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Chapter 1

Graphs, Triangulations and Complexes

Key Chapter Concepts
• Intertwined role of geometry, topology and combinatorics in domain definition.

• Unification of concepts for describing shape in any dimmension.

• Smooth shape description needed at all scales of biological modeling.

1.1 Graph Theory

1.2 Combinatorial vs. Embedded Graphs
A graph is a set of V of vertices and a set E of edges between vertices.
An embedded graph is a graph where V ⊂ Rn. A planar graph is a graph where V ⊂ R2 such that no vertices are duplicates
and no edges intersect. If a graph is not embedded, it is called a combinatorial graph.

Embedded Graphs

The two graphs shown are the same if interpreted as combinatorial graphs but different if interpreted as embedded
graphs. This reflects the basic notion that topological properties (e.g. the adjacency relations between vertices) are
more fundamental to a shape than geometrical properties (e.g. the particular location in space of each vertex). In
biological modeling, topological properties are often well known while geometrical properties are more difficult to
characterize. For instance, the sequence of amino acids along a particular protein stays fixed even while the actual
shape of the protein undergoes rapid, frequent, and sometimes dramatic geometric changes.

The genus of a graph is defined to be the smallest value g such that the graph can be embedded on a surface of genus g.
The Euler characteristic of a graph is given by

χ := V − E + F

where V,E, F are the number of vertices, edges and faces in the mesh, respectively. It is a theorem of algebraic topology that
χ is an invariant of a domain, i.e. its value is independent of the mesh used to compute it so long as that mesh is homeomorphic
to the domain.
The Euler characteristic is related to the genus of the domain by the relationship

χ = 2− 2g

11
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1.2.1 Network Theory

A direceted graph is a graph whose edges have a specific orientation. A flow network is a directed graph where each edge
also has a capacity.

Max Cut Min Flow Theorem A flow network can be thought of as a highway system with only one-way streets.
Vertices represent locations and edges represent the streets between them. The direction of an edge indicates which
way traffic is allowed to travel on that street. The capacity of an edge represents the maximum traffic that can flow
down the street at any one moment (e.g. the number of lanes in the road).
The Max Cut Min Flow Theorem states that in a flow network, the maximum amount of flow passing from a source
to a sink is equal to the minimum capacity which when removed in a specific way from the network causes the
situation that no flow can pass from the source to the sink. It is a formalization and generalization of the familiar
notion that a chain is only as strong as its weakest link.

1.2.2 Trees and Spanning Trees

Minimal spanning trees, etc.

1.3 Topological Complexes

1.3.1 Pointset Topology

Let S be a set and let T be a family of subsets of S. Then T is called a topology on S if

• Both the empty set and S are elements of T .

• Any union of arbitrarily many elements of T is an element of T .

• Any intersection of finitely many elements of T is an element of T .

If T is a topology on S, then the pair (S, T ) is called a topological space. If the topology is implicit, the space S is listed
without mention of T .

The members of T are called the open sets of S. A set is called closed if its complement is in T .

A neighborhood of a point x ∈ S is any element of T containing x.

We will often deal with subsets of Rn with the usual topology. This means the set S is the points of Rn and the T is formed
from all open balls of any radius in Rn.
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Manifolds

sphere torus half sphere

A manifold is a special kind of topological space commonly used in domain modeling. At any point x in an n-
manifold M , there exists a neighborhood of x which is homeomorphic to Rn. Thus the surface of a sphere, the
surface of a cube and the surface of a torus are all examples both 2-manifolds.
If the manifold has boundary, then its boundary is described by those points which only have neighborhoods
homeomorphic to Rn−1.
In the figure, the sphere and torus have genus 1 and 2, respectively. The half sphere is an example of a 2-manifold
with boundary.

1.3.2 CW-complexes
A Hausdorff space is a topological space in which distinct points have disjoint neighborhoods.

Definition 1.1. A CW-complex is a Hausdorff space X together with a partition of X into open cells of varying dimension
such that

1. For each n-dimensional open cell C in the set X , there exists a continuous map f from the n-dimensional closed ball to
X such that the restriction of f onto the interior of the ball is a homeomorphism onto the cell C.

2. The image of the boundary of the open ball (i.e. the boundary of the open cell C) intersects only finitely many other cells.

A CW-complex can be presented as a sequence of spaces and maps

X0 ↪→ X1 ↪→ . . . ↪→ Xn ↪→ . . .

where each space Xn, called the n-dimensional skeleton of the presentation, is the result of attaching copies of the n-disk
Dn := {x ∈ Rn : ||x|| ≤ 1} along their boundaries Sn−1 := ∂Dn to Xn−1.
A Voronoi decomposition is a special kind of the more general class of CW-complexes.

Computational Homology
Triangulationas and CW-complexes can be used to compute the homology groups of a manifold, a topological
invariant. The ranks of these groups are called the Betti numbers, a simple and geometrically meaninful topological
invariant. We will discuss this further in Section 1.4.1.

1.3.3 Morse Functions and the Morse-Smale Complex
Morse theory(Adding a citation here) provides useful results not only for the construction of contour trees but also for an
evaluation of the smooth distance function hΣ defined at the end of Section 1. As in the previous section, we consider a smooth
function f : M → R1, now adding the restriction that M is a compact 3-manifold without boundary. Let m ∈ M be a
non-degenerate critical point of f , meaning the derivative map dfm is the zero map and the Hessian at m is non-singular. We
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note that a critical point m lies in the domain M of f as opposed to a critical value r which lies in the range R1 of f . The
Morse Lemma [154] states that f exhibits quadratic behavior in a small neighborhood m. That is, we may choose a coordinate
chart about m such that locally

f(x, y, z) = f(m)± x2 ± y2 ± z2

We define the index of m to be the number of minus signs in the equation above. It can be shown that the index is independent
of the coordinate chart and that it is equal to the number of negative eigenvalues of the Hessian at m.
Thus, in three dimensions, a non-degenerate critical point can have index 0, 1, 2, or 3. These indices correspond to minima,
1-saddles, 2-saddles, and maxima of the function f , respectively
We can unambiguously connect these critical points into a meaningful structure known as the Morse complex. Away from
critical points, the gradient vector ∇f is non-zero and points in the direction of maximum positive change. If we construct a
maximal path whose velocity vectors coincide with the gradient vector at each point on the path, we will always connect two
critical points. Such a path is called an integral path and necessarily terminates at a critical point of index 1, 2, or 3. We define
the stable manifold of a non-degenerate critical point m ∈ M to be the union of m and the images of all integral paths on M
terminating at m. We note that an unstable manifold can be defined similarly, but we will not need it in this paper.(Critical
inconsistency, changes shall be made here) For our purposes, the Morse Complex is defined to be the union of all maxima and
their stable manifolds.
Previous work employing the Morse complex has dealt primarily with two types of input functions: grids and surfaces. The
complex has been defined on two-dimensional grids and three-dimensional unstructured tetrahedral grids by Edelsbrunner, et
al. [72, 71]. Cazals, Chazal and Lewiner used the Morse complex for molecular shape analysis in [43]. As described in Section
3, our work uses the Morse complex to aid in the curation of molecular surfaces.
Upper left: critical points (minima, saddle points and maxima pictured as blue, green and red disks), and three integral lines
(pink curves) of a Morse function. Black arrows show the gradient of that function. Upper right: ascending 2-manifolds :
the set of points belonging to integral lines whose destination is the same minimum (critical point of index 0). Lower left:
descending 2-manifolds : the set of points belonging to integral lines whose origin is the same maximum (critical point of
index 2). Lower right: the Morse-Smale complex : a natural tesselation of space into cells induced by the gradient fo the
function. Each cell is the set of points belonging to integral lines whose origin and destination are identical (i.e. each cell is
the intersection of an ascending and a descending manifold). The purple region is a 2-cell: intersection of an ascending and
a descending 2-manifold (red and blue regions) where all field lines have the same orgin and destination (a minimum and a
maxium). The yellow curve is a 1-cell (also called an arc): the intersection of and ascending 2-manifold (blue region) and a
descending 1-manifolds (green+yellow curves, originating from the same saddle point).

1.3.4 Signed Distance Function and Critical Points of Discrete Distance Functions
It seems that this paragraph is cited from somewhere, what is the citation reference? (yiwang)
The key ingredient in ranking the topological features of the extracted level set is the distance function over R3. The distance
function has been used earlier for reconstruction and image feature identification [16, 44, 69, 96, 233]. Chazal and Lieutier [47]
have used it for stable medial axis construction. Dey, Giesen and Goswami have used distance function for object segmentation
and matching [66]. Goswami, Dey and Bajaj have used it for detailed feature analysis of shape via an annotation of flat and
tubular features in addition to shape segmentation [101]. Recently, Bajaj and Goswami have shown a novel use of distance
function, induced by a molecular surface, in order to detect secondary structural motifs of a protein molecule [20]. The close
connection between the critical point structure of the distance function and the topology of the surface and its complement is
what we utilize to detect and remove small topological artifacts.
In this context, Σ is the extracted isosurface. For the ease of computation, we approximate hΣ by hP which assigns to every
point in R3, the distance to the nearest point from the set P which finitely samples Σ.

hP : R3 → R, x 7→ min
p∈P
‖x− p‖

With our extracted isosurface, we make use of the distance function introduced above. Given a compact surface Σ smoothly
embedded in R3, a distance function hΣ can be designed over R3 that assigns to each point its distance to Σ.

hΣ : R3 → R, x 7→ inf
p∈Σ
‖x− p‖
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Figure 1.1: Upper left: critical points (minima, saddle points and maxima pictured as blue, green and red disks), and three
integral lines (pink curves) of a Morse function. Black arrows show the gradient of that function. Upper right: ascending
2-manifolds : the set of points belonging to integral lines whose destination is the same minimum (critical point of index 0).
Lower left: descending 2-manifolds : the set of points belonging to integral lines whose origin is the same maximum (critical
point of index 2). Lower right: the Morse-Smale complex : a natural tesselation of space into cells induced by the gradient
fo the function. Each cell is the set of points belonging to integral lines whose origin and destination are identical (i.e. each
cell is the intersection of an ascending and a descending manifold). The purple region is a 2-cell: intersection of an ascending
and a descending 2-manifold (red and blue regions) where all field lines have the same orgin and destination (a minimum and
a maxium). The yellow curve is a 1-cell (also called an arc): the intersection of and ascending 2-manifold (blue region) and a
descending 1-manifolds (green+yellow curves, originating from the same saddle point).
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We identify the maxima and index 2 saddle points of hP which lie outside the level set. The stable manifolds of these critical
points help detect the tunnels and the pockets of Σ. Additionally, these stable manifolds are used to compute geometric
attributes of the detected topological features to which they correspond. In this way, we obtain a description of the isosurface,
and its complement, in terms of its topological features. These features are quantified by their geometric properties and may be
selectively removed.
The function hP induces a flow at every point x ∈ R3 and this flow has been characterized earlier [96, 101]. See also [69].
The critical points of hP are those points where hP has no non-zero gradient along any direction. These are the points in R3

which lie within the convex hull of its closest points from P . It was shown by Siersma [194] that the critical points of hP are
the intersection points of the Voronoi objects with their dual Delaunay objects.

• Maxima are the Voronoi vertices contained in their dual tetrahedra,

• Index 2 saddles lie at the intersection of Voronoi edges with their dual Delaunay triangles,

• Index 1 saddles lie at the intersection of Voronoi facets with their dual Delaunay edges, and

• Minima are the sample points themselves as they are always contained in their Voronoi cells.

In this discrete setting, the index of a critical point is the dimension of the lowest dimensional Delaunay simplex that contains
the critical point.
At every x ∈ R3, a unit vector can be assigned that is oriented in the direction of the steepest ascent of hP . The critical points
are assigned zero vectors. This vector field, which may not be continuous, nevertheless induces a flow in R3. This flow tells
how a point x moves in R3 along the steepest ascent of hP and the corresponding path is called the orbit of x.
For a critical point c its stable manifold is the set of points whose orbits end at c. The stable manifold of a maximum is a
three dimensional polytope whose boundary is composed of the stable manifolds of the index 2 saddle points which in turn are
bounded by the stable manifolds of index 1 saddle points and minima. See [66, 96] for the detailed discussion on the structure
and computation of the stable manifolds of the critical points of hP .

1.3.5 Contouring Tree Representation

1.4 Complementary space topology and geometry

Compactifying Complementary Space
A molecular surface S bounds a finte portion of R3, viz. the interior volume V of the molecule. The comple-
mentary space, defined to be R3 − V , contains useful geometric and topological information about the surface
such as the number of connected components and number of tunnels passing through the surface. Since R3 − V
is unbounded, we compactify complementary space to get a handle on these features by using some results from
Morse theory.

We construct an approximation of the Morse complex for hΣ described in Section 1.3.4 based on the critical points known for
hP . First we describe the classification of the requisite critical points and then describe how they are clustered together. The
critical points of hP are detected by checking the intersection of the Voronoi and its dual Delaunay diagram of the point set
P sampled from Σ. The critical points are primarily of three types depending on if the Voronoi/Delaunay object involved lies
interior to Σ, exterior to Σ, or if the Voronoi object crosses Σ. There are some exceptions: maxima can not lie on the surface
and therefore come in only two types - interior and exterior. The minima are sample points themselves and therefore they are
always on Σ. The saddle points can be any of three types mentioned above.
Since the Morse complex we construct requires only the maxima and index 2 saddles exterior to or on the surface Σ, we fix
three classes of critical points:

C2,E = {index 2 saddles of hP exterior to Σ}
C2,S = {index 2 saddles of hP on the surface Σ}
C3,E = {maxima of hP exterior of to Σ}

We include a point at infinity denoted (m∞) in the set C3,E to compactify the copmlementary space structure.
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As discussed in previous section, the points in the above classes come with a natural hierarchical structure based on stable
manifolds. We construct a graph on the points based on this structure by the following rule: a maxima m ∈ C3,E is connected
to a saddle s ∈ C2,E ∪ C2,S if and only if the stable manifold of s lies on the boundary of the stable manifold of m. We use
this graph to detect tunnels and pockets. The algorithm is depicted visually in Figure 1.2.

(a) (b) (c)

Figure 1.2: A visual depiction of our tunnel and pocket detection algorithm. An imaginary molecular surface is shown with a
3-mouth tunnel and a single pocket. (a) Critical points of hP are detected. Blue points are index 2 saddles and brown points
are maxima. (b) A point at infinity is added and a graph constructed based on adjacency of stable manifolds. This graph
approximates the Morse complex. (c) Breaking the edges to the point at infinity, we detect the tunnel (yellow with red mouths)
and pocket (green with purple mouth).

1.4.1 Detection of Tunnels and Pockets
We first show that the graph constructed on the critical points of hP has B0 + 1 components where B0 is the 0-th Betti number.
Any critical point inside a tunnel or pocket of the surface will have a path along the graph to m∞, the maximum at infinity.
This reflects the fact that there is, by definition, a “way out” from a tunnel or pocket. A critical point in a void, on the other
hand, will not have a path to m∞ and thus lies in a component separate from the tunnels and pockets. Since B0 equals the
number of voids captured by the surface, the graph has exactly B0 + 1 components. Hence, the voids of Σ are precisely the
stable manifolds of the components not containing m∞.
With the component of the graph containing m∞, we cluster it into tunnels and pockets as follows. Observe that the point m∞
is connected only to index 2 saddles that lie on the mouth of a tunnel or pocket. Therefore, by “chopping around” the point
m∞, we break apart the graph based on tunnels and pockets. More precisely, let C2,∞ ⊂ C2,E ∪ C2,S denote the set of points
connected to m∞. Removing all the edges from the point m∞, we are left with n components of the graph, one corresponding
to each tunnel or pocket of Σ. The stable manifolds of the points of C2,∞ form the mouths of the tunnels and pockets and we
can now classify all components of our modified graph as follows.

• 0 Mouth indicates that the component belongs to a void.

• 1 Mouth indicates that the component belongs to a pocket.

• k ≥ 2 Mouths indicate the component belongs to a tunnel. We call it a k-mouthed tunnel.

We use the algorithms described in [96] for computation of the stable manifolds of index 2 saddles. In order to have a compu-
tational description of the detected features, we also compute the stable manifolds of the maxima falling into every component
using the algorithm described in [66]. This produces a tetrahedral decomposition of the features captured.
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Contour Tree
Isocontour Selection

Figure 1.3: Results: Top row shows the interface selection for Rieske Iron-sulphur Protein molecule (PDB ID: 1RIE) from a
blurred density map. Bottom row shows the isosurface selection for the virus particle (GroEL) from cryo-EM density map.

We compute the pockets, tunnels and voids of the molecular surface. The tetrahedral solids describing the pockets and tunnels
provide a nice handle to those features and using these handles, the features can be ranked. We primarily use the geometric
attributes of the features in order to rank them. Such attributes include, but are not limited to, the combined volume of the
tetrahedra and the area of the mouths. The pockets and tunnels are then sorted in order of their increasing geometrically
measured importance.
Removal of insignificant features are also made easy because of the volumetric description of the features. As dictated by the
applications, a cut-off is set below which the features are considered noise. We remove the topological noise by marking the
outside tetrahedra as inside and updating the surface triangles.
We show the results of our algorithm on two volumetric data. The top row in Figure 1.3 shows the electron density volume of
Rieske Iron-Sulphur Protein (Protein Data Bank Id: 1RIE). The volume rendering using VolRover [61] is shown in the leftmost
subfigure. The tool additionally supports the visualization and isosurface selection using CT. The other subfigures show the
selected interface and the detected tunnels and pockets. Note, the mouth of the tunnel is drawn in red and the mouth of the
pocket is drawn in purple. The rest of the tunnel surface is drawn in yellow while the pocket surface is drawn in green. The
blue patches in the rightmost subfigure shows the filling of the smaller tunnels and pockets. The second row shows the results
on the three dimensional scalar volume representing the electron density of the reconstructed image of a virus (GroEL) from a
set of two dimensional electron micrographs. The resolution is 8rA.
Using VolRover, a suitable level set is chosen. Note the CT is very noisy and has many branches, because of which it is not
possible to extract a single-component isosurface. Nevertheless only one component is vital and the rest of them are merely
artifacts caused by noise. The main component along with the detected tunnel is shown next. The result is particularly useful
in visualizing the symmetric structure of the virus particle as depicted in the symmetric set of mouths. In addition to detecting
the principal topological feature, the algorithm detects few small tunnels and pockets which are shown separately for visual
clarity (rightmost subfigure) and these are removed subsequently as part of the topological noise removal process. (Suggestion:
Remove this paragraph)
However, so far we have discussed about curating the molecular surface by modifying only the complementary space topolo-
gical features. This does not always serve the purpose. Consider a very thin interior surrounding a wide tunnel. The tunnel is
significant but the thin portion surrounding it should disappear which we have not taken into account so far. Figure 1.4 shows
a similar scenario where the inherent symmetry of the 3D map of nodavirus is shown in subfigure (a). Subfigure (b) shows that
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(a)
(b)

(d)(c)

Figure 1.4: Identification of “thin” regions in the primal space. (a) The volume rendering of 3D image of nodavirus. (b) Tunnels
are detected for the initial selection of the isosurface. Note, in some places of 5-fold symmetry, only 4 mouths of the tunnel
are present. (c) The thin regions (blue) are identified as subsets of the unstable manifolds of the index 1 saddles identified
on the interior medial axis. The arrow between (b) and (c) indicate that the places where the 5th mouth of the tunnel should
open indeed have thin regions. (d) The final selected isosurface has complementary space topology consistent with the inherent
symmetry of the 3D map.
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due to wrong choice of isovalue only 4 mouths are open in the complementary space tunnel of a 5-fold symmetric region. To
curate this surface, modification of the complementary space is not sufficient. To deal with such cases, we extend the curation
process by detecting “thin” regions in the primal space.
Remarkably, distance function plays a very important role here also. In order to detect the thin regions, we first compute the
interior medial axis by publicly available software [57]. Further we compute the index 1 (U1)and index 2 (U2) saddle points
which lie on the interior medial axis and compute their unstable manifols using the algorithm described in [101]. U2 produces
linear subset of the medial axis and U1 produces planar subset of the medial axis. We then sample the distance function on U1

and U2 and identify the subset corresponding to the “thin” regions measured by a suitable threshold parameter. Figure 1.4 (c)
shows the thin regions (blue patches) on the U1 (green) identified for noda virus. The reason for not using medial axis directly
is that medial axis tends to be noisy and U1 and U2 usually describes the subset of the medial axis stable against the small
undulation on the surface. Then we collect the interior maxima falling into the thin subset of U1 and U2 and compute their
stable manifolds. Again, the stable manifolds are the collection of tetrahedra and therefore we cut the surface open by forming
a channel interior to the volume bounded by the molecular surface by appropriately toggling the marking of the tetrahedra from
inside to outside. Final selection of the isosurface for which the mouths of the tunnels respect the inherent symmetry of the
density map of the virus is shown in Figure 1.4 (d).

1.5 Primal and Dual Complexes

1.5.1 Primal Meshes
In algebraic topology, manifolds are discretized using simplicial complexes, a notion which guides the entire theory of discrete
exterior calculus. We state the definition of simplicial complex here, along with supporting definitions to be used throughout.

Definition 1.2. A k-simplex σk is the convex hull of k + 1 geometrically independent points v0, . . . , vk ∈ RN . Any simplex
spanned by a (proper) subset of {v0, . . . , vk} is called a (proper) face of σk. The union of the proper faces of σk is called
its boundary and denoted Bd(σk). The interior of σk is Int(σk) = σk\Bd(σk). Note that Int(σ0)=σ0. The volume of σk is
denoted |σk|. Define |σ0 |= 1. ♦

Primal Simplicies

Primal simplices of dimension 0, 1, 2, and 3 are shown. In general, a k-simplex is the convex hull of k points in
Rn in general position. We denote a k-simplex as σk.

We will indicate that a simplex has dimension k with a superscript, e.g. σk, and will index simplices of any dimension with
subscripts, e.g. σi.

Definition 1.3. A simplicial complex K in RN is a collection of simplices in RN such that

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is either a face of each of them or it is empty.

The union of all simplices of K treated as a subset of RN is called the underlying space of K and is denoted by |K|. ♦

Definition 1.4. A simplicial complex of dimension n is called a manifold-like simplicial complex if and only if |K| is a
C0-manifold, with or without boundary. More precisely,

1. All simplices of dimension k with 0 ≤ k ≤ n− 1 must be a face of some simplex of dimension n in K.

2. Each point on |K| has a neighborhood homeomorphic to Rn or n-dimensional half-space. ♦
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Remark 1.5. Since DEC is meant to treat discretizations of manifolds, we will assume all simplicial complexes are manifold-
like from here forward. We note that |K| is thought of as a piecewise linear approximation of a smooth manifold Ω. Formally,
this is taken to mean that there exists a homeomorphism h between |K| and Ω such that h is isotopic to the identity. In
applications, however, knowing h or Ω explicitly may be irrelevant or impossible as K often encodes everything known about
Ω. This emphasizes the usefulness of DEC as a theory built for discrete settings. ♦

Orientation of Simplicial Complexes We now review how to orient a simplicial complex K.

Definition 1.6. Define two orderings of the vertices of a simplex σk (k ≥ 1) to be equivalent if they differ by an even
permutation. Thus, there are two equivalence classes of orderings, each of which is called an orientation of σk. If σk is written
as [v0, . . . , vk], the orientation of σk is understood to be the equivalence class of this ordering. ♦

Definition 1.7. Let σk = [v0, . . . , vk] be an oriented simplex with k ≥ 2. This gives an induced orientation on each of the
(k− 1)-dimensional faces of σk as follows. Each face of σk can be written uniquely as [v0, . . . , v̂i, . . . , vk], where v̂i means vi
is omitted. If i is even, the induced orientation on the face is the same as the oriented simplex [v0, . . . , v̂i, . . . , vk]. If i is odd,
it is the opposite. ♦

We note that this formal definition of induced orientation agrees with the notion of orientation induced by the boundary operator
(Definition 4.12). In that setting, a 0-simplex can also receive an induced orientation.
Remark 1.8. We will need to be able to compare the orientation of two oriented k-simplices σk and τk. This is possible only if
at least one of the following conditions holds:

1. There exists a k-dimensional affine subspace P ⊂ RN containing both σk and τk.

2. σk and τk share a face of dimension k − 1.

In the first case, write σk = [v0, . . . , vk] and τk = [w0, . . . , wk]. Note that {v1−v0, v2−v0, . . . , vk−v0} and {w1−w0, w2−
w0, . . . , wk − w0} are two ordered bases of P . We say σk and τk have the same orientation if these bases orient P the same
way. Otherwise, we say they have opposite orientations. In the second case, σk and τk are said to have the same orientation if
the induced orientation on the shared k − 1 face induced by σk is opposite to that induced by τk. ♦

Definition 1.9. Let σk and τk with 1 ≤ k ≤ n be two simplices whose orientations can be compared, as explained in Remark
1.8. If they have the same orientation, we say the simplices have a relative orientation of +1, otherwise −1. This is denoted
as sgn(σk, τk) = +1 or −1, respectively. ♦

Definition 1.10. A manifold-like simplicial complexK of dimension n is called an oriented manifold-like simplicial complex
if adjacent n-simplices agree on the orientation of their shared face. Such a complex will be called a primal mesh from here
forward. ♦

1.5.2 Dual Complexes
Dual complexes are defined relative to a primal mesh. While they represent the same subset of RN as their associated pri-
mal mesh, they create a different data structure for the geometrical information and become essential in defining the various
operators needed for DEC.

Dual Cells

Dual cells of dimension 0, 1, 2, and 3 are shown. In general, a k-cell is the convex hull of k points in Rn
homeomorphic to a filled k-ball such that the boundary of the k-cell is a collection of k − 1 cells. If a k-cell is
defined as the dual of an n− k simplex, we denote it as ?σn−k.
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Definition 1.11. The circumcenter of a k-simplex σk is given by the center of the unique k-sphere that has all k+1 vertices of
σk on its surface. It is denoted c(σk). A simplex σk is said to be well-centered if c(σk) ∈ Int(σk). A well-centered simplicial
complex is one in which all simplices (of all dimensions) in the complex are well-centered. ♦

Definition 1.12. Let K be a well-centered primal mesh of dimension n and let σk be a simplex in K. The circumcentric dual
cell of σk, denoted D(σk), is given by

D(σk) :=

n−k⋃
r=0

⋃
σk≺σ1≺···≺σr

Int(c(σk)c(σ1) . . . c(σr)).

To clarify, the inner union is taken over all sequences of r simplices such that σk is the first element in the sequence and each
sequence element is a proper face of its successor. Hence, σ1 is a (k + 1) simplex and σr is an n simplex. For r = 0, this is to
be interpreted as the sequence σk only. The closure of the dual cell of σk is denoted D̄(σk) and called the closed dual cell. We
will use the notation ? to indicate dual cells, i.e.

?σ := D̄(σ).

Each (n−k)-simplex on the points c(σk), c(σ1), . . . , c(σr) is called an elementary dual simplex of σk. The collection of dual
cells is called the dual cell decomposition of K and denoted D(K) or ?K. ♦

Note that the dual cell decomposition forms a CW complex.

Orientation of Dual Complexes Orientation of the dual complex must be done in a such a way that it “agrees” with the
orientation of the primal mesh. This can be done canonically since a primal simplex and any of its elementary dual simplices
have complementary dimension and live in orthogonal affine subspaces of RN . We make this more precise and fix the necessary
conventions with the following definitions.

Definition 1.13. Let K be a primal mesh containing a sequence of simplices σ0 ≺ σ1 ≺ · · · ≺ σn and let σk be one of
these simplices with 1 ≤ k ≤ n − 1. The orientation of the elementary dual simplex with vertices c(σk), . . . , c(σn) is
s[c(σk), . . . , c(σn)] where s ∈ {−1,+1} is given by the formula

s := sgn
(
[c(σ0), . . . , c(σk)], σk

)
× sgn

(
[c(σ0), . . . , c(σn)], σn

)
.

The sgn function was defined in Definition 1.9.
For k = n, the dual element is a vertex which has no orientation. For k = 0, define s := sgn

(
[c(σ0), . . . , c(σn)], σn

)
. ♦

The above definition serves to orient all the elementary dual simplices associated to σk and hence all simplices in a dual cell
decomposition. Further, the orientations on the elementary dual simplices induce orientations on the boundaries of dual cells
in the same manner as given in Definition 1.7. The induced orientations on adjacent (n− 1) cells will agree since the dual cell
decomposition comes from a primal mesh (see Definition 1.10).

Definition 1.14. The oriented dual cell decomposition of a primal mesh is called the dual mesh. ♦

1.6 Voronoi and Delaunay Decompositions

For a finite set of points P in R3, the Voronoi cell of p ∈ P is

Vp = {x ∈ R3 : ∀q ∈ P − {p}, ‖x− p‖ ≤ ‖x− q‖)}.

If the points are in general position, two Voronoi cells with non-empty intersection meet along a planar, convex Voronoi facet,
three Voronoi cells with non-empty intersection meet along a common Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decomposition consisting of the Voronoi objects, that is, Voronoi cells, facets,
edges and vertices is the Voronoi diagram VorP of the point set P .
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Voronoi and Delaunay Meshes

Voronoi and Delaunay meshes are dual decompositions of the same domain. In the figure, the small red dots define
the Voronoi cells and hence a dual mesh of the domain (shown at right) but also define the vertices of the Delaunay
triangles and hence a primal mesh of the domain (shown at left).

The dual of VorP is the Delaunay diagram DelP of P which is a simplicial complex when the points are in general position.
The tetrahedra are dual to the Voronoi vertices, the triangles are dual to the Voronoi edges, the edges are dual to the Voronoi
facets and the vertices (sample points from P ) are dual to the Voronoi cells. We also refer to the Delaunay simplices as Delaunay
objects.

1.6.1 Euclidean vs. Power distance.

For MVC the choice of using the Power distance in place of the Euclidean distance is motivated by the the efficiency and
simplicity of the construction of the power diagram together with the fact that the power distance can be proven to be an upper
bound of the Euclidean distance.

Consider a point p at distance d from the center c a ball B of radius r as in Figure 1.5. We define:

E(p,B) = |d− r| , P (p,B) =
√
|d2 − r2| .

Then we have the following chain of inequalities (where r and d are positive numbers):

0 ≤ 4dr(d− r)2 = 4d3r − 8d2r2 + 4dr3

(d− r)4 = d4 − 4d3r + 6d2r2 − 4dr3 + r4

≤ d4 − 2d2r2 + r4 = (d2 − r2)2

E(p,B) = |d− r| ≤
√
|d2 − r2| = P (p,B) .
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(a) (b)

Figure 1.5: Relationship between the Euclidean distance E(p,B) between the point p and the ball B and their Power distance
P (p,B), (a) Configuration for d > r. (b) Configuration for d < r.

If the point p is outside the ball B the following inequality holds (both r and d are positive numbers):

r < d

r − d ≤ 0

2r2 − 2rd ≤ 0

2r2 − 2rd+ d2 ≤ d2

r2 − 2rd+ d2 ≤ d2 − r2

(r − d)2 ≤ d2 − r2

(r − d) ≤
√
d2 − r2

E(p,B) ≤ P (p,B)

That is the P (p,B) is larger than the Euclidean distance E(p,B) . The same relation holds if p is inside B:

d ≤ r

d− r ≤ 0

2d2 − 2rd ≤ 0

2d2 − 2rd+ r2 ≤ r2

d2 − 2rd+ r2 ≤ r2 − d2

(d− r)2 ≤ r2 − d2

(d− r) ≤
√
r2 − d2

E(p,B) ≤ P (p,B)

In conclusion we have that for any given ball B and point p, the function P (p,B) provides an upper bound on the distance
E(p, b):

E(p,B) ≤ P (p,B) , (1.1)

with equality holding only when d = r, i. e. the point is on the surface of the ball (and in trivial cases where d or r is zero).
For a collection of n balls B = {B1, . . . , Bn} the distance functions are extended as follows:

E(p,B) = min
1≤i≤n

|di − ri| (1.2)
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P (p,B) =
√

min
1≤i≤n

|d2
i − r2

i | (1.3)

The problem in comparing E(p,B) with P (p,B) is that they may achieve their minimum for different values of i because in
general the Power diagram is not coincident with the Voronoi diagram. Figure 1.6.1 shows an example of comparison between
the Voronoi diagram of two circles (in red) with the corresponding Power diagram (in blue). In this example the minimum
distance of the point p from the set B = {B1, B2} is achieved at i = 1 for P (p,B) and at i = 2 for E(p,B):

P (p,B) = P (p,B1)

E(p,B) = E(p,B2) .

In general for a given point p we call iP , iE the two indices such that:

P (p,B) = P (p,BiP )

E(p,B) = E(p,BiE ) .

From equations (1.2) and (1.1) we have that:

E(p,B) = E(p,BiE ) ≤ E(p,BiP )

≤ P (p,BiP ) = P (p,B) .

(a) (b)

Figure 1.6: Power diagram (in blue) and Voronoi diagram (in red) of two circles. (a) Case of nonintersecting circles. (b) Case
of intersecting circles.

1.6.2 Weighted Alpha Shapes

A simplex s in the regular triangulation of {Pi} belongs to the α-shape of {Pi} only if the orthogonal center of (the weighted
point orthogonal to the vertices of) s is smaller than α. The alpha shape where α = 0, called the zero-shape, is the topological
structure of molecules. For example, an edge e = (u, v) is a part of the zero-shape only if ‖u − v‖2 − wu − wv < 0, which
means that the two balls centered at u and v intersect (Figure 1.7(d)).
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(a) (b) (c) (d) (e) (f)

Figure 1.7: The combinatorial and geometric structures underlying a molecular shape: (a) The collection of balls (weighted
points). (b) Power diagram of a set of the points. (c) Regular triangulation. (d) The α-shape (with α = 0) of the points. (e)
Partitioning of the molecular body induced by the power diagram. (f) The boundary of the molecular body.

