Illumination I: The Phong Illumination Model

Components of Phong illumination or reflection model using RGB model:

OpenGL allows us to break this light's emitted intensity into 3 components: ambient L_a , diffuse L_d , and specular L_s . Each type of light component consists of 3 color components, so, for example, L_{rd} denotes the intensity of the red component of diffuse illumination.

Question: What is the amount of light that is transmitted (either by emission or reflection) from each point in the direction of the viewer.

Solution: This is achieved by first associating reflectivity or material properties to all the modelled objects in the scene, and then applying a Phong reflection calculation to determine the transmitted light intensity.

The Reflected Light Luminance/Intensity function shall be captured by:

$$I = (I_r, I_g, I_b)$$

for each of Light's components. For example,

The University of Texas at Austin

• ambient emission

$$I_a = \begin{pmatrix} I_{ar} \\ I_{ag} \\ I_{ab} \end{pmatrix}$$

An object's material properties determines how much of a given input Light intensity is reflected. Under the Phong model, material properties are captured by reflectivity coefficient vectors $K = (k_r, k_g, k_b)$ for ambient, diffuse and specular. Thus $k_d r$ is the fraction of red diffuse light that is reflected from an object. If $k_r = 0$, then no red light is reflected.

The computation of reflected luminance/intensity function using Phong illumination, for each object and light source, shall be governed by the following four light/material interactions.

- *Emission intensity:* to model objects that glow
- Ambient reflection: A simple way to model indirect reflection. All surfaces in all positions and orientations are illuminated equally.
- *Diffuse reflection:* The diffuse shading produced by dull, smooth objects.
- Specular reflection: The bright spots appearing on smooth shiny (e.g., metallic or polished) surfaces.

The shading of a point on a surface is a function of the relationship between the viewer, light sources, and surface. The following vectors are relevant to direct illumination. All vectors are assumed to be normalized to unit length.

- Normal vector: A vector \vec{n} that is perpendicular to the surface and directed outwards from the surface.
- *View vector:* A vector \vec{v} that points in the direction of the viewer.
- Light vector: A vector \vec{l} that points towards the light source.
- Reflection vector: A vector \vec{r} that indicates the direction of pure reflection of the light vector.

Normals Computation

Given any three non-collinear points, P_0 , P_1 , P_2 , on a polygon, a normal of the polygon is given through a cross product

Normals by cross product.

For a polygon is given by n points P_0 , P_1 , ..., P_{n-1} . If we can determine a plane equation (via least-squares fit):

```
ax + by + cz + d = 0
```

from these n points, then normalizing (a, b, c) is the unit normal vector \vec{n} of the polygon.

GRAPHICS – SPRING 2013 (LECTURE 14)

Normals for Implicitly Defined Surfaces

Given a surface defined by an *implicit representation*, i.e., defined by some equation

$$f(x, y, z) = 0$$

then the normal at some point is given by gradient vector

$$\vec{n} = \begin{pmatrix} \partial f / \partial x \\ \partial f / \partial y \\ \partial f / \partial z \end{pmatrix}$$

Graphics – Spring 2013 (Lecture 14)

Normals for Parametric Surfaces

Surfaces in computer graphics are most often represented parametrically. The *parametric representation* of a surface is defined by three functions of 2 variables or *parameters*:

$$egin{aligned} &x=\phi_x(u,v),\ &y=\phi_y(u,v),\ &z=\phi_z(u,v). \end{aligned}$$

Then the normal of the surface at a point is defined as the

$$\vec{n} = \frac{\partial \phi}{\partial u} \times \frac{\partial \phi}{\partial v}$$

where

$$\frac{\partial \phi}{\partial u} = \begin{pmatrix} \partial \phi_x / \partial u \\ \partial \phi_y / \partial u \\ \partial \phi_z / \partial u \end{pmatrix} \qquad \frac{\partial \phi}{\partial v} = \begin{pmatrix} \partial \phi_x / \partial v \\ \partial \phi_y / \partial v \\ \partial \phi_z / \partial v \end{pmatrix}$$

The University of Texas at Austin

The Reflection Vector

$$\vec{n}' = (\vec{n} \cdot \vec{l})\vec{n}$$
$$\vec{u} = \vec{n}' - \vec{l}$$
$$\vec{r} = \vec{l} + 2\vec{u} = \vec{l} + 2(\vec{n}' - \vec{l}) = 2(\vec{n} \cdot \vec{l})\vec{n} - \vec{l}$$

