
Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Illumination I: The Phong Illumination Model

Components of Phong illumination or reflection model using RGB model:

OpenGL allows us to break this light’s emitted intensity into 3 components: ambient La,

diffuse Ld, and specular Ls. Each type of light component consists of 3 color components,

so, for example, Lrd denotes the intensity of the red component of diffuse illumination.

Question: What is the amount of light that is transmitted (either by emission or reflection)

from each point in the direction of the viewer.

Solution: This is achieved by first associating reflectivity or material properties to all the

modelled objects in the scene, and then applying a Phong reflection calculation to determine

the transmitted light intensity.

The Reflected Light Luminance/Intensity function shall be captured by:

I = (Ir, Ig, Ib)

for each of Light’s components. For example,

The University of Texas at Austin 1



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

• ambient emission

Ia =





Iar
Iag
Iab





An object’s material properties determines how much of a given input Light intensity is

reflected. Under the Phong model, material properties are captured by reflectivity coefficient

vectors K = (kr, kg, kb) for ambient, diffuse and specular. Thus kdr is the fraction of red

diffuse light that is reflected from an object. If kr = 0, then no red light is reflected.

The computation of reflected luminance/intensity function using Phong illumination, for each

object and light source, shall be governed by the following four light/material interactions.

• Emission intensity: to model objects that glow

• Ambient reflection: A simple way to model indirect reflection. All surfaces in all positions

and orientations are illuminated equally.

• Diffuse reflection: The diffuse shading produced by dull, smooth objects.

• Specular reflection: The bright spots appearing on smooth shiny (e.g., metallic or

polished) surfaces.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Relevant Vectors for Phong Shading

n

l

θ

α

v
r

θ

The shading of a point on a surface is a function of the relationship between the viewer, light

sources, and surface. The following vectors are relevant to direct illumination. All vectors

are assumed to be normalized to unit length.

• Normal vector: A vector ~n that is perpendicular to the surface and directed outwards

from the surface.

• View vector: A vector ~v that points in the direction of the viewer.

• Light vector: A vector ~l that points towards the light source.

• Reflection vector: A vector ~r that indicates the direction of pure reflection of the light

vector.

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Normals Computation

Given any three non-collinear points, P0, P1, P2, on a polygon, a normal of the polygon is

given through a cross product

~n = (P1 − P0) × (P2 − P0).

P
0

P
1

P
2

n

Normals by cross product.

For a polygon is given by n points P0, P1, . . . , Pn−1. If we can determine a plane equation

(via least-squares fit):

ax + by + cz + d = 0

from these n points, then normalizing (a, b, c) is the unit normal vector ~n of the polygon.

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Normals for Implicitly Defined Surfaces

Given a surface defined by an implicit representation, i.e., defined by some equation

f(x, y, z) = 0

then the normal at some point is given by gradient vector

~n =





∂f/∂x

∂f/∂y

∂f/∂z





The University of Texas at Austin 5



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Normals for Parametric Surfaces

Surfaces in computer graphics are most often represented parametrically. The parametric

representation of a surface is defined by three functions of 2 variables or parameters :

x = φx(u, v),

y = φy(u, v),

z = φz(u, v).

Then the normal of the surface at a point is defined as the

~n =
∂φ

∂u
×

∂φ

∂v

where

∂φ

∂u
=





∂φx/∂u

∂φy/∂u

∂φz/∂u





∂φ

∂v
=





∂φx/∂v

∂φy/∂v

∂φz/∂v





The University of Texas at Austin 6



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

The Reflection Vector

l

n

r

u u

n
,

~n
′
= (~n ·~l)~n

~u = ~n
′
−~l

~r = ~l + 2~u = ~l + 2(~n
′
−~l) = 2(~n ·~l)~n −~l

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

The Refraction Vector

l
n

-n t

ò
l

ò t

If ηl and ηt are the refractive indices of the materials on the two sides of the surface, then