1.7 Biological Applications

1.7.1 Union of Balls Topology

Stereographic Projection

a b c
a

b

c
∞ ∞

∞

For any integer n ≥ 1, the space Rn ∪ {∞} can be mapped to the n-dimensional sphere, commonly denoted Sn

by a mapping called stereographic projection. In the 1D case shown above, the real line is mapped to the circle
S1 by wrapping the points at infinity together to the top of the circle. The general form of the mapping is given by

s : Sn → Rn, (x1, . . . , xn+1)→ 1

1− xn+1
(x1, . . . , xn)

with the convention (0, . . . , 1)→ {∞}. This process can be used to wrap 2D power diagrams into 3D polytopes.

Power Diagram

Given a weighted point P = (p, wp) where p ∈ IRn and w ∈ IR, the power distance from a point x ∈ IRn to P is defined as

πP (x) =
√
‖p− x‖2 − wp ,

where ‖p− x‖ is the ordinary Euclidean distance between p and x.
In molecule context, we define the weight of an atom B with center at p and radius r to be wB = r2. The power distance of x
to B is

πB(x) =
√
‖p− x‖2 − r2 .

Given a set {Pi} of weighted vertices (each vertex has a weight wi associated with it), the Power Diagram is a tiling of the
space into convex regions where the ith tile is the set of points nearest to the vertex Pi, in the power distance metric The power
diagram is similar to the Voronoi diagram using the power distance instead of Euclidean distance.
The weighted Voronoi cell of a ball B in a molecule B is the set of points in space whose weighted distance to B is less than or
equal to their weighted distance to any other ball in B:

VB = {x ∈ IR2|πB(x) ≤ πC(x) ∀C ∈ B} .

The power diagram of a molecule is the union of the weighted Voronoi cells for each of its atoms (Figure 1.7(b)).
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Regular Triangulation

The regular triangulation, or weighted Delaunay triangulation, is the dual (face adjacency graph) of the power diagram, just as
the Delaunay triangulation is the dual shape of the Voronoi diagram. Vertices in the triangulation are connected if and only if
their corresponding weighted Voronoi cells have a common face (Figure 1.7(c)). This implies that two vertices are connected
if and only if they have a nearest neighbor relation measured in power distance metric
Given a set of n 2D points with weights, it has been shown , that their regular triangulation can be computed in O(n log n)
time, by incrementally inserting new points to the existing triangulation and correcting it using edge flips.

Wrapping the Power Diagram

We can model a union of balls as an embedded graph. If two balls intersect, their circle of intersection can be defined by three
points. The arcs connecting these points are directed edges and can be parametrized as portions of a circle. Each face is portion
of a sphere and the circular arcs defining its boundary. This can be captured compactly as a graph structure (vertices, edges,
and faces).
Moreover, the weighted Delaunay triangulation of the centers of the balls defines the topology of the volume. An edge in
the complex corresponds to two balls intersecting and a face (triangle) corresponds to three balls intersecting. A cycle of three
edges without a face corresponds to three balls which intersect pairwise but not mutually.
We can wrap the weighted Delaunay diagram onto the 4-sphere using sterographic projection (see box). This mapping results
in a polytope that compactly represents the union of balls topology and surface patch embedded graph.

1.7.2 Meshing of Molecular Interfaces
In this subsection, we describe an approach to generate quality triangular/tetrahedral meshes for complicated biomolecular
structures directly from the PDB format data, conforming to a good implicit solvation surface approximation. There are three
main steps in our mesh generation process:

1. Implicit Solvation Surface Construction – A smooth implicit solvation model is constructed to approximate the Lee-
Richards molecular surface by using weighted Gaussian isotropic atomic kernel functions and a two-level clustering
techniques.

2. Mesh Generation – A modified dual contouring method is used to extract triangular and interior/exterior tetrahedral
meshes, conforming to the implicit solvation surface. The dual contouring method is selected for mesh generation as it
tends to yield meshes with better aspect ratio. In order to generate exterior meshes described by biophysical applications
, we add a sphere or box outside the implicit solvation surface, and create an outer boundary. Our extracted tetrahedral
mesh is spatially adaptive and attempts to preserve molecular surface features while minimizing the number of elements.

3. Quality Improvement – Geometric flows are used to improve the quality of extracted triangular and tetrahedral meshes.

The generated tetrahedral meshes of the monomeric and tetrameric mouse acetylcholinesterase (mAChE) have been success-
fully used in solving the steady-state Smoluchowski equation using the finite element method .

Mesh Generation

There are two main methods for contouring scalar fields, primal contouring and dual contouring . Both of them can be extended
to tetrahedral mesh generation. The dual contouring method is often the method of choice as it tends to yield meshes with
better aspect ratio.

Triangular Meshing Dual contouring uses an octree data structure, and analyzes those edges that have endpoints lying
on different sides of the isosurface, called sign change edges. The mesh adaptivity is determined during a top-down octree
construction. Each sign change edge is shared by either four (uniform case) or three (adaptive case) cells, and one minimizer
point is calculated for each of them by minimizing a predefined Quadratic Error Function (QEF) :

QEF [x] =
∑
i

[ni · (x− pi)]2 , (1.4)
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(a) (b) (c)

Figure 1.8: The analysis domain of exterior meshes. (a) - ‘O’ is the geometric center of the molecule, suppose the circum-
sphere of the biomolecule has the radius of r. The box represents the volumetric data, and ‘S0’ is the maximum sphere inside
the box, the radius is r0(r0 > r). ‘S1’ is an outer sphere with the radius of r1(r1 = (20 ∼ 40)r). (b) - the diffusion domain
is the interval volume between the molecular surface and the outer sphere ‘S1’, here we choose r1 = 5r for visualization. (c) -
the outer boundary is a cubic box.

where pi, ni represent the position and unit normal vectors of the intersubsection point respectively. For each sign change edge,
a quad or triangle is constructed by connecting the minimizers. These quads and triangles provide a ‘dual’ approximation of
the isosurface.
A recursive cell subdivision process was used to preserve the trilinear topology of the isosurface. During cell subdivision, the
function value at each newly inserted grid point can be exactly calculated since we know the volumetric function. Additionally,
we can generate a more accurate triangular mesh by projecting each generated minimizer point onto the isosurface.

Tetrahedral Meshing The dual contouring method has already been extended to extract tetrahedral meshes from volumetric
scalar fields . The cells containing the isosurface are called boundary cells, and the interior cells are those cells whose eight
vertices are inside the isosurface. In the tetrahedral mesh extraction process, all the boundary cells and the interior cells need
to be analyzed in the octree data structure. There are two kinds of edges in boundary cells, one is a sign change edge, the other
is an interior edge. Interior cells only have interior edges. In [237, 238], interior edges and interior faces in boundary cells are
dealt with in a special way, and the volume inside boundary cells is tetrahedralized. For interior cells, we only need to split
them into tetrahedra.
Adding an Outer Boundary In biological diffusion systems, we need to analyze the electrostatic potential field which is
faraway from the molecular surface . Assume that the radius of the circum-sphere of a biomolecule is r. The computational
model can be approximated by a field from an outer sphere S1 with the radius of (20 ∼ 40)r to the molecular surface. Therefore
the exterior mesh is defined as the tetrahedralization of the interval volume between the molecular surface and the outer sphere
S1 (Fig. 1.8(b)).
First we add a sphere S0 with the radius of r0 (where r0 > r and r0 = 2n/2 = 2n−1) outside the molecular surface, and
generate meshes between the molecular surface and the outer sphere S0. Then we extend the tetrahedral meshes from the
sphere S0 to the outer bounding sphere S1. For each data point inside the molecular surface, we keep the original function
value. While for each data point outside the molecular surface, we reset the function value as the smaller one of f(x)− α and
the shortest distance from the grid point to the sphere S0. Eqn. (1.5) shows the newly constructed function g(x) which provides
a grid-based volumetric data containing the biomolecular surface and an outer sphere S0.

g(x) =


min(‖x− x0‖ − r0, f(x)− α), iff(x) < α, ‖x− x0‖ < r0,
‖x− x0‖ − r0, iff(x) < α, ‖x− x0‖ ≥ r0,
f(x)− α, iff(x) ≥ α,

(1.5)

where x0 are coordinates of the molecular geometric center. The isovalue α = 0.5 for volumetric data generated from the
characteristic function, and α = 1.0 for volumetric data generated from the summation of Gaussian kernels.
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The molecular surface and the outer sphere S0 can be extracted as an isosurface at the isovalue 0, Sg(0) = {x|g(x) = 0}. All
the grid points inside the interval volume Ig(0) = {x|g(x) ≤ 0} have negative function values, and all the grid points outside
it have positive values.

(a) (b)

Figure 1.9: 2D triangulation. (a) Old scheme, (b) New scheme. Blue and yellow triangles are generated for sign change edges
and interior edges respectively. The red curve represents the molecular surface, and the green points represent minimizer points.

Mesh Extraction
Here we introduce a different scheme from the algorithm presented in [237, 238], in which we do not distinguish boundary
cells and interior cells when we analyze edges. We only consider two kinds of edges - sign change edges and interior edges.
For each boundary cell, we can obtain a minimizer point by minimizing its Quadratic Error Function. For each interior cell,
we set the middle point of the cell as its minimizer point. Fig. 1.9(b) shows a simple 2D example. In 2D, there are two cells
sharing each edge, and two minimizer points are obtained. For each sign change edge, the two minimizers and the interior
vertex of this edge construct a triangle (blue triangles). For each interior edge, each minimizer point and this edge construct a
triangle (yellow triangles). In 3D as shown in Fig. 1.10, there are three or four cells sharing each edge. Therefore, the three (or
four) minimizers and the interior vertex of the sign change edge construct one (or two) tetrahedron, while the three (or four)
minimizers and the interior edge construct two (or four) tetrahedra.

Figure 1.10: Sign change edges and interior edges are analyzed in 3D tetrahedralization. (a)(b) - sign change edge (the red
edge); (c)(d) - interior edge (the red edge). The green solid points represent minimizer points, and the red solid points represent
the interior vertex of the sign change edge.

Compared with the algorithm presented in [237, 238] as shown in Fig. 1.9(a), Fig. 1.9(b) generates the same surface meshes,
and tends to generate more regular interior meshes with better aspect ratio, but a few more elements for interior cells. Fig. 1.9(b)
can be easily extended to large volume decomposition. For arbitrary large volume data, it is difficult to import all the data into
memory at the same time. So we first divide the large volume data into some small subvolumes, then mesh each subvolume
separately. For those sign change edges and interior edges lying on the interfaces between subvolumes, we analyze them
separately. Finally, the generated meshes are merged together to obtain the desired mesh. The mesh adaptivity is controlled by
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the structural properties of biomolecules. The extracted tetrahedral mesh is finer around the molecular surface, and gradually
gets coarser from the molecular surface out towards the outer sphere, S0. Furthermore, we generate the finest mesh around the
active site, such as the cavity in the monomeric and tetrameric mAChE shown in Fig.?? (a∼b), and a coarse mesh everywhere
else.
Mesh Extension

Figure 1.11: (a) - one triangle in the sphere S0 (blue) is extended n steps until arriving at the sphere S1 (red); (b) and (c) - a
prism is decomposed into three tetrahedra in two different ways.

We have generated meshes between the biomolecular surface and the outer sphere S0, the next step is to construct tetrahedral
meshes gradually from the sphere S0 to the bounding sphere S1 (Fig. 1.8). The sphere S0 consists of triangles, so we extend
each triangle radially as shown in Fig. 1.11 and a prism is obtained for each extending step. The prism can be divided into
three tetrahedra. The extension step length h can be calculated by Eqn. (1.6). It is better for the sphere S0 to be triangulated
uniformly since the step length is fixed for each extension step.

r0 + h+ 2h+ · · ·+ nh = r1 =⇒ h =
2(r1 − r0)

n(n+ 1)
(1.6)

where n is the step number. In Figure 1.11, suppose u0u1u2 is a triangle on sphere S0, and u0, u1, u2 are the unique index
numbers of the three vertices, where u1 < u0 and u1 < u2. For one extension step, u0u1u2 is extended to v0v1v2, and the two
triangles construct a prism, which can be decomposed into three tetrahedra. In order to avoid the diagonal conflict problem, a
different decomposition method (Fig. 1.11(b∼c)) is chosen based on the index number of the three vertices. If u0 < u2, then
we choose Fig. 1.11(b) to split the prism into three tetrahedra. If u2 < u0, then Fig. 1.11(c) is selected
Assume there are m triangles on the sphere S0, which is extended n steps to arrive at the sphere S1. m prisms or 3m tetrahedra
are generated in each extending step, and a total of 3mn tetrahedra are constructed in the extension process. Therefore, it is
better to keep a coarse and uniform triangular mesh on the sphere S0.

Union of Balls using Voronoi-Cell Complexes

Several different approaches have been developed to achieve this efficiency for molecular surface computations [59, 183, 184,
185, 212, 214]. Other work on surface representations features the use of metaballs, molecular surfaces, and blobby models
[4, 30, 223, 65, 89, 109, 122, 152, 160, 161, 228, 229, 231].
In previous work on dynamic triangulations the focus has been mostly on the simpler Delaunay/Voronoi structures (unweighted
case) [17, 124, 50, 88, 111, 5, 178, 179]. Little has been done on the more general case of dynamic Regular Triangulation/Power
Diagrams and for dimensions greater than two. Moreover, the kinds of dynamic operations developed are usually just the
insertion/deletion of a single point. Such local operations become inefficient when we need to perform even a simple but global
modification.

Molecular Surface Computation using Adaptive Grids

Since Richards introduced the SES definition, a number of techniques have been devised to compute the surface, both static
and dynamic, implicit and explicit. Connolly introduced two algorithms to compute the surface. First, a dot based numerical
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surface construction and second, an enumeration of the patches that make up the analytical surface (See [59], [58] and his
PhD thesis). In [214], the authors describe a distance function grid for computing surfaces of varying probe radii. Our data
structure contains approaches similar to their idea. A number of algorithms were presented using the intersection information
given by voronoi diagrams and the alpha shapes introduced by Edelsbrunner [73], including parallel algorithms in [212] and
a triangulation scheme in [4]. Fast computations of SES is described in [184] and [183], using Reduced sets, which contains
points where the probe is in contact with three atoms, and faces and edges connecting such points. Non Uniform Rational
BSplines ( NURBs ) descriptions for the patches of the molecular surfaces are given in [22], [21] and [23]. You and Bashford
in [232] defined a grid based algorithm to compute a set of volume elements which make up the Solvent Accessible Region.

Maintaining Union of Balls Under Atom Movements

Though a number of techniques have been devised for the static construction of molecular surfaces (e.g., [59, 58, 214, 73,
212, 4, 184, 183, 232, 108, 22, 21, 239, 24]), not much work has been done on neighborhood data structures for the dynamic
maintenance of molecular surfaces as needed in MD. In [23] Bajaj et al. considered limited dynamic maintenance of molecular
surfaces based on Non Uniform Rational BSplines ( NURBS ) descriptions for the patches. Eyal and Halperin [79, 80] presented
an algorithm based on dynamic graph connectivity that updates the union of balls molecular surface after a conformational
change in O

(
log2 n

)
amortized time per affected (by this change) atom.

Clustering and Decimation of Molecular Surfaces

Using multiresolution models for molecules can substantially improve rendering speed and interactive response rates in mole-
cular interaction tools. Similar improvements in performance would be achieved when a set of balls is used as an approximate
representation of a generic object either for modeling (meta-balls [109, 161], blobby models [231]) or for collision detection
[122]. Direct application of previous approaches for the decimation and multiresolution representation of the surfaces themsel-
ves [184, 138] can have serious embedding and self-intersection problems and are specific to the surface definition. A possible
solution if this problem has been addressed in [199] but limited to the case of the boundary surface of tetrahedral meshes. Our
multiresolution scheme updates the underlying structure of the molecule, maintaining at any level of detail a regular triangu-
lation of the current weighted point-set. In this way we explicitly track the topology of the molecular body at any adaptive
level of resolution. Moreover this guarantees correct embedding in all resolutions and creates an approximation from which the
surface boundary can be computed in any of the previous schemes.
There are many approaches for creating multiresolution representations of geometric data for graphics and visualization [181,
147, 133]. They vary in both the simplification scheme like vertex removal [63], edge contraction [120], triangle con-
traction [95], vertex clustering [188], wavelet analysis [67], and also in the structure used to organize the levels of detail
(either a linear order or a using a DAG).
Maintaining the regular triangulation at all resolutions rules out the possibility of using decimation techniques like edge or
triangle contraction, which do not guarantee the (weighted) Delaunay property. Other known decimation schemes that can
guarantee this property such as vertex removal, do not seem appropriate in this case since they do not preserve the molecule
features as a subset of the whole triangulation. Techniques which preserve features in the triangulation by tagging specific edges
or vertices [49] are more suitable for preserving specific edges or regions. We are more interested in applying the decimation
on a subset of the triangulation while this subset can change during the decimation.
Sphere trees have also been used in [121] for the purpose of fast collision detection. In this work, Sphere hierarchies are built
around a given object either by replacing special octree regions or by placing balls on the medial-axis surfaces approximated
using voronoi edges of some point sampling of the object. The basic approach of building the hierarchy by clustering pairs
of balls for collision detection [122] is similar to ours. However in this scheme the simplification process does not update the
underlying triangulation and hence does not track the topological changes induced by the decimation process. This make also
the scheme unable to cluster balls that get in contact only after some simplification steps.

Summary

References and Further Reading
• Set theory background can be found in Rosen [180].
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• Useful references for graph theory include Behzad and Chartrand [26], Chartrand and Lesniak [45], and Giblin [94]

• Minimal spanning trees are discussed in Graham and Hell [107] and algorithms for finding them in Kruskal[137]

• Useful algebraic topology texts include Armstrong [8] and Hatcher [115]. This includes more formal definitions of terms
like homeomorphism, isomorphism, manifold, and homology.

• Some notation on primal and dual meshes has been adapted from Hirani [116].

• For practical computational topology, see Zomorodian [243]

• For more on CW complexes, see Munkres [157].

• The power distance metric is described in [15].

• More on regular triangulations in [70, 74] and on weighted alpha shapes in [68, 81].

• Some application references: [237, 238, 35, 36, 197, 198, 234, 126, 92, 119, 141].

Exercises



Chapter 2

Sets, Functions and Mappings

2.1 Scalar, Vector and Tensor Functions
Definition 2.1. We use the following basic definitions

• A scalar function is a function whose values are in R, i.e. f : V → R.

• A vector function is a function whose values are in Rk for some k > 1. i.e. f : V → R× · · · × R︸ ︷︷ ︸
k copies

.

Definition 2.2. Let V be a vector space and let V p denote the Cartesian product of p copies of V . A (real) p-tensor on V is a
function T : V p −→ R that it is linear in each variable.

The tensor product of a p-tensor T and a q-tensor S is defined by

T ⊗ S(v1, . . . , vp, vp+1, . . . , vp+q) := T (v1, . . . , vp) · S(vp+1, . . . , vp+q)

Note that this operation is not symmetric. A tensor T is called alternating or anti-symmetric if and only if the sign of T is
reversed whenever two variables are transposed. Let Sp denote the symmetric group on p elements. An arbitrary tensor T is
associated to the alternating tensor Alt T , defined by

Alt T :=
1
p!
∑
π∈Sp

(−1)πTπ,

where
Tπ(v1, . . . , vp) := T (vπ(1), . . . , vπ(p)).

Alternating p-tensors are closed under scalar multiplication and addition, thereby forming a vector space:

Λp(V ∗) := {Alt T : T is a p-tensor on V }

Definition 2.3. If T ∈ Λp(V ∗) and S ∈ Λq(V ∗), the wedge product of T and S is defined by

T ∧ S := Alt (T ⊗ S) ∈ Λp+q(V ∗)

♦

2.2 Inner Products and Norms
In this section we will introduce the norm, inner products and Hilbert Spaces.

33
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2.2.1 Vector Space
Definition 2.4. Formally, a field is a set F together with two operations called addition and multiplication, F with addition
forms an Abelian group with identity element "0" while F with multiplication forms an Abelian group with identity element
"1"

Definition 2.5. A vector space is defined as V = {X,+, ∗,F}, where X is a set and F is a Field. X and + : X × X → X
forms an Abelian group and ∗ : F×X → X satisfying the following:

• α ∗ (a+ b) = α ∗ a+ α ∗ b

• (α+ β) ∗ a = α ∗ a+ β ∗ a

• α ∗ (β ∗ a) = (αβ)a

• 1 ∗ a = a

• 0 ∗ a = 0

where α, β ∈ F, a, b ∈ X

Vector spaces show us to speak linear transformations, summation, subspace and duality.

2.2.2 Topological Space
Definition 2.6. X is an nonempty set, X is the class of subsets of X such that:

• X ∈ X

• ∅ ∈ X

• X1, X2, . . . , Xn ∈ X =⇒ ⋂n
i=1Xi ∈ X (finite intersection)

• ⋃i∈I Xi ∈ X (any union)

Then X defines the topology on X, ∀x ∈ X is called an open set in X , and V = (X,X ) forms a topological space.

Definition 2.7. x1 ∈ X , Bx1
is defined as neighborhood of x1 if Bx1

is a subset at X and there exists an open set U ∈ X
containing x1 s.t. U ⊂ Bx1

Definition 2.8. V = (X,X ) is Hausdorff if and only if, ∀ pair of points x1, x2 ∈ X , ∃ neighborhood Bx1
,Bx2

such that:

Bx1
∩Bx2

= ∅

(Point) Topological spaces allow us to speak of open sets, closed sets, compactness, convergence of sequences, continuity of
functions, etc.

Example 2.9. Let {X,X},{Y,Y} be two topological spaces. F : X → Y is a continuous mapping at x0 ∈ X if and only if
: ∀ open set Y0 ∈ Y containing F (x0) contains an open set B that is the image of an open set containing x0. (An open set’s
original image is an open set)

2.2.3 Metric Space
Definition 2.10. A metric space is an ordered pair (X, d) where X is the set and d is a function defined on X ×X:

d : X ×X → R

such that for ∀x, y, z ∈ X , the following holds:

• d(x, y) > 0
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• d(x, y) = 0 =⇒ x = y

• d(x, y) = d(y, x)

• d(x, z) 6 d(x, y) + d(y, z)

Example 2.11. Every metric space (denoted as (X, d)) is a topological space. Since we can define open sets

Br(x0) = {y ∈ X : d(x0, y) = r}

like the balls on metric space. In this case:

• xn → x0 ⇐⇒ ∀ε > 0,∃n ∈ N such that d(x0, xn) < ε for all m > n

• F is continuous ⇐⇒ ∀ε > 0,∃δ > 0 such that d(F (x), F (x0)) < ε whenever d(x, x0) < δ

2.2.4 Topological Vector Space
Definition 2.12. V is called a topological vector space if and only if:

• V is a vector space

• The underlying set V of vectors in V is endowed with a topology U such that:

– (V,U) is a Hausdorff topological space

– vector addition is continuous: u+ v ∈ V if u, v ∈ V
– scalar multiplication is continuous: αu ∈ V if α ∈ F, u ∈ V

2.2.5 Normed Space
Definition 2.13. V is a vector space, N : V → R is a norm of V if :

• N(v) > 0, and N(v) = 0 if and only if v = 0

• N(αv) = |α|N(v)

• N(u+ v) 6 N(u) +N(v)

We always denote ‖u‖ := N(u).

Remark 2.14. You can verify that ‖u− v‖ is a metric on V , thus every normed space is a metric space.

Remark 2.15. You can also verify that every normed space is a Topological Vector Space:

• let we assume there are two convergent sequence {un}, {vn} ⊂ V :

un → u, vn → v

where u, v ∈ V , then we can verify that:

‖(un + vn)− (u+ v)‖ 6 ‖u− un‖+ ‖v − vn‖ → 0 as n→ 0

• Suppose αn → α in F, then:

‖αnun − αu‖ 6 |α− αn|‖un‖+ |α|‖u− un‖ → 0 as n→∞

Therefore, in normed spaces, we have the concept that adapted both from linear spaces and topological spaces. Next is the
definition for a Banach Space.
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Definition 2.16. A complete normed space is a Banach space, or a B space. Here complete means : every Cauchy sequence
in a metric space converges in that metric space.

Here are some properties pertinent to normed spaces:

• A : U → V , U, V are underlying sets of normed spaces with norms ‖ · ‖U , ‖ · ‖V , respectively.

• A is linear if and only if
A(αu1 + βu2) = αA(u1) + βA(u2)∀u1, u2 ∈ U

• A is bounded if and only if A maps a bounded sets in U into bounded sets in V :

‖u‖U 6 C1 =⇒ ∃C2 such that ‖Au‖V 6 C2

• A is continuous if and only if ∀ε > 0,∃δ > 0 such that:

‖u− v‖U < δ =⇒ ‖Au−Av‖V < ε

or if and only if , whenever un → u (‖u− un‖V → 0 as n→∞), we have:

‖Au−Av‖V → 0 as n→∞

Theorem 2.17. Let (U, ‖ · ‖U ), (V, ‖ · ‖)V be normed spaces over the same field. Let A : U → V be a linear
function. Then the following are equivalent:

1) A is continuous

2) A is continuous at u = 0

3) A is bounded

4) ∃C > 0 such that:
‖Au‖V 6 C‖u‖U ∀u ∈ U

Proof.
1)⇒ 2) is obvious.
2)⇒ 3):
Let ‖u‖U < r. Since A is continuous at 0, ∀ε > 0,∃δ > 0 such that

‖Au‖V < ε =⇒ ‖u‖U < δ

Pick ε = 1, then ∃ δ such that ‖u‖U < δ ⇒ ‖Au‖V < 1.
If ‖u‖U < r,

‖δ
r
u‖U =

δ

r
‖u‖U 6 δ

Thus
‖A(

δ

r
u)‖V 6 1 =⇒ ‖Au‖V 6

r

δ
= constant

Hence, A is bounded.
3)⇒ 4):
Since A is bounde, ∃C > 0 such that ‖Au‖V 6 C whenever ‖u‖U 6 1.
Thus, ∀u 6= 0,

‖A(
u

‖u‖U
)‖V 6 C

and therefore:
‖Au‖V 6 C‖u‖U
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4)⇒ 1):
If un → u, then:

‖Au−Aun‖V 6 C‖u− un‖V → 0 as n→∞

2.2.6 Inner Product Space
Definition 2.18. Let V be a vector space, and define p : V × V → F(C or R). Then p is an inner product on V if it satisfies
the following:

• ∀u ∈ V, p(u, u) > 0; p(u, u) = 0 ⇐⇒ u = 0

• ∀u, v ∈ V, p(u, v) = p(v, u) (Conjugate Symmetry)

• ∀u1, u2, v ∈ V,∀α1, α2 ∈ F, p(α1u1 + α2u2, v) = α1p(u1, v) + α2p(u2, v)

Denote as (u, v) = p(u, v). A vector space on which an inner product has been defined is called an inner product space.
Denote the inner product space as (V, (·, ·))

Remark 2.19. You can verify that an inner product also satisfies the following:

p(u, β1v1 + β2v2) = β̄1p(u, v1) + β̄2p(u, v2)

where u, v1, v2 ∈ V, β1, β2 ∈ F

Definition 2.20. Let (V, (·, ·)) be an inner product space. Pick u, v ∈ V , we claim that u and v are orthogonal if

(u, v) = 0

One important property for the inner product is that it satisfies the Cauthy-Schwarz Inequality.

Theorem 2.21 (Cauthy-Schwarz Inequality). Let (V, (·, ·)) be an inner product space. If u, v ∈ V , then:

|(u, v)| 6
√

(u, u)(v, v)

Proof. Suppose F = C, pick α = (v,u)
(v,v) ∈ C, then:

0 6 (u− αv, u− αv)

= (u, u)− α(v, u)− ᾱ(u, v) + αᾱ(v, v)

= (u, u)− (v, u)

(v, v)
(v, u)− (u, v)

(v, v)
(u, v) +

(v, u)(u, v)

(v, v)2
(v, v)

=
1

(v, v)

[
(u, u)(v, v)− 2|(u, v)|2 + |(u, v)|2

]
Therefore |(u, v)|2 6 (u, u)(v, v).

Next, we want to connect the inner product space with normed space.

Theorem 2.22. Every inner product space is a normed space with norm :√
(u, u) = ‖u‖

Proof. Recall the definition of the norm, all you need is to verify that

• ‖u‖ > 0 and ‖u‖ = 0 ⇐⇒ u = 0
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• ‖u+ v‖ 6 ‖u‖+ ‖v‖

• ∀α ∈ F, ‖αu‖ = |α|‖u‖

Remark 2.23. It is understood that the inner product space V is induced with the topology induced by the norm (u, u)
1
2

Now, we introduce an important type of space:

Definition 2.24. An inner product space is a Hilbert Space if and only if it is complete (with respect to the norm induced by
the inner product)

A typical example of a Hilbert Space will be the Euclidean Space Rd with an inner product defined as:

(x, y) =

d∑
i=1

xiyi

Theorem 2.25. Suppose an inner product space (V, (·, ·)) has two convergence sequence in norm:

vm → v and um → u

Then
(vm, um)→ (v, u)

Proof. In fact, we have:

|(vm, um)− (v, u)| = |(vm, um) + (vm, u)− (vm, u)− (v, u)|
= |(vm, um − u) + (vm − v, u)|
6 ‖vm‖‖um − u‖+ ‖vm − v‖‖u‖
→ 0 as m→∞

(2.1)

Remark 2.26. Similar as Euclidean Space, inner product shares some geometric properties in general vector space:

• cos θ
def
= (u,v)
‖u‖‖v‖ (F = R)

• Pythagoras: (u, v) = 0⇒ ‖u+ v‖2 = ‖u‖2 + ‖v‖2

• Sphere: (u− u0, u− u0) = a2

• Hyperplane: (u− a, n) = 0

• Parallelogram Law: ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

2.3 Piecewise-defined Functions

2.4 Homogeneous and Barycentric coordinates

2.4.1 Homogeneous coordinates
A point in complex projective space CPn is given by a nonzero homogeneous coordinate vector (X0, X1, . . . , Xn) of n + 1
complex numbers. A point in complex affine space CAn is given by the non-homogeneous coordinate vector (x1, x2, . . . , xn)
= (X1

X0
, X2

X0
, . . . , XnX0

) of n complex numbers. The set of points Znd (f) of CAn whose coordinates satisfy a single non-
homogeneous polynomial equation f(x1, x2, . . . , xn) = 0 of degree d, is called an n − 1 dimension, affine hypersurface
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Figure 2.1: Relationship among spaces

of degree d. The hypersurface Zn1 (f) is also known as a flat or a hyperplane, a Zn2 (f) is known as a quadric hypersurface,
and a Zn3 (f) is known as a cubic hypersurface. The hypersurface Z2

d is a plane curve of degree d, a Z3
d is known as a surface

of degree d, and Z4
d is known as a threefold of degree d. A hypersurface Znd is reducible or irreducible based upon whet-

her f(x1, x2, ..., xn) = 0 factors or not, over the field of complex numbers. An algebraic variety Zn{f1, ..., fn} is then an
irreducible common intersection of a collection of hypersurfaces Zndi(fi).
An irreducible rational hypersurface Znd (f), can additionally be defined by rational parametric equations which are given as
(x1 = G1(u1, u2, . . . , un−1), x2 = G2(u1, u2, . . . , un−1), . . ., xn = Gn(u1, u2, . . . , un−1)), where G1, G2, . . ., Gn are
rational functions of degree d in u = (u1, u2, . . . , un−1), i.e., each is a quotient of polynomials in u of maximum degree d.
Multi-polynomial Resultant: Consider F1 = 0, ..., Fm = 0 polynomial equations in n + 1 variables (X0, ..., Xn) and homo-
geneous in m variables (X0, ..., Xm−1). These equations could be the homogenization of the earlier system (??) with X0

acting as the homogenizing variable. The multi-polynomial resultant R(F1, ..., Fm) is a polynomial in the coefficients of the
Fi that vanishes if and only if the Fi have a common zero in projective space. For this reason, the resultant is also often called
the eliminant. Geometrically, the resultant vanishes if and only if the n hypersurfaces Znd (Fi) have a common intersection in
projective space.
The resultant of several equations has several different characterizations. Probably the most elegant was discovered by Macau-
lay [145]. He shows that the multi-polynomial resultant can be expressed as the quotient of the determinant of two matrices
whose entries are coefficients of the polynomials. In the case of two equations, the matrix for the denominator always has
determinant 1 and the matrix for the numerator is the traditional Sylvester matrix[182]. In computing the multi-polynomial
resultant, the Fi are multiplied by suitable monomials to transform the problem of determining whether the polynomials have a
common zero into a problem in linear algebra. We construct a matrix whose entries are the coefficients of the F1, ..., Fm. The
determinant of this matrix will be the product of the resultant and the determinant of a specific minor of the matrix.
The general construction due to [145] is as follows: In the system F1 = 0, ..., Fm = 0 of polynomial equations, homogenous
in variables X0, ..., Xm−1, let Fi be of degree di. The coefficients of the Fi’s are treated as indeterminates. Let

d = 1 +
∑

(di − 1).

and let the m-vector α denote the exponents of a monomial in X0, ..., Xm−1. For example, if α = (α0, ..., αm−1), then

Xα = Xα0
0 ...X

αm−1

m−1 .
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Thus, the set of all monomials of degree d in m variables is

X d = {Xα|α0 + ...+ αm−1 = d.}

If N denotes the number of monomials in this set, then the monomials will index the columns of an N by N matrix.

N =

(
d+m− 1

d

)
Partition X d into n disjoint sets. These sets are

X di = {Xα|αi ≥ di and αj < dj ,∀j < i}.

Next, for each set X di , construct a set F di of polynomials from Fi using monomials in X di . Specifically, let

F di =
X di
xdii

fi.

The F di are sets of homogeneous polynomials in m variables of degree d. Moreover, each of the polynomials in the union of
the F di , equated to zero, collectively yields a set of N homogeneous polynomial equations. Construct an N by N matrix (call
it A) whose columns are indexed by monomials in X d and whose rows correspond to the polynomials in the F di ’s. For a given
polynomial P in F di , its row consists of the symbolic coefficients aik, bjk etc., of each monomial in P .

