves and Surfaces Programming using OpenGL and GLU

Quadrics support in GLU

Define a quadric object.

GLUquadricObj*p;

p=gluNewQuadric();

Specify a rendering Style of Quadric. Example as a wireframe.

gluQuadricDrawStyle(p,GLU_LINE);

Example a cylinder with its length along the y-axis

gluCylinder(p,BASE_RADIUS,BASE_RADIUS,BASE_HEIGHT,sample_circle,sample_height)

sample_circle = number of pieces of the base

sample_height = number of height pieces

The University of Texas at Austin 21

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Bézier Curves and Surfaces

Support is available through 1D, 2D, 3D, 4D evaluators to compute values for the polynomials

used in Bézier and NURBS.

glMaplf(type,u_min,u_max,stride,order,point_array)

type = 3D points, 4D points, RGBA colors, normals, indexed colors,

1D to 4D texture coordinates

u_min <= parameter u <= u_max

stride = number of parameter values between curve segments

order = degree of polynomial + 1

control polygon = defined by point_array

Example an evaluator for a 3D cubic Bézier curve defined over (0,1) with a stride of 3 and

order 4

The University of Texas at Austin 22

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

point data[]={...}

glMaplf{GL_MAP_VERTEX_3,0.0,1.0, 3,4,data};

Multiple evaluators can be active at the same time, and can be used to evaluate curves,

normals, colors etc at the same time

To render the Bézier Curve over (0,1) with 100 line segments

glEnable{GL_MAP_VERTEX_3};

glBegin(GL_LINE_STRIP)

for(i=0; i<100; i++) glEvalCoord1f((float) i/100.0);

glEnd();

The GLUT library has the teapot as an object. See pg 646-648, Chap 12 for display/render

program a teapot using Bézier functions.

For lighting / shading using a NURBS surface, when additionally needs surface normals.

These could be generated automatically, using

glEnable(GL_AUTO_NORMAL)

The University of Texas at Austin 23

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

NURBS functions in GLU library

gluNewNurbsRenderer() - create a pointer to a NURBS object

gluNurbsProperty() - choose rendering values such as size of

lines, polygons. Also enables a mode where the tesselated geometry

can be retrieved through the callback interface

gluNurbsCallBack() - register the functions to call to retreive

the tesselated geometric data or if you wish notification when an

error is encountered

gluNurbsCurve() gluNurbsSurface() - to generate and render

-specify control points, knot sequence, order, and/or normals,

texture coordinates

The University of Texas at Austin 24

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Teapot using Bézier Patches: Wireframe Model

/* Enable evaluator */

glEnable(GL_MAP2_VERTEX_3);

glColor3f(1.0, 1.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glScalef(0.25, 0.25, 0.25);

/* Draw wireframe */

for (k=0; k< 32; k++)

{

glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 0, 1, 12, 4,

&data[k][0][0][0]);

for (j = 0; j <= 4; j++)

{

glBegin(GL_LINE_STRIP);

for (i = 0; i <= 20; i++)

glEvalCoord2f((GLfloat) i / 20.0, (GLfloat) j / 4);

glEnd();

glBegin(GL_LINE_STRIP);

for (i = 0; i <=20; i++)

glEvalCoord2f((GLfloat) j / 4.0, (GLfloat) i / 20);

glEnd();

}

}

The University of Texas at Austin 25

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Teapot using Bézier Patches: Solid Model

/* Enable evaluators */

glEnable(GL_MAP2_VERTEX_3);

/* Set up light */

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0 };

GLfloat light_ambient[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat light_diffuse[] = { 0.6, 0.6, 0.6, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse) ;

glEnable(GL_LIGHTING); glEnable(GL_LIGHT0);

glEnable(GL_AUTO_NORMAL);

/* Set up material properties */

GLfloat mat_ambient[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat mat_specular[] = { 1, 1, 1, 1.0 };

GLfloat mat_diffuse[] = { 0.6, 0.6, 0.6, 1.0 };

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, mat_ambient);

glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse);

glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular);

glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50.0);

glRotatef(-90.0, 1.0, 0.0, 0.0); glScalef(0.25, 0.25, 0.25);

/* Draw solid model */

for (k=0; k< 32; k++) {

glMapGrid2f(8, 0.0, 1.0, 8, 0.0, 1.0);

glEvalMesh2(GL_FILL, 0, 8, 0, 8);

}
The University of Texas at Austin 26

Department of Computer Sciences Graphics – Spring 2013 (Lecture 11)

Reading Assignment and News

Before the next class please review Chapter 10 and its practice exercises, of the recommended

text. Also please see the midterm review questions.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 27

