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Supplement to Lecture 16 

Global Illumination: View 
Dependent 
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• OpenGL is based on a pipeline model in 

which primitives are rendered one at time 

- No shadows (except by tricks or multiple 

renderings) 

- No multiple reflections 

• Global approaches 

- Rendering equation 

- Ray tracing 

- Radiosity 
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Local vs Global Illumination
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Ray Tracing/Casting-1
• Follow rays of light from a point source 

• Can account for reflection and 

transmission 

• However, scattering produces many (infinite) additional rays
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Ray Tracing/Casting-2

•Only rays that reach the eye matter
•Reverse direction and cast rays
•Need at least one ray per pixel
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Ray Tracing/Casting a 
Sphere

•Ray is parametric
•Sphere is quadric
•Resulting equation is a scalar quadratic 
equation which gives entry and exit points 
of ray (or no solution if ray misses)
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Shadow Rays
•Even if a point is visible, it will not be lit 
unless we can see a light source from that 
point

•Cast shadow or feeler rays
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Reflection/Transmission
•Must follow shadow rays off reflecting or 
transmitting surfaces - Ray Trees

•Ray Tree Traversal - Process is recursive 
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Diffuse Surfaces

•Theoretically the scattering at each point 
of intersection generates an infinite 
number of new rays that should be traced

• In practice, we only trace the transmitted 
and reflected rays but use the Phong 
model to compute shade at point of 
intersection

•Radiosity works best for perfectly diffuse 
(Lambertian) surfaces
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Building a Ray Tracer

•Best expressed recursively
•Can remove recursion later
• Image based approach

- For each ray …….
•Find intersection with closest surface

- Need whole object database available
- Complexity of calculation limits object types

•Compute lighting at surface
•Trace reflected and transmitted rays
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When to stop

•Some light will be absorbed at each 
intersection

- Track amount left
• Ignore rays that go off to infinity

- Put large sphere around problem
•Count steps
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Recursive Ray Tracer I
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Recursive Ray Tracer II

Wednesday, March 20, 13



Recursive Ray Tracer III

Wednesday, March 20, 13



Computing Intersections

• Implicit Objects
- Quadrics

•Planes
•Polyhedra
•Parametric Surfaces
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 Implicit Surfaces

Ray from p0 in direction d
    p(t) = p0 +t d
General implicit surface
   f(p) = 0
Solve scalar equation
    f(p(t)) = 0
General case requires numerical methods
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Quadrics

General quadric can be written as
pTAp + bTp +c = 0

 Substitute equation of ray

  p(t) = p0 +t d
to get quadratic equation
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Sphere

(p – pc) • (p – pc) – r2 = 0

p(t) = p0 +t d

p0 • p0 t2+ 2 p0 • (d – p0) t + (d – p0) • (d – p0) 
    – r2 = 0
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Planes

p • n + c = 0

p(t) = p0 +t d

t = -(p0 • n + c)/ d • n 
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Polyhedra

•Generally we want to intersect with closed 
objects such as polygons and polyhedra 
rather than planes

•Hence we have to worry about inside/
outside testing

•For convex objects such as polyhedra 
there are some fast tests

Wednesday, March 20, 13



Ray Intersection with 
Polyhedron

• If ray enters an object, it must enter a front 
facing polygon and leave a back facing polygon

• Polyhedron is formed by intersection of planes
• Ray enters at furthest intersection with front 
facing planes

• Ray leaves at closest intersection with back 
facing planes

• If entry is further away than exit, ray must miss 
the polyhedron
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Ray Intersection with a  
Polyhedron
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Ray Intersection with a 
Polygon
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Ray Intersection with a 
Polygon
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Ray Transmission Vectors

•Ray tracers can make use of all these 
effects in a global calculation by tracing 
rays
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Refraction

With pure refraction, all the light is 
transmitted but the angle of refraction is 
determined by Snell’s law

         ήl sin θl = ήt sin θt 

where ήl and ήt are the speed of light 
relative to the speed of light in a vacuum

Let ή = ήl / ήt 
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Computing T

    ή2 sin2θl = ή2 (1- cos2θl )= sin2θt = 1-cos2θt

Solving for cos θt

Assuming normalized vectors
 cos θt = T·N = (1- ή2 (1-cos2θl ))1/2 
 where cos θl = L·N
T, N, and L must be coplanar
 T = α L + β N and T·T = 1
Solving
T = -1/ ή L – (cos θt - 1/ ή cos θl ) N
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Chromatic Dispersion

•The refraction coefficient is actually a 
function of wavelength

•   η = η(λ)
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Chromatic Dispersion with 
Shaders

•Easy to do with reflection maps
•Use three values of η
•Make use of vector operations
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