
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Lecture 3

Programming

with

OpenGL 3.1 + GLUT + GLEW

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

The success of GL lead to OpenGL (1992),

a platform-independent API that was

- Easy to use

- Close enough to the hardware to get excellent

performance

- Focus on rendering

- Omitted windowing and input to avoid window

system dependencies

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL evolution

• Originally controlled by an Architectural Review
Board (ARB)

- Members included SGI, Microsoft, Nvidia, HP,
3DLabs, IBM,…….

- Now Kronos Group
- Was relatively stable (through version 2.5)

• Backward compatible
• Evolution reflected new hardware capabilities

– 3D texture mapping and texture objects
– Vertex and fragment programs

- Allows platform specific features through extensions

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Modern OpenGL

 2013

•Performance is achieved by using GPU
rather than CPU

•Control GPU through programs called
shaders

•Application’s job is to send data to GPU
•GPU does all rendering

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL 3.1

•Totally shader-based
- No default shaders
- Each application must provide both a vertex

and a fragment shader
•No immediate mode
•Few state variables
•Most 2.5 functions deprecated
•Backward compatibility not required

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL: Other Versions
•OpenGL ES
- Embedded systems
- Version 1.0 simplified OpenGL 2.1
- Version 2.0 simplified OpenGL 3.1

• Shader based

•WebGL
- Javascript implementation of ES 2.0
- Supported on newer browsers
•OpenGL 4.1 and 4.2
- Add geometry shaders and tessellator

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

What about Direct X ?
•Windows only
•Advantages
- Better control of resources
- Access to high level functionality
•Disadvantages
- New versions not backward compatible
- Windows only
•Recent advances in shaders are leading
to convergence with OpenGL

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• OpenGL core library
- OpenGL32 on Windows

- GL on most unix/linux systems (libGL.a)

• OpenGL Utility Library (GLU)
- Provides functionality in OpenGL core but

avoids having to rewrite code

• Links with window system
- GLX for X window systems

- WGL for Windows

- AGL for Macintosh

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Libraries

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• OpenGL Utility Toolkit (GLUT)

- Provides functionality common to all window

systems
•  Open a window

•  Get input from mouse and keyboard

•  Menus

•  Event-driven

- Code is portable but GLUT lacks the

functionality of a good toolkit for a specific

platform
•  No slide bars

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

GLUT

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

freeglut

•GLUT was created long ago and has been
unchanged

- Amazing that it works with OpenGL 3.1
- Some functionality can’t work since it requires

deprecated functions
• freeglut updates GLUT

- Added capabilities
- Context checking

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

GLEW

•OpenGL Extension Wrangler Library
•Makes it easy to access OpenGL extensions
available on a particular system

•Avoids having to have specific entry points
in Windows code

•Application needs only to include glew.h and
run a glewInit()

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Software Organization

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Immediate Mode

Display

List

Polynomial

Evaluator

Per Vertex

Operations &

Primitive

Assembly

Rasterization
Per Fragment

Operations

Texture

Memory

CPU

Pixel

Operations

Frame

Buffer

geometry

 pipeline

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Architecture

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Primitives
-  Points

-  Line Segments

-  Polygons

• Attributes

• Transformations
-  Viewing

- Modeling

• Control (GLUT)

• Input (GLUT)

• Query

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Functions

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL State

•OpenGL is a state machine
•OpenGL functions are of two types

- Primitive generating
• Can cause output if primitive is visible
• How vertices are processed and appearance of primitive

are controlled by the state

- State changing
• Transformation functions
• Attribute functions
• Under 3.1 most state variables are defined by the

application and sent to the shaders

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Not Object Oriented
•OpenGL is not object oriented so that there
are multiple functions for a given logical
function
-glUniform3f
-glUniform2i
-glUniform3dv

•Underlying storage mode is the same
•Easy to create overloaded functions in C++
but issue is efficiency

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Function Format

glUniform3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glUniform3fv(p)

p is a pointer to an array

dimensions

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL #defines

•Most constants are defined in the include
files gl.h, glu.h and glut.h

- Note #include <GL/glut.h> should
automatically include the others

- Examples
-glEnable(GL_DEPTH_TEST)
-glClear(GL_COLOR_BUFFER_BIT)

• include files also define OpenGL data
types: GLfloat, GLdouble,….

