
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Lecture 5

Representations, Geometry,
Homogenous Coordinates

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• When we learned simple geometry, most of us started
with a Cartesian approach

- Points were at locations in space p=(x,y,z)

- We derived results by algebraic manipulations
involving these coordinates

• This approach was nonphysical

- Physically, points exist regardless of the location of
an arbitrary coordinate system

- Most geometric results are independent of the
coordinate system

- Example Euclidean geometry: two triangles are
identical if two corresponding sides and the angle
between them are identical

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Coordinate Free Geometry

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Need three basic elements in geometry

- Scalars, Vectors, Points

• Scalars can be defined as members of sets
which can be combined by two operations
(addition and multiplication) obeying some
fundamental axioms (associativity, commutivity,
inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we
are familiar

• Scalars alone have no geometric properties

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Geometry Elements

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Physical definition: a vector is a quantity
with two attributes

- Direction

- Magnitude

• Examples include
- Force

- Velocity

- Directed line segments

• Most important example for graphics

• Can map to other types

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Vectors

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Every vector has an inverse

- Same magnitude but points in opposite direction

• Every vector can be multiplied by a scalar

• There is a zero vector

- Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

- Use head-to-tail axiom

v -v
½ v

v

u

w

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Vector Operations

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Mathematical system for manipulating vectors

• Operations

- Scalar-vector multiplication u=2v

- Vector-vector addition: w=u+v

• Expressions such as

v=u+2w-3r

Make sense in a vector space

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Linear Vector Spaces

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• In a vector space, the maximum number of

linearly independent vectors is fixed and is

called the dimension of the space

• In an n-dimensional space, any set of n linearly

independent vectors form a basis for the space

• Given a basis v1, v2,…., vn, any vector v can be

written as

 v=�1v1+ �2v2 +….+�nvn

where the {�i} are unique

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Dimension of Vector Spaces

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• A set of vectors v1, v2, …, vn is linearly

independent if

 �
1
v1+�2v2+.. �

n
v
n
=0 iff �

1
=�

2
=…=0

• If a set of vectors is linearly independent,

we cannot represent one in terms of the

others

• If a set of vectors is linearly dependent, as

least one can be written in terms of the

others

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Linear Independence

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• These vectors are identical

- Same length and magnitude

• Vectors spaces insufficient for geometry

- Need points

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Vectors lack Position

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Location in space

• Operations allowed between points and

vectors

- Point-point subtraction yields a vector

- Equivalent to point-vector addition

P=v+Q

v=P-Q

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Points

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Point + a vector space

• Operations

- Vector-vector addition

- Scalar-vector multiplication

- Point-vector addition

- Scalar-scalar operations

• For any point define

- 1 • P = P

- 0 • P = 0 (zero vector)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Affine Spaces

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Consider all points of the form

- P(�)=P0 + � d

- Set of all points that pass through P0 in the

direction of the vector d

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Lines

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• This form is known as the parametric form
of the line

- More robust and general than other forms

- Extends to curves and surfaces

• Two-dimensional forms
- Explicit: y = mx +h

-  Implicit: ax + by +c =0

- Parametric:

 x(�) = (1-�)x0 + �x1

 y(�) = (1-�)y0 + �y1 and 0<= � <=1

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Parametric Form

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• If � >= 0, then P(�) is the ray leaving P0 in

the direction d

 If we use two points to define v, then

P(�) = Q + � (R-Q)=Q+�v

=�R + (1-�)Q

For 0<=�<=1 we get all the

points on the line segment

joining R and Q

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Rays and Line Segments

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• An object is convex iff for any two points

in the object all points on the line segment

between these points are also in the

object

P

Q Q

P

convex
not convex

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Convexity

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Consider the “sum”

