Supplement to Lecture 16

Global Illumination: View
Dependent

CS 354 Computer Graphics Notes and figures from Ed Angel: Interactive Computer
http://www.cs.utexas.edu/~bajaj/ Graphics, 6" Ed., 2012 © Addison Wesley
Department of Computer Science University of Texas at Austin Jan 2010

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Local vs Global Illumination

*OpenGL is based on a pipeline model in
which primitives are rendered one at time

- No shadows (except by tricks or multiple
renderings)

- No multiple reflections

* Global approaches
- Rendering equation

- Ray tracing
- Radiosity
CS 354 Computer Graphics Notes and figures from Ed Angel: Interactive Computer
@ http://www.cs.utexas.edu/~bajaj/ Graphics, 6" Ed., 2012 © Addison Wesley
Department of Computer Science Jan 2010

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Ray Tracing/Casting-1

* Follow rays of light from a point source
« Can account for reflection and

transmission T%

y

]
\

« However, scattering produces many (infinite) additional rays

CS 354 Computer Graphics Notes and figures from Ed Angel: Interactive Computer
http://www.cs.utexas.edu/~bajaj/ Graphics, 6" Ed., 2012 © Addison Wesley
Department of Computer Science University of Texas at Austin Jan 2010

Wednesday, March 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Ray Tracing/Casting-2

* Only rays that reach the eye matter
* Reverse direction and cast rays
*Need at least one ray per pixel

Wednesday, March 20, 13

Ray Tracing/Casting a
Sphere

* Ray Is parametric
* Sphere is quadric

* Resulting equation is a scalar quadratic
equation which gives entry and exit points
of ray (or no solution if ray misses)

Wednesday, March 20, 13

Shadow Rays

*Even if a point is visible, it will not be lit
unless we can see a light source from that
point

» Cast shadow or feeler rays

Wednesday, March 20, 13

Reflection/Transmission

* Must follow shadow rays off reflecting or
transmitting surfaces - Ray Trees

* Ray Tree Traversal - Process is recursive

Wednesday, March 20, 13

Diffuse Surfaces

* Theoretically the scattering at each point
of intersection generates an infinite
number of new rays that should be traced

*|n practice, we only trace the transmitted
and reflected rays but use the Phong
model to compute shade at point of
intersection

» Radiosity works best for perfectly diffuse
(Lambertian) surfaces

Wednesday, March 20, 13

Building a Ray Tracer

* Best expressed recursively
« Can remove recursion later

* Image based approach
-Foreachray

* Find intersection with closest surface
- Need whole object database available
- Complexity of calculation limits object types

« Compute lighting at surface
* Trace reflected and transmitted rays

Wednesday, March 20, 13

When to stop

« Some light will be absorbed at each
intersection

- Track amount left

* |gnore rays that go off to infinity
- Put large sphere around problem

* Count steps

Wednesday, March 20, 13

Recursive Ray Tracer |

Program Sketch for Ray Tracing

program raytrace
var lsou; (* intensity of light source *)
back; (* background intensity x*)
ambi; (* ambient light intensity *)
depth; (* depth of ray tree consisting of multiple
reflection/refraction paths *)

ray = record (* ray x = a + ti
point: (a, b, c) y =b + tj
unit direction: (i, j, k) z =c + tk
end;
r: ray;

Wednesday, March 20, 13

Recursive Ray Tracer |l

function intensity (r);
(* intensity = spec + refr + dull
spec = specular reflection component
refr = refraction component
dull = non-reflecting, non refracting
component *)
L: unit vector pointing to light source
V: unit vector pointing from current position to eye
N: unit surface normal
Objects [1...n] (* list of n objects in scene *)
Ka [1...n](* ambient reflectivity factor for each object
Ks [1...n](* specular reflectivity factor for each objec
Kr [1...n](* refractivity index for each object *)

Kd [1...n])(* diffuse reflectivity factor for each object
S[1...n] (* shininess factor for each object *)

(* Additional Comments: For a transparent object, Kd[j]=0
and Ks[j]+Kr[jl=1 i.e. partly reflecting + partly
refracting. For an opaque object Kr[j]=0, Ks[j] and
Kd[j] can be anything as no simple relation between
them *)