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL and GLSL

•Shader based OpenGL is based less on a
state machine model than a data flow
model

•Most state variables, attributes and
related pre 3.1 OpenGL functions have
been deprecated

•Action happens in shaders
•Job is application is to get data to GPU

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

GLSL

•OpenGL Shading Language
•C-like with
- Matrix and vector types (2, 3, 4 dimensional)
- Overloaded operators
- C++ like constructors
•Similar to Nvidia’s Cg and Microsoft HLSL
•Code sent to shaders as source code
•New OpenGL functions to compile, link
and get information to shaders

Sunday, January 20, 13

Generate a square on a solid background

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

A Simple Program (?)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

#include <GL/glut.h>

void mydisplay(){

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(-0.5, -0.5);

 glVertex2f(-0.5, 0.5);

 glVertex2f(0.5, 0.5);

 glVertex2f(0.5, -0.5);

 glEnd();

 glFlush();

}

int main(int argc, char** argv){

 glutCreateWindow("simple");

 glutDisplayFunc(mydisplay);

 glutMainLoop();

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

It used to be easy (Simple.c)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

What Happened ?

•Most OpenGL functions deprecated
•Makes heavy use of state variable default
values that no longer exist

- Viewing
- Colors
- Window parameters

•Next version will make the defaults more
explicit

•However, processing loop is the same

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Simple.c

#include <GL/glut.h>
void mydisplay(){

 glClear(GL_COLOR_BUFFER_BIT);

// need to fill in this part
// and add in shaders

}
int main(int argc, char** argv){

 glutCreateWindow("simple");
 glutDisplayFunc(mydisplay);

 glutMainLoop();
}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Note that the program defines a display

callback function named mydisplay

- Every glut program must have a display

callback

- The display callback is executed whenever

OpenGL decides the display must be refreshed,

for example when the window is opened

- The main function ends with the program

entering an event loop

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Event Loop

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• See website and starter code of Project 1

for example

• Unix/linux

-  Include files usually in …/include/GL

- Compile with –lglut –lglu –lgl loader flags

- May have to add –L flag for X libraries

- Mesa implementation included with most linux

distributions

- Check web for latest versions of Mesa and

GLUT

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Compilation Notes

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Program Structure
• Most OpenGL programs have a similar structure
that consists of the following functions
-main():

• specifies the callback functions
• opens one or more windows with the required properties
• enters event loop (last executable statement)

-init(): sets the state variables
• Viewing
• Attributes

-initShader():read, compile and link shaders

- callbacks
• Display function
• Input and window functions

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Simple.c (revisited)

•main() function is the same
- Mostly GLUT functions

• init() will allow more flexible colors
• initShader() will hides details of setting up
shaders for now

•Key issue is that we must form a data
array to send to GPU and then render it

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

main.c
#include <GL/glew.h>
#include <GL/glut.h>

int main(int argc, char** argv)
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("simple");
 glutDisplayFunc(mydisplay);
 glewInit();
 init();
 glutMainLoop();
}

includes gl.h

specify window properties

set OpenGL state and initialize shaders

enter event loop

display callback

Sunday, January 20, 13

• glutInit allows application to get command line
arguments and initializes system

• gluInitDisplayMode requests properties for the
window (the rendering context)

-  RGB color

-  Single buffering

-  Properties logically ORed together

• glutWindowSize in pixels

• glutWindowPosition from top-left corner of display

• glutCreateWindow create window with title “simple”

• glutDisplayFunc display callback

• glutMainLoop enter infinite event loop

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

GLUT functions

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Immediate Mode Graphics
•Geometry specified by vertices

- Locations in space(2 or 3 dimensional)
- Points, lines, circles, polygons, curves, surfaces

• Immediate mode
- Each time a vertex is specified in application, its

location is sent to the GPU
- Old style uses glVertex
- Creates bottleneck between CPU and GPU
- Removed from OpenGL 3.1

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Retained Mode Graphics

•Put all vertex and attribute data in array
•Send array to GPU to be rendered
immediately

•Almost OK but problem is we would have
to send array over each time we need
another render of it

•Better to send array over and store on
GPU for multiple renderings

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Display Callback

•Once we get data to GLU, we can initiate
the rendering with a simple callback

•Arrays are buffer objects that contain
vertex arrays

void mydisplay()
{

 glClear(GL_COLOR_BUFFER_BIT);
 glDrawArrays(GL_TRIANGLES, 0, 3);

 glFlush();
}

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Arrays

•Vertices can have many attributes
- Position
- Color
- Texture Coordinates
- Application data
•A vertex array holds these data
•Using types in vec.h

point2 vertices[3] = {point2(0.0, 0.0),
 point2(0.0, 1.0), point2(1.0, 1.0)};

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Array Object

•Bundles all vertex data (positions, colors, ..,)
•Get name for buffer then bind

•At this point we have a current vertex array
but no contents

•Use of glBindVertexArray lets us switch
between VBOs

Glunit abuffer;
glGenVertexArrays(1, &abuffer);

glBindVertexArray(abuffer);

