
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Lecture 4

Interaction / Graphical
Devices

•!Devices can be described either by
-!Physical properties

•! Mouse

•! Keyboard

•! Trackball

-!Logical Properties
•! What is returned to program via API

–! A position

–! An object identifier

•!Modes
-!How and when input is obtained

•! Request or event

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Graphical Input

mouse trackball
light pen

data tablet joy stick space ball

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Physical Devices

•!Devices such as the data tablet return a
position directly to the operating system

•!Devices such as the mouse, trackball, and
joy stick return incremental inputs (or
velocities) to the operating system

-!Must integrate these inputs to obtain an
absolute position

•! Rotation of cylinders in mouse

•! Roll of trackball

•! Difficult to obtain absolute position

•! Can get variable sensitivity

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Incremental/Relative Devices

•!Consider the C and C++ code
-!C++: cin >> x;

-!C: scanf (“%d”, &x);

•!What is the input device?
-!Can’t tell from the code

-!Could be keyboard, file, output from another
program

•!The code provides logical input
-!A number (an int) is returned to the program

regardless of the physical device

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Logical Devices

•!Input devices contain a trigger which can

be used to send a signal to the operating

system

-!Button on mouse

-!Pressing or releasing a key

•!When triggered, input devices return

information (their measure) to the system

-!Mouse returns position information

-!Keyboard returns ASCII code

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Input Modes

•!Input provided to program only when user

triggers the device

•!Typical of keyboard input

-!Can erase (backspace), edit, correct until enter

(return) key (the trigger) is depressed

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Request Mode

•!Most systems have more than one input

device, each of which can be triggered at

an arbitrary time by a user

•!Each trigger generates an event whose

measure is put in an event queue which

can be examined by the user program

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Event Mode

•!Window: resize, expose, iconify

•!Mouse: click one or more buttons

•!Motion: move mouse

•!Keyboard: press or release a key

•!Idle: nonevent

-!Define what should be done if no other event is

in queue

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Event Types

•!Programming interface for event-driven

input

•!Define a callback function for each type of

event the graphics system recognizes

•!This user-supplied function is executed

when the event occurs

•!GLUT example:

glutMouseFunc(mymouse)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Callbacks

GLUT recognizes a subset of the events
recognized by any particular window
system (Windows, X, Macintosh)
-!glutDisplayFunc

-!glutMouseFunc

-!glutReshapeFunc

-!glutKeyboardFunc

-!glutIdleFunc

-!glutMotionFunc,

glutPassiveMotionFunc

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

GLUT Callbacks

•!Recall that the last line in main.c for a program

using GLUT must be

glutMainLoop();

which puts the program in an infinite event loop

•!In each pass through the event loop, GLUT

-! looks at the events in the queue

-! for each event in the queue, GLUT executes the
appropriate callback function if one is defined

-! if no callback is defined for the event, the event is
ignored

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

GLUT Event Loop

•!The display callback is executed whenever
GLUT determines that the window should be
refreshed, for example

-!When the window is first opened

-!When the window is reshaped

-!When a window is exposed

-!When the user program decides it wants to change the
display

•!In main.c
-!glutDisplayFunc(mydisplay) identifies the

function to be executed

-! Every GLUT program must have a display callback

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Display Callback

•!Many events may invoke the display callback
function

-!Can lead to multiple executions of the display callback on a
single pass through the event loop

•!We can avoid this problem by instead using

glutPostRedisplay();

 which sets a flag.

•!GLUT checks to see if the flag is set at the end of
the event loop

•!If set then the display callback function is executed

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Posting Re-displays

•!When we redraw the display through the display
callback, we usually start by clearing the window
-!glClear()

then draw the altered display

•!Problem: the drawing of information in the frame
buffer is decoupled from the display of its
contents

-!Graphics systems use dual ported memory

•!Hence we can see partially drawn display
-! See the program single_double.c for an example

with a rotating cube

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Animating a Display

void mydisplay()
{

 glClear(GL_COLOR_BUFFER_BIT|….)
.
/* draw graphics here */
.