P=�1P1+�2P2+…..+�nPn

Can show by induction that this sum makes
sense iff

�1+�2+…..�n=1

in which case we have the affine sum of
the points P1,P2,…..Pn

• If, in addition, �i>=0, we have the convex

hull of P1,P2,…..Pn

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Affine Sums

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Smallest convex object containing P1,P2,…..Pn

• Formed by “shrink wrapping” points

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Convex Hull

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Curves are one parameter entities of the

form P(�) where the function is nonlinear

• Surfaces are formed from two-parameter

functions P(�, �)

- Linear functions give planes and polygons

P(�) P(�, �)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Curves & Surfaces

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• A plane can be defined by a point and two

vectors or by three points

P(�,�)=R+�u+�v P(�,�)=R+�(Q-R)+�(P-Q)

u

v

R

P

R

Q

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Planes

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

convex sum of P and Q

convex sum of S(α) and R

for 0<=α,β<=1, we get all points in triangle

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Triangles

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Every plane has a vector n normal

(perpendicular, orthogonal) to it

• From point-two vector form P(�,�)=R+�u+�v, we

know we can use the cross product to find

 n = u x v and the equivalent form

 (P(�)-P) x n=0

u

v

P

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Normals

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Until now we have been able to work with

geometric entities without using any frame

of reference, such as a coordinate system

• Need a frame of reference to relate points

and objects to our physical world.

- For example, where is a point? Can’t answer

without a reference system

- World coordinates

- Camera coordinates

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Representation

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Consider a basis v1, v2,…., vn

• A vector is written v=�1v1+ �2v2 +….+�nvn

• The list of scalars {�1, �2, …. �n}is the

representation of v with respect to the given

basis

• We can write the representation as a row or

column array of scalars

a=[�1 �2 …. �n]
T

=

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Coordinate Systems

a
1

a
2

.

a
n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Example
• v=2v1+3v2-4v3

• a=[2 3 –4]T

• Note that this representation is with

respect to a particular basis

• For example, in OpenGL we start by

representing vectors using the object

basis but later the system needs a

representation in terms of the camera or

eye basis

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Coordinate Systems

• Which is correct?

• Both are because vectors have no fixed

location

v

v

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Frames

• A coordinate system is insufficient to

represent points

• If we work in an affine space we can add

a single point, the origin, to the basis

vectors to form a frame

P
0

v
1

v
2

v
3

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Representation is a Frame

• Frame determined by (P0, v1, v2, v3)

• Within this frame, every vector can be

written as

 v=�1v1+ �2v2 +….+�nvn

• Every point can be written as

 P = P0 + �1v1+ �2v2 +….+�nvn

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Points & Vectors

Consider the point and the vector

 P = P0 + �1v1+ �2v2 +….+�nvn

 v=�1v1+ �2v2 +….+�nvn

They appear to have the similar representations

p=[�1 �2 �3] v=[�1 �2 �3]

which confuses the point with the vector

A vector has no position v

p

v

Vector can be placed anywhere

point: fixed

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Homogenizing Representation

If we define 0•P = 0 and 1•P =P then we can write

v=�1v1+ �2v2 +�3v3 = [�1 �2 �3 0]

[v1 v2 v3 P0]

T

P = P0 + �1v1+ �2v2 +�3v3= [�1 �2 �3 1]

[v1 v2 v3 P0]

T

Thus we obtain the four-dimensional

homogeneous coordinate representation

v = [�1 �2 �3 0]
 T

p = [�1 �2 �3 1]
 T

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Homogenous Coordinates

The homogeneous coordinates form for a three
dimensional point [x y z] is given as

p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w>0) by

x = x’/w

y = y’/w

z = z’/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in
three dimensions by lines through the origin in four
dimensions

For w=1, the representation of a point is [x y z 1]