A


Xd

0

.

.

.
Xd
m−1

 =


. ai1 ai2 ai3 . . . .
. . bj1 bj2 bj3 . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .




Xd
0

.

.

.
Xd
m−1

 =


0
.
.
.
0

 (2.2)

Now, if the Fi have a common root (X̂0, ..., X̂m−1), then this root must satisfy all of the polynomial equations in the F di ’s.
This fact implies that the nontrivial vector (X̂0, ..., X̂m−1) must be in the null space of A. Thus, A must be singular or
equivalently, the determinant of A (call it D) must be zero. This argument establishes that the resultant R is a factor of D. The
remaining factors of D are extraneous and have no bearing on whether the original equations have a common root. The beauty
of Macaulay’s result is that he established that the extraneous factors are the determinant of a minor of A. This minor (call itB)
can be constructed from A in the following manner. Delete all columns of A that correspond to monomials Xα where αi < di
for all but one value of i. (Note there must at least one such i due to the manner in which d was chosen.) Delete all rows of A
that correspond to polynomials in Fi whose multipliers Xα have αj < dj for i < j ≤ n.
Macaulay shows that the resultant R satisfies

R =
det(A)

det(B)

where this division is carried out before the indeterminates forming the entries of A and B are specialized. The reason for
specializing after division is that det(A) and det(B) may evaluate to zero even though R is not identically zero. Techniques
for computing R by specializing before division has recently been considered in [42, 174].
Multi-polynomial Remainder Sequence: Consider first two polynomial equations f1(x1, . . . , xn) = 0 and f2(x1, . . . , xn) = 0.
Treating them as polynomials in x1, the psuedo-remainder (f1/f2) = g(x1, . . . , xn) for degreex1 (f2) ≤ degreex1 (f1), is the
result of one step of psuedo-division in the ringC of coefficient polynomials in n−1 variables (x2, . . . , xn), i.e. αf1 = βf2−g
with α, βεC and degreex1

(g) < degreex1
(f2). Repeating the psuedo-division with f2 and g and ensuring that the factors α and

β are ‘primitve’, one can compute a subresultant polynomial remainder sequence (p.r.s):

f1, f2, g = Sk−1, . . . , S1, S0 (2.3)

where Si is the psuedo-remainder of the two polynomials preceding it in the sequence and is known as the ith subresultant of
f1 and f2, with respect to x1, see for e.g [117, 144]. Here S0 is a polynomial independent of x1 and is the resultant of f1 and
f2, with respect to x1. (Note in the homogeneous case S0 is the polynomial resultant of F1 and F2, with respect to X0 and X1.
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For the set of polynomial equations ( ??), treating them as polynomials in x1, we select the polynomial, say fk, of minimum
degree in x1. We then compute the subresultant psuedo-remainder for each pair (fi/fk) = gi, 1 ≤ i ≤ m and i 6= k, yielding a
new system of equations gi and fk. We repeat the above, first selecting from the new system, a polynomial of minimum degree
in x1, and then computing pairwise subresultant psuedo-remainders. Eventually, we obtain a system of m − 1 polynomial
equations, say Sm−1

f̃1(x2, ..., xn) = 0

...

f̃m−1(x2, ..., xn) = 0 (2.4)

independent of x1.
The above is then one (macro) step of the multi-equational polynomial remainder sequence (m.p.r.s). For the new set of
polynomial equations (2.4), treating them as polynomials in x2, we repeat the entire process above and obtain yet another
reduced system Sm−2 of m − 2 polynomial equations, all independent of x2, and so on. This sequence of systems of multi-
equational polynomial equations

S = Sm, Sm−1, Sm−2, . . . , S1, S0 (2.5)

is what we term the multi-equational polynomial remainder sequence.

2.4.2 Barycentric coordinates
Barycentric coordinates are a natural method for describing a function defined on a triangular domain and we can extend the
idea of barycentric coordinates over polygon or in higher dimensional simplex. Barycentric coordinates on general polygons
(denotes as generalized barycentric coordinates) are any set of functions satisfying certain key properties.

Definition 2.27. Functions λi : Ω→ R, i = 1, . . . , n are barycentric coordinates on Ω if they satisfy two properties.

B1. Non-negative: λi ≥ 0 on Ω.

B2. Linear Completeness: For any linear function L : Ω→ R, L =

n∑
i=1

L(vi)λi.

Most commonly used barycentric coordinates, including the mean value coordinates, are invariant under rigid transformation
and simple scaling which we will state precisely. Let T : R2 → R2 be a composition of rotation, translation, and uniform
scaling transformations and let {λTi } denote a set of barycentric coordinates on TΩ.

B3. Invariance: λi(x) = λTi (T (x)).

The invariance property can be easily passed through Sobolev norms and semi-norms, allowing attention to be restricted to
domains Ω with diameter one without loss of generality. The essential case in our analysis is the H1-norm, |u|H1(Ω) =√∫
|∇u(x)|2 dx where∇u = (∂u/∂x, ∂u/∂y)T is the vector of first partial derivatives of u, and for simplicity T is a uniform

transformation, T (x) := hx. For simplicity , the Euclidean norm of vectors will be denoted with single bars |·| without any
subscript. Applying the chain rule and change of variables in the integral gives the equality:

∣∣λTi ∣∣2H1(TΩ)
=

∫
TΩ

∣∣∇λTi (x)
∣∣2 dx =

∫
TΩ

∣∣∣∣ 1h∇ (λTi (hx)
)∣∣∣∣2 dx

= hd−2

∫
Ω

|∇λi(y)|2 dy = hd−2 |λi|2H1(Ω) .

The scaling factor hd resulting from the Jacobian when changing variables in the integral is the same for any Sobolev seminorm,
while the factor of h−2 from the chain rule depends on the order of differentiation in the norm (1, in this case) and the Lp semi-
norm used (p = 2, in this case). When developing interpolation error estimates, which are ratios of Sobolev norms, the former
term (i.e., the chain of variables portion) cancels out and latter term (i.e., the chain rule portion) determines the convergence
rate.
Several other familiar properties immediately result from the definition of generalized barycentric coordinates (B1 and B2).
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B4. Partition of unity:
n∑
i=1

λi ≡ 1.

B5. Linear precision:
n∑
i=1

viλi(x) = x.

B6. Interpolation: λi(vj) = δij .

Proposition 2.28. Suppose B1 and B2 hold. Then B4, B5, and B6 hold as well.

Example: Triangulation Barycentric Coordinates

We begin with the simplest possible case of describing a line passing through a triangle. Let T be a triangle with vertices
(x1, y1), (x2, y2), (x3, y3). To represent a line C implicitly, we could find real coefficients cij ∈ R of a function

g(x, y) =
∑
i+j≤1

cijx
iyj = c00 + c10x+ c01y

such that C = {g = 0}. Since the function g is defined in terms of the global coordinates x and y, it is not immediately obvious
given the coefficients cij whether C passes through T at all. Thus, we transform the (x, y) coordinates to real barycentric
coordinates (λ1, λ2, λ3) via  x

y
1

 =

 x1 x2 x3

y1 y2 y3

1 1 1

 λ1

λ2

λ3


Under the mapping, (x1, y1) becomes (1, 0, 0), (x2, y2) becomes (0, 1, 0), and (x3, y3) becomes (0, 0, 1). We can now seek
real coefficients γi ∈ R of a function

g(λ1, λ2, λ3) =

3∑
i=1

γiλi

such that C = {g = 0}. The coefficients are very easily described: γi is the value of g at (xi, yi). Accordingly, if at least one
γi is positive and at least one is negative, C will pass through T , intersecting at the edges between vertices with opposite signs.
Thus, barycentric coordinates give us an easy way to define and control the shape of lines through a triangle.
To describe more complicated curves through T , we use a generalization of barycentric coordinates. Fix a degree n ≥ 1 and
compute the trinomial expansion of

(λ1 + λ2 + λ3)
d

= 1.

This will yield
(
d+2

2

)
terms of the form λi1λ

j
2λ
k
3 with i+ j + k = n. These functions, called the Bernstein polynomials, form

a basis for degree n polynomials in R2 and can be used analogously to the linear case.(Which will be covered later) In standard
coordinates, we could find real coefficients cij ∈ R

g(x, y) =
∑
i+j≤n

cijx
iyj

such that C = {g = 0}. This problem is much more difficult than the linear case, making the barycentric coordinate change
essential. We seek instead the real Bernstein-Bézier coefficients γijk ∈ R of the function

g(λ1, λ2, λ3) =
∑

i+j+k=n

γijk
d!

i!j!k!
λi1λ

j
2λ
k
3 (2.6)

such that C = {g = 0}. As with barycentric coordinates, the coefficient at a vertex of the triangle is exactly the value of g at
the vertex, for example

γ300 = g(1, 0, 0) = g(x1, y1).

The remaining coefficients control the properties of g (and hence its level sets) within T . The coefficients are associated to the
domain points on a regular subdivision of the triangle. We show examples of such subdivisions for n = 2 and n = 3 in Figure
2.2.
Besides triangulation coordinates, there are several other type of coordinates that we would like to introduce:
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Figure 2.2: Domain points associated to Bernstein-Bézier coefficients for n = 2 (left) and n = 3 (right).

Harmonic Coordinates

Mean Value Coordinates

Wachspress Coordinate

2.5 Polynomials, Piecewise Polynomials, Splines
In this section, we will bring examples of basis from functional space that can be used to interpret geometric objects (in practice,
i.e. are lines and surfaces). The bases are first defined for restricted subdomains of the defining space as opposed to the power
basis which is defined for all points of the space. They are mostly compacted supported, not infinitively supported, but they
have better properties other than simplest power basis. The example formulations given below are defined for values of each of
the variables x, y and z in the unit interval [0,1]. We will introduce each the following.

2.5.1 Univariate case
Bernstein-Bezier

P (x) =

m∑
j=0

wjB
m
j (x)

where

Bmi (x) =

(
m

i

)
xi(1− x)m−i

B-Spline

The B-spline basis over the unit interval [0,1] is easily generated by a fractional linear recurrence as given below for the uni-
variate case. The bivariate and trivariate forms can also be similarly generated from this in either tensor product or barycentric
form. (See examples in BB form)
The univariate B-spline form is defined by linear combination of control points {pl}nl=0 :

Pn =

m∑
l=0

plN
n
l (x)

where Nn
l (x) is defined via knot sequence 0 = u0 ≤ u1 < . . . < um+1 = 1 :

N1
l (x) =

{
1 for ul ≤ ul+1

0 otherwise.
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Nn
l (x) =

x− ul−1

ul+n−1 − ul−1
Nn−1
l (x) +

ul+n − x
ul+n − ul

Nn−1
l+1 (x)

2.5.2 Bivariate case

Tensor Product

P (x, y) =

m∑
i=0

n∑
j=0

wijB
n
i (x)Bnj (y)

Generalized Barycentric Coordinate on convex Polygon

P (x, y) =

m∑
i=0

m−i∑
j=0

wijB
n
ij(x, y)

where

Bmij (x, y) =

(
m

ij

)
xiyj(1− x− y)m−i−j

Here (x, y)→ (x, y, 1− x− y) is a naive mapping from world coordinate to the barycentric coordinate.

2.5.3 Multivariate case

Tensor Product

p(x1, . . . , xd) =

n1∑
i1=0

. . .

nd∑
id=0

bi1i2...id B
n1
i1

(t1)Bn2
i2

(t2) . . . Bndid (td) (2.7)

where

(x1, . . . , xd)
T ∈ [a1, b1]× [a2, b2]× . . .× [ad, bd]

ti = xi−ai
bi−ai , i = 1, 2, . . . , d

Bni (t) = n!
i!(n−i)! t

i(1− t)n−i

Generalized Barycentric Coordinate on Simplex

P (x, y, z) =

m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

wijkB
m
ijk(x, y, z)

where

Bmijk(x, y, z) =

(
m

ijk

)
xiyjzk(1− x− y − z)m−i−j−k

Mixed Bernstein Form

Take the simplest tetrahedron as the example:

P (x, y, z) =

m∑
i=0

m−i∑
j=0

p∑
k=0

bijkB
n
ij(x, y)Bnk (z)
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Let d = d1 + d2, p0, . . . ,pd1 ∈ Rd1 be affine independent. Then the mixed Bernstein form is

p(x1, . . . , xd) =
∑

i1+...+id1≤m

n1∑
j1=0

. . .

nd2∑
jd2=0

bi1...id1 j1...jd2 B̃
m
i1...id1

(α1, . . . , αd1) Bn2
j1

(t1) . . . B
nd2
jd2

(td2) (2.8)

where
(x1, . . . xd)

T ∈ [p0, . . . ,pd1 ]× [a1, b1]× . . .× [ad2 , bd2 ]
x1

...
xd1
1

 =

[
p0 p1 . . . pd1
1 1 . . . 1

] 
α0

α1

...
αd1


and

ti =
xd1+i − ai

bi − ai i = 1, 2, . . . , d2

If d1 = 0, then p is the Bernstein form on hypercube. If d2 = 0, then p is the Bernstein form on simplex.

2.6 Parametric and Implicit Representation
We will continue discuss two different representation based on definition and notation in 2.4 and 2.5.3 : what is parametric and
what is implicit? How will they represent 2d and 3d objects (or in higher degree)? And how they are different from.
For notation simplicity, all function fi , no matter univariate,bivariate or multivariate, will be generalized as the linear combi-
nation we proposed in 2.5.3.

2.6.1 Curves
A real implicit algebraic plane curve f(x, y) = 0 is a hypersurface of dimension 1 in R2, while a parametric plane curve
[f3(s)x − f1(s) = 0, f3(s)y − f2(s) = 0] is an algebraic variety of dimension 1 in R3, defined by the two independent
algebraic equations in the three variables x, y, s.
A plane parametric curve is a very special algebraic variety of dimension 1 in x, y, s space, since the curve lies in the 2-
dimensional subspace defined by x, y and furthermore points on the curve can be put in (1, 1) rational correspondence with
points on the 1-dimensional sub-space defined by s. Parametric curves are thus a special subset of algebraic curves, and
are often also called rational algebraic curves. Figure 2.3 depicts the relationship between the set of parametric curves and
non-parametric curves at various degrees.
Example parametric (rational algebraic) curves are degree two algebraic curves (conics) and degree three algebraic curves
(cubics) with a singular point. The non-singular cubics are not rational and are also known as elliptic cubics. In general, a
necessary and sufficient condition for the rationality of an algebraic curve of arbitrary degree is given by the Cayley-Riemann
criterion: a curve is rational if and only if g = 0, where g, the genus of the curve is a measure of the deficiency of the
curve’s singularities from its maximum allowable limit [217]. Algorithms for computing the genus of an algebraic curve and
for symbolically deriving the parametric equations of genus 0 curves, are given for example in [1].
For implicit algebraic plane curves and surfaces defined by polynomials of degree d, the maximum number of intersections
between the curve and a line in the plane or the surface and a line in space, is equal to the maximum number of roots of
a polynomial of degree d. Hence, here the geometric degree is the same as the algebraic degree which is equal to d. For
parametric curves defined by polynomials of degree d, the maximum number of intersections between the curve and a line in
the plane is also equal to the maximum number of roots of a polynomial of degree d. Hence here again the geometric degree is
the same as the algebraic degree.
For parametric surfaces defined by polynomials of degree d the geometric degree can be as large as d2, the square of the
algebraic degree d. This can be seen as follows. Consider the intersection of a generic line in space [a1x + b1y + c1z − d1 =
0, a2x + b2y + c2z − d2 = 0] with the parametric surface. The intersection yields two implicit algebraic curves of degree d
which intersect in O(d2) points (via Bezout’s theorem), corresponding to the intersection points of the line and the parametric
surface.
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Figure 2.3: A classification of low degree algebraic curves (left) and surfaces (right)
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A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so have (d−1)(d−2)
2 = O(d2) singular (double)

points. This number is the maximum number of singular points an algebraic curve of degree d may have. From Bezout’s
theorem, we realize that the intersection of two implicit surfaces of algebraic degree d can be a curve of geometric degree
O(d2). Furthermore the same theorem implies that the intersection of two parametric surfaces of algebraic degree d (and
geometric degree O(d2)) can be a curve of geometric degree O(d4). Hence, while the potential singularities of the space curve
defined by the intersection of two implicit surfaces defined by polynomials of degree d can be as many as O(d4), the potential
singularities of the space curve defined by the intersection of two parametric surfaces defined by polynomials of degree d can
be as many as O(d8).
Let C : (f1(x, y, z) = 0, f2(x, y, z) = 0) implicitly define an irreducible algebraic space curve of degree d. The irreducibility
of the curve is not really a restriction, since reducible curves can be handled similarly by treating each irreducible component
in turn. The situation is slightly more complicated if in the real setting, we may wish to achieve separate containment of each
real component of an irreducible curve. We defer a solution to this problem, and for the time being consider it reduced to the
problem of choosing appropriate clipping surfaces to isolate that real component, after the interpolated surface is computed.
Note for parametrically defined curves, this problem does not arise.

2.6.2 Surface
Similarly, a real implicit algebraic surface f(x, y, z) = 0 is a hypersurface of dimension two in R3, while a parametric surface
[f4(s, t)x−f1(s, t) = 0, f4(s, t)y−f2(s, t) = 0, f4(s, t)z−f3(s, t) = 0] is an algebraic variety of dimension 2 in R5, defined
by three independent algebraic equations in the five variables x, y, z, s, t.
When a curve is given in rational parametric form, its equations can be used directly to produce a linear system for interpolation,
instead of first computing nd+ 1 points on the curve. Let C : (x = G1(t), y = G2(t), z = G3(t)) be a rational curve of degree
d. An interpolating surface S : f(x, y, z) = 0 of degree n which contains C is computed as follows:

B1. Substitute (x = G1(t), y = G2(t), z = G3(t)) into the equation f(x, y, z) = 0.

B2. Simplify and rationalize to obtain Q(t) = 0, where Q is a polynomial in t, of degree at most nd, and with coefficients
which are linear expressions in the coefficients of f . For Q to be identically zero, each of its coefficents must be zero,
and hence we obtain a system of at most nd + 1 linear equations, where the unknowns are the coefficients of f . Any
non-trivial solution of this linear system will represent a surface S which interpolates C.

The proof of correctness of the algorithm follows from the lemma below.

Lemma 2.29. The containment condition is satisfied by step 2. of the above algorithm

Proof: We omit this here and refer the reader to the full paper.

Parametric Curves

Parametric Surface

2.6.3 Examples
Conics

The general conic implicit equation is given by

C(x, y) = ax2 + by2 + cxy + dx+ ey + f = 0.

The non-trivial case in converting this to a rational parameterization arises when a and b are both non-zero. Otherwise one
already has one variable ( x, or y) in linear form and expressible as a rational polynomial expression of the other, and hence
a rational parameterization. This then suggests that to obtain a rational parameterization all we need to do is to make C(x, y)
non-regular in x or y. That is, eliminate the x2 or the y2 term through a coordinate transformation. For then one of the variables
is again in linear form and is expressible as a rational polynomial expression of the other. We choose to eliminate the y2 term,
by an appropriate coordinate transformation applied to C(x, y). This is always possible and the algorithm is now described
below. (The entire algorithm which also handles all trivial and degenerate cases of the conic is implemented on a VAX-780
using VAXIMA.)
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Geometrically speaking, a conic being irregular in x or y means that most lines parallel to the x or y axis respectively, intersect
the curve in one point. Also, most lines through a point (b1, b2) on the conic meet the conic in one additional point. By sending
this point ( b1, b2) to infinity we make all these lines parallel to some axis and the curve irregular in one of the variables ( x, or y)
and hence amenable to parameterization. The coordinate transformation we select is thus one which sends the point ( b1, b2) on
the conic to infinity. The rational parameterization we obtain is global, of degree at most 2 and with parameter t corresponding
to the slopes of the lines through the point (b1, b2) on the conic. Further t ranges from (−∞,∞) and covers the entire curve.
The selection of the point ( b1, b2) on the conic becomes important and may be made appropriately, when the parameterization
is desired only for a specific piece of the conic.

Step (1) IfC(x, y) has a real root at infinity, a linear transformation of the type x′ = a1x + b1y + c1 and y′ = a2x + b2y + c2
will suffice. If C(x, y) has no real root at infinity, we must use a linear transformation of the type x′ = ( a1x + b1y + c1)/(
a3x + b3y + c3) and y′ = a2x + b2y + c2)/( a3x + b3y + c3). This is equivalent to a homogeneous linear transformation
of the type X ′ = a1X + b1Y + c1H , Y ′ = a2X + b2Y + c2H and H ′ = a3X + b3Y + c3H applied to the homogeneous
conic C(X,Y,H) = aX2 + bY 2 + cXY + dXH + eY H + fH2 = 0.

Step (2) Points at infinity for C(x, y) are given by the linear factors of the degree form (highest degree terms) of I . For the
conic this corresponds to a real root at infinity if c2 >= 4ab, (e.g. parabolas and hyperbolas). For otherwise both roots at
infinity are complex , (complex roots arise in conjugate pairs). Further for c2 = 4ab, (e.g. parabolas), the degree form is a
perfect square and this gives a polynomial parameterization for the curve.

Step (3) Applying a linear transformation for c2 >= 4ab, gives rise to C(x′, y′) = I( a1x + b1y + c1, a2x + b2y + c2).
To eliminate the y2 term we need to choose b1 and b2 such that ab21 + cb1b2 + bb22 = 0. Here both the values of b1 and b2
can always be chosen to be real.

Step (4) Applying a homogeneous linear transformation for c2 < 4ab, gives rise toC(X ′, Y ′, H ′) =C(a1X + b1Y + c1H ,
a2X + b2Y + c2H , a3X + b3Y + c3H). To eliminate the Y 2 term we need to choose b1, b2 and b3 such that ab21 + bb22 +
cb1b2 + db1b3 + eb2b3 + fb23 = 0. This is equivalent to finding a point ( b1, b2, b3) on the homogeneous conic. The values of b1
and b2 are both real if (cd− 2ae) is not less than the geometric mean of 4af − d2 and 4ab − c2, or alternatively (ce− 2bd)
is not less than the geometric mean of 4bf − e2 and 4ab − c2.

Step (5) Finally choose the remaining coefficients ai’ s, ci’ s, ensuring that the appropriate transformation is well defined. In
the case of a linear transformation, this corresponds to ensuring that the matrix(

a1 b1
a2 b2

)
is non-singular. Hence ci’ s can be chosen to be 0 and a1 = 1, a2 = 0. In the case of a homogeneous linear transformation, one
needs to ensure that the matrix  a1 b1 c1

a2 b2 c2
a3 b3 c3


is non-singular. Here a1 = 1, c2 = 1 and the rest set to 0 suffices. These remaining coefficients provide a measure of local control
for the curve and may also be chosen in a way that gives specific local parameterizations for pieces of the curve, appropriate
for particular applications.

Conicoids

The case of the conicoid is a generalization of the method of the conic. The general conicoid implicit equation is given by
C(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0. Again the main case of concern is when a, b and c are
all non-zero. Otherwise one already has one of the variables ( x, y, or z) in linear form and expressible as a rational polynomial
expression of the other two. This then suggests that to obtain the rational parameterization all we need to do again is to make
C(x, y, z) non-regular in say, y. That is, eliminate the y2 term through a coordinate transformation. For then y is in linear form
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and is expressible as a rational polynomial expression of the other two. We eliminate the y2 term by an appropriate coordinate
transformation applied to C(x, y, z). This is always possible and the algorithm is now described below. (The entire algorithm
which also handles all trivial and degenerate cases of the conicoid is implemented on a VAX-780 using VAXIMA. )
Geometrically speaking, a conicoid being irregular in x, y or z means that most lines parallel to the x, y or z axis respectively,
intersect the surface in one point. Also, most lines through a point (b1, b2, b3) on the conicoid meet the conicoid in one additional
point. By sending this point ( b1, b2, b3) to infinity we make all these lines parallel to some axis and the surface irregular in one
of the variables ( x, or y) and hence amenable to parameterization. The coordinate transformation we select is thus one which
sends the point ( b1, b2, b3) on the conicoid to infinity. The rational parameterization we obtain is global, of degree at most 2
and with parameters s and t corresponding to the ratio of the direction cosines of the lines through the point (b1, b2, b3) on the
conicoid. Further s and t both range from (−∞,∞) and cover the entire surface. The selection of the point ( b1, b2, b3) on the
conicoid becomes important and may be made appropriately, when the parameterization is desired only for a specific patch of
the conicoid.

Step (1) If C(x, y, z) has a real root at infinity, alinear transformation of the type x′ = a1x + b1y + c1z + d1, y′ =
a2x + b2y + c2z + d2 and z′ = a3x + b3y + c3z + d3 will suffice. If C(x, y, z) has no real root at infinity, we must use a
linear transformation of the type x′ = ( a1x + b1y + c1z + d1)/( a4x + b4y + c4z + d4), y′ = a2x + b2y + c2z + d2)/(
a4x + b4y + c4z + d4). and z′ = ( a3x + b3y + c3z + d3)/( a4x + b4y + c4z + d4). This is equivalent to a
homogeneous linear transformation of the type X ′ = a1X + b1Y + c1Z + d1H , Y ′ = a2X + b2Y + c2Z + d2H , Z ′ =
a3X + b3Y + c3Z + d3H and H ′ = a4X + b4Y + c4Z + d4H applied to the homogeneous conicoid C(X,Y, Z,H) =
aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z + gXH + hY H + iZH + jH2 = 0,

Step (2) Points at infinity for C(x, y) are given by the linear factors of the degree form (highest degree terms) of I . For the
conicoid this corresponds to the roots of the homogeneous conic equation C(x, y, z) = ax2 + by2 + dxy + exz + fyz + cz2 =
0. Also, here the simultaneous truth of d2 = 4ab, e2 = 4ac and f2 = 4bc corresponds to the existence of a polynomial
parameterization for the conicoid, as then the degree form is a perfect square.

Step (3) Apply a linear transformation if a real root (rx, ry, rz) exists for the homogeneous conic C(x, y, z) of (2). This gives
rise to C(x′, y′, z′) = I( a1x + b1y + c1z + d1, a2x + b2y + c2z + d2, a3x + b3y + c3z + d3). To eliminate the y2

term we can take ( b1, b2, b3) = ( rx, ry, rz), the real point on C(x, y, z).

Step (4) Apply a homogeneous linear transformation if only complex roots exist for the homogeneous conic C(x, y, z) of (2).
This gives rise toC(X ′, Y ′, Z ′, H ′) = I( a1X + b1Y + c1Z + d1H , a2X + b2Y + c2Z + d2H , a3X + b3Y + c3Z + d3H ,
a4X + b4Y + c4Z + d4H). To eliminate the Y 2 term we choose b4 = 1 and ( b1, b2) to be a point on either the conic ax2 +
by2 + dxy + gxz + hyz + jz2 = 0 with b3 = 0 or a point on the conic ax2 + by2 + dxy + (e+ g)xz + (f + h)yz + (c+ i+ j)z2

= 0 with b3 = 1. Real values exist for b1 and b2 if there exists a real point on either of the above conics.

Step (5) Finally choose the remaining coefficients ai’ s, ci’ s, and di’ s, ensuring that the appropriate transformation is well
defined. In the case of a linear transformation, this corresponds to ensuring that the matrix a1 b1 c1

a2 b2 c2
a3 b3 c3


is non-singular. Here the di’ s can be chosen to be 0. Further a2 = 1, c3 = 1 if b1 is non-zero or else a1 = 1, c3 = 1 if b2 is
non-zero or else a1 = 1, c2 = 1, with the rest set to 0. In the case of a homogeneous linear transformation one needs to ensure
that the matrix 

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


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is non-singular. Here a1 = 1, c3 = 1, d2 = 1 with the rest set to 0 suffices. These remaining coefficients provide a measure
of local control for the surface and may also be chosen in a way that gives specific local parameterizations for pieces of the
surface, appropriate for particular applications.

2.7 Finite Elements and Error Estimation

2.7.1 Tensor Product Over The Domain: Irregular Triangular Prism

Definition

Given the triangulation mesh T , let [vivjvk] be one of the triangles where vi, vj , vk are the vertices of the triangle. Suppose
the unit normals of the surface at the vertices are also known, denoted as nl, (l = i, j, k). Let vl(λ) = vl + λnl. First we
define a prism (Figure 2.4) Dijk := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), λ ∈ Iijk}, where (b1, b2, b3) are the barycentric
coordinates of points in [vivjvk], and Iijk is a maximal open interval containing 0 and for any λ ∈ Iijk, vi(λ), vj(λ), vk(λ)
are not collinear and ni, nj , nk point to the same side of the plane Pijk(λ) := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ)}. Next

Figure 2.4: A prism Dijk constructed based on the triangle [vivjvk].

we define a function in the Bernstein-Bezier (BB) basis over the prism Dijk:

F (b1, b2, b3, λ) =
∑

i+j+k=n

bijk(λ)Bnijk(b1, b2, b3), (2.9)

where Bnijk(b1, b2, b3) is the Bezier basis

Bnijk(b1, b2, b3) =
n!

i!j!k!
bi1b

j
2b
k
3 .

Figure 2.5: The control coefficients of the cubic Bezier basis of function F .
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Non-degenerancy

(yiwang) : I am not sure if the subsection title is correct Let p(l)
ijk(λ) = det[nl, vj(λ) − vi(λ), vk(λ) −vi(λ)], l = i, j, k.

Assume
p

(l)
ijk(λ) > 0, ∀λ ∈ [0, 1], l = i, j, k . (2.10)

Consider the real numbers λ1, · · · , λs (s ≤ 6) that solve one of these three equations of degree 2: p(l)
ijk(λ) = 0, l = i, j, k,

and define a = max(−∞, {λl : λl < 0}), b = min(+∞, {λl : λl > 1}), and Iijk = (a, b). Then Iijk is the largest interval
containing [0, 1] such that Pijk(Iijk) is non-degenerate. To show this fact, note that a triangle Tijk(λ) is non-degenerate if and
only if

nTl [vj(λ)− vi(λ)]× [vk(λ)− vi(λ)] = p
(l)
ijk(λ) > 0, (2.11)

l = i, j, k, where× denotes the cross product of two vectors. The assumption ((2.10)) implies that [0, 1] ⊂ I . Since p(l)
ijk(0) > 0

and p(l)
ijk(1) > 0, for l = i, j, k, then p(l)

ijk(λ) > 0 for λ ∈ (a, b) and l = i, j, k. Since p(l)
ijk(a) = 0 for l = i or l = j or l = k if

a > −∞, a is the infimum of the interval of λ that contains [0, 1] and makes (2.11) hold. Similarly, b is the supremum of such
an interval. Therefore Iijk is the largest interval such that Pijk(Iijk) is non-degenerate.

Smoothness

We can then approximate the given surface by the zero contour of F , denoted as S. In order to make S smooth, the degree of
the Bezier basis n should be no less than 3. For simplicity, here we consider the case of n = 3. The control coefficients bijk(λ)
should be properly defined such that S is continuous. In Figure 2.5 we show the relationship of the control coefficients and the
points of the triangle when n = 3. Next we are going to discuss these coefficients are defined.
Since S passes through the vertices vi, vj , vk, we define

b300 = b030 = b003 = λ. (2.12)

Next we are going to define the coefficients on the edges of the triangle in Figure 2.5. To obtain C1 continuity at vi, we
require that the directional derivatives of F at vi in the direction of b2 and b3 are equal to∇F · (vj − vi) and∇F · (vk − vi),
respectively. Noticing that F has the form of (2.9) and (b1, b2, b3) = (1, 0, 0) at vi, one can derive that b210 − b300 =
1
3∇F (vi) · (vj(λ)− vi(λ)), where∇F (vi) = ni. Therefore

b210 = λ+
1

3
ni · (vj(λ)− vi(λ)). (2.13)

b120, b201, b102, b021, b012 are defined similarly.
To obtain the C1 continuity at the midpoints of the edges of T , we define b111 by using the side-vertex scheme [?]:

b111 = w1b
(1)
111 + w2b

(2)
111 + w3b

(3)
111, (2.14)

where

wi =
b2jb

2
k

b22b
2
3 + b21b

2
3 + b21b

2
2

, i = 1, 2, 3, i 6= j 6= k.

Next we are going to define b(1)
111, b(2)

111 and b(3)
111. In Appendix ?? we prove that our scheme of defining this three coefficients

can guarantee the C1 continuity at the midpoints of the edges vjvk, vivk and vivj . Consider the edge vivj . Recall that any
point p = (x, y, z) in Dijk can be represented by

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (2.15)

Therefore differentiating both sides of (2.15) with respect to x, y and z, respectively, yields

I3 =

 ∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)T

 , (2.16)
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where I3 is a 3× 3 unit matrix. Denote

M :=

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)T

 , (2.17)

and let A = vi(λ)− vk(λ), B = vj(λ)− vk(λ) and C = b1ni + b2nj + b3nk, then M = (A B C)T. From (2.16) we have ∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z

 = M−1 =
1

det(M)
(B × C, C ×A, A×B) . (2.18)

According to (2.9), at the midpoint of vivj , (b1, b2, b3) = (1
2 ,

1
2 , 0), we have ∂F

∂b1
∂F
∂b2
∂F
∂λ

 =

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(ni + nj)
T/2

(ni + nj
4

)
+

 3
2 (b210 − b111)
3
2 (b120 − b111)

1
2

 .