Wednesday, March 20, 13

Recursive Ray Tracer ll|

function intensity(r: ray): rgb

var flec, frac: ray; spec, refr, dull: rgb;

begin
depth := depth +1
if depth >5 then intensity :=back
else

begin (» label 1 »)
check ray r for intersection with all objectj
in scen
if no intersection
then if r parallel to L
then intensity :=lsou
else intensity :=back
else
begin (* label2 =)
Take closest intersection which is object[j]
compute normal N at the intersection point
if Ks[j] >0 (* non-zero specular reflectivity] 1
then begin
compute reflection ray flec;

spec := Ks[jl*(intensity(flec) + (normalize(r).V)"S[j

end

else spec:=0;

if (Kr(j1>0)

then begin
compute refraction ray frac;
refr := Kr(j)*intensity(frac);

end

else refr:

check for

if shadow

then dull

(* non-zero refractivity =)

-0;
shadow;

:= Ka[j)wambi
else dull:= Kd[(j)l*lsous N.L +Ka[jl=ambi);
intensity :=spec +refr +dull;
end (* label2 =)
end(*label 1%)
depth := depth -1
end(* function ¥)

begin (* raytraces)
for each pixel P of projection viewport in raster order
begin
r = ray emanating from viewer through P; V = r;
set intensity(r) to the frame buffer pixel correspondir
to P
end
end (*raytrace *)

Wednesday, March 20, 13

Computing Intersections

 Implicit Objects
- Quadrics
* Planes
* Polyhedra
* Parametric Surfaces

Wednesday, March 20, 13

Implicit Surfaces

Ray from p, in direction d

p(t) =p, ftd
General implicit surface

f(p) =0
Solve scalar equation

f(p(t)) =0
General case requires numerical methods

Wednesday, March 20, 13

Quadrics

General quadric can be written as
p'Ap +b'p +c=0
Substitute equation of ray
p(t) =p, ttd
to get quadratic equation

Wednesday, March 20, 13

Sphere

(p_pc).(p_pc)_rzzo
p(t) =p, ttd

Py Pyt 2pye(d—py)t+(d—pg) *(d-p
_2=0

Wednesday, March 20, 13

pent+c=0

p(t) =p, ttd

Planes

t=-(ppen+c)den

Wednesday, March 20, 13

Polyhedra

* Generally we want to intersect with closed
objects such as polygons and polyhedra
rather than planes

* Hence we have to worry about inside/
outside testing

* For convex objects such as polyhedra
there are some fast tests

Wednesday, March 20, 13

Ray Intersection with
Polyhedron

* If ray enters an object, it must enter a front
facing polygon and leave a back facing polygon

* Polyhedron is formed by intersection of planes

* Ray enters at furthest intersection with front
facing planes

* Ray leaves at closest intersection with back
facing planes

* If entry is further away than exit, ray must miss
the polyhedron

Wednesday, March 20, 13

Ray Intersection with a
Polyhedron

Wednesday, March 20, 13

Ray Intersection with a
Polygon

Wednesday, March 20, 13

Ray Intersection with a
Polygon

Wednesday, March 20, 13

Ray Transmission Vectors

* Ray tracers can make use of all these
effects in a global calculation by tracing
rays

Wednesday, March 20, 13

Refraction

With pure refraction, all the light is
transmitted but the angle of refraction is
determined by Snell’s law

n, sin 8, =n, sin 9,
where 1, and n, are the speed of light
relative to the speed of light in a vacuum
Letn=n,/n

Wednesday, March 20, 13

Computing T

n° sin?@, = 2 (1- cos?6,)= sin?6, = 1-cos?6,
Solving for cos 6,
Assuming normalized vectors
cos 6, = T-N = (1- 42 (1-cos?6,))'?
where cos 6,= L‘N
T, N, and L must be coplanar
T=oL+BNand T-T=1
Solving
=-1/nNL-(cosB,-1/1ncosB)N

Wednesday, March 20, 13

Chromatic Dispersion

* The refraction coefficient is actually a
function of wavelength

o n:n(k) < ‘b

Wednesday, March 20, 13

Chromatic Dispersion with
Shaders

« Easy to do with reflection maps
* Use three values of n
* Make use of vector operations

Wednesday, March 20, 13