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Homogeneous coordinates are key to all

computer graphics systems

- All standard transformations (rotation,

translation, scaling) can be implemented with

matrix multiplications using 4 x 4 matrices

- Hardware pipeline works with 4 dimensional

representations

- For orthographic viewing, we can maintain w=0

for vectors and w=1 for points

- For perspective we need a perspective division

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Homogenous Coords & CG

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Consider two representations of a the

same vector with respect to two different

bases. The representations are

v=�1v1+ �2v2 +�3v3 = [�1 �2 �3]
 [v1 v2 v3]

T

=�1u1+ �2u2 +�3u3 = [�1 �2 �3]
 [u1 u2 u3]

T

a=[�1 �2 �3]

b=[�1 �2 �3]

where

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Change of Coordinate Systems

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

Each of the basis vectors, u1,u2, u3, are vectors

that can be represented in terms of the first

basis v1,v2, v3,

u1 = �11v1+�12v2+�13v3

u2 = �21v1+�22v2+�23v3

u3 = �31v1+�32v2+�33v3

v

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Representing 2nd basis in terms
of 1st

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Matrix Form

The coefficients define a 3 x 3 matrix

and the bases can be related by

see text (p179-) for numerical examples

a=MTb

g
11

g
12

g
13

g
21

g
22

g
23

g
31

g
32

g
33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

M =

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Change of Frames
• We can apply a similar process in homogeneous

coordinates to the representations of both points
and vectors

• Any point or vector can be represented in either
frame

• We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3

Consider two frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3) P0 v1

v2

v3

Q0

u1
u2

u3

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Representing one Frame in
Terms of the Other

u1 = �11v1+�12v2+�13v3

u2 = �21v1+�22v2+�23v3

u3 = �31v1+�32v2+�33v3

Q0 = �41v1+�42v2+�43v3 + P0

Extending what we did with change of bases

defining a 4 x 4 matrix
g
11

g
12

g
13

0

g
21

g
22

g
23

0

g
31

g
32

g
33

0

g
41

g
42

g
43

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

M =

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Working with Representations
Within the two frames any point or vector has a
representation of the same form

a=[�1 �2 �3 �4] in the first frame
b=[�1 �2 �3 �4] in the second frame

where �4 = �4 = 1 for points and �4 = �4 = 0 for vectors and

The matrix M is 4 x 4 and specifies an affine
transformation in homogeneous coordinates

a=MTb

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Every linear transformation is equivalent

to a change in frames

• Every affine transformation preserves

lines

• However, an affine transformation has

only 12 degrees of freedom because 4 of

the elements in the matrix are fixed and

are a subset of all possible 4 x 4 linear

transformations

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Affine Transformations

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• When we work with representations, we work

with n-tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4

matrices

• In OpenGL, the base frame that we start with is

the world frame

• Eventually we represent entities in the camera

frame by changing the world representation

using the model-view matrix

• Initially these frames are the same (M=I)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

The World and Camera Frames

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Moving the Camera

If objects are on both sides of z=0, we must move

camera frame

M =

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Consider a mesh

• There are 8 nodes and 12 edges

- 5 interior polygons

- 6 interior (shared) edges

• Each vertex has a location vi = (xi yi zi)

v1
v2

v7

v6

v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Representing a Mesh

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Define each polygon by the geometric locations

of its vertices

• Leads to OpenGL code such as

• Inefficient and unstructured

- Consider moving a vertex to a new location

- Must search for all occurrences

glBegin(GL_POLYGON);

 glVertex3f(x1, x1, x1);
 glVertex3f(x6, x6, x6);

 glVertex3f(x7, x7, x7);
glEnd();

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Simple Representation

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• The order {v1, v6, v7} and {v6, v7, v1} are equivalent in

that the same polygon will be rendered by OpenGL but

the order {v1, v7, v6} is different

• The first two describe outwardly

facing polygons

• Use the right-hand rule =

counter-clockwise encirclement

of outward-pointing normal

• OpenGL can treat inward and

outward facing polygons differently

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Inward & Outward Facing
Polygons