Snell’s law states that

ηlSin(θl) = ηtSin(θt)

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Using this and the fact that ~l, ~n, and ~t are assumed coplanar, we can calculate the unit

transmitted light vector ~t, as follows. let η =
ηt
ηl
, we have

Cos(θt) = ((1 −
1

η2
(1 − Cos

2
(θl)))

1
2

and

t = −
1

η
~l − (Cos(θt) −

1

η
Cos(θl))~n

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Ambient Light Reflection

Ambient light is simplest to deal with. Let Ia denote the intensity of ambient light. For each

surface, let

0 ≤ ka ≤ 1

denote the surface’s coefficient of ambient reflection, that is, the fraction of the ambient

light that is reflected from the surface. The ambient component of illumination is

Ia = kaLa

Note that this is a vector equation (whose components are RGB).

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Diffuse Reflection

Diffuse reflection arises from the assumption that light from any direction is reflected

uniformly in all direction. Such a reflector is called a pure Lambertian reflector.

l

n

dA

l

dA dA cos q

q

n

The key parameter of surface that controls diffuse reflection is kd, the surface’s coefficient

of diffuse reflection. Let Id denote the diffuse reflection component of the light source.

Assume ~l and ~n are normalized, then cos θ = (~n ·~l). If (~n ·~l) < 0, then the point is on

the dark side of the object.

The diffuse component to illumination is

Id = kd max(0, ~n ·~l)Ld

The University of Texas at Austin 11



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Specular Reflection I

Most objects are not perfect Lambertian reflector. One of the most common deviation is for

smooth metallic or highly polished objects. They tend to have specular highlights (or “shiny

spots”).

The parameters of surface that control specular reflection under Phong model, are ks, the

surface’s coefficient of specular reflection, and s, shininess.

The formula for the specular component is

Is = ks(~r · ~v)sLs

The University of Texas at Austin 13



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Specular Reflection II

Another way of calculating specular reflection under the Phong model, is via the halfway

vector (OpenGL).

Define ~h to be the halfway vector, the normalized vector which is the halfway of ~l and ~v.

Define ~h = Normalize (~l + ~v).

The formula for the specular component can then be written as

Is = ks(~n · ~h)sLs

The University of Texas at Austin 14



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

The Phong Model Illumination Equation

The total illumination of a point in OpenGL is computed for the supported Light sources and

is calculated

I = Ie + Ia +
1

a + bd + cd2
(Id + Is)

= Ie + kaLa +
1

a + bd + cd2
(kd max(0, ~n ·~l)Ld + ks(~n · ~h)

s
Ls),

where d is the distance from the object to the light source.

The reflection material properties for front/back of each surface is specified by OpenGL using

for example,

GLfloat ambient[]=0.1,0.25,0.0,1.0

GLfloat diffuse[]=0.1,0.25,0.0,1.0

GLfloat specular[]=1.0,0.0,1.0,1.0

The University of Texas at Austin 15



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

GLfloat emission[]=0.0,0.8,0.0,1.0

glMaterialfv(GL-front-and-back,GL-specular,specular)

glMaterialf(GL-front-and-back,GL-shininess, 100.0)

Function glLightModel*() allows us to tell OpenGL how to carry out the lighting calculations.

Since normals are reversed for back faces and the front , back faces can have different

material properties, calculating shading for back faces requires extra work.

If we need correct two-sided lighting calculations (when we can see inside an object) one uses

glLightModeli(GL-LIGHT-MODEL-TWO-SIDED, GL-TRUE);

For multiple light sources, we add up the ambient, diffuse, and specular components for each

light source.

The University of Texas at Austin 16



Department of Computer Sciences Graphics – Spring 2013 (Lecture 14)

Reading Assignment and News

Please review the appropriate sections related to this weeks’ lectures in chapter 5, and 11,

and associated exercises, of the recommended text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 17