By (2.14), at (b1, b2, b3) = (1
2 ,

1
2 , 0) we have b111 = b

(3)
111. Therefore the gradient at ( 1

2 ,
1
2 , 0) is

∇F = M−1(
∂F

∂b1
,
∂F

∂b2
,
∂F

∂λ
)T

=
ni + nj

4
+

1

2det(M)
[3(b210 − b(3)

111)B × C + 3(b120 − b(3)
111)C ×A+A×B] (2.19)

Define vectors

d1(λ) = vj(λ)− vi(λ) = B −A,
d2(b1, b2, b3) = b1ni + b2nj + b3nk = C,

d3(b1, b2, b3, λ) = d1 × d2 = B × C + C ×A. (2.20)

Let

c = C(
1

2
,

1

2
, 0), (2.21)

d3(λ) = d3(
1

2
,

1

2
, 0, λ) = B × c + c×A. (2.22)

Let ∇F = ∇F ( 1
2 ,

1
2 , 0). In order to have C1 continuity at ( 1

2 ,
1
2 , 0), we should have ∇F · d3(λ) = 0. Therefore, by (2.19)

and (2.22), we have

b
(3)
111 =

d3(λ)T(3b210B × c + 3b120c×A+A×B)

3‖d3(λ)‖2 . (2.23)

Similarly, we may define b(1)
111 and b(2)

111.
Now the function F (b1, b2, b3, λ) is well defined. The next step is to extract the zero level set S. Given the barycentric coordi-
nates (b1, b2, b3) of a point in the triangle [vivjvk], we find the corresponding λ by solving the equation F (b1, b2, b3, λ) = 0
for λ and this could be done by the Newton’s method. Then we may get the corresponding point on S as

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (2.24)

We have the following property for surface S:

Theorem 2.7.1. S is C1 at the vertices of T and the midpoints of the edges of T .
Theorem 2.7.2. S is C1 everywhere if every edge vivj of T satisfies ni · (vi − vj) = nj · (vj − vi).
Theorem 2.7.3. S is C1 everywhere if the unit normals at the vertices of T are the same.

Proofs of the theorems are shown in the [240].
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{λi}
pairwise

products
// {µab} A // {ξij} B // {ψij}

Linear Quadratic Serendipity Lagrange

Figure 2.6: Overview of the construction process. In each figure, the dots are in one-to-one correspondence with the set of
functions listed below it. At filled dots, all functions in the set evaluate to zero except for the function corresponding to the dot
which evaluates to one. The rightmost element has quadratic precision with only these types of ‘Lagrange-like’ basis functions.

2.7.2 Generalized Barycentric Coordinate and Serendipity Elements
Barycentric coordinates provide a basis for linear finite elements on simplices, and generalized barycentric coordinates naturally
produce a suitable basis for linear finite elements on general polygons. Various applications make use of this technique [98,
99, 151, 153, 172, 193, 203, 204, 207, 221], but in each case, only linear error estimates can be asserted. A quadratic finite
element can easily be constructed by taking pairwise products of the basis functions from the linear element, yet this approach
has not been pursued, primarily since the requisite number of basis functions grows quadratically in the number of vertices
of the polygon. Still, many of the pairwise products are zero along the entire polygonal boundary and thus are unimportant
for inter-element continuity, a key ingredient in finite element theory. For quadrilateral elements, these ‘extra’ basis functions
are well understood and, for quadrilaterals that can be affinely mapped to a square, the so-called ‘serendipity element’ yields
an acceptable basis consisting of only those basis functions needed to guarantee inter-element continuity [242, 13, 12]. We
generalize this construction to produce a quadratic serendipity element for a class of shape-regular convex polygons derived
from generalized barycentric coordinates.
Our construction yields a set of Lagrange-like basis functions {ψij} – one per vertex and one per edge midpoint – using a
linear combination of pairwise products of generalized barycentric functions {λi}. We show that this set spans all constant,
linear, and quadratic polynomials, making it suitable for finite element analysis via the Bramble-Hilbert lemma. Further, given
uniform bounds on the aspect ratio, edge lengths, and interior angles of the polygon, we bound ||ψij ||H1(Ω) uniformly with
respect to ||λi||H1(Ω). Since our previous work shows that ||λi||H1(Ω) is bounded uniformly under these geometric hypotheses
for typical definitions of λi [100, 170], this proves that the ψij functions are well-behaved.
Figure 2.6 gives a visual depiction of the construction process. Starting with one generalized barycentric function λi per vertex
of an n-gon, take all pairwise products yielding a total of n(n + 1)/2 functions µab := λaλb. The linear transformation A
reduces the set {µab} to the 2n element set {ξij}, indexed over vertices and edge midpoints of the polygon. A simple bounded
linear transformation B converts {ξij} into a basis {ψij} which satisfies the “Lagrange property” meaning each function takes
the value 1 at its associated node and 0 at all other nodes.
The paper is organized as follows. In Section 2.7.2 we review relevant background on finite element theory, serendipity
elements, and generalized barycentric functions. In Section 2.7.2, we show that if the entries of matrix A satisfy certain linear
constraints Qc1-Qc3, the resulting set of functions {ξij} span all constant, linear and quadratic monomials in two variables, a
requirement for quadratic finite elements. In Section 2.7.2, we show how the constraints Qc1-Qc3 can be satisfied in the special
cases of the unit square, regular polygons, and convex quadrilaterals. In Section 2.7.2, we show how Qc1-Qc3 can be satisfied
on a simple convex polygon. We also prove that the resulting value of ||A|| is bounded uniformly, provided the convex polygon
satisfies certain geometric quality conditions. In Section 2.7.2 we define B and show that the final {ψij} basis is Lagrange-like.
Finally, in Section 2.7.2, we describe practical applications, give numerical evidence, and consider future directions.

Background and Notation

Let Ω be a convex polygon with n vertices (v1, . . . ,vn) ordered counter-clockwise. Denote the interior angle at vi by βi. The
largest distance between two points in Ω (the diameter of Ω) is denoted diam(Ω) and the radius of the largest inscribed circle
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ρ(Ω)

βi

c

vi

diam(Ω)

Figure 2.7: Notation used to describe polygonal geometry.

is denoted ρ(Ω). The center of this circle is denoted c and is selected arbitrarily when no unique circle exists. The aspect ratio
(or chunkiness parameter) γ is the ratio of the diameter to the radius of the largest inscribed circle, i.e.

γ :=
diam(Ω)

ρ(Ω)
.

The notation is shown in Figure 2.7.
For a multi-index α = (α1, α2) and point x = (x, y), define xα := xα1yα2 , α! := α1α2, |α| := α1 + α2, and Dαu :=
∂|α|u/∂xα1∂yα2 . The Sobolev semi-norms and norms over an open set Ω for a non-negative integer m are defined by

|u|2Hm(Ω) :=

∫
Ω

∑
|α|=m

|Dαu(x)|2 dx and ||u||2Hm(Ω) :=
∑

0≤k≤m

|u|2Hk(Ω) .

The H0-norm is the L2-norm and will be denoted ||·||L2(Ω). The space of polynomials of degree ≤ k on a domain is denoted
Pk.

The Bramble-Hilbert Lemma A finite element method approximates a function u from an infinite-dimensional functional
space V by a function uh from a finite-dimensional subspace Vh ⊂ V . One goal of such approaches is to prove that the error
of the numerical solution uh is bounded a priori by the error of the best approximation available in Vh, i.e. ||u− uh||V ≤
C infw∈Vh ||u− w||V . In this paper, V = H1 and Vh is the span of a set of functions defined piecewise over a 2D mesh of
convex polygons. The parameter h indicates the maximum diameter of an element in the mesh. Further details on the finite
element method can be found in a number of textbooks [55, 37, 76, 242].
A quadratic finite element method in this context means that when h → 0, the best approximation error (infw∈Vh ||u− w||V )
converges to zero with order h2. This means the space Vh is ‘dense enough’ in V to allow for quadratic convergence. Such
arguments are usually proved via the Bramble-Hilbert lemma which guarantees that if Vh contains polynomials up to a certain
degree, a bound on the approximation error can be found. The variant of the Bramble-Hilbert lemma stated below includes
a uniform constant over all convex domains which is a necessary detail in the context of general polygonal elements and
generalized barycentric functions.

Lemma 2.30 (Bramble-Hilbert [213, 64]). There exists a uniform constant CBH such that for all convex polygons Ω and for all
u ∈ Hk+1(Ω), there exists a degree k polynomial pu with ||u− pu||Hk′ (Ω) ≤ CBH diam(Ω)k+1−k′ |u|Hk+1(Ω) for any k′ ≤ k.

Our focus is on quadratic elements (i.e., k = 2) and error estimates in the H1-norm (i.e., k′ = 1) which yields an estimate
that scales with diam(Ω)2. Our methods extend to more general Sobolev spaces (i.e., W k,p, the space of functions with all
derivatives of order ≤ k in Lp) whenever the Bramble-Hilbert lemma holds. Extensions to higher order elements (k > 2) will
be briefly discussed in Section 2.7.2.
Observe that if Ω is transformed by any invertible affine map T , the polynomial p ◦ T−1 on TΩ has the same degree as the
polynomial p on Ω. This fact is often exploited in the simpler and well-studied case of triangular meshes; an estimate on a
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Affine Map T
Unit

Diameter

TΩ
Ω

Figure 2.8: Using affine transformation, analysis can be restricted to a class of unit diameter polygons.

reference triangle K̂ becomes an estimate on any physical triangle K by passing through an affine transformation taking K̂
to K. For n > 3, however, two generic n-gons may differ by a non-affine transformation and thus, as we will see in the
next section, the use of a single reference element can become overly restrictive on element geometry. In our arguments, we
instead analyze classes of “reference” elements, namely, diameter one convex quadrilaterals or convex polygons of diameter
one satisfying the geometric criteria given in Section 2.7.2; see Figure 2.8. Using a class of reference elements allows us to
establish uniform error estimates over all affine transformations of this class.

Serendipity Quadratic Elements The term ‘serendipity element’ refers to a long-standing observation in the finite element
community that tensor product bases of polynomials on rectangular meshes of quadrilaterals in 2D or cubes in 3D can obtain
higher order convergence rates with fewer than the ‘expected’ number of basis functions resulting from tensor products. This
phenomenon is discussed in many finite element textbooks, e.g. [201, 123, 55], and was recently characterized precisely by
Arnold and Awanou [12]. For instance, the degree r tensor product basis on a square reference element has (r + 1)2 basis
functions and can have guaranteed convergence rates of order r + 1 when transformed to a rectangular mesh via bilinear
isomorphisms [13]. By the Bramble-Hilbert lemma, however, the function space spanned by this basis may be unnecessarily
large as the dimension of Pr is only (r+ 1)(r+ 2)/2 and only 4r degrees of freedom associated to the boundary are needed to
ensure sufficient inter-element continuity in H1.
This motivates the construction of the serendipity element for quadrilaterals. By a judicious choice of basis functions, an order
r convergence rate can be obtained with one basis function associated to each vertex, (r− 1) basis functions associated to each
edge, and q additional functions associated to interior points of the quadrilateral, where q = 0 for r < 4 and q = (r−2)(r−1)/2
for r ≥ 4 [12]. Such an approach only works if the reference element is mapped via an affine transformation; it has been
demonstrated that the serendipity element fails on trapezoidal elements, such as those shown in Figure 2.15 [146, 131, 242, 235].
Some very specific serendipity elements have been constructed for quadrilaterals and regular hexagons based on the Wachspress
coordinates (discussed in the next sections) [216, 7, 102, 6, 103]. Our work generalizes this construction to arbitrary polygons
without dependence on the type of generalized barycentric coordinate selected and with uniform bounds under certain geometric
criteria.

Generalized Barycentric Elements To avoid non-affine transformations associated with tensor products constructions on a
single reference element, we use generalized barycentric coordinates to define our basis functions. These coordinates are any
functions satisfying the following agreed-upon definition in the literature.

Definition 2.31. Functions λi : Ω→ R, i = 1, . . . , n are barycentric coordinates on Ω if they satisfy two properties.

B1. Non-negative: λi ≥ 0 on Ω.

B2. Linear Completeness: For any linear function L : Ω→ R, L =

n∑
i=1

L(vi)λi.

We will further restrict our attention to barycentric coordinates satisfying the following invariance property. Let T : R2 →
R2 be a composition of translation, rotation, and uniform scaling transformations and let {λTi } denote a set of barycentric
coordinates on TΩ.
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B3. Invariance: λi(x) = λTi (T (x)).

This assumption will allow estimates over the class of convex sets with diameter one to be immediately extended to generic
sizes since translation, rotation and uniform scaling operations can be easily passed through Sobolev norms. At the expense
of requiring uniform bounds over a class of diameter-one domains rather than a single reference element, we avoid having to
handle non-affine mappings between reference and physical elements.
A set of barycentric coordinates {λi} also satisfies three additional familiar properties. A proof that B1 and B2 imply the
additional properties B4-B6 can be found in [100]. Note that B4 and B5 follow immediately by setting L = 1 or L = x in B2.

B4. Partition of unity:
n∑
i=1

λi ≡ 1.

B5. Linear precision:
n∑
i=1

viλi(x) = x.

B6. Interpolation: λi(vj) = δij .

Various particular barycentric coordinates have been constructed in the literature. We briefly mention a few of the more
prominent kinds and associated references here; readers are referred to our prior work [100, Section 2] as well as the survey
papers of Cueto et al. [60] and Sukumar and Tabarraei [204] for further details. The triangulation coordinates λTri are defined by
triangulating the polygon and using the standard barycentric coordinates over each triangle [85]. Harmonic coordinates λHar are
defined as the solution to Laplace’s equation on the polygon with piecewise linear boundary data satisfying B6 [125, 151, 53].
Explicitly constructed functions include the rational Wachspress coordinates λWach [216], the Sibson coordinates λSibs defined
in terms of the Voronoi diagram of the vertices of the polygon [192, 82], and the mean value coordinates λMVal defined by
Floater [83, 85].
To obtain convergence estimates with any of these functions, certain geometric conditions must be satisfied by a generic mesh
element. We will consider domains satisfying the following three geometric conditions.

G1. Bounded aspect ratio: There exists γ∗ ∈ R such that γ < γ∗.

G2. Minimum edge length: There exists d∗ ∈ R such that |vi − vj | > d∗ > 0 for all i 6= j.

G3. Maximum interior angle: There exists β∗ ∈ R such that βi < β∗ < π for all i.

Under some set of these conditions, the H1-norm of many generalized barycentric coordinates are bounded in H1 norm. This
is a key estimate in asserting the expected (linear) convergence rate in the typical finite element setting.

Theorem 2.32 ([170] for λMVal and [100] for others). For any convex polygon Ω satisfying G1, G2, and G3, λTri, λHar, λWach,
λSibs, and λMVal are all bounded in H1, i.e. there exists a constant C > 0 such that

||λi||H1(Ω) ≤ C. (2.25)

The results in [100] and [170] are somewhat stronger than the statement of Theorem 2.32, namely, not all of the geometric
hypotheses are necessary for every coordinate type. Our results, however, rely generically on any set of barycentric coordinates
satisfying (2.25). For instance, the degenerate pentagon formed by adding an additional vertex in the center of the side of a
square does not satisfy G3, but some choices of barycentric coordinates, such as λMVal and λHar, will still admit an estimate
like (2.25) on this geometry. We analyze the potential weakening of the geometric hypotheses in Section 2.7.2.

Quadratic Precision Barycentric Functions Since generalized barycentric coordinates are only guaranteed to have linear
precision (property B5), they cannot provide greater than linear order error estimates. Pairwise products of barycentric coordi-
nates, however, provide quadratic precision as the following simple proposition explains.

Proposition 2.33. Given a set of barycentric coordinates {λi}ni=1, the set of functions {µab} := {λaλb}na,b=1 has constant,
linear, and quadratic precision1, i.e.

n∑
a=1

n∑
b=1

µab = 1,

n∑
a=1

n∑
b=1

vaµab = x and

n∑
a=1

n∑
b=1

vav
T
b µab = xxT . (2.26)

1Note that xxT is a symmetric matrix of quadratic monomials.
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Proof. The result is immediate from properties B4 and B5 of the λi functions.

The product rule ensures that Theorem 2.32 extends immediately to the pairwise product functions.

Corollary 2.34. Let Ω be a convex polygon satisfying G1, G2, and G3, and let λi denote a set of barycentric coordinates
satisfying the result of Theorem 2.32 (e.g. λTri, λHar, λWach, λSibs, or λMVal). Then pairwise products of the λi functions are
all bounded in H1, i.e. there exists a constant C > 0 such that

||µab||H1(Ω) ≤ C. (2.27)

While the {µab} functions are commonly used on triangles to provide a quadratic Lagrange element, they have not been
considered in the context of generalized barycentric coordinates on convex polygons as considered here. Langer and Seidel
have considered higher order barycentric interpolation in the computer graphics literature [140]; their approach, however, is for
problems requiring C1-continuous interpolation rather than the weaker H1-continuity required for finite element theory.
In the remainder of this section, we describe notation that will be used to index functions throughout the rest of the paper. Since
µab = µba, the summations from (2.26) can be written in a symmetric expansion. Define the paired index set

I := {{a, b} | a, b ∈ {1, . . . , n}} .

Note that sets with cardinality 1 occur when a = b and are included in I . We partition I into three subsets corresponding to
geometrical features of the polygon: vertices, edges of the boundary, and interior diagonals. More precisely, I = V ∪ E ∪D,
a disjoint union, where

V := {{a, a} | a ∈ {1, . . . , n}} ;

E := {{a, a+ 1} | a ∈ {1, . . . , n}} ;

D := I \ (V ∪ E) .

In the definition of E above (and in general for indices throughout the paper), values are interpreted modulo n, i.e. {n, n+ 1},
{n, 1}, and {0, 1} all correspond to the edge between vertex 1 and vertex n. To simplify notation, we will omit the braces and
commas when referring to elements of the index set I . For instance, instead of µ{a,b}, we write just µab. We emphasize that
ab ∈ I refers to an unordered and possibly non-distinct pair of vertices. Occasionally we will also use the abbreviated notation

vab :=
va + vb

2
,

so that vaa is just a different expression for va. Under these conventions, the precision properties from (2.26) can be rewritten
as follows.
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Q1. Constant Precision:
∑
aa∈V

µaa +
∑

ab∈E∪D

2µab = 1

Q2. Linear Precision:
∑
aa∈V

vaaµaa +
∑

ab∈E∪D

2vabµab = x

Q3. Quadratic Precision:
∑
aa∈V

vav
T
a µaa +

∑
ab∈E∪D

(vav
T
b + vbv

T
a )µab = xxT

Reducing Quadratic Elements to Serendipity Elements

We now seek to reduce the set of pairwise product functions {µab} to a basis {ξij} for a serendipity quadratic finite element
space. Our desired basis must

(i) span all quadratic polynomials of two variables on Ω,

(ii) be exactly the space of quadratic polynomials (of one variable) when restricted to edges of Ω, and

(iii) contain only 2n basis functions.

The intuition for how to achieve this is seen from the number of distinct pairwise products:

|{µab}| = |I| = |V |+ |E|+ |D| = n+ n+
n(n− 3)

2 = n+

(
n

2

)
On ∂Ω, functions with indices in V vanish on all but two adjacent edges, functions with indices in E vanish on all but one edge,
and functions with indices in D vanish on all edges. Since Q1-Q3 hold on all of Ω, including ∂Ω, the set {µab : ab ∈ V ∪ E}
satisfies (ii) and (iii), but not necessarily (i). Thus, our goal is to add linear combinations of functions with indices in D to those
with indices in V or E such that (i) is ensured.
We formalize this goal as a linear algebra problem: find a matrix A for the equation

[ξij ] := A[µab] (2.28)

such that [ξij ] satisfies the following conditions analogous to Q1-Q3:

Qξ1. Constant Precision:
∑
ii∈V

ξii +
∑

i(i+1)∈E

2ξi(i+1) = 1.

Qξ2. Linear Precision:
∑
ii∈V

viiξii +
∑

i(i+1)∈E

2vi(i+1)ξi(i+1) = x.

Qξ3. Quadratic Precision:∑
ii∈V

viv
T
i ξii +

∑
i(i+1)∈E

(viv
T
i+1 + vi+1v

T
i )ξi(i+1) = xxT .

Since (2.28) is a linear relationship, we are still able to restrict our analysis to a reference set of unit diameter polygons (recall
Figure 2.8). Specifically if matrix A yields a “reference” basis T [ξij ] = AT [µab] satisfying Qξ1-Qξ3, then the “physical” basis
[ξij ] = A[µab] also satisfies Qξ1-Qξ3.
To specify A in (2.28), we will use the specific basis orderings

[ξij ] := [ ξ11, ξ22, . . . , ξnn︸ ︷︷ ︸
indices in V

, ξ12, ξ23, . . . , ξ(n−1)n, ξn(n+1)︸ ︷︷ ︸
indices inE

], (2.29)

[µab] := [ µ11, µ22, . . . , µnn︸ ︷︷ ︸
indices in V

, µ12, µ23, . . . , µ(n−1)n, µn(n+1)︸ ︷︷ ︸
indices inE

, (2.30)

µ13, . . . , (lexicographical), . . . , µ(n−2)n︸ ︷︷ ︸
indices inD

].
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The entries of A are denoted cijab following the orderings given in (2.29)-(2.30) so that

A :=



c11
11 · · · c11

ab · · · c11
(n−2)n

...
. . .

...
. . .

...
cij11 · · · cijab · · · cij(n−2)n

...
. . .

...
. . .

...
c
n(n+1)
11 · · · c

n(n+1)
ab · · · c

n(n+1)
(n−2)n


. (2.31)

A sufficient set of constraints on the coefficients of A to ensure Qξ1-Qξ3 is given by the following lemma.

Lemma 2.35. The constraints Qc1-Qc3 listed below imply Qξ1-Qξ3, respectively. That is, Qc1 ⇒ Qξ1, Qc2 ⇒ Qξ2, and
Qc3⇒ Qξ3.

Qc1.
∑
ii∈V

ciiaa +
∑

i(i+1)∈E

2ci(i+1)
aa = 1 ∀aa ∈ V , and∑

ii∈V
ciiab +

∑
i(i+1)∈E

2c
i(i+1)
ab = 2, ∀ab ∈ E ∪D.

Qc2.
∑
ii∈V

ciiaavii +
∑

i(i+1)∈E

2ci(i+1)
aa vi(i+1) = vaa ∀aa ∈ V , and∑

ii∈V
ciiabvii +

∑
i(i+1)∈E

2c
i(i+1)
ab vi(i+1) = 2vab, ∀ab ∈ E ∪D.

Qc3.
∑
ii∈V

ciiaaviv
T
i +

∑
i(i+1)∈E

ci(i+1)
aa (viv

T
i+1 + vi+1v

T
i ) = vav

T
a ∀a ∈ V , and∑

ii∈V
ciiabviv

T
i +

∑
i(i+1)∈E

c
i(i+1)
ab (viv

T
i+1 + vi+1v

T
i ) = vav

T
b + vbv

T
a , ∀ab ∈ E ∪D.

Proof. Suppose Qc1 holds. Substituting the expressions from Qc1 into the coefficients of Q1 (from the end of Section 2.7.2),
we get

∑
aa∈V

∑
ii∈V

ciiaa +
∑

i(i+1)∈E

2ci(i+1)
aa

µaa+

∑
ab∈E∪D

∑
ii∈V

ciiab +
∑

i(i+1)∈E

2c
i(i+1)
ab

µab = 1.

Regrouping this summation over ij indices instead of ab indices, we have

∑
ii∈V

(∑
ab∈I

ciiabµab

)
+

∑
i(i+1)∈E

2

(∑
ab∈I

c
i(i+1)
ab µab

)
= 1. (2.32)

Since (2.28) defines ξij =
∑
ab∈I

cijabµab, (2.32) is exactly the statement of Qξ1. The other two cases follow by the same technique

of regrouping summations.

We now give some remarks about our approach to finding coefficients satisfying Qc1-Qc3. Observe that the first equation in
each of Qc1-Qc3 is satisfied by

ciiaa := δia and ci(i+1)
aa := 0 (2.33)

Further, if ab = a(a+ 1) ∈ E, the second equation in each of Qc1-Qc3 is satisfied by

ciia(a+1) := 0 and c
i(i+1)
a(a+1) := δia (2.34)
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µab

ξb(b+1)

ξb(b−1)

ξbb

ξaa
ξa(a+1)

ξa(a−1)

Figure 2.9: When constructing the matrix A, only six non-zero elements are used in each column corresponding to an interior
diagonal of the pairwise product basis. In the serendipity basis, the interior diagonal function µab only contributes to six basis
functions as shown, corresponding to the vertices of the diagonal’s endpoints and the midpoints of adjacent boundary edges.

The choices in (2.33) and (2.34) give A the simple structure

A :=
[
I A′

]
, (2.35)

where I is the 2n× 2n identity matrix. Note that this corresponds exactly to our intuitive approach of setting each ξij function
to be the corresponding µij function plus a linear combination of µab functions with ab ∈ D. Also, with this selection, we
can verify that many of the conditions which are part of Qc1, Qc2 and Qc3 hold. Specifically, whenever ab ∈ V ∪ E, the
corresponding conditions hold, as we prove in the following lemma.

Lemma 2.36. The first 2n columns of the matrix A given by (2.35), i.e., the identity portion, ensure Qc1, Qc2 and Qc3 hold for
ab ∈ V ∪ E.

Proof. This lemma follows from direct substitution. In each case, there is only one nonzero element caaaa or ca(a+1)
a(a+1) on the hand

side of the equation from Qc1, Qc2 or Qc3 and substituting 1 for that coefficient gives the desired equality.

It remains to define A′, i.e. those coefficients cijab with ab ∈ D and verify the corresponding equations in Qc1, Qc2, and Qc3.
For each column of A′, Qc1, Qc2, and Qc3 yield a system of six scalar equations for the 2n variables {cijab}ij∈V ∪E . Since we
have many more variables than equations, there remains significant flexibility in the construction of a solution. In the upcoming
sections, we will present such a solution where all but six of the coefficients in each column of A′ are set to zero. The non-
zero coefficients are chosen to be ca(a−1)

ab , caaab , ca(a+1)
ab , cb(b−1)

ab , cbbab, and cb(b+1)
ab as these have a natural correspondence to the

geometry of the polygon and the edge ab; see Figure 2.9.
We will show that the system of equations Qc1-Qc3 with this selection of non-zero coefficients for A′ has an explicitly con-
structible solution. The solution is presented for special classes of polygons in Section 2.7.2 and for generic convex polygons
in Section 2.7.2. In each case, we prove a uniform bound on the size of the coefficients of A, a sufficient result to control
||ξij ||H1(Ω), as the following lemma shows.

Lemma 2.37. Let Ω be a convex polygon satisfying G1, G2, and G3, and let λi denote a set of barycentric coordinates satisfying
the result of Theorem 2.32 (e.g. λTri, λHar, λWach, λSibs, or λMVal). Suppose there exists M > 1 such that for all entries of A′,
|cijab| < M . Then the functions ξij are all bounded in H1, i.e. there exists a constant B > 0 such that

||ξij ||H1(Ω) ≤ B. (2.36)

Proof. Since ξij is defined by (2.28), Corollary 2.34 implies that there exists C > 0 such that

||ξij ||H1(Ω) ≤ ||A||max
ab
||µab||H1(Ω) < C||A||.
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Since the space of linear transformations from Rn(n+1)/2 to R2n is finite-dimensional, all norms on A are equivalent. Thus,
without loss of generality, we interpret ||A|| as the maximum absolute row sum norm, i.e.

||A|| := max
ij

∑
ab

|cijab|. (2.37)

By the structure of A from (2.35) and the hypothesis, we have

||A|| ≤ n(n+ 1)

2
M

Special Cases of the Serendipity Reduction

Before showing that Qc1-Qc3 can be satisfied in a general setting, we study some simpler special cases in which symmetry
reduces the number of equations that must be satisfied simultaneously.

Unit Square We begin with the case where serendipity elements were first examined, namely over meshes of squares. Strang
and Fix [201] gave one of the first discussions of the serendipity element; in this paper we will use the modern notation
introduced by Arnold and Awanou [12]. Here, the quadratic serendipity space on the unit square, denoted S2(I2), is defined as
the span of eight monomials:

S2(I2) := span
{

1, x, y, x2, xy, y2, x2y, xy2
}

(2.38)

We will now show how our construction process recovers the same space of monomials. Denote vertices and midpoints on
[0, 1]2 by

v1 = (0, 0) v2 = (1, 0) v3 = (1, 1) v4 = (0, 1)
v12 = (1/2, 0) v23 = (1, 1/2) v34 = (1/2, 1) v14 = (0, 1/2) (2.39)

v13 = v24 = (1/2, 1/2)

The standard bilinear basis for the square is

λ1 = (1− x)(1− y) λ2 = x(1− y)

λ4 = (1− x)y λ3 = xy

Since the λi have vanishing second derivatives and satisfy the definition of barycentric coordinates, they are in fact the harmonic
coordinates λHar in this special case. Pairwise products give us the following 10 (not linearly independent) functions

µ11 = (1− x)2(1− y)2 µ12 = (1− x)x(1− y)2

µ22 = x2(1− y)2 µ23 = x2(1− y)y

µ33 = x2y2 µ34 = (1− x)xy2

µ44 = (1− x)2y2 µ14 = (1− x)2(1− y)y

µ13 = (1− x)x(1− y)y µ24 = (1− x)x(1− y)y

For the special geometry of the square, µ13 = µ24, but this is not true for general quadrilaterals as we see in Section 2.7.2. The
serendipity construction eliminates the functions µ13 and µ24 to give an 8-dimensional space. The basis reduction via the A
matrix is given by 

ξ11

ξ22

ξ33

ξ44

ξ12

ξ23

ξ34

ξ14


=



1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 1/2 1/2
0 0 0 0 0 1 0 0 1/2 1/2
0 0 0 0 0 0 1 0 1/2 1/2
0 0 0 0 0 0 0 1 1/2 1/2





µ11

µ22

µ33

µ44

µ12

µ23

µ34

µ14

µ13

µ24


(2.40)
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It can be confirmed directly that (2.40) follows from the definitions of A given in the increasingly generic settings examined in
Section 2.7.2, Section 2.7.2 and Section 2.7.2. The resulting functions are

ξ11 = (1− x)(1− y)(1− x− y) ξ12 = (1− x)x(1− y) (2.41)
ξ22 = x(1− y)(x− y) ξ23 = x(1− y)y

ξ33 = xy(−1 + x+ y) ξ34 = (1− x)xy

ξ44 = (1− x)y(y − x) ξ14 = (1− x)(1− y)y

Theorem 2.38. For the unit square, the basis functions {ξij} defined in (2.41) satisfy Qξ1-Qξ3.

Proof. A simple proof is to observe that the coefficients of the matrix in (2.40) satisfy Qc1-Qc3 and then apply Lemma 2.35. To
illuminate the construction in this special case of common interest, we state some explicit calculations. The constant precision
condition Qξ1 is verified by the calculation

ξ11 + ξ22 + ξ33 + ξ44 + 2ξ12 + 2ξ23 + 2ξ34 + 2ξ14 = 1.

The x component of the linear precision condition Qξ2 is verified by the calculation

(v1)xξ11 + (v2)xξ22 + (v3)xξ33 + (v4)xξ44+

2(v12)xξ12 + 2(v23)xξ23 + 2(v34)xξ34 + 2(v14)xξ14

= ξ22 + ξ33 + 2 · 1

2
ξ12 + 2 · 1ξ23 + 2 · 1

2
ξ34

= x.

The verification for the y component is similar. The xy component of the quadratic precision condition Qξ3 is verified by

(v1)x(v1)yξ11 + (v2)x(v2)yξ22 + (v3)x(v3)yξ33 + (v4)x(v4)yξ44

+ [(v1)x(v2)y + (v2)x(v1)y] ξ12 + [(v2)x(v3)y + (v3)x(v2)y] ξ23

+ [(v3)x(v4)y + (v4)x(v3)y] ξ34 + [(v4)x(v1)y + (v1)x(v4)y] ξ14

= ξ33 + ξ23 + ξ34 = xy.

The monomials x2 and y2 can be expressed as a linear combination of the ξij similarly, via the formula given in Qξ3.

Corollary 2.39. The span of the ξij functions defined by (2.41) is the standard serendipity space, i.e.

span
{
ξii, ξi(i+1)

}
= S2(I2)

Proof. Observe that x2y = ξ23 + ξ33 and xy2 = ξ33 + ξ34. By the definition of S2(I2) in (2.38) and the theorem,
span

{
ξii, ξi(i+1)

}
⊃ S2(I2). Since both spaces are dimension eight, they are identical.

Regular Polygons We now generalize our construction to any regular polygon with n vertices. Without loss of generality,
this configuration can be described by two parameters 0 < σ ≤ θ ≤ π/2 as shown in Figure 2.10. Note that the n vertices of
the polygon are located at angles of the form kσ where k = 0, 1, . . . , n− 1.
For two generic non-adjacent vertices va and vb, the coordinates of the six relevant vertices (recalling Figure 2.9) are:

va =

[
cos θ
sin θ

]
; va−1 =

[
cos(θ − σ)
sin(θ − σ)

]
; va+1 =

[
cos(θ + σ)
sin(θ + σ)

]
;

vb =

[
cos θ
− sin θ

]
; vb−1 =

[
cos(θ + σ)
− sin(θ + σ)

]
; vb+1 =

[
cos(θ − σ)
− sin(θ − σ)

]
.

We seek to establish the existence of suitable constants caaab , ca,a+1
ab , ca−1,a

ab , cbbab, c
b−1,b
ab , cb,b+1

ab which preserve quadratic preci-
sion and to investigate the geometric conditions under which these constants become large. The symmetry of this configuration
suggests that caaab = cbbab, c

a−1,a
ab = cb,b+1

ab , and ca,a+1
ab = cb−1,b

ab are reasonable requirements. For simplicity we will denote these
constants by c0 := caaab , c− := ca−1,a

ab , and c+ := ca,a+1
ab .



2.7. FINITE ELEMENTS AND ERROR ESTIMATION 63

va

va−1

va+1

vb

vb+1

vb−1

θ

θ

σ

Figure 2.10: Notation for the construction for a regular polygon.