 glutSwapBuffers()
}

•!Instead of one color buffer, we use two
-! Front Buffer: one that is displayed but not written to

-!Back Buffer: one that is written to but not displayed

•!Program then requests a double buffer in main.c
-!glutInitDisplayMode(GL_RGB | GL_DOUBLE)

-! At the end of the display callback buffers are swapped

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Double Buffering

void myidle() {

/* change something */

 t += dt

 glutPostRedisplay();

}

Void mydisplay() {

 glClear();

/* draw something that depends on t */

 glutSwapBuffers();

}

•!The idle callback is executed whenever there are no
events in the event queue

-!glutIdleFunc(myidle)

-!Useful for animations

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using the Idle Callback

•!The form of all GLUT callbacks is fixed
-! void mydisplay()

-! void mymouse(GLint button, GLint state,
GLint x, GLint y)

•!Must use globals to pass information to callbacks

float t; /*global */

void mydisplay()

{

/* draw something that depends on t

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using Globals

glutMouseFunc(mymouse)

void mymouse(GLint button, GLint

state, GLint x, GLint y)

•!Returns

-!which button (GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON,

GLUT_RIGHT_BUTTON) caused event

-!state of that button (GLUT_UP, GLUT_DOWN)

-!Position in window

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Mouse Callback

•!The position in the screen window is usually measured

in pixels with the origin at the top-left corner

•!Consequence of refresh done from top to bottom
•!OpenGL uses a world coordinate system with origin at

the bottom left

•!Must invert y coordinate returned by callback by

height of window

•!y = h – y;

(0,0)
h

w

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Positioning

•!To invert the y position we need the

window height

-!Height can change during program execution

-!Track with a global variable

-!New height returned to reshape callback that

we will look at in detail soon

-!Can also use query functions
•!glGetIntv

•!glGetFloatv

to obtain any value that is part of the state

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Obtaining Window Size

•!In our original programs, there was no

way to terminate them through OpenGL

•!We can use the simple mouse callback

void mouse(int btn, int state, int x, int y)

{

 if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)

 exit(0);

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Terminating a Program

•!In the next example, we draw a small square

at the location of the mouse each time the left

mouse button is clicked

•!This example does not use the display

callback but one is required by GLUT; We can

use the empty display callback function

mydisplay(){}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using Mouse Position

void mymouse(int btn, int state, int x, int y)
{
 if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
 exit(0);
 if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
 drawSquare(x, y);
}
void drawSquare(int x, int y)
{
 y=w-y; /* invert y position */
 glColor3ub((char) rand()%256, (char) rand)%256,

 (char) rand()%256); /* a random color */
 glBegin(GL_POLYGON);
 glVertex2f(x+size, y+size);
 glVertex2f(x-size, y+size);
 glVertex2f(x-size, y-size);
 glVertex2f(x+size, y-size);
 glEnd();
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Drawing squares at cursor
location

•!We can draw squares (or anything else)

continuously as long as a mouse button is

depressed by using the motion callback

-!glutMotionFunc(drawSquare)

•!We can draw squares without depressing

a button using the passive motion callback

-!glutPassiveMotionFunc(drawSquare)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using Motion Callback

glutKeyboardFunc(mykey)

void mykey(unsigned char key,

 int x, int y)

-!Returns ASCII code of key depressed and

mouse location

void mykey()

{

 if(key == ‘Q’ | key == ‘q’)

 exit(0);

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using the Keyboard

•!GLUT defines the special keys in glut.h
-! Function key 1: GLUT_KEY_F1

-!Up arrow key: GLUT_KEY_UP
•!if(key == ‘GLUT_KEY_F1’ ……

•!Can also check of one of the modifiers
-!GLUT_ACTIVE_SHIFT

-!GLUT_ACTIVE_CTRL

-!GLUT_ACTIVE_ALT

is depressed by

 glutGetModifiers()

-! Allows emulation of three-button mouse with one- or
two-button mice

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Special and Modifier Keys

•!We can reshape and resize the OpenGL

display window by pulling the corner of the

window

•!What happens to the display?