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Buffer Object

•Buffers objects allow us to transfer large
amounts of data to the GPU

•Need to create, bind and identify data

•Data in current vertex array is sent to GPU

Gluint buffer;
glGenBuffers(1, &buffer);

glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER,
 sizeof(points), points);

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Initialization
•Vertex array objects and buffer objects
can be set up on init()

•Also set clear color and other OpeGL
parameters

•Also set up shaders as part of initialization
- Read
- Compile
- Link
•First let’s consider a few other issues

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Coordinate Systems in OpenGL

• The units in points are determined by the
application and are called object, world, model or
problem coordinates

• Viewing specifications usually are also in object
coordinates

• Eventually pixels will be produced in window
coordinates

• OpenGL also uses some internal representations
that usually are not visible to the application but
are important in the shaders

Sunday, January 20, 13

• OpenGL places a camera at the origin in

object space pointing in the negative z

direction

• The default viewing volume

 is a box centered at the

 origin with a side of

 length 2

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Camera I

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

z=0

z=0

In the default orthographic view, points are

projected forward along the z axis onto the
plane z=0

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Orthographic Viewing

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Transformations & Viewing
• In OpenGL, projection is carried out by a
projection matrix (transformation)

• Transformation functions are also used for
changes in coordinate systems

• Pre 3.0 OpenGL had a set of transformation
functions which have been deprecated

• Three choices
- Application code
- GLSL functions
- vec.h and mat.h

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

OpenGL Geometry Primitives

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Polygons in OpenGL

• OpenGL will only display triangles
- Simple: edges cannot cross
- Convex: All points on line segment between two points in a

polygon are also in the polygon
- Flat: all vertices are in the same plane

• Application program must tessellate a polygon into
triangles (triangulation)

• OpenGL 4.1 contains a tessellator

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Polygons Testing
•Conceptually simple to test for simplicity
and convexity

•Time consuming
•Earlier versions assumed both and left
testing to the application

•Present version only renders triangles
•Need algorithm to triangulate an arbitrary
polygon

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Polygons Testing

•Long thin triangles render badly

•Equilateral triangles render well
•Maximize minimum angle
•Delaunay triangulation for unstructured points

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Triangulations

•Convex polygon

•Start with abc, remove b, then acd, ….
a

c

b

d

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Non-convex (concave)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Convex Decomposition

•Find reflex vertices and split.

Reflex vertex

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Attributes

•Attributes determine the appearance of objects
- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges
• Display vertices

•Only a few (glPointSize) are supported by
OpenGL functions

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

RGB Color in OpenGL
• Each color component is stored separately in
the frame buffer

• Usually 8 bits per component in buffer
• Color values can range from 0.0 (none) to 1.0
(all) using floats or over the range from 0 to 255
using unsigned bytels

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Indexed Color in OpenGL

•Colors are indices into tables of RGB values
•Requires less memory

- indices usually 8 bits
- not as important now

• Memory inexpensive
• Need more colors for shading

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Smooth Color in OpenGL

• Default is smooth shading
- OpenGL interpolates vertex colors across

visible polygons
• Alternative is flat shading

- Color of first vertex
determines fill color
- Handle in shader

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Setting Colors

•Colors are ultimately set in the fragment
shader but can be determined in either
shader or in the application

•Application color: pass to vertex shader as
a uniform variable or as a vertex attribute

•Vertex shader color: pass to fragment
shader as varying variable

•Fragment color: can alter via shader code

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Shader Applications

•Moving vertices
- Morphing
- Wave motion
- Fractals

•Lighting
- More realistic models
- Cartoon shaders

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Fragment Shader Applications
Texture mapping

smooth shading environment
 mapping

bump mapping

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Writing Shader Applications

•First programmable shaders were
programmed in an assembly-like manner

•OpenGL extensions added for vertex and
fragment shaders

•Cg (C for graphics) C-like language for
programming shaders

- Works with both OpenGL and DirectX
- Interface to OpenGL complex
•OpenGL Shading Language (GLSL)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Simple Shader

in vec4 vPosition;
void main(void)
{
 gl_Position = vPosition;
}

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley9

Execution Model

Vertex
Shader

GPU

Primitive
Assembly

Application
Program

glDrawArrays Vertex

Vertex data
Shader Program

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley10

Simple Fragment Program
void main(void)
{
 gl_FragColor = vec4(1.0, 0.0,
0.0, 1.0);
}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley11

