Supplement to Lecture 16

Global Illumination: View
Dependent
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Local vs Global Illumination

*OpenGL is based on a pipeline model in
which primitives are rendered one at time

- No shadows (except by tricks or multiple
renderings)

- No multiple reflections

* Global approaches
- Rendering equation

- Ray tracing
- Radiosity
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Ray Tracing/Casting-1

* Follow rays of light from a point source
« Can account for reflection and

transmission T%

y

]
\

« However, scattering produces many (infinite) additional rays
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Ray Tracing/Casting-2

* Only rays that reach the eye matter
* Reverse direction and cast rays
*Need at least one ray per pixel
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Ray Tracing/Casting a
Sphere

* Ray Is parametric
* Sphere is quadric

* Resulting equation is a scalar quadratic
equation which gives entry and exit points
of ray (or no solution if ray misses)
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Shadow Rays

*Even if a point is visible, it will not be lit
unless we can see a light source from that
point

» Cast shadow or feeler rays
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Reflection/Transmission

* Must follow shadow rays off reflecting or
transmitting surfaces - Ray Trees

* Ray Tree Traversal - Process is recursive
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Diffuse Surfaces

* Theoretically the scattering at each point
of intersection generates an infinite
number of new rays that should be traced

*|n practice, we only trace the transmitted
and reflected rays but use the Phong
model to compute shade at point of
intersection

» Radiosity works best for perfectly diffuse
(Lambertian) surfaces
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Building a Ray Tracer

* Best expressed recursively
« Can remove recursion later

* Image based approach
-Foreachray .......

* Find intersection with closest surface
- Need whole object database available
- Complexity of calculation limits object types

« Compute lighting at surface
* Trace reflected and transmitted rays
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When to stop

« Some light will be absorbed at each
intersection

- Track amount left

* |gnore rays that go off to infinity
- Put large sphere around problem

* Count steps
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Recursive Ray Tracer |

Program Sketch for Ray Tracing

program raytrace
var lsou; (* intensity of light source *)
back; (* background intensity x*)
ambi; (* ambient light intensity *)
depth; (* depth of ray tree consisting of multiple
reflection/refraction paths *)

ray = record (* ray x = a + ti
point: (a, b, c) y =b + tj
unit direction: (i, j, k) z =c + tk
end;
r: ray;
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Recursive Ray Tracer |l

function intensity (r);
(* intensity = spec + refr + dull
spec = specular reflection component
refr = refraction component
dull = non-reflecting, non refracting
component *)
L: unit vector pointing to light source
V: unit vector pointing from current position to eye
N: unit surface normal
Objects [1...n] (* list of n objects in scene *)
Ka [1...n](* ambient reflectivity factor for each object
Ks [1...n](* specular reflectivity factor for each objec
Kr [1...n](* refractivity index for each object *)

Kd [1...n])(* diffuse reflectivity factor for each object
S[1...n] (* shininess factor for each object *)

(* Additional Comments: For a transparent object, Kd[j]=0
and Ks[j]+Kr[jl=1 i.e. partly reflecting + partly
refracting. For an opaque object Kr[j]=0, Ks[j] and
Kd[j] can be anything as no simple relation between
them *)

Wednesday, March 20, 13




Recursive Ray Tracer ll|

function intensity(r: ray): rgb

var flec, frac: ray; spec, refr, dull: rgb;

begin
depth := depth +1
if depth >5 then intensity :=back
else

begin (» label 1 »)
check ray r for intersection with all objectj
in scen
if no intersection
then if r parallel to L
then intensity :=lsou
else intensity :=back
else
begin (* label2 =)
Take closest intersection which is object[j]
compute normal N at the intersection point
if Ks[j] >0 (* non-zero specular reflectivity] 1
then begin
compute reflection ray flec;

spec := Ks[jl*(intensity(flec) + (normalize(r).V)"S[j

end

else spec:=0;

if (Kr(j1>0)

then begin
compute refraction ray frac;
refr := Kr(j)*intensity(frac);

end

else refr:

check for

if shadow

then dull

(* non-zero refractivity =)

-0;
shadow;

:= Ka[j)wambi
else dull:= Kd[(j)l*lsous N.L +Ka[jl=ambi);
intensity :=spec +refr +dull;
end (* label2 =)
end( *label 1%)
depth := depth -1
end(* function ¥)

begin (* raytraces)
for each pixel P of projection viewport in raster order
begin
r = ray emanating from viewer through P; V = r;
set intensity(r) to the frame buffer pixel correspondir
to P
end
end (*raytrace *)
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Computing Intersections

 Implicit Objects
- Quadrics
* Planes
* Polyhedra
* Parametric Surfaces
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Implicit Surfaces

Ray from p, in direction d

p(t) =p, ftd
General implicit surface

f(p) =0
Solve scalar equation

f(p(t)) =0
General case requires numerical methods
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Quadrics

General quadric can be written as
p'Ap +b'p +c=0
Substitute equation of ray
p(t) =p, ttd
to get quadratic equation
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Sphere

(p_pc).(p_pc)_rzzo
p(t) =p, ttd

Py Pyt 2pye(d—py)t+(d—pg) *(d-p
_2=0
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pent+c=0

p(t) =p, ttd

Planes

t=-(ppen+c)den
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Polyhedra

* Generally we want to intersect with closed
objects such as polygons and polyhedra
rather than planes

* Hence we have to worry about inside/
outside testing

* For convex objects such as polyhedra
there are some fast tests
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Ray Intersection with
Polyhedron

* If ray enters an object, it must enter a front
facing polygon and leave a back facing polygon

* Polyhedron is formed by intersection of planes

* Ray enters at furthest intersection with front
facing planes

* Ray leaves at closest intersection with back
facing planes

* If entry is further away than exit, ray must miss
the polyhedron
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Ray Intersection with a
Polyhedron
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Ray Intersection with a
Polygon
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Ray Intersection with a
Polygon
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Ray Transmission Vectors

* Ray tracers can make use of all these
effects in a global calculation by tracing
rays
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Refraction

With pure refraction, all the light is
transmitted but the angle of refraction is
determined by Snell’s law

n, sin 8, =n, sin 9,
where 1, and n, are the speed of light
relative to the speed of light in a vacuum
Letn=n,/n
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Computing T

n° sin?@, = 2 (1- cos?6, )= sin?6, = 1-cos?6,
Solving for cos 6,
Assuming normalized vectors
cos 6, = T-N = (1- 42 (1-cos?6, ))'?
where cos 6,= L‘N
T, N, and L must be coplanar
T=oL+BNand T-T=1
Solving
=-1/nNL-(cosB,-1/1ncosB )N
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Chromatic Dispersion

* The refraction coefficient is actually a
function of wavelength

o n:n(k) < ‘b
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Chromatic Dispersion with
Shaders

« Easy to do with reflection maps
* Use three values of n
* Make use of vector operations
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