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Generally it is a good idea to look for data

structures that separate the geometry

from the topology

- Geometry: locations of the vertices

- Topology: organization of the vertices and

edges

- Example: a polygon is an ordered list of vertices

with an edge connecting successive pairs of

vertices and the last to the first

- Topology holds even if geometry changes

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Geometry vs Topology

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Put the geometry in an array

• Use pointers from the vertices into this array

• Introduce a polygon list
x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

P1

P2
P3

P4
P5

v1
v7
v6

v8
v5
v6

topology geometry

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Vertex Lists

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Vertex lists will draw filled polygons correctly but

if we draw the polygon by its edges, shared

edges are drawn twice

• Can store mesh by edge list

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Shared Edges

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Edge Lists

v1
v2

v7

v6

v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1

e2

e3

e4

e5

e6

e7

e8

e9

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

v1

v6

Note polygons are

not represented

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Modeling a Cube

typedef vex3 point3;
point3 vertices[] = {point3(-1.0,-1.0,-1.0),
 point3(1.0,-1.0,-1.0), point3(1.0,1.0,-1.0),
 point3(-1.0,1.0,-1.0), point3(-1.0,-1.0,1.0),
 point3(1.0,-1.0,1.0), point3(1.0,1.0,1.0),
 point3(-1.0,1.0,1.0)};

typedef vec3 color3;
color3 colors[] = {color3(0.0,0.0,0.0),

 color3(1.0,0.0,0.0), color3(1.0,1.0,0.0),
 color(0.0,1.0,0.0), color3(0.0,0.0,1.0),
 color3(1.0,0.0,1.0), color3(1.0,1.0,1.0),

 color3(0.0,1.0,1.0});

Define global arrays for vertices and colors

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Drawing a Triangle from a List
of Indices

Draw a triangle from a list of indices into the array
vertices and assign a color to each index

void triangle(int a, int b, int c, int d)
{

 vcolors[i] = colors[d];
 position[i] = vertices[a];
 vcolors[i+1] = colors[d]);

 position[i+1] = vertices[b];
 vcolors[i+2] = colors[d];

 position[i+2] = vertices[c];
 i+=3;

 }

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Drawing a cube from Faces

void colorcube()
{
 quad(0,3,2,1);
 quad(2,3,7,6);
 quad(0,4,7,3);
 quad(1,2,6,5);
 quad(4,5,6,7);
 quad(0,1,5,4);
}

0

5 6

2

4 7

1

3
Note that vertices are ordered so that

we obtain correct outward facing normals

Sunday, January 20, 13

• The weakness of our approach is that we
are building the model in the application
and must do many function calls to draw
the cube

• Drawing a cube by its faces in the most
straight forward way requires

- 6 glBegin, 6 glEnd

- 6 glColor

- 24 glVertex

- More if we use texture and lighting

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Efficiency

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• OpenGL provides a facility called vertex arrays

that allows us to store array data in the

implementation

• Six types of arrays supported

-  Vertices

- Colors

- Color indices

- Normals

-  Texture coordinates

-  Edge flags

• We will need only colors and vertices

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Vertex Arrays

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Using the same color and vertex data, first we

enable

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

• Identify location of arrays

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous

data array

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Initialization

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Form an array of face indices

• Each successive four indices describe a

face of the cube

• Draw through glDrawElements which

replaces all glVertex and glColor calls in

the display callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6

 0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Mapping Indices to Faces

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Drawing the Cube
• Old Method:

• Problem is that although we avoid many function
calls, data are still on client side

• Solution:
- no immediate mode
- Vertex buffer object
- Use glDrawArrays

glDrawElements(GL_QUADS, 24,
 GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Rotating the Cube

•Full example
•Model Colored Cube
•Use 3 button mouse to change direction of
rotation