Execution Model

Fragment
Shader

Application

Frame
BufferRasterizer

Fragment Fragment
Color

Shader Program

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley12

Data Types

•C types: int, float, bool
•Vectors:

- float vec2, vec3, vec4
- Also int (ivec) and boolean (bvec)

•Matrices: mat2, mat3, mat4
- Stored by columns
- Standard referencing m[row]
[column]

•C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)
- vec2 b = vec2(a)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley13

Pointers

•There are no pointers in GLSL
•We can use C structs which
 can be copied back from
functions

•Because matrices and vectors are
basic types they can be passed
into and output from GLSL
functions, e.g.
 mat3 func(mat3 a)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley14

Qualifiers
• GLSL has many of the same qualifiers
such as const as C/C++

• Need others due to the nature of the
execution model

• Variables can change
- Once per primitive
- Once per vertex
- Once per fragment
- At any time in the application

• Vertex attributes are interpolated
by the rasterizer into fragment
attributes

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley15

Attribute Qualifier
•Attribute-qualified variables
can change at most once per
vertex

•There are a few built in
variables such as gl_Position
but most have been deprecated

•User defined (in application
program)
- Use in qualifier to get to shader
-in float temperature
-in vec3 velocity

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley16

Uniform Qualified

•Variables that are constant for
an entire primitive

•Can be changed in application
and sent to shaders

•Cannot be changed in shader
•Used to pass information to
shader such as the bounding box
of a primitive

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley17

Varying Qualified
•Variables that are passed from
vertex shader to fragment
shader

•Automatically interpolated by
the rasterizer

•Old style used the varying
qualifier
varying vec4 color;

•Now use out in vertex shader and
in in the fragment shader
out vec4 color;

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley18

Example: Vertex Shader
const vec4 red = vec4(1.0, 0.0,
0.0, 1.0);
out vec3 color_out;
void main(void)
{
 gl_Position = vPosition;
 color_out = red;
}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley19

Required Fragment Shader
in vec3 color_out;
void main(void)
{
 gl_FragColor = color_out;
}
// in latest version use form
// out vec4 fragcolor;
// fragcolor = color_out;

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley20

Passing values

•call by value-return
•Variables are copied in
•Returned values are copied back
•Three possibilities

- in
- out
- inout (deprecated)

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley21

Operators and Functions

•Standard C functions
- Trigonometric
- Arithmetic
- Normalize, reflect, length

•Overloading of vector and matrix
types
mat4 a;
vec4 b, c, d;
c = b*a; // a column vector stored
as a 1d array
d = a*b; // a row vector stored as

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley22

Swizzling and Selection

•Can refer to array elements by
element using [] or selection
(.) operator with
- x, y, z, w
- r, g, b, a
- s, t, p, q
-a[2], a.b, a.z, a.p are the same

•Swizzling operator lets us
manipulate components
vec4 a;
a.yz = vec2(1.0, 2.0);

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Linking Shaders with Application
•Read shaders
•Compile shaders
•Create a program object
•Link everything together
•Link variables in application
with variables in shaders
- Vertex attributes
- Uniform variables

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 3

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Program Object

•Container for shaders
- Can contain multiple shaders
- Other GLSL functions

GLuint myProgObj;
myProgObj = glCreateProgram();

 /* define shader objects here */
glUseProgram(myProgObj);
glLinkProgram(myProgObj);

4

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Reading a Shader

•Shaders are added to the program
object and compiled

•Usual method of passing a shader
is as a null-terminated string
using the function
glShaderSource

•If the shader is in a file, we
can write a reader to convert
the file to a string

5

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Shader Reader

#include <stdio.h>

static char*
readShaderSource(const char* shaderFile)

{
 FILE* fp = fopen(shaderFile, "r");

 if (fp == NULL) { return NULL; }

 fseek(fp, 0L, SEEK_END);
 long size = ftell(fp);

6

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Shader Reader (cont)

 fseek(fp, 0L, SEEK_SET);
 char* buf = new char[size + 1];

 fread(buf, 1, size, fp);

 buf[size] = '\0';
 fclose(fp);

 return buf;
}

7

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Adding a Vertex Shader

GLuint vShader;
GLunit myVertexObj;

GLchar vShaderfile[] = “my_vertex_shader”;
GLchar* vSource =

 readShaderSource(vShaderFile);
glShaderSource(myVertexObj,

 1, &vertexShaderFile, NULL);
myVertexObj =

 glCreateShader(GL_VERTEX_SHADER);
glCompileShader(myVertexObj);

glAttachObject(myProgObj, myVertexObj);