Thus equation Qc1 (which contains only six non-zero elements) reduces to:

2c0 + 4c− + 4c+ = 2. (2.42)

Qc2 involves two equations, one of which is trivially satisfied in our symmetric configuration. Thus, the only restriction to
maintain is

2 cos θc0 + 2 [cos θ + cos(θ − σ)] c− + 2 [cos θ + cos(θ + σ)] c+ = 2 cos θ. (2.43)

Qc3 gives three more requirements, one of which is again trivially satisfied. This gives two remaining restrictions:

2 cos2 θc0 + 4 cos θ cos(θ − σ)c− + 4 cos θ cos(θ + σ)c+ = 2 cos2 θ; (2.44)

2 sin2 θc0 + 4 sin θ sin(θ − σ)c− + 4 sin θ sin(θ + σ)c+ = −2 sin2 θ. (2.45)

Now we have four equations (2.42)-(2.45) and three unknowns c0, c− and c+. Fortunately, equation (2.43) is a simple linear
combination of (2.42) and(2.44); specifically (2.43) is cos θ

2 times (2.42) plus 1
2 cos θ times (2.44). With a little algebra, we can

produce the system:  1 2 2
1 2(cosσ + sinσ tan θ) 2(cosσ − sinσ tan θ)
1 2(cosσ − sinσ cot θ) 2(cosσ + sinσ cot θ)

 c0
c−
c+

 =

 1
1
−1

 . (2.46)

The solution of this system can be computed:

c0 =
(−1 + cosσ) cot θ + (1 + cosσ) tan θ

(−1 + cosσ)(cot θ + tan θ)
;

c− =
cosσ − sinσ tan θ − 1

2 (tan θ + cot θ) sinσ (cosσ − 1)
; c+ =

1− cosσ − sinσ tan θ

2 (tan θ + cot θ) sinσ (cosσ − 1)
.

Although tan θ (and thus the solution above) is not defined for θ = π/2, the solution in this boundary case can be defined by
the limiting value which always exists. We can now prove the following.

Theorem 2.40. For any regular polygon, the basis functions {ξij} constructed using the coefficients caaab = cbbab = c0, ca−1,a
ab =

cb,b+1
ab = c−, ca,a+1

ab = cb−1,b
ab = c+ satisfy Qξ1-Qξ3.

Proof. The construction above ensures that the solution satisfies Qc1, Qc2, and Qc3.
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v1 v3dℓ

v4

v2

Figure 2.11: A generic convex quadrilateral, rotated so that one of its diagonals lies on the x-axis. Geometrically, c12
13 and c34

13

are selected to be coefficients of the convex combination of v2 and v4 that lies on the x-axis.

The serendipity element for regular polygons can be used for meshes consisting of only one regular polygon or a finite number
of regular polygons. The former occurs only in meshes of triangles, squares and hexagons as these are the only regular
polygons that can tile the plane. On the other hand, many tilings consisting of several regular polygons can be constructed
using multiple regular polygons. Examples include the snub square tiling (octagons and squares), the truncated hexagonal tiling
(dodecahedra and triangles), the rhombitrihexagonal tiling (hexagons, squares, and triangles), and the truncated trihexagonal
tiling (dodecagons, hexagons, and squares); see e.g. [46]. The construction process outlined above opens up the possibility of
finite element methods applied over these types of mixed-geometry meshes, a mostly unexplored field.

Generic Quadrilaterals Fix a convex quadrilateral Ω with vertices v1, v2, v3, and v4, ordered counterclockwise. We will
describe how to set the coefficients of the submatrix A′ in (2.35). It suffices to describe how to set the coefficients in the ‘13’-
column of the matrix, i.e., those of the form cij13. The ‘24′-column can be filled using the same construction after permuting the
indices. Thus, without loss of generality, suppose that v1 := (−`, 0) and v3 := (`, 0) so that v2 is below the x-axis and v4 is
above the x-axis, as shown in Figure 2.11. We have eight coefficients to set:

c11
13, c

22
13, c

33
13, c

44
13, c

12
13, c

23
13, c

34
13, and c14

13.

Using a subscript x or y to denote the corresponding component of a vertex, define the coefficients as follows.

c22
13 := 0 c44

13 := 0 (2.47)

c12
13 :=

(v4)y
(v4)y − (v2)y

c34
13 :=

(v2)y
(v2)y − (v4)y

(2.48)

c23
13 := c12

13 c14
13 := c34

13 (2.49)

c11
13 :=

c12
13(v2)x + c34

13(v4)x
`

− 1 c33
13 := −c

12
13(v2)x + c34

13(v4)x
`

− 1 (2.50)

Note that there following the strategy shown in Figure 2.9, there are only six non-zero entries. For ease of notation in the rest
of this section, we define the quantity

d :=
c12
13(v2)x + c34

13(v4)x
`

.

First we assert that the resulting basis does span all quadratic polynomials.

Theorem 2.41. For any quadrilateral, the basis functions {ξij} constructed using the coefficients given in (2.47)-(2.50) satisfy
Qξ1-Qξ3.
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Proof. Considering Lemmas 2.35 and 2.36, we only must verify Qc1-Qc3 in the cases when ab ∈ D = {13, 24}. This will be
verified directly by substituting (2.47)-(2.50) into the constraints Qc1-Qc3 in the case ab = 13. As noted before, the ab = 24
case is identical, requiring only a permutation of indices. First note that

c11
13 + c33

13 = −2 and c11
13 − c33

13 = 2d. (2.51)

For Qc1, the sum reduces to
c11
13 + c33

13 + 4(c12
13 + c34

13) = −2 + 4(1) = 2,

as required. For Qc2, the x-coordinate equation reduces to

`(c33
13 − c11

13) + 2d` = 0

by (2.51) which is the desired inequality since we fixed (without loss of generality) vab = (0, 0). The y-coordinate equation
reduces to 2(c12

13(v2)y + c34
13(v4)y) = 0 which holds by (2.48). Finally, a bit of algebra reduces the matrix equality of Qc3 to

only the equality `2(c11
13 + c33

13) = −2`2 of its first entry (all other entries are zero), which holds by (2.51).

Theorem 2.42. Over all convex quadrilaterals, ||A|| is uniformly bounded.

Proof. By Lemma 2.37, it suffices to bound |cij13| uniformly. First observe that the convex combination of the vertices v2 and
v4 using coefficients c12

13 and c34
13 produces a point lying on the x-axis, i.e.,

1 =c12
13 + c34

13, and (2.52)

0 =c12
13(v2)y + c34

13(v4)y. (2.53)

Since (v2)y > 0 and (v4)y < 0, (2.49) implies that c12
13, c

34
13 ∈ (0, 1). By (2.49), it also follows that c23

13, c
14
13 ∈ (0, 1).

For c11
13 and c33

13, note that the quantity d` is the x-intercept of the line segment connecting v2 and v4. Thus d` ∈ [−`, `] by
convexity. So d ∈ [−1, 1] and thus (2.50) implies |c11

13 |= |d− 1| ≤ 2 and |c33
13 |=` d− 1| ≤ 2.

Proof of the Serendipity Reduction on Generic Convex Polygons

We now define the sub-matrix A′ from (2.35) in the case of a generic polygon. Pick a column of A′, i.e., fix ab ∈ D. The
coefficients cijab are constrained by a total of six equations Qc1, Qc2, and Qc3. As before (recall Figure 2.9), six non-zero
coefficients will be selected in each column to satisfy these constraints. Specifically,

ciiab := 0, for i 6∈ {a, b} and c
i(i+1)
ab = 0, for i 6∈ {a− 1, a, b− 1, b}, (2.54)

leaving only the following six coefficients to be determined:

caaab , c
bb
ab, c

(a−1)a
ab , c

a(a+1)
ab , c

(b−1)b
ab , and c

b(b+1)
ab .

For the remainder of this section, we will omit the subscript ab to ease the notation. Writing out Qc1-Qc3 for this fixed ab pair,
we have six equations with six unknowns:

caa + cbb + 2c(a−1)a + 2ca(a+1) + 2c(b−1)b + 2cb(b+1) = 2;

caavaa + 2c(a−1)av(a−1)a + 2ca(a+1)va(a+1)+

cbbvbb + 2c(b−1)bv(b−1)b + 2cb(b+1)vb(b+1) = 2vab;

caavav
T
a + c(a−1)a(va−1v

T
a + vav

T
a−1) + ca(a+1)(vav

T
a+1 + va+1v

T
a )+

cbbvbv
T
b + c(b−1)b(vb−1v

T
b + vbv

T
b−1) + cb(b+1)(vbv

T
b+1 + vb+1v

T
b ) = vav

T
b + vbv

T
a .

Assume without loss of generality that va = (−`, 0) and vb = (`, 0) with ` < 1/2 (since Ω has diameter 1). We introduce the
terms da and db defined by

da :=
(va−1)x(va+1)y − (va+1)x(va−1)y

(va−1)y − (va+1)y
· 1

`
, and (2.55)

db :=
(vb+1)x(vb−1)y − (vb−1)x(vb+1)y

(vb−1)y − (vb+1)y
· 1

`
. (2.56)
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va

va−1

va+1

vb

vb+1

vb−1

daℓ

dbℓ

Figure 2.12: Generic convex polygon, rotated so that va = (−`, 0) and vb = (`, 0). The x-intercept of the line between va−1

and va+1 is defined to be −da` and the x-intercept of the line between vb−1 and vb+1 is defined to be db`.

These terms have a concrete geometrical interpretation as shown in Figure 2.12: −da` is the x-intercept of the line between
va−1 and va+1, while db` is the x-intercept of the line between vb−1 and vb+1. Thus, by the convexity assumption, da, db ∈
[−1, 1]. Additionally, −da ≤ db with equality only in the case of a quadrilateral which was dealt with previously. For ease of
notation and subsequent explanation, we also define

s :=
2

2− (da + db). (2.57)

First we choose c(a−1)a and ca(a+1) as the solution to the following system of equations:

c(a−1)a + ca(a+1) = s; (2.58)

c(a−1)ava−1 + ca(a+1)va+1 = sdava. (2.59)

There are a total of three equations since (2.59) equates vectors, but it can be verified directly that this system of equations is
only rank two. Moreover, any two of the equations from (2.58) and (2.59) suffice to give the same unique solution for c(a−1)a

and ca(a+1).
Similarly, we select c(b−1)b and cb(b−1) as the solution to the system:

c(b−1)b + cb(b+1) = s; (2.60)

c(b−1)bvb−1 + cb(b+1)vb+1 = sdbvb. (2.61)

Finally, we assign caa and cbb by

caa =
−2− 2da

2− (da + db)
and (2.62)

cbb =
−2− 2db

2− (da + db)
, (2.63)

and claim that this set of coefficients leads to a basis with quadratic precision.
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Theorem 2.43. For any convex polygon, the basis functions {ξij} constructed using the coefficients defined by (2.58)-(2.63)
satisfy Qξ1-Qξ3.

Proof. Based on Lemmas 2.35 and 2.36, it only remains to verify that Qc1, Qc2, and Qc3 hold when ab ∈ D. Observe that caa

and cbb satisfy the following equations:

caa + cbb + 4s = 2; (2.64)

caa − cbb + s(da − db) = 0; (2.65)

caa + cbb + 2s(da + db) = −2. (2.66)

First, note that Qc1 follows immediately from (2.58), (2.60) and (2.64).
The linear precision conditions (Qc2) are just a matter of algebra. Equations (2.58)-(2.61) yield

caavaa + cbbvbb + 2c(a−1)av(a−1)a + 2ca(a+1)va(a+1) + 2c(b−1)bv(b−1)b + 2cb(b+1)vb(b+1)

= (caa + c(a−1)a + ca(a+1))va + (cbb + c(b−1)b + cb(b+1))vb

+ c(a−1)ava−1 + ca(a+1)va+1 + c(b−1)bvb−1 + cb(b+1)vb+1

= (caa + c(a−1)a + ca(a+1))va + (cbb + c(b−1)b + cb(b+1))vb + sdava + sdbvb

= (caa + s+ sda)va + (cbb + s+ sdb)vb.

Substituting the fixed coordinates of va = (−`, 0) and vb = (`, 0) reduces this expression to the vector[
(−caa − s− sda + cbb + s+ sdb)`

0

]
.

Finally, we address Qc3. Factoring the left side gives,

caavav
T
a + cbbvbv

T
b + c(a−1)a(va−1v

T
a + vav

T
a−1) + · · ·+ cb(b+1)(vbv

T
b+1 + vb+1v

T
b )

= caavav
T
a + cbbvbv

T
b

+ (c(a−1)ava−1 + ca(a+1)va+1)vTa + va(c(a−1)avTa−1 + ca(a+1)vTa+1)

+ (c(b−1)bvb−1 + cb(b+1)vb+1)vTb + vb(c
(b−1)bvTb−1 + cb(b+1)vTb+1)

= caavav
T
a + cbbvbv

T
b + sdavav

T
a + sdbvbv

T
b + va(sdav

T
a ) + vb(sdbv

T
b )

= (caa + 2sda)vav
T
a + (cbb + 2sdb)vbv

T
b .

Again substituting the coordinates of va and vb, we obtain the matrix[(
caa + 2sda + cbb + 2sdb

)
`2 0

0 0

]
.

The right side of Qc3 is

vav
T
b + vbv

T
a =

[
−2`2 0

0 0

]
.

Hence the only equation that must be satisfied is exactly (2.66).

Remark 2.44. We note that swas specifically chosen so that (2.64)-(2.66) would hold. The case s = 1 happens when da = −db,
i.e. only for the quadrilateral.

Theorem 2.45. Given a convex polygon satisfying G1, G2 and G3, ||A|| is uniformly bounded.

Proof. By Lemma 2.37, it suffices to show a uniform bound on the six coefficients defined by equations (2.58)-(2.63). First we
prove a uniform bound on da and db given G1-G3.
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va

va−1

va+1

d∗

p−

p+

xP

βa daℓ va

p−

xP

π−βa
2d∗

> ǫ∗

ǫ∗

p+

Figure 2.13: Notation used in proof of Theorem 2.45.

We fix some notation as shown in Figure 2.13. Let C(va, d∗) be the circle of radius d∗ (from G2) around va. Let p− :=
(p−x , p

−
y ) and p+ := (p+

x , p
+
y ) be the points on C(va, d∗) where the line segments to va from va−1 and va+1, respectively,

intersect. The chord on C(va, d∗) between p− and p+ intersects the x-axis at xp := (xp, 0). By convexity, (va)x < xp.
To bound xp − (va)x below, note that the triangle vap−p+ with angle βa at va is isosceles. Thus, the triangle vap−xp has
angle ]vap−xp = (π − βa)/2, as shown at the right of Figure 2.13. The distance to the nearest point on the line segment

between p− and p+ is d∗ sin
(
π−βa

2

)
. Based on G3, ε∗ > 0 is defined to be

xp − (va)x ≥ d∗ sin

(
π − βa

2

)
> d∗ sin

(
π − β∗

2

)
=: ε∗ > 0. (2.67)

Since −da` < 1 is the x-intercept of the line between va−1 and va+1, we have xp ≤ −da`. Then we rewrite (va)x = −` in
the geometrically suggestive form

(xp − (va)x) + (−da`− xp) + (0 + da`) = `.

Since −da`− xp ≥ 0, we have xp − (va)x + da` ≤ `. Using (2.67), this becomes da` < `− ε∗. Recall from Figure 2.12 and
previous discussion that da, db ∈ [−1, 1] and −da ≤ db. By symmetry, db` < `− ε∗ and hence da + db < 2`− 2ε∗ < 1− 2ε∗.
We use the definition of caa from (2.62), the derived bounds on da and db, and the fact that ` ≤ 1/2 to conclude that

|caa| < |2 + 2da|
1 + 2ε∗

<
2 + 2(1− (ε∗/`))

1 + 2ε∗
≤ 4− 4ε∗

1 + 2ε∗
< 4.

Similarly, |cbb| < 4−4ε∗
1+2ε∗

< 4. For the remaining coefficients, observe that the definition of s in (2.57) implies that 0 < s <

2/(1 + 2ε∗). Equation (2.58) and the y-component of equation (2.59) ensure that c(a−1)a/s and ca(a+1)/s are the coefficients
of a convex combination of va−1 and va+1. Thus c(a−1)a, c(a+1)a ∈ (0, s) and s serves as an upper bound on the norms of
each coefficient. Likewise, |c(b−1)b|, |cb(b+1)| < s. Therefore,

max

(
4− 4ε∗
1 + 2ε∗

,
2

1 + 2ε∗
, 1

)
is a uniform bound on all the coefficients of A.
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µ00

µ01

µ11
1

1

ψ00 ψ11ψ01

1

1

Figure 2.14: A comparison of the product barycentric basis (left) with the standard Lagrange basis (right) for quadratic poly-
nomials in one dimension.

Converting Serendipity Elements to Lagrange-like Elements

The 2n basis functions constructed thus far naturally correspond to vertices and edges of the polygon, but the functions associa-
ted to midpoints are not Lagrange-like. This is due to the fact that functions of the form ξi(i+1) may not evaluate to 1 at vi(i+1)

or ξii may not evaluate to 0 at vi(i+1), even though the set of {ξij} satisfies the partition of unity property Qξ1. To fix this, we
apply a simple bounded linear transformation given by the matrix B defined below.
To motivate our approach, we first consider a simpler setting: polynomial bases over the unit segment [0, 1] ⊂ R. The
barycentric functions on this domain are λ0(x) = 1− x, and λ1(x) = x. Taking pairwise products, we get the quadratic basis
µ00(x) := (λ0(x))

2
= (1 − x)2, µ01(x) := λ0(x)λ1(x) = (1 − x)x, and µ11(x) := (λ1(x))

2
= x2, shown on the left of

Figure 2.14. This basis is not Lagrange-like since µ01(1/2) 6= 1 and µ00(1/2), µ11(1/2) 6= 0. The quadratic Lagrange basis is
given by ψ00(x) := 2(1 − x)

(
1
2 − x

)
, ψ01(x) := 4(1 − x)x, and ψ11(x) := 2

(
x− 1

2

)
x, shown on the right of Figure 2.14.

These two bases are related by the linear transformation B1D:

[ψij ] =

ψ00

ψ11

ψ01

 =

1 0 −1
0 1 −1
0 0 4

µ00

µ11

µ01

 = B1D[µij ]. (2.68)

This procedure generalizes to the case of converting the 2D serendipity basis {ξij} to a Lagrange like basis {ψij}. Define

ψii := ξii − ξi,i+1 − ξi−1,i and ψi,i+1 = 4 ξi,i+1.

Using our conventions for basis ordering and index notation, the transformation matrix B taking [ξij ] to [ψij ] has the structure

[ψij ] =



ψ11

ψ22

...
ψnn
ψ12

ψ23

...
ψn1


=



1 −1 · · · −1
1 −1 −1 · · ·

. . . . . . . . .
. . . . . . . . .

1 −1 −1
4

4

0
. . .

. . .
4





ξ11

ξ22

...
ξnn
ξ12

ξ23

...
ξn1


= B[ξij ].

The following proposition says that the functions {ψij} defined by the above transformation are Lagrange-like.
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Proposition 2.46. For all i, j ∈ {1, . . . , n}, ψii(vj) = δji , ψii(vj,j+1) = 0, ψi(i+1)(vj) = 0, and ψi(i+1)(vj,j+1) = δji .

Proof. We show the last claim first. By the definitions of B and A, we have

ψi(i+1)(vj,j+1) = 4 ξi(i+1)(vj,j+1) = 4

(
n∑
a=1

ci(i+1)
aa µaa(vj,j+1) +

∑
a<b

c
i(i+1)
ab µab(vj,j+1)

)

Since λa is piecewise linear on the boundary of the polygon and λa(vj) = δja (by B6), we have that λa(vj,j+1) = 1/2 if a ∈
{j, j+ 1} and zero otherwise. Accordingly, µaa(vj,j+1) = 1/4 if a ∈ {j, j+ 1} and zero otherwise, while µab(vj,j+1) = 1/4
if {a, b} = {j, j + 1} and zero otherwise.

ψi(i+1)(vj,j+1) = 4

((
c
i(i+1)
jj + c

i(i+1)
(j+1)(j+1)

)
· 1

4
+ c

i(i+1)
j(j+1) ·

1

4

)
= c

i(i+1)
j(j+1) = δij ,

since the identity structure of A as given in (2.35) implies that ci(i+1)
jj = c

i(i+1)
(j+1)(j+1) = 0 and that ci(i+1)

j(j+1) = δij .
Next, observe that µab(vj) = λa(vj)λb(vj) = 1 if a = b = j and 0 otherwise. Hence, any term of the form c∗∗abµab(vj) for
a 6= b is necessarily zero. Therefore, by a similar expansion, ψi(i+1)(vj) = c

i(i+1)
jj = 0, proving the penultimate claim.

For the first two claims, similar analysis yields

ψii(vj) = ξii(vj)− ξi(i+1)(vj)− ξ(i−1)i(vj)

= ciijj · 1− ci(i+1)
jj · 1− c(i−1)i

jj · 1
= ciijj = δij ,

again by the identity structure of A. Finally, by similar analysis, we have that

ψii(vj,j+1) = ξii(vj,j+1)− ξi(i+1)(vj,j+1)− ξ(i−1)i(vj,j+1)

= (ciijj + cii(j+1)(j+1) + ciij(j+1))
1

4
− ξi(i+1)(vj,j+1)− ξ(i−1)i(vj,j+1)

= (δij + δi(j+1))
1

4
− 1

4
δij −

1

4
δi(j+1) = 0,

completing the proof.

In closing, note that ||B|| is uniformly bounded since its entries all lie in {−1, 0, 1, 4}.

Applications and Extensions Our quadratic serendipity element construction has a number of uses in modern finite element
application contexts. First, the construction for quadrilaterals given in Section 2.7.2 allows for quadratic order methods on
arbitrary quadrilateral meshes with only eight basis functions per element instead of the nine used in a bilinear map of the
biquadratic tensor product basis on a square. In particular, we show that our approach maintains quadratic convergence on a
mesh of convex quadrilaterals known to result in only linear convergence when traditional serendipity elements are mapped
non-affinely [13].
We solve Poisson’s equation on a square domain composed of n2 trapezoidal elements as shown in Figure 2.15 (left). Boundary
conditions are prescribed according to the solution u(x, y) = sin(x)ey; we use our construction from Section 2.7.2 starting
with mean value coordinates {λMVal

i }. Mean value coordinates were selected based on a few advantages they have over other
types: they are easy to compute based on an explicit formula and the coordinate gradients do not degrade based on large interior
angles [170]. For this particular example, where no interior angles asymptotically approach 180◦, Wachspress coordinates give
very similar results. As shown in Figure 2.15 (right), the expected convergence rates from our theoretical analysis are observed,
namely, cubic in the L2-norm and quadratic in the H1-norm.
An additional application of our method is to adaptive finite elements, such as the one shown in Figure 2.16. This is possible
since the result of Theorem 2.45 still holds if G3 fails to hold only on a set of consecutive vertices of the polygon. This
weakened condition suffices since consecutive large angles in the polygon do not cause the coefficients cijab to blow up. For
instance, consider the degenerate pentagon shown in Figure 2.16 which satisfies this weaker condition but not G3. Examining
the potentially problematic coefficients cij25, observe that the lines through v1, v4 and v1, v3 both intersect the midpoint of the
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line through v2, v5 (which happens to be v1). In the computation of the cij25 coefficients, the associated values d2 and d5 are
both zero and hence s = 1 (recall Figure 2.12 and formula (2.57)). Since s is bounded away from ∞, the analysis from the
proof of Theorem 2.45 holds as stated for these coefficients and hence for the entire element. A more detailed analysis of such
large-angle elements is an open question for future study.
Nevertheless, the geometric hypotheses of Theorem 2.45 cannot be relaxed entirely. Arbitrarily large non-consecutive large
angles as well as very short edges, can cause a blowup in the coefficients used in the construction of A, as shown in Figure 2.17.
In the left figure, as edges va−1va and vb−1vb approach length zero, da and db both approach one, meaning s (in the con-
struction of Section 2.7.2) approaches∞. In this case, the coefficients c(a−1)a

ij and c(b−1)b
ij grow larger without bound, thereby

violating the result of Theorem 2.45. In the right figure, as the overall shape approaches a square, da and db again approach
one so that s again approaches∞. In this case, all the coefficients c(a−1)a

ij , ca(a+1)
ij , c(b−1)b

ij and cb(b+1)
ij all grow without bound.

Nevertheless, if these types of extreme geometries are required, it may be possible to devise alternative definitions of the cabij
coefficients satisfying Qc1-Qc3 with controlled norm estimates since the set of restrictions Qc1-Qc3 does not have full rank.
Note that this flexibility has lead to multiple constructions of the traditional serendipity square [146, 131]. Cursory numerical
experimentation suggests that some bounded construction exists even in the degenerate situation.
The computational cost of our method is an important consideration to application contexts. A typical finite element method
using our approach would involve the following steps: (1) selecting λi coordinates and implementing the corresponding ψij
basis functions, (2) defining a quadrature rule for each affine-equivalent class of shapes appearing in the domain mesh, (3)
assembling a matrix L representing the discrete version of linear operator, and (4) solving a linear system of the form Lu = f .
The quadrature step may incur some computational effort, however, if only a few shape templates are needed, this is a one-time
fixed pre-preprocessing cost. In the trapezoidal mesh example from Figure 2.15, for instance, we only needed one quadrature
rule as all domain shapes were affinity equivalent. Assembling the matrix L may also be expensive as the entries involve
integrals of products of gradients of ψij functions. Again, however, this cost is incurred only once per affine-equivalent domain
shape and thus can be reasonable to allow, depending on the application context.
The computational advantage to our approach comes in the final linear solve. The size of the matrix L is proportional to the
number of edges in the mesh, matching the size of the corresponding matrix for quadratic Lagrange elements on triangles or
quadratic serendipity elements on squares. If the pairwise products µab were used instead of the ψij functions, the size of L
would be proportional to the square of the number of edges in the mesh, a substantial difference.
Finally, we note that although this construction is specific to quadratic elements, the approach seems adaptable, with some
effort, to the construction of cubic and higher order serendipity elements on generic convex polygons. As a larger linear system
must be satisfied, stating an explicit solution becomes complex. Further research along these lines should probably assert the
existence of a uniformly bounded solution without specifying the construction. In practice, a least squares solver could be used
to construct such a basis numerically.

2.7.3 Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Mes-
hes

In this work, we join and expand three threads of research in the analysis of modern finite element methods: polytope domain
meshing, generalized barycentric coordinates, and families of finite-dimensional solution spaces characterized by finite element
exterior calculus. It is well-known that on simplicial meshes, standard barycentric coordinates provide a local basis for the
lowest-order H1-conforming scalar-valued finite element spaces, commonly called the Lagrange elements. Further, local bases
for the lowest-order vector-valued Brezzi-Douglas-Marini[40], Raviart-Thomas[173], and Nédélec[39, 158, 159] finite element
spaces on simplices can also be defined in a canonical fashion from an associated set of standard barycentric functions. Here,
we use generalized barycentric coordinates in an analogous fashion on meshes of convex polytopes, in dimensions 2 and 3, to
construct local bases with the same global continuity and polynomial reproduction properties as their simplicial counterparts.
We have previously analyzed linear order, scalar-valued methods on polygonal meshes[100, 170] using four different types of
generalized barycentric coordinates: Wachspress[216, 215], Sibson[82, 192], harmonic[53, 125, 151], and mean value[83, 85,
86]. The analysis was extended by Gillette, Floater and Sukumar in the case of Wachspress coordinates to convex polytopes
in any dimension[84], based on work by Warren and colleagues[127, 218, 219]. We have also shown how taking pairwise
products of generalized barycentric coordinates can be used to construct quadratic order methods on polygons[171].
Our expansion in this paper to vector-valued methods is inspired by Whitney differential forms, first defined in[220]. Bossavit
first recognized that Whitney forms could be used to construct basis functions for computational electromagnetics[34], sparking
a long chain of research, recently unified by the theory of finite element exterior calculus[9, 10, 11]. Some prior work has
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n k functions
2 0 λi

1 λi∇λj
Wij

rot λi∇λj
rotWij

2 λi∇λj · rot∇λk
Wijk

3 0 λi
1 λi∇λj

Wij

2 λi∇λj ×∇λk
Wijk

3 λi∇λj · (∇λk ×∇λ`)
Wijk`

Table 2.1: For meshes of convex n-dimensional polytopes in Rn, n = 2 or 3, computational basis functions for each differential
form order 0 ≤ k ≤ n. The generalized barycentric coordinate functions λ, Whitney-like functionsW , and polynomial spaces
PrΛk are defined in Section 2.7.3.

explored the possibility of Whitney functions over non-simplicial elements in specific cases of rectangular grids[104], square-
base pyramids[105], and prisms[32]. Other authors have examined the ability of generalized Whitney functions to recover
constant-valued forms in certain cases[78, 132], whereas here we show their ability to reproduce all the elements of the spaces
denoted P−1 Λk in finite element exterior calculus. Gillette and Bajaj considered the use of generalized Whitney forms on
polytope meshes defined by duality from a simplicial mesh[98, 99], which illustrated potential benefits to discrete exterior
calculus[116], computational magnetostatics, and Darcy flow modeling.

n k global continuity polynomial reproduction
2 0 H1(M) P1Λ0(M)

1 H(curl,M), by Theorem 2.49 P1Λ1(M), by Theorem 2.52
H(curl,M), by Theorem 2.49 P−1 Λ1(M), by Theorem 2.57
H(div,M), see Remark 2.50 P1Λ1(M), by Corollary 2.53
H(div,M), see Remark 2.50 P−1 Λ1(M), by Corollary 2.58

2 none (piecewise linear) P1Λ2(M), by Theorem 2.55
none (piecewise constant) P−1 Λ2(M), see Remark 2.60

3 0 H1(M) P1Λ0(M)
1 H(curl,M), by Theorem 2.49 P1Λ1(M), by Theorem 2.52

H(curl,M), by Theorem 2.49 P−1 Λ1(M), by Theorem 2.57
2 H(div,M), by Theorem 2.51 P1Λ2(M), by Theorem 2.54

H(div,M), by Theorem 2.51 P−1 Λ2(M), by Theorem 2.59
3 none (piecewise linear) P1Λ3(M), see Remark 2.60

none (piecewise constant) P−1 Λ3(M), see Remark 2.60

Table 2.2: Summary of the global continuity and polynomial reproduction properties of the spaces considered.

Using the bases defined in Table 2.1, our main results are summarized in Table 2.2. On a mesh of convex n-dimensional
polytopes in Rn with n = 2 or 3, we construct computational basis functions associated to the polytope elements for each
differential form order k as indicated. Each function is built from generalized barycentric coordinates, denoted λi, and their
gradients; formulae for the Whitney-like functions, denoted W , are given in Section 2.7.3. In the vector-valued cases (0 <
k < n), we prove that the functions agree on tangential or normal components at inter-element boundaries, providing global
continuity in H(curl) or H(div). The two families of polynomial differential forms that are reproduced, PrΛk and P−r Λk,
were shown to recover and generalize the classical simplicial finite element spaces mentioned previously, via the theory of
finite element exterior calculus[9, 11].
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The outline of the paper is as follows. In Section 2.7.3, we describe relevant theory and prior work in the areas of finite element
exterior calculus, generalized barycentric coordinates, and Whitney forms. In Section 2.7.3, we show how the functions listed
in Table 2.1 can be used to build piecewise-defined functions with global continuity in H1, H(curl) or H(div), as indicated.
In Section 2.7.3, we show how these same functions can reproduce the requisite polynomial differential forms from P1Λk or
P−1 Λk, as indicated in Table 2.1, by exhibiting explicit linear combinations whose coefficients depend only on the location
of the vertices of the mesh. In Section 9, we count the basis functions constructed by our approach on generic polygons and
polyhedra and explain how the size of the basis could be reduced in certain cases. We close with a discussion relating this work
to serendipity and virtual element methods.

Background and prior work

Spaces from Finite Element Exterior Calculus Finite element spaces can be broadly classified according to three parame-
ters: n, the spatial dimension of the domain, r, the order of error decay, and k, the differential form order of the solution space.
The k parameter can be understood in terms of the classical finite element sequence for a domain Ω ⊂ Rn with n = 2 or 3,
commonly written as

n = 2 : H1 grad // H(curl) oo rot // H(div)
div // L2

n = 3 : H1 grad // H(curl) curl // H(div)
div // L2

Note that for n = 2, we use the definitions

curl ~F :=
∂F1

∂y
− ∂F2

∂x
and rot~F :=

[
0 −1
1 0

]
~F where ~F (x, y) :=

[
F1(x, y)
F2(x, y)

]
.