The University of Texas at Austin

The Refraction Vector

If η_l and η_t are the refractive indices of the materials on the two sides of the surface, then Snell's law states that

$$\eta_l Sin(\theta_l) = \eta_t Sin(\theta_t)$$

Department of Computer Sciences

Using this and the fact that \vec{l} , \vec{n} , and \vec{t} are assumed coplanar, we can calculate the unit transmitted light vector \vec{t} , as follows. let $\eta = \frac{\eta_t}{\eta_l}$, we have

$$Cos(\theta_t) = ((1 - \frac{1}{\eta^2}(1 - Cos^2(\theta_l)))^{\frac{1}{2}})$$

and

$$t = -\frac{1}{\eta}\vec{l} - (Cos(\theta_t) - \frac{1}{\eta}Cos(\theta_l))\vec{n}$$

Ambient Light Reflection

Ambient light is simplest to deal with. Let I_a denote the intensity of ambient light. For each surface, let

$$0 \leq k_a \leq 1$$

denote the surface's *coefficient of ambient reflection*, that is, the fraction of the ambient light that is reflected from the surface. The ambient component of illumination is

$$I_a = k_a L_a$$

Note that this is a vector equation (whose components are RGB).

Diffuse Reflection

Diffuse reflection arises from the assumption that light from any direction is reflected uniformly in all direction. Such a reflector is called a pure *Lambertian reflector*.

The key parameter of surface that controls diffuse reflection is k_d , the surface's *coefficient* of diffuse reflection. Let I_d denote the diffuse reflection component of the light source. Assume \vec{l} and \vec{n} are normalized, then $\cos \theta = (\vec{n} \cdot \vec{l})$. If $(\vec{n} \cdot \vec{l}) < 0$, then the point is on the dark side of the object.

The diffuse component to illumination is

$$I_d = k_d \max(0, \vec{n} \cdot \vec{l}) L_d$$

Specular Reflection I

Most objects are not perfect Lambertian reflector. One of the most common deviation is for smooth metallic or highly polished objects. They tend to have *specular highlights* (or "shiny spots").

The parameters of surface that control specular reflection under Phong model, are k_s , the surface's *coefficient of specular reflection*, and *s*, *shininess*.

The formula for the specular component is

$$I_s = k_s (\vec{r} \cdot \vec{v})^s L_s$$

Specular Reflection II

Another way of calculating specular reflection under the Phong model, is via the *halfway vector* (OpenGL).

Define \vec{h} to be the *halfway vector*, the normalized vector which is the halfway of \vec{l} and \vec{v} . Define $\vec{h} =$ Normalize $(\vec{l} + \vec{v})$.

The formula for the specular component can then be written as

$$I_s = k_s (\vec{n} \cdot \vec{h})^s L_s$$

GRAPHICS – SPRING 2013 (LECTURE 14)

The Phong Model Illumination Equation

The total illumination of a point in OpenGL is computed for the supported Light sources and is calculated

$$egin{aligned} I &= I_e + I_a + rac{1}{a + bd + cd^2} (I_d + I_s) \ &= I_e + k_a L_a + rac{1}{a + bd + cd^2} (k_d \max(0, ec{n} \cdot ec{l}) L_d + k_s (ec{n} \cdot ec{h})^s L_s), \end{aligned}$$

where d is the distance from the object to the light source.

The reflection material properties for front/back of each surface is specified by OpenGL using for example,

GLfloat ambient[]=0.1,0.25,0.0,1.0

GLfloat diffuse[]=0.1,0.25,0.0,1.0

GLfloat specular[]=1.0,0.0,1.0,1.0

```
GLfloat emission[]=0.0,0.8,0.0,1.0
```

```
glMaterialfv(GL-front-and-back,GL-specular,specular)
```

```
glMaterialf(GL-front-and-back,GL-shininess, 100.0)
```

Function glLightModel*() allows us to tell OpenGL how to carry out the lighting calculations. Since normals are reversed for back faces and the front , back faces can have different material properties, calculating shading for back faces requires extra work.

If we need correct two-sided lighting calculations (when we can see inside an object) one uses

glLightModeli(GL-LIGHT-MODEL-TWO-SIDED, GL-TRUE);

For multiple light sources, we add up the ambient, diffuse, and specular components for each light source.

Reading Assignment and News

Please review the appropriate sections related to this weeks' lectures in chapter 5, and 11, and associated exercises, of the recommended text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)