8

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Attributes

•Vertex attributes are named in
the shaders

•Linker forms a table
•Application can get index from
table and tie it to an
application variable

•Similar process for uniform
variables

9

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Attribute Example

#define BUFFER_OFFSET(offset)
 ((GLvoid*) (offset))

GLuint loc =
 glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 2, GL_FLOAT,

 GL_FALSE, 0, BUFFER_OFFSET(0));

10

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Uniform Variable Example

GLint angleParam;
angleParam = glGetUniformLocation(myProgObj,

 "angle");
/* angle defined in shader */

/* my_angle set in application */
GLfloat my_angle;

my_angle = 5.0 /* or some other value */

glUniform1f(angleParam, my_angle);

11

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Double Buffering
• Updating the value of a uniform
variable opens the door to animating
an application

- Execute glUniform in display
callback

- Force a redraw through
glutPostRedisplay()

• Need to prevent a partially redrawn
frame buffer from being displayed

• Draw into back buffer
• Display front buffer
• Swap buffers after updating
finished

12

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Adding Double Buffering

•Request a double buffer
- glutInitDisplayMode(GLUT_DOUBLE)

•Swap buffers

13

void mydisplay()
{
 glClear(……);
 glDrawArrays();
 glutSwapBuffers();
}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Idle Callback

•Idle callback specifies function
to be executed when no other
actions pending
- glutIdleFunc(myIdle);

14

void myIdle()
{
 // recompute display
 glutPostRedisplay();
}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Attribute and Varying Qualifiers
•Starting with GLSL 1.5 attribute
and varying qualifiers have been
replaced by in and out
qualifiers

•No changes needed in application
•Vertex shader example:

15

#version 1.4
attribute vec3 vPosition;
varying vec3 color;

#version 1.5
in vec3 vPosition;
out vec3 color;

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Adding Color
•If we set a color in the
application, we can send it to
the shaders as a vertex
attribute or as a uniform
variable depending on how often
it changes

•Let’s associate a color with
each vertex

•Set up an array of same size as
positions

•Send to GPU as a vertex buffer
object

16

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Setting Colors

17

typedef vec3 color3;
color3 base_colors[4] = {color3(1.0, 0.0. 0.0), ….
color3 colors[NumVertices];
vec3 points[NumVertices];

//in loop setting positions

colors[i] = basecolors[color_index]
position[i] = …….

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Setting Up Buffer Object

18

//need larger buffer

glBufferData(GL_ARRAY_BUFFER, sizeof(points) +
 sizeof(colors), NULL, GL_STATIC_DRAW);

//load data separately

glBufferSubData(GL_ARRAY_BUFFER, 0,
 sizeof(points), points);
glBufferSubData(GL_ARRAY_BUFFER, sizeof(points),
 sizeof(colors), colors);

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Second Vertex Array

19

// vPosition and vColor identifiers in vertex shader

loc = glGetAttribLocation(program, “vPosition”);
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0,
 BUFFER_OFFSET(0));

loc2 = glGetAttribLocation(program, “vColor”);
glEnableVertexAttribArray(loc2);
glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0,
 BUFFER_OFFSET(sizeofpoints));

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex Shader Applications

•Moving vertices
- Morphing
- Wave motion
- Fractals

•Lighting
- More realistic models
- Cartoon shaders

20

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Wave Motion Vertex Shader

•
in vec4 vPosition;

uniform float xs, zs, // frequencies
uniform float h; // height scale

void main()
{

 vec4 t = vPosition;
 t.y = vPosition.y

 + h*sin(time + xs*vPosition.x)
 + h*sin(time + zs*vPosition.z);

 gl_Position = t;
}

21

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Particle System

in vec3 vPosition;
uniform mat4 ModelViewProjectionMatrix;

uniform vec3 init_vel;
uniform float g, m, t;

void main()
{

vec3 object_pos;
object_pos.x = vPosition.x + vel.x*t;
object_pos.y = vPosition.y + vel.y*t

 + g/(2.0*m)*t*t;
object_pos.z = vPosition.z + vel.z*t;

gl_Position =
 ModelViewProjectionMatrix*vec4(object_pos,1);

}
22

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Pass Through Fragment Shader

/* pass-through fragment shader */

in vec4 color;
void main(void)

{
 gl_FragColor = color;

}

23

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Vertex vs Fragment Lighting

per vertex lighting per fragment lighting

24

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Fragment Shader
Applications

Texture mapping

smooth shading environment
 mapping

bump mapping

25

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Do not have use the entire window for the

image: glViewport(x,y,w,h)

• Values in pixels (screen coordinates)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, Dave Shreiner: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Viewports

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