Thus, in R2, we have both curl∇φ = 0 and divrot∇φ = 0 for any φ ∈ H2. Put differently, rot gives an isomorphism from
H(curl) to H(div) in R2. In some cases we will write H(curl,Ω) and H(div,Ω) if we wish to emphasize the domain in
consideration.
In the terminology of differential topology, the applicable sequence is described more simply as the L2 deRham complex of Ω.
The spaces are re-cast as differential form spaces HΛk and the operators as instances of the exterior derivative dk, yielding

n = 2 : HΛ0 d0 // HΛ1
∼= // HΛ1oo d1 // HΛ2

n = 3 : HΛ0 d0 // HΛ1 d1 // HΛ2 d2 // HΛ3

Finite element methods seek approximate solutions to a PDE in finite dimensional subspaces Λkh of the HΛk spaces, where
h denotes the maximum width of a domain element associated to the subspace. The theory of finite element exterior calculus
classifies two families of suitable choices of Λkh spaces on meshes of simplices, denoted PrΛk and P−r Λk[9, 11]. The space
PrΛk is defined as “those differential forms which, when applied to a constant vector field, have the indicated polynomial
dependence”[11, p. 328], which can be interpreted informally as the set of differential k forms with polynomial coefficients of
total degree at most r. The space P−r Λk is then defined as the direct sum

P−r Λk := Pr−1Λk ⊕ κHr−1Λk+1, (2.69)

where κ is the Koszul operator and Hr denotes homogeneous polynomials of degree r[11, p. 331]. We will use the coordinate
formulation of κ, given in[11, p. 329] as follows. Let ω ∈ Λk and suppose that it can be written in local coordinates as
ωx = a(x)dxσ1 ∧ · · · ∧ dxσk . Then κω is written as

(κω)x :=

k∑
i=1

(−1)i+1a(x)xσ(i)dxσ1
∧ · · · ∧ d̂xσi ∧ · · · ∧ dxσk , (2.70)

where ∧ denotes the wedge product and d̂xσi means that the term is omitted. We summarize the relationship between the
spaces P1Λk, P−1 Λk and certain well-known finite element families in dimension n = 2 or 3 in Table 2.3.
A crucial property of PrΛk and P−r Λk is that each includes in its span a sufficient number of polynomial differential k-forms to
ensure an a priori error estimate of order r inHΛk norm. In the classical description of finite element spaces, this approximation
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n k dim space classical description reference
2 0 3 P1Λ0(T ) Lagrange, degree ≤ 1

3 P−1 Λ0(T ) Lagrange, degree ≤ 1
1 6 P1Λ1(T ) Brezzi-Douglas-Marini, degree ≤ 1 [40]

3 P−1 Λ1(T ) Raviart-Thomas, order 0 [173]
2 3 P1Λ2(T ) discontinuous linear

1 P−1 Λ2(T ) discontinuous piecewise constant
3 0 4 P1Λ0(T ) Lagrange, degree ≤ 1

4 P−1 Λ0(T ) Lagrange, degree ≤ 1
1 12 P1Λ1(T ) Nédélec second kind H(curl), degree ≤ 1 [159, 39]

6 P−1 Λ1(T ) Nédélec first kind H(curl), order 0 [158]
2 12 P1Λ2(T ) Nédélec second kind H(div), degree ≤ 1 [159, 39]

4 P−1 Λ2(T ) Nédélec first kind H(div), order 0 [158]
3 4 P1Λ3(T ) discontinuous linear

1 P−1 Λ3(T ) discontinuous piecewise constant

Table 2.3: Correspondence between P1Λk(T ), P−1 Λk(T ) and common finite element spaces associated to a simplex T of
dimension n. Further explanation of these relationships can be found in [Arnold, Falk, Winther 2006 and 2010]. On simplices,
our constructions recover known local bases for each of these spaces.

power is immediate; any computational or ‘local’ basis used for implementation of these spaces must, by definition, span the
requisite polynomial differential forms. The main results of this paper are proofs that generalized barycentric coordinates can
be used as local bases on polygonal and polyhedral element geometries to create analogues to the lowest order PrΛk and P−r Λk

spaces with the same polynomial approximation power and global continuity properties.
In the remainder of the paper, we will frequently use standard vector proxies[2] in place of differential form notation, as
indicated here: [

u1 u2

]T ←→ u1dx1 + u2dx2 ∈ Λ1(R2),[
v1 v2 v3

]T ←→ v1dx1 + v2dx2 + v3dx3 ∈ Λ1(R3),[
w1 w2 w3

]T ←→ w1dx2dx3 + w2dx3dx1 + w3dx1dx2 ∈ Λ2(R3).

Generalized Barycentric Coordinates Let m be a convex n-dimensional polytope in Rn with vertex set {vi}, written as
column vectors. A set of non-negative functions {λi} : m → R are called generalized barycentric coordinates on m if for
any linear function L : m→ R, we can write

L =
∑
i

L(vi)λi. (2.71)

We will use the notation I to denote the n× n identity matrix and x to denote the vector (x1, x2, · · · , xn)T where xi is the ith
coordinate in Rn. We have the following useful identities: ∑

i

λi = 1 (2.72)∑
i

viλi(x) = x (2.73)∑
i

∇λi(x) = 0 (2.74)∑
i

vi∇λTi (x) = I (2.75)

Equations (2.72) and (2.73) follow immediately from (2.71) while (2.74) and (2.75) follow by taking the gradient of equations
(2.72) and (2.73), respectively.



2.7. FINITE ELEMENTS AND ERROR ESTIMATION 75

Applications of generalized barycentric coordinates to finite element methods have primarily focused on scalar-valued PDE
problems[153, 172, 203, 204, 221]. By incorporating gradients of the λi functions, we can exploit the above identities to build
functions for vector-valued problems.

Whitney forms Let m be a convex n-dimensional polytope in Rn with vertex set {vi} and an associated set of generalized
barycentric coordinates {λi}. Define associated sets of index pairs and triples by

E := {(i, j) : vi,vj ∈m}, (2.76)
T := {(i, j, k) : vi,vj ,vk ∈m}. (2.77)

If m is a simplex, the elements of the set
{λi∇λj − λj∇λi : (i, j) ∈ E}

are called Whitney 1-forms and are part of a more general construction[220], which we now present. Again, if m is a simplex,
the Whitney k-forms are elements of the set{

k!

k∑
i=0

(−1)i λji dλj0 ∧ . . . ∧ d̂λji ∧ . . . ∧ dλjk

}
, (2.78)

where j0, . . . , jk are indices of vertices of m. Up to sign, this yields a set of
(
n+1
k+1

)
distinct functions and provides a local basis

for P−1 Λk[10].
We now generalize these definitions to the case where m is non necessarily a simplex. For any (i, j) ∈ E, define a generalized
Whitney 1-form on m by

Wij := λi∇λj − λj∇λi. (2.79)

If n = 3, then for any (i, j, k) ∈ T , define a generalized Whitney 2-form on m by

Wijk := (wi∇wj ×∇wk) + (wj∇wk ×∇wi) + (wk∇wi ×∇wj). (2.80)

Note thatWii = 0 and if i, j, and k are not distinct thenWijk = 0.
Whitney forms have natural interpretations as vector fields when k = 1 or n − 1. Interpolation of vector fields requires less
data regularity than the canonical scalar interpolation theory using nodal values. Averaged interpolation developed for scalar
spaces[56, 189] has been extended to families of spaces from finite element exterior calculus[54]. Recent results on polygons
and polyhedra can be extended to less regular data with average interpolation following the framework in[169], based on affine
invariance of the coordinates.

Global Continuity Results

We first present results about the global continuity properties of vector-valued functions defined in terms of generalized bary-
centric coordinates and their gradients over meshes of n-dimensional polytopes in Rn with n = 2 or 3. When we say that a
function is defined ‘piecewise with respect to a mesh,’ we mean that the definition of the function on the interior of a mesh
element depends only on geometrical properties of the element (as opposed to depending on adjacent elements, for instance).
We begin with a general result about global continuity in such a setting.

Proposition 2.47. Fix a meshM of n-dimensional polytopes in Rn with n = 2 or 3. Let u be a vector field defined piecewise
with respect to M. Let f be a face of codimension 1 with u1, u2 denoting the values of u on f as defined by the two n-
dimensional mesh elements sharing f. Write ui = Tf(ui) + Nf(ui) where Tf(ui) and Nf(ui) are the vector projections of ui
onto f and its outward normal, respectively.

(i.) If Tf(u1) = Tf(u2) for all f ∈M then u ∈ H(curl,M).

(ii.) If Nf(u1) = Nf(u2) for all f ∈M then u ∈ H(div,M).

The results of Proposition 2.47 are well-known in the finite element community. A proof employing the notation used here can
be found in[97, Section 2.4], based on the presentation in the textbook by Ern and Guermond[76, Section 1.4].
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Proposition 2.48. Let m be a convex n-dimensional polytope in Rn with vertex set {vi}i∈I and an associated set of generalized
barycentric coordinates {λi}. Let f be a face of m of codimension 1 whose vertices are indexed by J ( I . If k 6∈ J then λk ≡ 0
on f and ∇λk is normal to f on f, pointing inward.

Proof. Fix a point x0 ∈ m. Observe that
∑
i∈I viλi(x0) is a point in m lying in the interior of the convex hull of those vi for

which λi(x0) > 0, since the λi are non-negative by definition. By (2.73), this summation is equal to x0. Hence, if x0 ∈ f, then
λk ≡ 0 on f unless k ∈ J , proving the first claim. The same argument implies that for any k 6∈J, f is part of the zero level set
of λk, meaning∇λk is orthogonal to f on f. In that case,∇λk points inward since λk has support inside m but not on the other
side of f.

We now show that generalized barycentric coordinates and their gradients defined over individual elements in a mesh of polyto-
pes naturally stitch together to build conforming finite elements with global continuity of the expected kind. To be clear about
the context, we introduce notation for generalized barycentric hat functions, defined piecewise over a mesh of polytopes {m}
by

λ̂i(x) =

{
λi(x) as defined on m if x ∈m and vi ∈m;
0 if x ∈m but vi 6∈m.

We note a slight abuse of notation above: generalized barycentric coordinates {λi} are usually indexed locally on a particular
polygon while the above functions require a global indexing of the verticies to consistently identify matching functions across
element boundaries. Further, λ̂i is well-defined at vertices and edges of the mesh as any choice of generalized barycentric
coordinates on a particular element will give the same value at such points. If x belongs to the interior of shared faces between
polyhedra in R3 (or higher order analogues), λ̂i(x) is well-defined so long as the same kind of coordinates are chosen on each
of the incident polyhedra (e.g. Wachspress or mean value).
Our first result about global continuity concerns functions of the form λ̂i∇λ̂j , where i and j are indices of vertices belonging
to at least one fixed mesh element m. Note that the vertices vi and vj need not define an edge of m.

Theorem 2.49. Fix a meshM of n-dimensional polytopes {m} in Rn with n = 2 or 3 and assign some ordering v1, . . . ,vp
to all the vertices in the mesh. Fix an associated set of generalized barycentric coordinate hat functions λ̂1, . . . , λ̂p. Let

u ∈ span
{
λ̂i∇λ̂j : ∃m ∈M such that vi,vj ∈m

}
.

Then u ∈ H(curl,M).

Proof. Following the notation of Proposition 2.47, it suffices to show that Tf(u1) = Tf(u2) for an arbitrary face f ∈ M of
codimension 1. Consider an arbitrary term cij λ̂i∇λ̂j in the linear combination defining u. Observe that if vi 6∈ f, then by
Proposition 2.48, λ̂i ≡ 0 on f and hence u ≡ 0 on f. Further, if vj 6∈ f, then ∇λ̂j is orthogonal to f. Therefore, without loss of
generality, we can reduce to the case where vi,vj ∈ f. Since λ̂i and λ̂j are both C0 onM, their well-defined values on f suffice
to determine the projection of λ̂i∇λ̂j to f. Since the choice of pair ij was arbitrary, we have Tf(u1) = Tf(u2), completing the
proof.

Remark 2.50. When n = 2, we may replace λ̂i∇λ̂j in the statement Theorem 2.49 by rot λ̂i∇λ̂j and conclude that u ∈
H(div,M). This is immediate since rot gives an isomorphism betweenH(curl) andH(div) in R2, as discussed in Section 2.7.3.
When n = 3, we construct functions in H(div,M) using triples of indices associated to vertices of mesh elements, according
to the next result.

Theorem 2.51. Fix a meshM of polyhedra {m} in R3 and assign some ordering v1, . . . ,vp to all the vertices in the mesh.
Fix an associated set of generalized barycentric coordinate hat functions λ̂1, . . . , λ̂p. Let

u ∈ span
{
λ̂i∇λ̂j ×∇λ̂k : ∃m ∈M such that vi,vj ,vk ∈m

}
.

Then u ∈ H(div,M).

Proof. Again following the notation of Proposition 2.47, it suffices to show that Nf(u1) = Nf(u2) for an arbitrary face f ∈M
of codimension one whose vertices are indexed by J . We will use the shorthand notation

ξijk := λ̂∇λ̂i ×∇λ̂jk.
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Consider an arbitrary term cijkξijk in the linear combination defining u. We will first show that ξijk has a non-zero normal
component on f only if i, j, k ∈ J . If i 6∈ J then λ̂i ≡ 0 on f by Proposition 2.48, making ξijk ≡ 0 on f, as well. If i ∈ J
but j, k 6∈ J , then ∇λ̂j and ∇λ̂k are both normal to f on f by Proposition 2.48. Hence, their cross product is zero and again
ξijk ≡ 0 on F . If i, j ∈ J but k 6∈ J then again∇λ̂k ⊥ f on f. Since∇λ̂j ×∇λ̂k ⊥ ∇λ̂k, we conclude that ξijk has no normal
component on f. The same argument holds for the case i, k ∈ J , j 6∈ J . The only remaining case is i, j, k ∈ J , proving the
claim.
Thus, without loss of generality, we assume that i, j, k ∈ J . Since λ̂j and λ̂k are both C0 onM, their well-defined values on
f suffice to determine the projection of ∇λ̂j and ∇λ̂k to f, which then uniquely defines the normal component of ∇λ̂j ×∇λ̂k
on f. Since λ̂i is also C0 onM, and the choice of i, j, k was arbitrary, we have Nf(u1) = Nf(u2), completing the proof.

Polynomial Reproduction Results

We now show how generalized barycentric coordinate functions λi and their gradients can reproduce all the polynomial dif-
ferential forms in P1Λk and P−1 Λk for 0 ≤ k ≤ n with n = 2 or 3. The results for the functions λi∇λj and Wij extend
immediately to any value of n ≥ 2 since those functions do not use any dimension-specific operators like × or rot.

Theorem 2.52. Fix n ≥ 2. Let m be a convex n-dimensional polytope in Rn with vertex set {vi}. Given any set of generalized
barycentric coordinates {λi} associated to m, ∑

i,j

λi∇λj(vj − vi)
T = I, (2.81)

where I is the n× n identity matrix. Further, for any n× n matrix A,∑
i,j

(Avi · vj)(λi∇λj) = Ax. (2.82)

Thus, span {λi∇λj : vi,vj ∈m} ⊇ P1Λ1(m).

Proof. From (2.72) - (2.75), we see that

∑
i,j

λi∇λj(vj − vi)
T =

(∑
i

λi

)∑
j

∇λjvTj

−
∑

j

∇λj

(∑
i

λiv
T
i

)
= 1(IT )− 0(xT ) = I,

establishing (2.81). Similarly for (2.82), a bit of algebra yields∑
i,j

(Avi · vj)(λi∇λj) =
∑
i,j

(λi∇λj)vTj Avi =
∑
i,j

∇λjvTj Aviλi

=

∑
j

∇λjvTj

A

(∑
i

viλi

)
= ITAx = Ax

We have shown that any vector of linear polynomials can be written as a linear combination of λi∇λj functions, hence the span
of these functions contains the vector proxies for all elements of P1Λ1(m).

Corollary 2.53. Let m be a convex polygon in R2 with vertex set {vi}. Given any set of generalized barycentric coordinates
{λi} associated to m, ∑

i,j

rotλi∇λj(rot(vj − vi))
T = I, (2.83)

where I is the 2× 2 identity matrix. Further, for any 2× 2 matrix A,∑
i,j

(−rotAvi · vj)(rotλi∇λj) = Ax. (2.84)

Thus, span {rotλi∇λj : vi,vj ∈m} ⊇ P1Λ1(m).
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Proof. For (2.83), observe that for any w, y ∈ R2, wyT =

[
a b
c d

]
implies (rot w)(rot y)T =

[
d −c
−b a

]
. Hence, the result

follows immediately from (2.81). For (2.84), note rot−1 = −rot and define B := −rotA. Using B as the matrix in (2.82), we
have ∑

i,j

(Bvi · vj)(λi∇λj) = Bx

Applying rot to both sides of the above yields the result.

Theorem 2.54. Let m be a convex polyhedron in R3 with vertex set {vi}. Given any set of generalized barycentric coordinates
{λi} associated to m,

1

2

∑
i,j,k

λi∇λj ×∇λk ((vj − vi)× (vk − vi))
T

= I, (2.85)

where I is the n× n identity matrix. Further, for any n× n matrix A,
1

2

∑
i,j,k

(Avi · (vj × vk))(λi∇λj ×∇λk) = Ax. (2.86)

Thus, span {λi∇λj ×∇λk : vi,vj ,vk ∈m} ⊇ P1Λ2(m).

Proof. We start with (2.85). First, observe that

(vj − vi)× (vk − vi) = vi × vj + vj × vk + vk × vi.

By (2.74), we have that∑
i,j,k

λi∇λj ×∇λk (vi × vj)
T

=
∑
i,j

λi

(
∇λj ×

(∑
k

∇λk
))

(vi × vj)
T

= 0.

A similar argument shows that replacing vi × vj with vk × vi also yields the zero matrix. Hence,∑
i,j,k

λi∇λj ×∇λk ((vj − vi)× (vk − vi))
T

=
∑
i,j,k

λi∇λj ×∇λk (vj × vk)
T

=
∑
i

λi
∑
j,k

(∇λj ×∇λk) (vj × vk)
T

=
∑
j,k

(∇λj ×∇λk) (vj × vk)
T
.

To simplify this further, we use the Kronecker delta symbol δi1i2 and the 3D Levi-Civita symbol εi1i2i3 . It suffices to show that
the entry in row r, column c of the matrix

∑
j,k(∇λj ×∇λk) (vj × vk)

T is 2δrc. We see that∑
j,k

(∇λj ×∇λk) (vj × vk)
T


rc

=
∑
j,k

εr`m(1 j)`(2 k)mεcpq(vj)p(vk)q

= εr`mεcpq
∑
j

(vj)p(3 j)`
∑
k

(vk)q(4 k)m

= εr`mεcpqδ`pδmq.

The last step in the above chain of equalities follows from (2.75). Observe that εr`mεcpqδ`pδmq = εr`mεc`m = 2δrc, as desired.
For (2.86), observe that∑

i,j,k

(Avi · (vj × vk))(λi∇λj ×∇λk) =

(∑
i

Aviλi

)
·
∑
j,k

(vj × vk)(∇λj ×∇λk)

=
∑
j,k

(∇λj ×∇λk)(vj × vk)T

(
A
∑
i

viλi

)
= 2 I Ax = 2Ax.
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Note that we used the proof of (2.85) to rewrite the sum over j, k as 2I. We have shown that any vector of linear polynomials
can be written as a linear combination of λi∇λj ×∇λk functions, hence the span of these functions contains the vector proxies
for all elements of P1Λ2(m).

Theorem 2.55. Let m be a convex polygon in R2 with vertex set {vi}. Given any set of generalized barycentric coordinates
{λi} associated to m,

1

2

∑
i,j,k

λi∇λj · rot∇λk ((vj − vi) · rot(vk − vi)) = 1. (2.87)

Further, for any vector α ∈ R2,
1

2

∑
i,j,k

(αTvi(vj · rotvk))(λi∇λj · rot∇λk) = αT x. (2.88)

Thus, span {λi∇λj · rot∇λk : vi,vj ,vk ∈m} ⊇ P1Λ2(m).

Proof. The proof is essentially identical to that of Theorem 2.54. First,

(vj − vi) · rot(vk − vi) = vi · rotvj + vj · rotvk + vk · rotvi,

and by (2.74),

∑
i,j,k

λi∇λj · rot∇λk (vi · rotvj) =
∑
i,j

λi

(
∇λj · rot

(∑
k

∇λk
))

(vi · rotvj) = 0.

A similar argument shows that replacing vi · rotvj with vk · rotvi also yields zero. Hence as before,∑
i,j,k

λi∇λj · rot∇λk ((vj − vi) · rot(vk − vi))
T

=
∑
j,k

(∇λj · rot∇λk) (vj · rotvk)
T
.

Finally, the same argument holds using the 2D Levi-Civita symbol:∑
j,k

(∇λj · rot∇λk) (vj · rotvk) =
∑
j,k

ε`m(5 j)`(6 k)mεpq(vj)p(vk)q

= ε`mεpq
∑
j

(vj)p(7 j)`
∑
k

(vk)q(8 k)m

= ε`mεpqδ`pδmq = ε`mε`m = 2,

establishing (2.87). For (2.88), observe that

∑
i,j,k

(αTvi(vj · rotvk))(λi∇λj · rot∇λk) =

(∑
i

αTviλi

)∑
j,k

(vj · rotvk)(∇λj · rot∇λk)

=
∑
j,k

(∇λj · rot∇λk)(vj · rotvk)T

(
αT
∑
i

viλi

)
= 2αT x.

Remark 2.56. The proof of Theorem 2.55 can also be obtained by augmenting the 2D vectors and matrices with zeros to make
3D vectors and matrices and recognizing (2.87) as the element equality in the third row and third column of (2.85).

We also have polynomial reproduction results using the Whitney-like basis functions (2.79) and (2.80). Recall thatHr denotes
homogeneous polynomials of degree r and let Mn×n denote n× n matrices. We have the following theorems.
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Theorem 2.57. Fix n ≥ 2. Let m be a convex n-dimensional polytope in Rn with vertex set {vi} and an associated set of
generalized barycentric coordinates {λi}. Then ∑

i<j

Wij(vj − vi)
T = I. (2.89)

Further, define a map Φ : H1Λ1(Rn)→Mn×n by

n∑
j=1

(
n∑
i=1

aijxj

)
dxi 7−→ [sign (aij)] .

Then for all ω ∈ H0Λ2(Rn), ∑
i<j

(Φ(κω)vi) · vj)Wij = (Φ(κω))x. (2.90)

Thus, span {Wij : vi,vj ∈m} ⊇ P−1 Λ1(m).

Proof. For (2.89), we reorganize the summation and apply (2.81) to see that∑
i<j

Wij(vj − vi)
T =

∑
i<j

λi∇λj(vj − vi)
T −

∑
i<j

9 i(vj − vi)
T

=
∑
i<j

λi∇λj(vj − vi)
T +

∑
j<i

λi∇λj(vj − vi)
T

=
∑
i,j

λi∇λj(vj − vi)
T = I.

For (2.90), fix ω ∈ H0Λ2(Rn) and express it as
ω =

∑
i<j

aijdxidxj ,

for some coefficients aij ∈ R. Then
κω =

∑
i<j

aij(xidxj − xjdxi).

The entries of the matrix Φ(κω) are thus given by

[Φ(κω)]ij =


sign (aij) if i < j,

−sign (aij) if i > j,

0 if i = j.

(2.91)

From (2.82), we have that ∑
i,j

(Φ(κω)vi) · vj)λi∇λj = (Φ(κω))x, ∀ω ∈ H0Λ2(Rn)

Since Φ(κω) is anti-symmetric by (2.91), we have that∑
i,j

(Φ(κω)vi) · vj)λi∇λj =
∑
i<j

(Φ(κω)vi) · vj)λi∇λj +
∑
j<i

(Φ(κω)vi) · vj)λi∇λj

=
∑
i<j

(Φ(κω)vi) · vj)Wij .

We have shown that any vector proxy of an element of P0Λ1(m) or κH0Λ2(m) can be written as a linear combination of
Wij functions. By (2.69), we conclude that the span of the Wij functions contains the vector proxies for all elements of
P−1 Λ1(m).
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Corollary 2.58. Let m be a convex polygon in R2 with vertex set {vi}. Given any set of generalized barycentric coordinates
{λi} associated to m, ∑

i<j

rotWij rot(vj − vi)
T = I, (2.92)

where I is the 2× 2 identity matrix. Further, ∑
i<j

((rot vi) · vj) rotWij = x. (2.93)

Thus, span {rotWij : vi,vj ∈m} ⊇ P−1 Λ1(m).

Proof. By the same argument as the proof of (2.83) in Corollary 2.53, the identity (2.92) follows immediately from (2.89). For
(2.93), observe that setting ω := 1 ∈ H0Λ2(R2), we have that Φ(κω) = rot. Therefore, (2.90) implies that∑

i<j

(rot vi) · vj)Wij = rot x.

Applying rot to both sides of the above equation completes the proof.

Theorem 2.59. Let m be a convex polyhedron in R3 with vertex set {vi} and an associated set of generalized barycentric
coordinates {λi}. Then ∑

i<j<k

Wijk ((vj − vi)× (vk − vi))
T

= I, (2.94)

and ∑
i<j<k

(vi · (vj × vk))Wijk = x. (2.95)

Thus, span {Wijk : vi,vj ,vk ∈m} ⊇ P−1 Λ2(m).

Proof. We adopt the shorthand notations

ξijk := λi∇λj ×∇λk, zijk := (vj − vi)× (vk − vi), vijk := vi · (vj × vk).

For (2.94), we re-write (2.85) as ∑
i,j,k

ξijkzijkT = 2I.

Observe that ξijkzijkT = (−ξikj)(−zikj)T = ξikjzikjT and zijk = 0 if i, j, k are not distinct. Thus,

2I =
∑
i<j<k
k<i<j
j<k<i

ξijkzijkT +
∑
i<k<j
k<j<i
j<i<k

ξikjzikjT .

The two summations have different labels for the indices but are otherwise identical. Therefore,

I =
∑
i<j<k

ξijkzijkT +
∑
k<i<j

ξijkzijkT +
∑
j<k<i

ξijkzijkT

=
∑
i<j<k

ξijkzijkT + ξjkizjkiT + ξkijzkijT

=
∑
i<j<k

(ξijk + ξjki + ξkij)zijkT

=
∑
i<j<k

Wijk ((vj − vi)× (vk − vi))
T
.
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For (2.95), we take A as the identity, and re-write (2.86) as∑
i,j,k

vijkξijk = 2x.

Observe that vijkξijk = (−vikj)(−ξikj) = vikjξikj and vijk = 0 if i, j, k are not distinct. Thus,

2x =
∑
i<j<k
k<i<j
j<k<i

vijkξijk +
∑
i<k<j
k<j<i
j<i<k

vikjξikj .

The rest of the argument follows similarly, yielding

x =
∑
i<j<k

vijkξijk +
∑
k<i<j

vijkξijk +
∑
j<k<i

vijkξijk =
∑
i<j<k

(vi · (vj × vk))Wijk.

Note that H0Λ3(m) is generated by the volume form η = dxdydz and that κη has vector proxy x. Thus, by (2.69), we have
shown that the span of theWijk functions contains the vector proxy of any element of P−1 Λ2(m).

Remark 2.60. There are some additional constructions in this same vein that could be considered. On a polygon in R2, we can
defineWijk in the same way as (2.80), interpreting × as the two dimensional cross product. Likewise, on a polyhedron in R3,
we can defineWijk` according to formula (2.78), yielding functions that are summations of terms like λi(∇λj · (∇λk ×∇λ`).
These constructions will yield the expected polynomial reproduction results, yet they are not of practical interest in finite element
contexts, as we will see in the next section.

Polygonal and Polyhedral Finite Element Families

LetM be a mesh of convex n-dimensional polytopes {m} in Rn with n = 2 or 3 and assign some ordering v1, . . . ,vp to all
the vertices in the mesh. Fix an associated set of generalized barycentric coordinates λ1, . . . , λp where λi is defined piecewise
over the set of polytopes incident to vi. In Table 2.1, we list all the types of scalar-valued and vector-valued functions that
we have defined this setting. When used over all elements in a mesh of polygons or polyhedra, these functions have global
continuity and polynomial reproduction properties as indicated in the table.
These two properties – global continuity and polynomial reproduction – are essential and intertwined necessities in the con-
struction of HΛk-conforming finite element methods on any type of domain mesh. Global continuity of type HΛk ensures that
the piecewise-defined approximate solution is an element of the function space HΛk in which a solution is sought. Polynomial
reproduction of type P1Λk or P−1 Λk ensures that the error between the true solution and the approximate solution decays line-
arly with respect to the maximum diameter of a mesh element, as measured in HΛk norm. On meshes of simplicial elements,
the basis functions listed in Table 2.1 are known and often used as local bases for the corresponding classical finite element
spaces listed in Table 2.3, meaning our approach recapitulates known methods on simplicial meshes.

Relation to polygonal serendipity elements. As a brief aside, consider the scalar bi-quadratic element on rectangles, which
has nine degrees of freedom: one associated to each vertex, one to each edge midpoint, and one to the center of the square. It has
long been known that the ‘serendipity’ element, which has only the eight degrees of freedom associated to the vertices and edge
midpoints of the rectangle, is also an H1-conforming, quadratic order method. In this case, polynomial reproduction requires
the containment of P2Λ0(m) in the span of the basis functions, meaning at least six functions are required per element m ∈M.
To ensure global continuity of H1, however, the method must agree ‘up to quadratics’ on each edge, which necessitates the
eight degrees of freedom associated to the boundary. Therefore, the serendipity space associated to the scalar bi-quadratic
element on a rectangle has dimension eight.
In a previous work[171], we generalized this ‘serendipity’ reduction to P2Λ0(M) where M is a mesh of strictly convex
polygons in R2. For a simple polygon with n vertices (and thus n edges), polynomial reproduction still only requires 6 basis
functions, while global continuity of H1 still requires reproduction of quadratics on edges, leading to a total of 2n basis
functions required per element m ∈ M. Given a convex polygon, our approach takes the n+

(
n
2

)
pairwise products of all the

λi functions and forms explicit linear combinations to yield a set of 2n basis functions with the required global H1 continuity
and polynomial reproduction properties.
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n k space # construction # boundary # polynomial

2 0 P1Λ0(m) v v 3
P−1 Λ0(m) v v 3

1 P1Λ1(m) 2

(
v

2

)
2e 6

P−1 Λ1(m)

(
v

2

)
e 3

2 P1Λ2(m) 3

(
v

3

)
0 3

P−1 Λ2(m)

(
v

3

)
0 1

Table 2.4: Dimension counts relevant to serendipity-style reductions in basis size. Here, v and e denote the number of vertices
and edges in the polygonal element m. The column ‘# construction’ gives the number of basis functions we define (cf.
Table 2.1), ‘# boundary’ gives the number of basis functions related to inter-element continuity, and ‘# polynomial’ gives the
dimension of the contained space of polynomial differential forms.

Reduction of basis size. A similar reduction procedure can be applied to the polygonal and polyhedral spaces described in
Table 2.1. A key observation is that the continuity results of Theorems 2.49 and 2.51 only rely on the agreement of basis
functions whose indices are of vertices on a shared boundary edge (in 2D) or face (in 3D). For example, if vertices vi and vj
form the edge of a polygon in a 2D mesh, H(curl,M) continuity across the edge comes from identical tangential contributions
in the λi∇λj and10 i functions from either element containing this edge and zero tangential contributions from all other basis
functions. Thus, basis functions whose indices do not belong to a single polyon edge (in 2D) or polyhedral face (in 3D) do not
contribute to inter-element continuity, allowing the basis size to be reduced.

To quantify the extent to which the bases we have defined could be reduced without affecting the global continuity properties,
we count the number of functions associated with codimension 1 faces for each space considered. For a polygon in 2D, the
results are summarized in Table 2.4. The k = 0 case is optimal in the sense that every basis function λi contributes to the
H1-continuity in some way, meaning no basis reduction is available. In the k = 1 cases, the number of basis functions we
construct is quadratic in the number of vertices, v, of the polygon, but the number associated with the boundary is only linear
in the number of edges, e. Since e = v for a simple polygon, this suggests a basis reduction procedure would be both relevant
and useful; the description of such a reduction will be the focus of a future work. In the k = 2 cases, our procedure constructs
O(v3) basis functions but no inter-element continuity is required; in these cases, a discontinuous Galerkin or other type of finite
element method would be more practical.

For a polyhedron m in 3D, the results are summarized in Table 2.5. As in 2D, the basis for the k = 0 case cannot be reduced
while the bases for the k = n cases would not be practical for implementation since no inter-element continuity is required.
In the k = 1 cases, the number of basis functions we construct is again quadratic in v, while the number of basis functions
required for continuity can be reduced for non-simplicial polyhedra. For instance, if m is a hexahedron, our construction for
P1Λ1 gives 56 functions but only 48 are relevant to continuity; in the P−1 Λ1 case, we construct 28 functions but only 20 are
relevant to continuity. In the k = 2 cases, a similar reduction is possible for non-simplicial polyhedra. Again in the case
of a hexahedron, we construct 168 functions for P1Λ1 and 56 functions for P−1 Λ1, but the elements require only 72 and 24
functions, respectively, for inter-element continuity. Chen and Wang[48] have proposed an approach for such constructions by
making use of many of the results from this manuscript.

An additional line of inquiry along these lines is the derivation of geometry-independent bounds on reduced bases. While
Sobolev-norm estimates on the original basis can be directly inferred from bounds on the underlying generalized barycentric
coordinates, a serendipity-style reduction requires further analysis to ensure that the coefficients of the linear combinations
used can be bounded uniformly over the geometric class of elements considered. In practice, a least-squares solution for
constructing the optimal matrix is straightforward to implement, e.g.[202], but rigorous analysis of robustness will require an
explicit construction of the reduction processes.
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n k space # construction # boundary # polynomial

3 0 P1Λ0(m) v v 4
P−1 Λ0(m) v v 4

1 P1Λ1(m) 2

(
v

2

) (
f∑
a=1

va(va − 1)

)
− 2e 12

P−1 Λ1(m)

(
v

2

) (
f∑
a=1

(
va
2

))
− e 6

2 P1Λ2(m) 3

(
v

3

) f∑
a=1

va(va − 1)(va − 2)

2
12

P−1 Λ2(m)

(
v

3

) f∑
a=1

(
v

3

)
4

3 P1Λ3(m) 4

(
v

4

)
0 4

P−1 Λ3(m)

(
v

4

)
0 1

Table 2.5: The n = 3 version of Table 2.4. Here, f denotes the number of faces on a polyhedral element m and va denotes
the number of vertices on a particular face fa. The entries of the ‘# boundary’ column are determined by counting functions
associated to each face of the polyhedron and, in the k = 1 cases, accounting for double-counting by subtraction.

Relation to mimetic and virtual element methods Similar to the mimetic finite difference method[33, 38, 41], the recently
developed virtual element method[27] considers the linear system Kuh = f that is used to compute the finite element solution
uh on a mesh of polygons or polyhedra. In a first order method for the Poisson equation on a mesh of polygons, the entries of
matrix K have the form

Kij =

∫
M
∇λi · ∇λj ,

where λi are the harmonic generalized barycentric coordinates associated to the mesh. This approach is shown to be consistent,
meaning it recovers linear polynomial data exactly, and stable, meaning the discrete norm associated with the method is equi-
valent to the continuous norm for the problem. A description of how to apply the method to H(curl) and H(div) problems has
been provided[28] and some comparisons to generalized barycentric approaches have been provided[150]. We expect that the
explicit basis functions constructed for polygonal and polyhedral elements here will inform the implementation of new types of
vector-valued virtual element methods.