-!Must redraw from application

-!Two possibilities
•! Display part of world

•! Display whole world but force to fit in new window

–!Can alter aspect ratio

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Reshaping the Window

original

reshaped

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Reshape Possibilities

glutReshapeFunc(myreshape)

void myreshape(int w, int h)

-!Returns width and height of new window (in pixels)

-!A redisplay is posted automatically at end of
execution of the callback

-!GLUT has a default reshape callback but you
probably want to define your own

•!The reshape callback is good place to put
viewing functions because it is invoked when
the window is first opened

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Reshape Callback

•!This reshape preserves shapes by making the viewport

and world window have the same aspect ratio

void myReshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION); /* switch matrix mode */
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w,
 2.0 * (GLfloat) h / (GLfloat) w);
 else gluOrtho2D(-2.0 * (GLfloat) w / (GLfloat) h, 2.0 *
 (GLfloat) w / (GLfloat) h, -2.0, 2.0);
 glMatrixMode(GL_MODELVIEW); /* return to modelview mode */
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Example Reshape

•!Most window systems provide a toolkit or library

of functions for building user interfaces that use

special types of windows called widgets

•!Widget sets include tools such as

-!Menus

-! Slidebars

-!Dials

-! Input boxes

•!But toolkits tend to be platform dependent

•!GLUT provides a few widgets including menus

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Toolkits & Widgets

•!GLUT supports pop-up menus

-!A menu can have submenus

•!Three steps

-!Define entries for the menu

-!Define action for each menu item
•! Action carried out if entry selected

-!Attach menu to a mouse button

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Menus in GLUT

•!In main.c

menu_id = glutCreateMenu(mymenu);

glutAddmenuEntry(“clear Screen”, 1);

gluAddMenuEntry(“exit”, 2);

glutAttachMenu(GLUT_RIGHT_BUTTON);

entries that appear when

right button depressed
identifiers

clear screen

exit

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

A simple menu example

-!Menu callback

-!Note each menu has an id that is returned when it is

created

-!Add submenus by

 glutAddSubMenu(char *submenu_name, submenu id)

void mymenu(int id)

{

 if(id == 1) glClear();

 if(id == 2) exit(0);

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Menu Actions

•!Dynamic Windows

-!Create and destroy during execution

•!Subwindows

•!Multiple Windows

•!Changing callbacks during execution

•!Timers

•!Portable fonts
-!glutBitmapCharacter

-!glutStrokeCharacter

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Additional GLUT functions

•!Interactive CG programs using

-!Picking

•! Select objects from the display

•! Three methods

-!Rubberbanding

•! Interactive drawing of lines and rectangles

-!Display Lists

•! Retained mode graphics

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

More Sophisticated
Interactivity

•!Identify a user-defined object on the display

•!In principle, it should be simple because the

mouse gives the position and we should be able

to determine to which object(s) a position

corresponds

•!Practical difficulties

-! Pipeline architecture is feed forward, hard to go from

screen back to world

-!Complicated by screen being 2D, world is 3D

-!How close do we have to come to object to say we

selected it?

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Picking

•!Hit list

-!Most general approach but most difficult to

implement

•!Use back or some other buffer to store

object ids as the objects are rendered

•!Rectangular maps

-!Easy to implement for many applications

-!See paint program in text (chap 3, pg 150 -)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Three Approaches

•!OpenGL can render in one of three modes

selected by glRenderMode(mode)

-!GL_RENDER: normal rendering to the frame buffer

(default)

-!GL_FEEDBACK: provides list of primitives rendered

but no output to the frame buffer

-!GL_SELECTION: Each primitive in the view volume

generates a hit record that is placed in a name

stack which can be examined later

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Rendering Modes

•!glSelectBuffer(): specifies name buffer

•!glInitNames(): initializes name buffer

•!glPushName(id): push id on name buffer

•!glPopName(): pop top of name buffer

•!glLoadName(id): replace top name on
buffer

•!id is set by application program to identify
objects

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Selection Mode Functions

•!Initialize name buffer

•!Enter selection mode (using mouse)