•Use idle function to increment angle of
rotation

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Cube Vertices

// Vertices of a unit cube centered at origin
// sides aligned with axes

point4 vertices[8] = {
 point4(-0.5, -0.5, 0.5, 1.0),
 point4(-0.5, 0.5, 0.5, 1.0),
 point4(0.5, 0.5, 0.5, 1.0),
 point4(0.5, -0.5, 0.5, 1.0),
 point4(-0.5, -0.5, -0.5, 1.0),
 point4(-0.5, 0.5, -0.5, 1.0),
 point4(0.5, 0.5, -0.5, 1.0),
 point4(0.5, -0.5, -0.5, 1.0)

};

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Colors

// RGBA colors
color4 vertex_colors[8] = {

 color4(0.0, 0.0, 0.0, 1.0), // black
 color4(1.0, 0.0, 0.0, 1.0), // red

 color4(1.0, 1.0, 0.0, 1.0), // yellow
 color4(0.0, 1.0, 0.0, 1.0), // green
 color4(0.0, 0.0, 1.0, 1.0), // blue

 color4(1.0, 0.0, 1.0, 1.0), // magenta
 color4(1.0, 1.0, 1.0, 1.0), // white
 color4(0.0, 1.0, 1.0, 1.0) // cyan

};

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Quad Function

// quad generates two triangles for each face and assigns colors
// to the vertices

int Index = 0;
void quad(int a, int b, int c, int d)

{
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[b]; points[Index] = vertices[b]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[d]; points[Index] = vertices[d]; Index++;

}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Color Cube

// generate 12 triangles: 36 vertices and 36 colors
void

colorcube()
{

 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);

}

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Initialization I

23

void
init()
{
 colorcube();

 // Create a vertex array object

 GLuint vao;
 glGenVertexArrays (1, &vao);
 glBindVertexArray (vao);

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Initialization II

24

// Create and initialize a buffer object
 GLuint buffer;
 glGenBuffers(1, &buffer);
 glBindBuffer(GL_ARRAY_BUFFER, buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(points) +
 sizeof(colors), NULL, GL_STATIC_DRAW);
 glBufferSubData(GL_ARRAY_BUFFER, 0,
 sizeof(points), points);
 glBufferSubData(GL_ARRAY_BUFFER, sizeof(points),
 sizeof(colors), colors);
// Load shaders and use the resulting shader program
 GLuint program = InitShader("vshader36.glsl", "fshader36.glsl");
 glUseProgram(program);

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Initialization III

25

// set up vertex arrays
 GLuint vPosition = glGetAttribLocation(program, "vPosition");
 glEnableVertexAttribArray(vPosition);
 glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE, 0,
 BUFFER_OFFSET(0));

 GLuint vColor = glGetAttribLocation(program, "vColor");
 glEnableVertexAttribArray(vColor);
 glVertexAttribPointer(vColor, 4, GL_FLOAT, GL_FALSE, 0,
 BUFFER_OFFSET(sizeof(points)));

 theta = glGetUniformLocation(program, "theta");

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Display Callback

26E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void
display(void)
{
 glClear(GL_COLOR_BUFFER_BIT
 |GL_DEPTH_BUFFER_BIT);

 glUniform3fv(theta, 1, theta);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);

 glutSwapBuffers();
}

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Mouse Callback

27E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void
mouse(int button, int state, int x, int y)
{
 if (state == GLUT_DOWN) {
 switch(button) {
 case GLUT_LEFT_BUTTON: Axis = Xaxis; break;
 case GLUT_MIDDLE_BUTTON: Axis = Yaxis; break;
 case GLUT_RIGHT_BUTTON: Axis = Zaxis; break;
 }
 }
}

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Idle Callback

28E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void
idle(void)
{
 theta[axis] += 0.01;

 if (theta[axis] > 360.0) {
 theta[axis] -= 360.0;
 }

 glutPostRedisplay();
}

Sunday, January 20, 13

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Figures from Ed Angel: Interactive Computer Graphics,
6th Ed., 2012 © Addison Wesley

Sunday, January 20, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