Error Estimation We consider first-order interpolation operators from some generalization of barycentric coordinates to
arbitrary convex polygons. A set of barycentric coordinates {λi} for Ω associated with the interpolation operator I : H2(Ω)→
span{λi} ⊂ H1(Ω) is given by

Iu :=
∑
i

u(vi)λi. (2.96)

Since barycentric coordinates are unique on triangles, this is merely the standard linear Lagrange interpolation operator when
Ω is a triangle.
Before stating any error estimates, we fix some notation. For multi-index α = (α1, α2) and point x = (x, y), define xα :=
xα1yα2 , α! := α1α2, |α| := α1 + α2, and Dαu := ∂|α|u/∂xα1∂yα2 . The Sobolev semi-norms and norms over an open set Ω
are defined by

|u|2Hm(Ω) :=

∫
Ω

∑
|α|=m

|Dαu(x)|2∂x and ||u||2Hm(Ω) :=
∑

0≤k≤m

|u|2Hm(Ω) .

The H0-norm is the L2-norm and will be denoted ||·||L2(Ω).



2.8. BIOLOGICAL APPLICATIONS 85

Analysis of the finite element method often yields bounds on the solution error in terms of the best possible approximation in
the finite-dimensional solution space. Thus the challenge of bounding the solution error is reduced to a problem of finding a
good interpolant. In many cases Lagrange interpolation can provide a suitable estimate which is asymptotically optimal. For
first-order interpolants that we consider, this optimal convergence estimate has the form

||u− Iu||H1(Ω) ≤ C diam(Ω) |u|H2(Ω) , ∀u ∈ H2(Ω). (2.97)

To prove estimate (2.97) in our setting, it is sufficient to restrict the analysis to a class of domains with diameter one and show
that I is a bounded operator from H2(Ω) into H1(Ω), that is

||Iu||H1(Ω) ≤ CI ||u||H2(Ω) , ∀u ∈ H1(Ω). (2.98)

We call equation (2.98) the H1 interpolant estimate associated to the barycentric coordinates λi used to define I .
The optimal convergence estimate (2.97) does not hold uniformly over all possible domains; a suitable geometric restriction
must be selected to produce a uniform bound. Even in the simplest case (Lagrange interpolation on triangles), there is a gap
between geometric criteria which are simple to analyze (e.g. the minimum angle condition) and those that encompass the largest
possible set of domains (e.g. the maximum angle condition).

2.8 Biological Applications
Complementary space visualization can be used for model checking, error analysis, detection of topologically uncertain regions,
topological preservation in model reduction, and dynamic deformation visualization, as we outline in the following subsections.

2.8.1 Tertiary Motif Detection
Using the Morse-Smale complex and stable and unstable manifolds, we can detect helices and sheets in molecular structures as
well as large scale ‘tertiary motifs’.

2.8.2 Ion channel models
Ion channels are a cell’s mechanism for regulating the flow of ions into and out of the cell. They usually have two main structural
confirmations: the “open” configuration, in which the tunnel through its center is wide enough to allow passage of the ions,
and a “closed” configuration in which it is not. We look at the acetylcholine receptor (PDB ID 2BG9) as a particular example
of an ion channel. This molecule is embedded in a cell membrane, as shown in Figure 2.18a, and is a control mechanism for
the flow of sodium and potassium ions into the cell. It is made up of five homologous (in the biological sense) subunits. A
conformational change from closed to open occurs when acetylcholine, a small neurotransmitter ligand, docks into the five small
pockets on the exterior of the molecule near the tunnel opening in the extracellular region. In particular, when acetylcholine
fills one of these pockets, it causes the attached chain subunit of 2BG9 to twist slightly. The combined effect from rotations in
all five chains is a widening of the mouth of the tunnel, akin to the opening of a shutter on a traditional camera.
From this description of the action of the acetylcholine receptor, the importance of accurate complementary space topology
becomes evident. First, an accurate model of the channel must feature a tunnel passing completely through the length of the
surface. Put differently, the complementary space should include a connected component running the length of the molecule
with mouths at opposite ends. Such a requirement can be quickly verified by a complementary space visualization as shown in
Figure 2.18. Furthermore, the diameter of this tunnel at its narrowest point should be within the range of biological feasibility,
i.e. it should be wide enough to accommodate sodium and potassium ions in the open confirmation and narrow enough to
block them in the closed confirmation. The margin of error here is quite small as the channel, when open, selectively allows the
desired ions and not ions of similar size, e.g. magnesium or calcium. Measuring this width is straightforward with a geometrical
representation of the tunnel.
Additionally, the model must have correct geometry at the ligand binding site. In terms of complementary space, this implies
the existence of a small component with one mouth on each of the subunits such that its volume and mouth diameter are of
plausible size compared to the acetylcholine molecule. We show a visualization of the pocket in one subunit in Figure 2.18
d. While such features are difficult to visualize and measure with a model based primal space, they much easier to detect and
manipulate with a model based on complementary space.
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2.8.3 Ribosome models

The ribosome molecule provides another example of natural structural questions best answered with a complementary space
model. Ribosomes live inside cells and are the construction equipment for proteins made within the cell. When a ribosome
receives the end of a mRNA chain, it passes the mRNA through a small tunnel in its surface. (More precisely, it opens a flap
that pulls the end of the mRNA in, then closes around it). The mRNA is a copy of the DNA data from the nucleus of the cell
and codes for the construction of a specific protein. The presence of the mRNA in the ribosome allows specific amino acids to
enter a larger tunnel through the ribosome; the type of amino acid permitted to enter depends on the portion of mRNA code in
the ribosome at the moment. As the mRNA is fed through, amino acids are linked into a chain, forming the desired protein.
Figure 2.19 shows three visualizations of the ribosome molecule: a primal space view, a cut-away view, and a complementary
space view.
Since the ribosome has two tunnels of biological significance, an obvious question is to determine the widths of each tunnel. In
particular, it would be interesting to compare the width of the mRNA tunnel to the diameter of the mRNA molecule to get a sense
of the variation in width that the ribosome will tolerate. Similar questions could be asked of the larger tunnel accommodating
the amino acids. The complementary space of the ribosome’s surface includes a component for each tunnel. Visualizing these
components gives clues to the tunnels’ structure and applicable measurements of mouth sizes and tunnel lengths can then be
made.

2.8.4 Topological Agreement of Reduced Models

Model reduction or decimation is the process of removing geometrical information from a model while attempting to keep
sufficient data for maintenance of important features. This is used, for example, in coarse-grained models of proteins, used
prominently in electrostatic simulations [25]. Protein surfaces are often defined based on atomic positions and radii, obtained
from the PDB. For large proteins, a significant speed-up in computational time can be achieved by grouping atoms into clusters
and treating the clusters as single atoms with an averaged radius. Model reduction is also common for point-sampled surfaces
such as CAD models and geometries acquired from three-dimensional scanners. If points on the surface can be culled without
dramatic effect on the shape of the surface, subsequent visualization and simulation pipelines will experience a reduction in
computational cost.
In all model reduction contexts, a primary concern is whether the reduction has changed the topology. Put more precisely, we
would like to know when, if ever, the original topology is lost in the progressive decimation of a surface. Complementary space
visualization is a natural tool in this context. We consider, for example, the industrial part model shown in Figure 2.20. We
use the software QSlim [91] to decimate the model from 106,708 triangles to only 1000 and then only 500. At 1000 triangles,
the model has lost some geometrical precision, but still has the same number of tunnels. At 500 triangles, however, some of
the smaller tunnels have collapsed, representing a fundamental change in the model. Such changes would be evident from a
complementary space visualization.

2.8.5 Dynamic Deformation Visualization

Complementary space aids in visualizing and quantifying dynamic deformations of models in addition to its aid for static models
previously discussed. The omnipresent consideration in a computer generated simulation of real movement is always whether
the dynamics are realistically plausible. In the context of molecular modeling, such considerations are especially difficult
to formalize as current video technology cannot capture a molecule in vivo for comparison. As a result, various techniques
have been developed for automated animation of molecular models, including the popular of which is Normal Mode Analysis
(NMA) [143, 208]. To determine whether the fluctuations simulated by these means have any functional significance to the
molecule, we must be able to measure the extent of changes in particular features of the surface. This is especially important
in molecules which perform specific actions by modifying their complementary space features, such as the ribosome. With a
model of complementary space, we can measure the area of the mouth of a tunnel or pocket used in the various processes and
compare the sizes before and after a conformational change. This gives insight into the relative magnitude of different aspects
of the shape reconfiguration; a seemingly significant deformation may only involve a small change in the size of a pocket mouth
or vice versa.
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Summary

References and Further Reading
Algebraic curves are handled here in real projective space but the interested reader should consider how they can be understood
in the additional structure provided by complex projective space.
The exposition of exterior calculus in the continuous setting is based on the presentations in [2, 112].

Exercises
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n = 2 n = 4

||u− uh||L2 ||∇(u− uh)||L2

n error rate error rate
2 2.34e-3 2.22e-2
4 3.03e-4 2.95 6.10e-3 1.87
8 3.87e-5 2.97 1.59e-3 1.94
16 4.88e-6 2.99 4.04e-4 1.97
32 6.13e-7 3.00 1.02e-4 1.99
64 7.67e-8 3.00 2.56e-5 1.99

128 9.59e-9 3.00 6.40e-6 2.00
256 1.20e-9 3.00 1.64e-6 1.96

Figure 2.15: Trapezoidal meshes (left) fail to produce quadratic convergence with traditional serendipity elements; see [13].
Since our construction begins with affinely-invariant generalized barycentric functions, the expected quadratic convergence rate
can be recovered (right). The results shown were generated using the basis {ψij} resulting from the selection of the mean value
coordinates as the initial barycentric functions.

v1 v2

v3v4

v5 v1 v2

v3v4

v5

Figure 2.16: Theorem 2.45 can be generalized to allow certain types of geometries that do not satisfy G3. The degenerate
pentagon (left), widely used in adaptive finite element methods for quadrilateral meshes, satisfies G1 and G2, but only satisfies
G3 for four of its vertices. The bounds on the coefficients cijab from Section 2.7.2 still hold on this geometry, resulting in the
Lagrange-like quadratic element (right).
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va

va−1

va+1

vb

vb+1

vb−1

daℓ

dbℓ
va

va−1

va+1

vb

vb+1

vb−1

daℓ

dbℓ

Figure 2.17: The hypotheses of Theorem 2.45 cannot be relaxed entirely as demonstrated by these shapes. If G2 does not
hold, arbitrarily small edges can cause a blowup in the coefficients cijab (left). If G3 does not hold, non-consecutive angles
approaching π can cause a similar blowup.
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(f)(e)(d)

(c)(b)(a)

Figure 2.18: Various visualizations of the acetylcholine receptor molecule. The top and bottom rows shows primal and com-
plementary space visualizations, respectively. (a) The molecule is shown as it would sit embedded in a bilipid cell membrane
(grey) with the five identical subunit colored for identification. (b) A cut-away view of the same model showing where ions
may pass through the center. (c) A transparent view of the molecular surface. (d) Each subunit contains a pocket where ace-
tylcholine binds. The pocket interior (green) and its mouth (purple) are shown in a zoomed in view after the surface has been
made transparent. (e) A cut-away view of the surface with the interior of the tunnel (yellow) and its mouths (red) identified. (f)
The same view as (c) with the tunnel geometry opaque, showing how it lies inside the surface.
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(b) (c)(a)

Figure 2.19: Three visualizations of the ribosome molecule. (a) A primal space visualization showing the two subunits in their
joined state. (b) A cut-away view of the molecule with the protein exit tunnel visible diagonally from upper left to bottom right.
(c) A complementary space view of the exit tunnel indicates its intricate three-dimensional geometry in a way that the primal
and cut-away views do not.
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(a) (b) (c)

(d) (e) (f)

Figure 2.20: Visualizations of the Carter dataset. (a) A basic primal space visualization of the mechanical part . (b-c) Com-
plementary space features identified and visualized. (d) A visualization of the dense mesh representing the surface reveals that
at 106,708 triangles, it is probably amenable to decimation. (e) Using QSlim [91], the mesh is decimated to 1000 triangles.
Prominent topological and geometrical features are still present, though the geometry of the smaller tunnels has changed. (f)
Decimated to 500 triangles, some of the smaller tunnels have collapsed, causing a topological change in the model. Visualizing
complementary space could aid in detecting such changes.



Chapter 3

Differential Geometry, Operators

3.1 Shape Operators, First and Second Fundamental Forms

3.1.1 Curvature: Gaussian, Mean

3.1.2 The Shape of Space: convex, planar, hyperbolic

3.1.3 Laplacian Eigenfunctions

3.2 Finite Element Basis, Functional Spaces, Inner Products

3.2.1 Hilbert Complexes
Definition 3.1. A real Hilbert space W is a vector space with a real-valued inner product (·, ·) such that W is complete with
respect to the norm given by

||w||W := (w,w)1/2.

A Hilbert complex (W,d) is a sequence of Hilbert spaces W k and a sequence of closed, densely defined linear operators
dk : W k →W k+1 such that the range of dk is contained in the kernel of dk+1, i.e.

dk+1 ◦ dk = 0.

The domain complex (V, d) associated to (W,d) is the sequence of spaces V k := domain(dk) ⊂ W k along with the graph
norm defined via the inner product

(u, v)V k := (u, v)Wk + (dku, dkv)Wk+1 .

♦

Definition 3.2. The space of L2-bounded differential forms along with the exterior derivative map define a Hilbert complex
(L2Λ, d). The associated domain complex, denoted (HΛ, d) is called the L2 deRham complex:

0 // HΛ0 d0 // HΛ1 d1 // · · · dn−1 // HΛn // 0

♦

3.3 Topology of Function Spaces

3.4 Differential Operators and their Discretization formulas
discrete and continuous formulas
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3.5 Conformal Mappings from Intrinsic Curvature

Conformal Maps

A conformal map f : X → Y is function which preserves angles. In the mapping shown in the figure, the
rectangular grid is distorted by f but the 90 angles at each grid point (and indeed everywhere) are preserved
in an infintesimal sense. Conformal maps are useful when paramaterizing molecular surfaces as a triangulation
with good angle bounds will preserve the angle bounds when passed to through the parametrization to a surface
triangulation.

To create a global conformal parameterization of a surface Ω with arbitrary topology, one must sovle the following problem.
Let Ω be a surface of genus g and let {L1, . . . , L2g} be a set of loops providing a basis for the 1-homology group of Ω. Let
c1, . . . , c2g ∈ R where ci represents the desired value of the integral of the gradient field around ei.
The goal is to find a conformal gradient field ω +

√
−1 ? ω where ω and ?ω are real gradient fields on Ω. Further, ω and ?ω

should be closed, harmonic, determined by their values of integration over the homology basis, and orthogonal to each other.
This means ω should solve the following PDE: 

dω = 0
∆ω = 0∫
ei
ω = ci

Given a solution to the above, one can construct an appropriate ?ω as well. The approach below is based on that of Gu and
Yau [110] Section 3.2.
Approach: Let M be a mesh of Ω with the correct topology. The computation of the homology basis is as follows .

Qξ1. Compute the dual mesh M̄ of M . The dual mesh has a face for every vertex of M , a vertex for every face of M , and an
edge for every edge of M with connectivity provided in the standard manner.

Qξ2. Find a minimal spanning tree T̄ of the vertices of M̄ .

Qξ3. Define the graph G to be those edges of M whose dual edge is not in T̄ . Then G is a cut graph of M , meaning M/G is
topologically a disk and G has 2g loops, corresponding to homology basis elements.

Qξ4. Construct a maximal spanning tree T of G. Since G has 2g loops, G− T is exactly 2g edges {e1, . . . , e2g}, one per loop
of G.
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Qξ5. Each ei connects two leaves of the tree T . Let Li denote the loop in G consisting of the path from one of these leaves to
the root of T , down the other leaf, and across ei. Then {L1, . . . , L2g} are non-trivial, independent (i.e. not homotopic
nor homologous) loops in G, and hence form a basis for the first homology group H1(M,Z)

The PDE is discretized as follows. Let [u, v] denote an oriented edge and [u, v, w] denote an oriented face in the mesh M . For
an edge [u, v], let α, β be the angles against the edge at u and define

ku,v := −
1

2(cotα+ cotβ).

Also, for each homology basis element Li, write

Li =

ni∑
j=1

[uij−1, u
i
j ], u0 = uni .

Then the PDE is discretized as
∑3
j=1 ω([uj−1, uj ]) = 0 ∀[u0, u1, u2] ∈M,u0 = u3∑

[u,v]∈M ku,vω([u, v]) = 0 ∀u ∈M∑ni
j=1 ω([uij−1, u

i
j ]) = ci ∀Li

The authors prove this linear system is of full rank, hence it has a solution. In words, the above equations seek a vector field ω
such that:

• ω integrated around any face is zero (so dω = 0)

• At each vertex u of the mesh, summing the values of ω on the edges around u with appropriate cotangent weights is zero
(so ω is harmonic in the discrete sense)

• The integral of ω around each homological basis element has a prescribed value.

A basis for the solution set would be {ωi} where for ωi, set ci = 1 and set cj = 0 for j 6= i and solve the above. Then ωi has
value 1 when integrated around Li and value 0 when integrated around any combination of basis elements besides Li.

3.6 Biological Applications

3.6.1 Molecular Surface Analysis

3.6.2 Solving PDEs in Biology

Summary

References and Further Reading
For more on conformal mapping, see [187, 110, 130, 191]

Exercises
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Chapter 4

Differential Forms and Homology of Discrete
Functions

4.1 Exterior Calculus
Recall the definitions of tensors and exterior algebra given in Section 2.1.
Let Ω be an n-manifold embedded in some RN with n ≤ N . Minimally, we will assume Ω is a bounded subset, but we will
usually consider the case n = N = 3 and assume Ω has a piecewise smooth, Lipschitz boundary as this allows us to identify Ω
with its primal mesh (Definition 1.10) or dual mesh (Definition 1.14).

Definition 4.1. Let Ω be a manifold of dimension n. Given a point x ∈ Ω, we denote the tangent space of Ω at x by Tx(Ω).
Let 0 ≤ k ≤ n. A k-form ω is a mapping from Ω to the space of alternating k-tensors on the tangent space of Ω at the input
point. We use the notation

ω : Ω→ Λk[Tx(Ω)∗], ω(x) :

k⊕
i=1

Tx(Ω)→ R,

where ω(x) is an alternating k-tensor. A 0-form is taken to mean a real-valued function on Ω. We denote the space of
continuous differential k-forms on Ω by Λk(Ω). ♦

Definition 4.2. A differential dxi is a 1-form whose action at x ∈M is to assign the ith value of the input vector from Tx(M).
Let I = {i1, . . . , ik} be a list of indices. Define

dxI := dxi1 ∧ · · · ∧ dxik .
We use the notation aI to a real-valued function in the variables of I .

Theorem 4.3. If {dx1, . . . , dxn} is an orthonormal basis for Tx(Ω) then

{dxI : I = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ n}
is a basis for Λk(Ω). Put differently, any k-form ω ∈ Λk(Ω) can be written in the form

ω =
∑
I

aIdxI

where I ranges over all strictly increasing sequences of k indices.

The theorem is a standard result from differential topology.

Definition 4.4. The space of L2-bounded continuous differential k-forms on Ω is given by

L2Λk(Ω) :=

{∑
I

aIdxI ∈ Λk(Ω) : aI ∈ L2(Ω) ∀I
}

♦
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Definition 4.5. The exterior derivative operator denoted by d is a map

d : Λk(Ω)→ Λk+1(Ω),

defined as follows. Let I := {i1, . . . , ik} denote an increasing sequence of k indices (ij < ij+1) and let dxI = dxi1∧· · ·∧dxik .
Given ω =

∑
I aIdxI define

dω :=
∑
I

daI ∧ dxI where daI :=
∑
i∈I

∂aI
∂xi

dxi. (4.1)

♦

We note that d commutes with pullbacks (that is, df∗ω = f∗dω) and that if ω is a k-form and θ is any form,

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ.

The exterior derivative plays a prominent role in Stokes’ Theorem, which we now state.

Theorem 4.6. (Stokes) Given a compact, oriented n-dimensional manifold Ω with boundary ∂Ω and a smooth (n− 1) form ω
on Ω, the following equality holds: ∫

∂Ω

ω =

∫
Ω

dω.

Stokes’ Theorem provides an alternative definition for the exterior derivative.

Definition 4.7. (Alternative Definition) Let ω be a k-form on a compact oriented n-manifold Ω (0 ≤ k < n). The exterior
derivative of ω is the unique (k+ 1)-form dω such that on any (k+ 1)-dimensional submanifold Π ⊂ Ω the following equality
holds: ∫

Π

dω =

∫
∂Π

ω.

♦

It can be shown that dω is well-defined in this way by proving the existence and uniqueness of the d map via the definition
(4.1). We note that this definition will motivate the discrete exterior derivative in Definition 4.13.

Definition 4.8. The continuous Hodge star ∗maps between forms of complementary and orthogonal dimensions, i.e. ∗ : Λk →
Λn−k. For domains in R3 as considered here, ∗ is defined by the equations

∗dx1 = dx2dx3, ∗dx2 = −dx1dx3, ∗dx3 = dx1dx2,

∗1 = dx1dx2dx3, ∗∗ = 1,

where {dx1, dx2, dx3} is an orthonormal basis for Λ1(Ω). ♦

4.2 deRham Cohomology

4.3 k-forms and k-cochains

4.3.1 Discrete Differential Forms
Definition 4.9. Let K be a primal mesh of a compact n-manifold Ω. Let Kk denote the k-simplices of K. A primal k-chain
c is a linear combination of the elements of Kk:

c =
∑
σ∈Kk

cσσ,

where cσ ∈ R. The set of all such chains form the vector space of primal k-chains, denoted Ck. It has dimension |Ck|, equal
to the number of elements of Kk. A k-chain c is represented as a column vector of length |Ck|.
Similarly, a dual k-chain is a linear combination of k-cells of the dual complex ?K. The vector space of dual k-chains is
denoted Ck. ♦
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Definition 4.10. A primal k-cochain W is a linear functional on primal k-chains, i.e.

W : Ck → R via c 7→ W(c),

where W is a linear mapping. It is represented as a column vector of length |Ck| so that the action of W on a k-chain c is the
matrix multiplication WT c, yielding the scalar W(c). The space of primal cochains is denoted Ck.
A dual k-cochain W is a linear functional on dual k-chains, i.e.

W : Ck → R via c 7→ W(c),

where W is a linear mapping. The space of dual cochains is denoted Ck. ♦

Cochains are the discrete analogues of differential forms as they can be evaluated over k-dimensional subspaces. To make this
precise, we define the integration of a cochain over a chain to be the evaluation of the cochain as a function.

Definition 4.11. The integral of a primal k-cochain W over a primal k-chain c is defined to be∫
c

W := wT c = w(c).

Hence, the integration of W over c is exactly the same as the evaluation of W on c. ♦

4.3.2 Discrete Exterior Derivative
The definition of a discrete exterior derivative is motivated by the alternative definition of the continuous operator (Defini-
tion 4.7). First we define the boundary operator in the discrete case.

Definition 4.12. The kth boundary operator denoted by ∂k takes a primal k-chain to its primal (k − 1)-chain boundary. It is
defined by its action on an oriented k-simplex:

∂k[v0, v1, · · · , vk] :=

k∑
i=0

(−1)i[v0, · · · , v̂i, · · · , vk]

where v̂i indicates that vi is omitted. The primal boundary operator is represented as a matrix of size |Ck−1| × |Ck| so that the
action of ∂k on a k-chain c is the usual matrix multiplication ∂kc. ♦

Definition 4.13. The kth discrete exterior derivative of a primal k-cochain W is the transpose of the (k + 1)st boundary
operator:

Dk = ∂Tk+1.

This is also referred to in the literature as the coboundary operator. It is represented as a matrix of size |Ck+1| × |Ck| so that
the action of Dk on a primal k-cochain W is the usual matrix multiplication DkW := ∂Tk+1 w. ♦

The discrete exterior derivative satisfies the discrete version of Stokes’ theorem.

Lemma 4.14. Let W be a primal k-cochain and c ∈ Ck+1 any primal (k + 1)-chain. Then∫
c

DkW =

∫
∂k+1c

w.

Proof. By Definition 4.11 we see that∫
∂k+1c

W = wT∂k+1c = (∂Tk+1 w)T c = (Dk w)T c =

∫
c

Dk w.

We now consider the analogous constructions for dual cochains. Observe that mesh duality allows us to view a dual k-chain c as
a primal (n− k)-chain c. Hence ∂Tn−k+1 serves as a boundary operator on dual k-cochains, giving us the following definition.

Definition 4.15. The kth discrete exterior derivative of a dual k-cochain W is DTn−k−1, which is equal to ∂n−k. It is repre-
sented as a matrix of size |Ck+1| × |Ck|. ♦
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4.4 Types of k-form Finite Elements

4.4.1 Nédélec Elements
The original Nédélec paper [158] introduced what is now called the H(curl) and H(div) Nédélec elements of the first kind.
Phrased in the notation of this document, Nédélec defines

Y kp−1 := SpΛ
k
p−1

where Sp ⊂ P̃p is defined for domains embedded in R3 by

Sp := {f ∈ P̃p : (x1, x2, x3) · f = 0}.

He uses the formal definition of finite elements given below.

Definition 4.16. A finite element is a triple (K,P ,A) where

• K is a domain

• P is a space of polynomials on K of dimension N

• A is a set of N linear functionals acting on P called degrees of freedom

His H(curl) finite element of degree p from [158] is defined as follows. Set

• K to be a tetrahedron

• P to be Pp−1 ⊕ Sp
• A to be the following linear functionals acting on an element u ∈ Pp

1
∫
e

(u · ~e) q ds, ∀q ∈ Pk−1

where ~e is the unit vector directed along the edge e of K;

2
∫
f

(u× n̂ · q) dγ, ∀q ∈ (Pk−2)2

where f is a face of K and u× n̂ denotes the normal trace of u;

3
∫
K

u · q dx; ∀q ∈ (Pk−3)3

Note that this does not say what the basis functions should be - this was left to future work. The Whitney functions are an
example of lowest order Nédélec elements.
The H(div) finite element of degree p from [158] is similar. Set

• K to be a tetrahedron

• P to be Pp−1 ⊕ P̃p(x1, x2, x3)1

• A to be the following linear functionals acting on an element u ∈ Pp

Qξ1.
∫
f

(u · n̂) q dγ, ∀q ∈ Pk−1

where f is a face of K;

Qξ2.
∫
K

u · q dx; ∀q ∈ (Pk−2)3

Similarly, description of the basis functions was left to future work.

1The space P̃p(x1, x2, x3) is called Dp in his work. It is the space of vectors formed by scaling (x1, x2, x3) by a homogeneous degree p polynomial.



4.4. TYPES OF K-FORM FINITE ELEMENTS 101

4.4.2 Whitney Elements
Let λi be the barycentric function associated to vertex vi in a primal mesh K. More precisely, λi : K → R is the unique
function which is linear on each simplex ofK satisfying λi(vj) = δij . The Whitney functionWσk associated to the k-simplex
σk := [v0, . . . ,vk] is given by

Wσk := k!

k∑
i=0

(−1)i λi dλ0 ∧ . . . ∧ d̂λi ∧ . . . ∧ dλk (4.2)

where d̂λi indicates that dλi is omitted. Note that dλ should be interpreted as d 0λ per Definition ?? or as 1(∇λ) per
Lemma ??. ♦
We write out the Whitney functions explicitly for n = 3, our primary application context. Note that Wσ3 is the constant

k σk Wσk

0 [v0] λ0

1 [v0,v1] λ0∇λ1 − λ1∇λ0

2 [v0,v1,v2] 2(w0∇w1 ×∇w2 − w∇w1 ×∇w02 + w∇w2 ×∇w01)

3 [v0,v1,v2,v3] 1/|σ3|

Table 4.1: Whitney forms Wσk for n = 3.

function with value 1/|σ3|. This is a consequence of the geometric identity

∇λi · (∇λj ×∇λk) = ±
1

3!|σ3|

where the right side has sign −1 if an odd index was omitted from the scalar triple product and +1 otherwise. This reduces the
sum in (4.2) to (1/|σ3|)∑i λi, which is simply 1/|σ3| due to the partition of unity formed by the barycentric functions.

Whitney Element Example

v
2

v
1

v
0

On the standard reference triangle shown above, the Whitney 0-forms are the barycentric functions:

λ0 = −x− y + 1

λ1 = x

λ2 = y

The Whitney 1-forms are formed by taking products of the form λi∇λj − λj∇λi:

W01 = λ0∇λ1 − λ1∇λ0 =

[
1− y
x

]
W02 = λ0∇λ2 − λ2∇λ0 =

[
y

1− x

]
W12 = λ1∇λ2 − λ2∇λ1 =

[
−y
x

]
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4.5 Biological Applications

4.5.1 Solving Poisson’s Equation and other PDEs from Biology

Summary

References and Further Reading
Although Whitney functions were developed out of theoretical considerations [220], it was recognized by Bossavit [34] that
they provided a natural means for constructing stable bases for finite element methods, especially the edge elements and face
elements that were gaining popularity at that time. Finite element exterior calculus (FEEC) [11] gives a full account of the
analogies between spaces of Whitney functions and classical Nédélec [158, 159] and Raviart and Thomas [173] spaces.
Some work has explored the possibility of Whitney functions over non-simplicial elements as we do in this work. Gradinaru
and Hiptmair defined Whitney-like functions on rectangular grids using Haar-wavelet approximations [104] and on square-
base pyramids by considering the collapse of a cube to a pyramid [105]. Bossavit has given an approach to Whitney forms over
standard finite element shapes (hexahedra, triangular prisms, etc.) based on extrusion and conation arguments [32].

Exercises



Chapter 5

Numerical Integration, Linear Systems

5.1 Numerical Quadrature
Quasi Monte Carlo method

The Monte Carlo numerical integration by sampling can be replaced by deterministic Quasi Monte Carlo (QMC) integration
using Quasi random and low -discrepancy sampling.
Let x ∈ {0, 1}n be an n-bit string. Denote x̃ as the binary value of the string x prepended by a radix point. For example, if
x = 110011, then x̃ = .110011bin = 2−1 + 2−2 + 2−5 + 2−6 = 51

64 .
Define f(x) = g(x̃). For all 0 ≤ i ≤ 2n − 1 and y ∈ [ i2n ,

i+1
2n ], we have

g

(
i

2n

)
− c

2n
≤ g(y) ≤ g

(
i

2n

)
+

c

2n
.

This implies that
1

2n

∑
x∈{0,1}n

(
f(x)− c

2n

)
≤
∫ 1

0

g(x) dx ≤ 1

2n

∑
x∈{0,1}n

(
f(x) +

c

2n

)
.

If n is increasingly large, the estimate 1
2n

∑
x∈{0,1}n f(x) converges to the true

∫ 1

0
g(x) dx = E[g(X)]. Furthermore, if we

sample x either i.i.d. or pairwise independent, we can also bound the error (Figure 5.1(a)).
We can also bound the integration error by the discrepancy using the Koksma-Hlawka Inequality (Figure 5.1(b)). See [196] for
a list of references.

Theorem 5.1 (Koksma-Hlawka Inequality). Let ∆(t) = 1
N

∑N−1
i=0 1[0,t](xi) − t

1 be the local Star discrepancy of sampling.
Then, for all 1 ≤ p, q ≤ ∞ such that 1

p + 1
q = 1, we have∣∣∣∣∣
∫ 1

0

g(x) dx− 1

N

N−1∑
i=0

g(xi)

∣∣∣∣∣ ≤ ‖∆‖p‖g′‖q.
Note that ∆ is the difference of the fraction of points that fall in an interval [0, t] and the fraction of the length of the interval
[0, t], and thereby a measure of distortion from uniformity.
Suppose P = {x0, x1, x2, . . . , xN−1}. The star discrepancy is defined as

∆P (t) =
1

N

N−1∑
i=0

1[0,t](xi)− t,

where

1[0,t](x) =

{
1 if x ∈ [0, t]

0 otherwise
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0

x1

1

x3

x2 x4
1

1

0

Figure 5.1: (a) Sample points in the unit interval used for integral estimation. (b) Axis-parallel rectangles anchored at the origin
used to measure star discrepancy.

is the characteristic function. The star discrepany can be regarded as a test of randomness (i.e. how uniform is the distribution)
using the family of all intervals with the left endpoint at the origin. It is related to the Kolmogorov-Smirnov test.
The Koksma-Hlawka inequality can be used the bound the integration error. See [196] for a list of references.

Theorem 5.2 (Koksma-Hlawka inequality). For all 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1,

∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣ ≤ ‖∆P ‖p‖f ′‖q.

Proof. Observe that f(x) and t can be written as follows.

f(x) = f(1)−
∫ 1

x

f ′(t) d t

= f(1)−
∫ 1

0

1[0,t](x)f ′(t) d t

t =

∫ 1

0

1[0,t](x) dx

We can rewrite the integral as follows.

∫ 1

0

f(x) dx =

∫ 1

0

(
f(1)−

∫ 1

0

1[0,t]f
′(t) d t

)
dx

= f(1)−
∫ 1

0

∫ 1

0

1[0,t](x)f ′(t) d tdx

= f(1)−
∫ 1

0

tf ′(t) dx. (5.1)
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we can rewrite the average as follows.

