
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin Jan 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Supplement to Lecture 16

Global Illumination: View
Dependent

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• OpenGL is based on a pipeline model in

which primitives are rendered one at time

- No shadows (except by tricks or multiple

renderings)

- No multiple reflections

• Global approaches

- Rendering equation

- Ray tracing

- Radiosity

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin Jan 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Local vs Global Illumination

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin Jan 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Ray Tracing/Casting-1
• Follow rays of light from a point source

• Can account for reflection and

transmission

• However, scattering produces many (infinite) additional rays

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Ray Tracing/Casting-2

•Only rays that reach the eye matter
•Reverse direction and cast rays
•Need at least one ray per pixel

Wednesday, March 20, 13

Ray Tracing/Casting a
Sphere

•Ray is parametric
•Sphere is quadric
•Resulting equation is a scalar quadratic
equation which gives entry and exit points
of ray (or no solution if ray misses)

Wednesday, March 20, 13

Shadow Rays
•Even if a point is visible, it will not be lit
unless we can see a light source from that
point

•Cast shadow or feeler rays

Wednesday, March 20, 13

Reflection/Transmission
•Must follow shadow rays off reflecting or
transmitting surfaces - Ray Trees

•Ray Tree Traversal - Process is recursive

Wednesday, March 20, 13

Diffuse Surfaces

•Theoretically the scattering at each point
of intersection generates an infinite
number of new rays that should be traced

• In practice, we only trace the transmitted
and reflected rays but use the Phong
model to compute shade at point of
intersection

•Radiosity works best for perfectly diffuse
(Lambertian) surfaces

Wednesday, March 20, 13

Building a Ray Tracer

•Best expressed recursively
•Can remove recursion later
• Image based approach

- For each ray …….
•Find intersection with closest surface

- Need whole object database available
- Complexity of calculation limits object types

•Compute lighting at surface
•Trace reflected and transmitted rays

Wednesday, March 20, 13

When to stop

•Some light will be absorbed at each
intersection

- Track amount left
• Ignore rays that go off to infinity

- Put large sphere around problem
•Count steps

Wednesday, March 20, 13

Recursive Ray Tracer I

Wednesday, March 20, 13

Recursive Ray Tracer II

Wednesday, March 20, 13

Recursive Ray Tracer III

Wednesday, March 20, 13

Computing Intersections

• Implicit Objects
- Quadrics

•Planes
•Polyhedra
•Parametric Surfaces

Wednesday, March 20, 13

 Implicit Surfaces

Ray from p0 in direction d
 p(t) = p0 +t d
General implicit surface
 f(p) = 0
Solve scalar equation
 f(p(t)) = 0
General case requires numerical methods

Wednesday, March 20, 13

Quadrics

General quadric can be written as
pTAp + bTp +c = 0

 Substitute equation of ray

 p(t) = p0 +t d
to get quadratic equation

Wednesday, March 20, 13

Sphere

(p – pc) • (p – pc) – r2 = 0

p(t) = p0 +t d

p0 • p0 t2+ 2 p0 • (d – p0) t + (d – p0) • (d – p0)
 – r2 = 0

Wednesday, March 20, 13

Planes

p • n + c = 0

p(t) = p0 +t d

t = -(p0 • n + c)/ d • n

Wednesday, March 20, 13

Polyhedra

•Generally we want to intersect with closed
objects such as polygons and polyhedra
rather than planes

•Hence we have to worry about inside/
outside testing

•For convex objects such as polyhedra
there are some fast tests

Wednesday, March 20, 13

Ray Intersection with
Polyhedron

• If ray enters an object, it must enter a front
facing polygon and leave a back facing polygon

• Polyhedron is formed by intersection of planes
• Ray enters at furthest intersection with front
facing planes

• Ray leaves at closest intersection with back
facing planes

• If entry is further away than exit, ray must miss
the polyhedron

Wednesday, March 20, 13

Ray Intersection with a
Polyhedron

Wednesday, March 20, 13

Ray Intersection with a
Polygon

Wednesday, March 20, 13

Ray Intersection with a
Polygon

Wednesday, March 20, 13

Ray Transmission Vectors

•Ray tracers can make use of all these
effects in a global calculation by tracing
rays

R
N

-N

L

T

Wednesday, March 20, 13

Refraction

With pure refraction, all the light is
transmitted but the angle of refraction is
determined by Snell’s law

 ήl sin θl = ήt sin θt

where ήl and ήt are the speed of light
relative to the speed of light in a vacuum

Let ή = ήl / ήt

Wednesday, March 20, 13

Computing T

 ή2 sin2θl = ή2 (1- cos2θl)= sin2θt = 1-cos2θt

Solving for cos θt

Assuming normalized vectors
 cos θt = T·N = (1- ή2 (1-cos2θl))1/2
 where cos θl = L·N
T, N, and L must be coplanar
 T = α L + β N and T·T = 1
Solving
T = -1/ ή L – (cos θt - 1/ ή cos θl) N

Wednesday, March 20, 13

Chromatic Dispersion

•The refraction coefficient is actually a
function of wavelength

• η = η(λ)
N

-N

L

TbTg

Tr

Wednesday, March 20, 13

Chromatic Dispersion with
Shaders

•Easy to do with reflection maps
•Use three values of η
•Make use of vector operations

Wednesday, March 20, 13