•!Render scene with user-defined identifiers

•!Reenter normal render mode

-!This operation returns number of hits

•!Examine contents of name buffer (hit

records)

-!Hit records include id and depth information

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using Selection Mode

•!As we just described it, selection mode

won’t work for picking because every

primitive in the view volume will generate

a hit

•!Change the viewing parameters so that

only those primitives near the cursor are

in the altered view volume

-!Use gluPickMatrix (See Text, Pg 785)
Creates a projection matrix for picking that restricts rendering to a

w x h are centered at (x,y) in window coords within the viewport vp

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Selection Mode & Picking

•!Many applications use a simple rectangular
arrangement of the screen

-! Example: paint/CAD program

•!Easier to look at mouse position and determine
which area of screen it is in than using selection
mode picking

drawing area

tools

menus

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using Regions of the Screen

•!For a small number of objects, we can assign a

unique color (often in color index mode) to each

object

•!We then render the scene to a color buffer other

than the front buffer so the results of the

rendering are not visible

•!We then get the mouse position and use

glReadPixels() to read the color in the buffer

we just wrote at the position of the mouse

•!The returned color gives the id of the object

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using another buffer and color
for picking

frame buffer

application

‘

bitwise logical operation

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Writing Modes

•!Usual (default) mode: source replaces

destination (d’ = s)

-!Cannot write temporary lines this way because

we cannot recover what was “under” the line in

a fast simple way

•!Exclusive OR mode (XOR) (d’ = d ! s)

-! (y ! x)! x =y (applying XOR twice returns

original)

-!Hence, if we use XOR mode to write a line, we

can draw it a second time and line is erased!

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

XOR Write

•!Switch to XOR write mode

•!Draw object
-!For line can use first mouse click to fix one

endpoint and then use motion callback to
continuously update the second endpoint

-!Each time mouse is moved, redraw line which
erases it and then draw line from fixed first
position to to new second position

-!At end, switch back to normal drawing mode
and draw line

-!Works for other objects: rectangles, circles

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Rubberbanding

initial display
draw line with mouse

 in XOR mode

first point

second point

original line redrawn

 with XOR

new line drawn

 with XOR
mouse moved to

 new position

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Rubberband Lines

•!There are 16 possible logical operations

between two bits

•!All are supported by OpenGL

-!Must first enable logical operations
•!glEnable(GL_COLOR_LOGIC_OP)

-!Choose logical operation

•!glLogicOp(GL_XOR)

•!glLogicOp(GL_COPY) (default)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

XOR in OpenGL

•!Recall that in a standard OpenGL program, once

an object is rendered there is no memory of it

and to redisplay it, we must re-execute the code

for it

-! Known as immediate mode graphics

-!Can be especially slow if the objects are complex and

must be sent over a network

•!Alternative is define objects and keep them in

some form that can be redisplayed easily

-!Retained mode graphics

-! Accomplished in OpenGL via display lists

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Immediate & Retained Modes

•!Conceptually similar to a graphics file

-!Must define (name, create)

-!Add contents

-!Close

•!In client-server environment, display list is

placed on server

-!Can be redisplayed without sending primitives

over network each time

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Display Lists

•!Creating a display list
GLuint id;

void init()
{
 id = glGenLists(1);

 glNewList(id, GL_COMPILE);

 /* other OpenGL routines */

 glEndList();
}

•!Call a created list

void display()
{
 glCallList(id);
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Display List Functions

•!Most OpenGL functions can be put in

display lists

•!State changes made inside a display list

persist after the display list is executed

•!Can avoid unexpected results by using

glPushAttrib and glPushMatrix upon

entering a display list and glPopAttrib

and glPopMatrix before exiting

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Display Lists and State

•!Consider model of a car

-!Create display list for chassis

-!Create display list for wheel

glNewList(CAR, GL_COMPILE);
 glCallList(CHASSIS);
 glTranslatef(…);
 glCallList(WHEEL);
 glTranslatef(…);
 glCallList(WHEEL);
 …
glEndList();

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Hierarchy & Display Lists