1

N

N−1∑
i=0

f(xi) =
1

N

N−1∑
i=0

(
f(1)−

∫ 1

0

1[0,t](xi)f
′(t) d t

)

= f(1)−
∫ 1

0

1

N

N−1∑
i=0

1[0,t](xi)f
′(t) d t (5.2)

The result follows by subtracting (8.24) from (8.25) and applying Hölder inequality.
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5.3 Fast Multipole

5.4 Biological Applications

5.4.1 Efficient Computation of Molecular Energetics

5.4.2 PB and GB Energy Calculation
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Chapter 6

Transforms

6.1 Radon Transform
and its inverse
discrete and continuous formulations

6.2 Fourier Transforms
and its inverse
discrete and continuous formulations
Fast Fourier Transforms (FFT) via wrapped convolutions

6.3 Fast Approximate Summations
using approximate FFT
(irregular / non-equispaced FFT)

6.4 Biological Applications

6.4.1 Fast Computation of Molecular Energetics
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Chapter 7

Groups, Tilings, and Packings

7.1 Construction and Combinatorics of Families of Almost-regular Polyhedra
7.1.1 TilingGen: an algorithm for generating all almost-regular polyhedra

We present a simple algorithm for generating all almost-regular polyhedra (see Figure 7.1).

TILINGGEN(P,L, h, k)
Constructs an almost-regular polyhedron using compatible mapping of polyhedron P onto lattice L, such that the scaling and combinatorics are specified
by h,k.

Qξ1. Assume that the lattice coordinate system is aligned with the Cartesian coordinate system such that the origings coincide and one of the axes is
aligned to the X axis, and the other lies on the XY plane.

Qξ2. Place one pointA at the origin (0, 0) of the lattice, a second point at (h, k). Compute the other corners of the face T . Note that we only need to
know the number of vertices n of T .

Qξ3. Compute the location of the centerD of the face T .

Qξ4. Let TC be the set of cyclic symmetry operations aroundD, such that |TC| = n.

Qξ5. Initialize empty set S

Qξ6. For each lattice point p inside or on T do

Qξ7. Add p to S if none of the transformations in TC applied to p produces a point which is already in S.

Qξ8. Compute the transformation Tmap which maps the face T to a face of the polyhedron P . Tmap is composed of TmapT TmapSTmapA such
that TmapA translates T along the lattice to takeD to the originO, TmapS is a scaling that resizes T to the size of the faces inP , then TmapT
is a translation along Z-axis by an amount equal to the distance from the center of P to a face-center.

Qξ9. Let TP be the set of global symmetry operations (from the symmetry group of P).

Qξ10. Define a set of transformations Tall = {T2TmapT1|T2 ∈ TP&T1 ∈ TS}.

Qξ11. All points on the almost-regular polyhedron is now generated by simply computing Tall(S).

Figure 7.1: TILINGGEN: Algorithm for constructing an almost-regular polyhedron using compatible mapping

7.1.2 Characterizing All Possible Almost-Regular Polyhedra and Completeness of TILINGGEN

Both Goldberg and Caspar-Klug constructions can be expressed as unfolding a regular polyhedron onto a 2D lattice and then
refolding it with the lattice etched onto its faces. Pawley’s wrapping idea is equivalent. We call this the unfold-etch-refold
method. Here, we prove the conditions that must be satisfied to produce almost-regular polyhedra using the unfold-etch-refold
mrthod for any regular solid, unfolded in any way, onto any 2D lattice.
Shepherd’s conjecture [?] states that all convex polyhedra have a non self-overlapping planar unfolding with only edge-cuts.
This conjecture is not proved or disproved yet for all possible convex polyhedra. However, for the set of special classes we are
interested in, it is true. Hence, in principle it is possible to unfold one such polyhedra and lay it down on a 2D grid, use the
grid to draw tiles of the unfolded polyhedron, and then fold it back up to get a tiled polyhdron. However, every polyhedron
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actually has many unfoldings. For example, icosahedron have 43380 unique unfoldings. Caspar and Klug’s construction
produced almost-regular polyhedra using 1 such unfolding, but it is not clear whether other unfoldings would also produce
similar almost-regular polyhedra, or different types of almost-regular polyhedra, or not be almost-regular. To address this
question, we have characterized [?] the relationship of the local and global symmetries of the almost-regular polyhedra, and the
etched polyhedra (henceforth called tiling) produced using unfold-etch-refold construction. Here we only report the theoretical
conclusion

Theorem 7.1. The polyhedron generated by an unfold-etch-refold is almost-regular if and only if a compatible mapping of a
regular polyhedron onto an unfold-etch-refold compatible lattice is performed.

Please see [?] for detailed enumeration of possible compatible mapping of a regular polyhedron onto an unfold-etch-refold
compatible lattice, and proof of the above theorem and associated lemmas.

  

An Almost-regular Polyhedron

Dual of an almost-regular Polyhedron

Mapping that puts 
corners at vertices

Mapping that puts 
corners at face-centers

Not isogonal.
Have both
5-fold and 
6-fold vertices

Isotoxal
and
Isohedral

Not isohedral.
Have both
Pentagonal 
and 
hexagonal 
faces

Isotoxal
and
Isogonal

Hexagonal 
faces appear 
at the corners

Vertices at the corners 
have 3 incident edges

Almost-regular
Dual of almost-regular

Both type of mappings for
a Cube onto a square lattice

Figure 7.2: Illustration of the constructing almost-regular polyhedron and their duals. Top row shows how placing corners
of a polyhedral face on vertices of a compatible lattice produces an almost-regular polyhedron. The black lines show the
original polyhedron, and the red lines show the etching/tiling induced by the lattice. The second row shows and example of
placing the corners at face centers and producing duals of almost-regular polyhedron. Finally, the bottom row shows examples
of both the primal and the dual constructions using a square lattice.

Figure 7.2 shows a few examples of constructing almost-regular polyhedron and their duals by compatible mapping of a face
of a regular polyhedron on a unfold-etch-refold compatible lattice. Note that the etched-faces that cross an edge of T are
geometrically not identical to the ones that do not. The ones crossing the boundary have a crease inside them, or if they are
flattened, they are no longer regular. This is addressed in the Section ??.

7.1.3 Parametrization and Geometric Aspects of TILINGGEN

The theoretical characterization of compatible mappings in the unfold-etch-refold protocol immediately lends itself to a sim-
ple parametrization of the almost-regular family. Furthermore, the symmetry at global and local levels lets us represent the
geometry using a minimal set of points. Both of these insights are used in TILINGGEN.
For the sake of simplicity of presentation, the discussion in this section, in most cases, is focused solely on mapping icosahedron
onto triangular lattices. Other compatible mappings can be discussed in the same manner with almost no difference in the
theorems/lemmas presented here except for minor changes in counting. The choice to focus on the icosahedral case is primarily
due to two reasons- first, it has the highest level of symmetry among the regular polyhedra which have a compatible mapping,
and second, it has applications in modeling viruses, fullerenes etc.
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Parametrization

Let L be a lattice with origin O and axes H and K. Any point in the lattice is expressed using coordinates (h, k) where
both h and k are integers. Below we mention results (whose proofs can be found in [?]) which establish that a simple tuple
< P,L, h, k > is sufficient to represent the topology of a specific almost-regular polyhedron.

Lemma 7.2. Assuming that one cornerA of the face T of the polyhedron is mapped to the originO of the lattice (or the nearest
face-center for dual constructions). Then specifying the position of another compatibly placed point B(h, k) is sufficient to
parametrize the entire mapping.

Lemma 7.3. Topology of any almost-regular polyhedron or its dual can be expressed using a tuple < P,L, h, k >, where P is
a regular polyhedron, L is a lattice represented using two axes, and h and k are integers.

Combinatorics and Symmetry

We consider the case where P is the icosahedron whose symmetry group will be denoted as I , and L is the triangular lattice
which will be denoted as L3. Now, we discuss some properties of the lattice.

Definition 7.4. We define each triangle of the lattice L3 as a small triangle and use t to denote such a triangle. Let us define a
triple < i, j, k > where i and j are integers and k ∈ {+,−}. Let the triangle produced by the intersections of the lines h = i,
k = j and h+k = i+ j+ 1 (having the vertices (i, j), (i+ 1, j) and (i, j+ 1)) be denoted tij+. Similarly, the triangle denoted
tij− has vertices (i, j), (i + 1, j − 1) and (i + 1, j), and is produced by the intersections of the lines h = i + 1, k = j and
h+ k = i+ j.

The proof of the following lemma is immediate from this definition.

Lemma 7.5. ti1j1k1 coincide with ti2j2k2 if and only if i1 = i2, j1 = j2 and k1 = k2. For any small triangle in L3, there exists
a triple < i, j, k > such that tijk represents that small triangle.

Through etching, the triangular lattice L3 produces a tiling of a face T (which will be called a large triangle in this section) of
P where each tile is a small triangle. Now we consider some properties of this tiling.
Assuming A is at (0, 0), B is (h, k) such that h and k are integers, the tiling produced by L3 on T satisfies:

• The area of T is
√

3
4 (h2 + hk + k2), which is equal to the area of h2 + hk + k2 small triangles.

• In addition to A,B and C, T includes exactly h2+hk+k2−1
2 more vertices of L3. Note that any vertex that lie on an edge

of T is counted as half a vertex.

• Each edge of T is intersected by at most 2(h + k) − 3 lines of the form h = c, k = d and h + k = e, where c, d and e
are integers.

• The number of small triangles intersected by any edge of T is at most 2(h+ k − 1).

The following are some combinatorial properties of the overall tiled polyhedron-

• There are exactly 20(h2 + hk + k2) small triangles, and the same number of local 3-fold axes.

• The 12 gf-symmetry axes are surrounded by 5 small triangles.

• There are exactly 10(h2 + hk + k2 − 1) vertices (not lying on the gf-axes) with 6-fold local symmetry.

Similar properties can easily be derived for other mappings as well. The important point to note is that not only the topology,
but also the symmetry and combinatorics are also parameterized by only h and k.
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Figure 7.3: Some polyhedron generated by applying TILINGGEN.

Topology to Geometry

Note that given a point P with coordinate (i, j) inside T , there exists two other points Q and R such that P , Q and R are 3-fold
symmetric around the center D of T . The two points Q and R have coordinates (h − i − j, k + i) and (h + k + j,−h − i)
respectively. This can be seen by noticing that stepping along the H and K axis by i and j units from A(0, 0) is C3 symmetric
(around D) to stepping in −H + K and −H directions by the same units from B(h, k), and stepping in −K and H − K
directions by the same units from C. We can further extend it to triangles and deduce the following.

Lemma 7.6. IfA(h1, k1),B(h2, k2) andC(h3, k3) are three points in theHK coordinate system such that h1, h2, h3, k1, k2, k3

are integers and ABC is an equilateral triangle whose centroid is O, then the small triangles th1+i,k1+j,±, th2−i−j−1,k2+i,±
and th3+j,k3−i−j−1,± are C3 symmetric around O.

Now, we define the minimal set of points or non-redundant set of points S such that no two points si, sj ∈ S are C3 symmetric
to each other around D, and all points in S lie inside or on T . Clearly, |S| = dh2+hk+k2

3 e. Note that applying C3 operations on
S produces all points inside and on T .

We conclude with the following theorem, whose proof is in [?]

Theorem 7.7. The algorithm TILINGGEN constructs a minimal geometric representation of the almost-regular polyhedron in
terms a set of points S embedded onto the XY plane and a set of 3D transformations Tall.
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Chapter 8

Motion Groups, Sampling

8.1 Rotation Group

8.2 Fourier Transforms

Solving optimization problems for protein structure interpretation reduces to a correlation based scoring and search over a
space of relative transformations. The objective function in general is highly non-convex, possessing several local maxima
and minima. The vast number of existing solutions to the rigid-body correlation problem can be distinguished by a few basic
approaches.
Feature-based methods compute and correlate reduced representations of proteins. An early example of a feature-based appro-
ach is the method of vector quantization [227], in which sets of vectors are used to represent molecules. A similar approach
is geometric hashing [139], whereby critical features are hashed into a table of values, and a score—related to the correlation
score—measures the match between the participating proteins for a particular relative orientation. Feature-based approaches,
used in docking [186] and fitting [224], result in improved performance due to the reduced search space, at the possible expense
of poor resolution scaling.
Iterative approaches vary in sophistication, ranging from a simple version of steepest ascent [163] to more powerful techni-
ques such as Powell optimization [225]. Most such approaches result in locally optimal solutions that, depending on the initial
guess, may or may not be close to the globally optimal correlation. They are thus usually used in conjunction with an exhaustive
approach that provides the requisite initial guess.
Exhaustive or Fourier-based approaches exploit the fact that it is beneficial if the computation of the objective function can be
done relatively fast or if the search space is restricted. In these approaches the proteins are treated as rigid bodies. The automated
search of all possible motions, i.e., translations and rotations to maximize the overlap between both structures is the main task
of these programs. This is done by evaluating a correlation integral with respect to the motions using Fast Fourier transforms.
Fourier based methods combine an accurate and exhaustive search with reduced computational cost, and have thus proven quite
popular as a search scheme, see, e.g. [114, 176, 18, 52, 149, 164, 226, 236]. Many, if not most, existing Fourier-based docking
algorithms use a regular discrete three-dimensional cartesian grid onto which the molecules are projected. The correlation
score of these discretised and suitably weighted structures serves as the objective function for the optimization problem. The
correlation score between pairs of grid cells is computed via fast Fourier transforms, thus implicitly searching over the three
dimensional space of translations. The remaining rotational degrees of freedom however need to be incorporated into a global
search. Such an approach has been first published by [129] in 1992. Since then, this approach has been adapted and improved
many times. An overview of these translational grid-based FFT search schemes can be found in [75]. In recent approaches,
the equispaced grid has been replaced with a non-equispaced Cartesian one, as in [18], or a polar one, as in [93, 177, 205, 77].
Fast translational matching exploits the fact that for each rotation, the objective function is a correlation integral, and can be
computed by fast Fourier transforms. On the other hand, the space of rotations is still subject to exhaustive search.
While the optimal matching solution exists in a highly localized region of relative translations, the range of relative rotations
varies widely for each translation. The disparity between size and sampling density of translational and rotational search spaces
motivates this work. We present a fast rotational correlation matching that extends the methods of [177] and [205], which use
spherical harmonic functions and classical orthogonal polynomials to model molecular shapes. Rotational speedups depend
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on representing the protein structures in a basis more amenable to rotational sampling. In Kovacs and Wriggers [136], Kovacs
et. al [134], and Garccon et. al [90], that basis is the basis of functions on the unit sphere S2, i.e., the family of spherical
harmonic functions Y ml (θ, φ), whereas in the work of Ritchie [175, 177], a radial basis function Rlk(r) related to the Gaussian
accompanies the spherical basis. Like their translational counterparts, rotational speedups compute a multiple exponential sum,
or an FFT; unlike translational speedups, the FFT is computed on a uniformly spaced grid of z-y-z Euler angles.
We employ algorithms to compute the fast Fourier transform on the rotation group to solve the matching problem. In this work,
instead of correlating functions defined on the unit cube, we use functions defined on IR3 but split into IR+ × S2. We exploit
the fact that correlations of functions defined on S2 can be computed by means of Fourier transforms on the rotation group.
This enables efficient computation of the objective function over rotational degrees of freedom instead of translational degrees
of freedom.
A three-dimensional translation can be expressed as a translation along the z-axis followed by two rotations, one about the
y-axis and one about the z-axis. Hence, it has two rotational degrees of freedom and one translational. Combining this in a
motion, we have five rotation angles that describe a motion and one absolute value of a translation along one axis. If we are
able to speed up the computation for the rotations by correlating functions on the sphere, we get an improved complexity for
five of the six degrees of freedom instead of the previous three. This approach has been suggested in [135] for protein fitting
and can also be found in [77].
The essential mathematical tool used in this work for protein fitting is the fast calculation of the discrete Fourier transform on
the rotation group SO(3). An implementation of such an algorithm can be found in [167]. For completeness, we also mention
the related work of [113] and [51] . The paper of [113] uses representation theory of the rotation group for approaching
optimization problems in the cryoEM setting, as we do. However the nature of our optimization problem is fundamentally
different from theirs. The paper of [51] develops discrete Fourier transforms on the motion group SE(3), and applies it to
topics ranging from workspace density of robotic manipulators to conformational statistics of macromolecules. On the other
hand, we use fast discrete Fourier transform on the rotation group SO(3) to provide an efficient solution to our optimization
problem.
Current exhaustive techniques suffer from two main drawbacks. The first drawback relates to local refinement. Depending
as they do on the equispaced FFT, exhaustive techniques cannot be gracefully used to refine existing solutions. Say we wish
to improve a matching pose, obtained using a translational FFT speedup with a certain grid size. If we redo the experiment
with half the grid length of the previous computation, the three dimensional FFT becomes eight times as expensive, but more
importantly, it spends much of its time at points on the new grid already excluded by the initial experiment. A similar argument
applies to rotational speedups; in both these approaches, the concept of a local refinement is largely absent.
A second drawback relates to the question of uniform sampling in rotational space. While sampling in translational space is
straightforward, involving Cartesian grids with uniform, possibly differing grid-sizes in each independent direction, the notions
of uniformity and direction do not translate easily to the rotational space SO(3). In particular, equispaced Euler angular grids
do not result in equispaced SO(3) samples. Due to this, rotational FFT-based techniques are destined to oversample certain
regions of SO(3) while leaving others wholly unexamined.

8.2.1 Proteins and flexibility

One main point of criticism of rigid-body fitting methods is that proteins undergo conformational changes during the induced
fit, i.e., they not only move with respect to each other but also deform, shear or bend. Flexibility often involves movements
between large rigid parts of the protein, called domains, between flexible loops on the molecular surface and between large
side chain at active sites. Due to the vastness of the space of flexible motions, protein flexibility can be practically dealt with
by (A) conducting all-atomistic local searches, as in the case of molecular dynamical algorithms [128, 142, 200, 195, 118],
(B) Building a coarse-grained representation of the protein, also known as a domain decomposition [87, 3, 166, 190], or (C) A
combination of the strategies in (A) and (B) [210, 211, 241].
Domain-based approaches have so far lacked a search scheme that takes advantage of the translational or rotational speedups
that FFT-based approaches can afford. This has to do with the issue of focusing: in uniform FFT-based techniques, there is no
way to restrict the search space to a small area of interest that can be occupied by a single domain rather than the entire protein.
By contrast, searching over the entire space for each domain is both time-consuming and results in spurious and geometrically
implausible false positives, and sifting through these grows rapidly inefficient as the number of domains increases. This is also
why domain-based flexibility algorithms such as those in [209, 210, 211] prefer Monte-Carlo-based or steepest-ascent-based
search schemes.
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8.2.2 Our contributions
We address the drawbacks mentioned in Section 8.2 with a pair of rotationally exhaustive, non-equispaced techniques to com-
pute rigid-body correlations. The resulting family of techniques, has the following properties:

• Sampling robust. The technique is capable of efficiently computing correlations over arbitrary samples of rigid body
motions R3 × SO(3).

• Compatible. It can be used along with existing equispaced FFT-based techniques.

• General. It unifies the rotationally-exhaustive paradigms in [136, 175, 90, 177].

Finally, this work also aims to be a self-contained overview of correlation techniques that depend on expressing the input
scalar valued functions in terms of rotationally invariant bases. In particular, we prove all relevant properties inherent to our
mathematical framework.

8.3 Background
In this Section we give some necessary definitions and background information for these algorithms. Note that we defer most
multi-line proofs to the appendix.
Let A,B : R3 7→ C be a pair of scalar-valued functions. We define the rigid-body correlation problem as follows.

Definition 8.1. For two functions A : R3 7→ C and B : R3 7→ C we define

C(Ri, tj) =

∫
R3

A(x)B(Rix + tj)dx, i ∈ {1, . . . , Nrot}, j ∈ {1, . . . , Ntrans} (8.1)

as the rigid-body correlation between A and B for a given set S = {(Ri, tj)}, Ri ∈ SO(3), tj ∈ R3 of rigid-body motions.
The rigid-body correlation problem is to maximize C(Ri, tj) over the set S.

The rigid-body correlation problem is a non-convex geometric optimization problem. The several problem domains in compu-
tational biology to which it applies can be distinguished by their choice of A and B. In protein-protein docking, for instance,
A and B are affinity functions that represent a relevant property, such as shape or electrostatics, of the underlying protein; in
protein-density map fitting, A is a blurred representation of the atoms of the protein, while B is the density map itself.
The objective function (8.1) can be efficiently calculated by expanding it in a series of orthogonal basis functions. The starting
point of this approach is a coordinate transform of vectors zx ∈ R3 from Cartesian to spherical coordinates. The inner product
of two square-integrable functions f, g : R3 → C parameterized in spherical coordinates is given by

〈f, g〉 =

∫
R+

∫
S2
f(ru)g(ru)r2dudr. (8.2)

We now consider the orthogonal bases for the two components of the product space separately. Let ξ ∈ S2 and let (ϕ, θ) ∈
[0, 2π)× [0, π] be its coordinates. For any l ∈ N0 and m = −l, . . . l the spherical harmonics of degree l are defined as

Y ml (ξ) =

√
2l + 1

4π
P
|m|
l (cos θ)eimφ

where Pml : [−1, 1] → R are associated Legendre polynomials, cf. [206], that arise as the derivatives of ordinary Legendre
polynomials Pl(x).
The spherical harmonics satisfy the orthogonality relation∫

S2
Y ml (ξ)Y m

′
l′ (ξ) dξ = δll′δmm′ . (8.3)

Secondly, we employ a weighted version of the Laguerre polynomials denoted by Rlk(r). These functions have been used to
describe the radial part of the orbitals of hydrogenic atoms and are also known as radial wavefunctions, see [14, pp. 368 ff] for
general informations. In [175] these functions have been employed in the context of six-dimensional rigid-body docking.
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Definition 8.2. For r ∈ R+
0 , l, k ∈ N0, k > l, the weighted Laguerre polynomials Rlk : R+ → R are given by

Rlk(r) =

√
2(k − l − 1)!

Γ(k + 1
2 )

e−
r2

2 rlL
l+ 1

2

k−l−1

(
r2
)

using the Laguerre polynomials Llk, see [206].

For r ∈ R+
0 , l, k ∈ N0, k > l, the functions Rlk(r) satisfy∫ ∞

0

Rlk(r)Rln(r)r2dr = δk,n. (8.4)

Based on the previous orthogonality relations (8.3) and (8.4), we see that the functions Rlk(r)Y ml (u) for k, l ∈ N, k > l ≥ |m|
are orthonormal with respect to the inner product from (8.2). This follows immediately by

〈Rlk(r)Y ml (u), Rl
′

k′(r)Y
m′

l′ (u)〉 =

∫ ∞
0

Rlk(r)Rl
′

k′(r)r
2dr

∫
S2
Y ml (u)Y m

′
l′ (u)du

= δk,k′δl,l′δm,m′ . (8.5)

Moreover, these products of functions constitute an orthogonal basis of the space of square-integrable functions on R3. There-
fore, we find a unique series expansion of the two given functions A(zx) and B(zx) in terms of these functions as

A(zx) = A(ru) =

∞∑
k=1

k−1∑
l=0

l∑
m=−l

âklmR
l
k(r)Y ml (u) (8.6)

with coefficients

âklm =

∫ ∞
0

∫
S2
A(ru)Rlk(r)Y ml (u)r2dudr, (8.7)

and analogously for B(zx).
Typically the initial data for A(zx) and B(zx) will be obtained by an EM or read in from a database as an atomic structure in
terms of a collection of atoms and charges. Either way the methods only provide a finite number of samples of the unknown
functionsA andB. Hence the integral (8.7) will be approximated by a suitable quadrature rule. In PFcorr we use a combination
of the Clenshaw-Curtis formula for the spherical part cf. [62, pp. 86] and a Gauss-Legendre formula for the radial part cf. [62,
pp. 222]. Alternatives to such deterministically-sampled quadrature schemes are quasi Monte-Carlo methods or Monte-Carlo
methods. Since this is not the focus of this work we omit further details on quadrature and merely comment on the error induced
by step.

Lemma 8.3. Let A : R3 7→ C be a complex scalar-valued, 2-Lipschitz continuous function with finite support on the domain
Ω ⊂ R3. For a given spherical grid with maximum grid-diameter h1, for small h the coefficients âklm can be computed with
an error E = Ch|Ω| for a constant C ∈ R.

8.3.1 Multi-basis framework
As a first step in solving the rigid-body correlation problem in Equation 8.1, A and B are represented in terms of orthogonal
basis functions. PFcorr offers two distinct choices of how to proceed.

Qξ1. Mixed bases. The standard approach uses the expansion (8.6) and approximates it by

AL(zx) = AL(ru) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

âklmR
l
k(r)Y ml (u), (8.8)

and analogously for BL(zx). For convenience, we shall omit the subscript L from now on.
1The grid-diameter is the diameter of the smallest ball that the grid-cell can be enclosed in.
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Qξ2. Pure spherical basis. This slightly modified approach following [136] and [90], divides the three dimensional space
into discrete spherical slices and uses only a spherical basis expansion in terms of spherical harmonics on each slice with
fixed radius r. The pure spherical representation of a scalar valued function A : R3 7→ C for a given radial coordinate r
is given by

Ar(u) = lim
L→∞

L∑
l=0

l∑
m=−l

âlm(r)Y ml (u) (8.9)

with coefficients
âlm(r) =

∫
S2
Ar(u)Y ml (u)du, (8.10)

where Ar(u) = A(r,u).

The next step in solving the rigid-body correlation problem from Definition 8.1 involves applying a motion to the functions
A and B. We assume that A and B are rigid bodies, and restrict the motion to rotations and translations in three-dimensional
space.

8.3.2 Rotating basis expansions of scalar-valued functions
We shall now examine how a function expanded as in (8.8) behaves under the application of a rotation. We conveniently employ
the representation property of spherical harmonics stating for arbitrary rotations zR ∈ SO(3):

Y nl (zRT zu) =

l∑
m=−l

Y ml (zu)Dmn
l (zR), for |m| ≤ l, zu ∈ S2. (8.11)

where Dmn
l (R) is a Wigner-D function [222].

The Wigner-D functions Dm,n
l with degree l and orders m,n with max{|m|, |n|} ≤ l are given by the explicit expression

Dm,n
l (α, β, γ) = e−imα dm,nl (cosβ) e−inγ

where α, γ ∈ [0, 2π) and β ∈ [0, π] are the Euler angle decomposition of a rotation R ∈ SO(3) and dm,nl are the Wigner-d
functions

dm,nl (x) = ε

(
s!(s+ µ+ ν)!

(s+ µ)!(s+ ν)!

)1/2

2−
µ+ν

2 (1− x)
µ
2 (1 + x)

ν
2 P

(µ,ν)
l−L∗ (x), (8.12)

P
(µ,ν)
l−L∗ (x) are the Jacobi polynomials and

µ = |n−m|, ν = |n+m|,
L∗ = max{|m|, |n|}, s = l − L∗,

ε =

{
1, if m > n,

(−1)n−m, if m ≤ n.

Note that dm,nl is a polynomial of degree l if m + n is even. Otherwise, it is a polynomial of degree l − 1 times a factor of
(1− x2)1/2.
By virtue of (8.11), applying an arbitrary rotation zR ∈ SO(3) to the given function A(zx) will yield

A(zRT zx) = A(rzRT zu) =

∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

âklnD
mn
l (R)Rlk(r)Y ml (u).

Note that the rotation does not affect the radial parts of the function as a rotation preserves distance. Hence, a similar result
holds for the radial-basis independent coefficients âlm.

Lemma 8.4. Given two functions A : R3 7→ C and B : R3 7→ C expanded in terms of a mixed basis as given in (8.8) the pure
rotational correlation can be obtained by evaluating

C(R) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

l∑
m′=−l

(−1)mâkl−mb̂klm′D
m,m′

l (R) (8.13)

for arbitrary choices of zR ∈ SO(3).



120 CHAPTER 8. MOTION GROUPS, SAMPLING

This is a direct result from using the orthogonality property (8.5) with the basis expansions of A(zx) and B(zRT zx) in

C(R) =

∫
R×S2

∑
klm

âklmR
l
k(r)Y ml (u)

∑
k′l′m′m′′

b̂k′l′m′R
l′

k′(r)D
m′′,m′

l (R)Y m
′′

l′ (u)r2drdu.

Lemma 8.5. Given two functions A : R3 7→ C and B : R3 7→ C expanded in terms of a pure spherical basis as given in (8.9)
the pure rotational correlation can be obtained by evaluating

C(R) =

L∑
l=0

l∑
m=−l

l∑
m′=−l

(−1)m(−1)m
′
Dm,m′

l (R)

∫
R+

âl−m(r)b̂l−m′(r)r
2dr (8.14)

for arbitrary choices of zR ∈ SO(3).

8.3.3 Fourier Transforms on the rotation group SO(3)

To efficiently calculated the correlations (8.13), (8.14) , we will use the Fast SO(3) Fourier Transform. For details on the
algorithm we refer the reader to [167]. Here we simply outline the basic idea and show how it can be applied to compute our
scoring function.
The space of square integrable functions in SO(3) is denoted L2 (SO(3)) and defined via the standard inner product

〈f, g〉 =

∫ 2π

0

∫ π

0

∫ 2π

0

f(α, β, γ)g(α, β, γ) sinβ dγ dβ dα.

A convenient orthogonal basis for L2(SO(3)) are the Wigner-D functions Dm,n
l (zR) which satisfy the orthogonality condition

〈Dm,n
l , Dm′,n′

l′ 〉 =
8π2

2l + 1
δl,l′δm,m′δn,n′ .

Definition 8.6 (NDSOFT). The nonequispaced discrete SO(3) Fourier transform (NDSOFT) is defined as the evaluation of the
sums

f(αq, βq, γq) =

L∑
l=0

l∑
m=−l

l∑
n=−l

f̂ m,nl D̃m,n
l (αq, βq, γq), q = 1, 2, . . . , Q, (8.15)

for given Fourier coefficients f̂ m,nl and nodes (αq, βq, γq).

We outline our strategy for the fast approximate algorithm, a detailed description of this algorithm, called the nonequispaced
fast Fourier transform (NFSOFT) can be found in [167]. We can rearrange (8.15) to

f(α, β, γ) =

L∑
m=−L

L∑
n=−L

e−imα e−inγ
L∑

l=L∗

f̂ m,nl dm,nl (cosβ).

We can then calculate new coefficients f̄ m,nl from the coefficients f̂ m,nl in O(L3 log2 L) arithmetic operations to rewrite the
inner most sum for m,n = −L, . . . , L using the Chebyshev polynomials of first kind Tl(x),

L∑
l=L∗

f̂ m,nl dm,nl (cosβ) =

L−χ∑
l=0

f̃ m,nl (1− x2)χ/2Tl(x), (8.16)

where χ = [m+ n odd]. We are now able to replace the Chebyshev polynomials of first kind with complex exponentials,

L−χ∑
l=0

f̃ m,nl (1− x2)χ/2Tl(x) =

L∑
l=−L

ĝm,nl e−ilβ , m, n = −L, . . . , L.
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We can compute the coefficients ĝm,nl from the coefficients f̄ m,nl with O(L3) arithmetic operations. The obtained form is now
ready to be inserted into (8.15) to become

f(α, β, γ) =

L∑
l=−L

L∑
m=−L

L∑
n=−L

ĝm,nl e−imαe−ilβe−inγ . (8.17)

This is a plain three-dimensional Fourier sum and we can use the NFFT algorithm to evaluate it withO(L3 logL+Q) operati-
ons, where Q is the number of nodes at which we evaluate the function; see [168]. Hence, the application of a NFSOFT results
in O(L3 log2 L+Q) operations.

8.4 Rigid-body correlations

Although not immediately apparent, the idea of exploiting the rotational invariance of the spherical harmonics that serve as basis
functions in the Fourier expansion of a functions in L2(S2) has some advantages over translation-invariant Fourier expansion
in [18, 52] .
The key idea is to first express the three-dimensional translation in terms of two rotations and a translation in one dimension.
Hence, this translation will have two rotational degrees of freedom and one translational. A three dimensional translation
zt ∈ R3 of a object can be uniquely expressed as zt = r zRZ(ϕ)zRY (θ)zez for ϕ ∈ [0, 2π), θ ∈ [0, π] and r ∈ R+ where
zez = (0, 0, 1)T . Combining, this with the three independent rotation parameters of the object, we have five rotation angles that
describe a motion and one absolute value of a translation along one axis. Consequently, are able to speed up the computation
for the rotations by spherical Fourier transforms and obtain an improved complexity for five of the six degrees of freedom of
rigid-body correlations instead of the previous three. For zU = zRZ(ϕ)zRY (θ), we have

C(zR, zt) = C(z̃R, zUzzez) =

∫
R3

A(zx)B(zRzx− zUzzez) dzx

=

∫
R3

A(zUT zx)B(z̃Rzx− zzez) dzx, (8.18)

with z̃R = zUT zR. A similar approach has been previously suggested in [135] for protein matching. Here we will focus on
its efficient computation. After having considered the effects of rotations, it remains for us to examine the effect of the single
one dimensional translation, say along the z-axis. In spherical coordinates a translation of the vector zx about zzez is given
by zx− zzez = rzzuz with rz =

√
r2 + 2rz cos θ + z2 and zuz = (arccos

(
r
rz sin θ

)
, ϕ). We point out that the longitudal

angle ϕ does not change during a translation along the z-axis. The effect of a translation along the z-axis on the R+ × S2 basis
functions can be expressed in terms of translation matrix (T-matrix) elements Tnjh,kl(z) as described in [175] as

Rlk(rz)Y
n
l (zuz) =

∞∑
k′=0

k′−1∑
l′=0

Tnk′l′,kl(z)R
l′

k′(r)Y
n
l′ (zu). (8.19)

Note that the T-Matrices apply only to mixed basis expansions (8.8); for pure spherical basis expansions, the coefficients âlm
for each radial slice with radius r have to be recomputed after each translation t ∈ R3.

These translation coefficients are expressed as

Tnk′l′,kl(z) = e−z
2/4λ

l+l′∑
m=|l−l′|

All
′|n|
m

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M !(z2/4λ)m/2L
(m+1/2)
M (z2/4λ), (8.20)
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where

M = j +
l + l′ −m

2
, Ck

′l′,kl
j =

k−l−1∑
j=0

k′−l′−1∑
j′=0

δn,j+j′XkljXk′l′j′ ,

Xklj =

[
(k − l − 1)!(1/2)k

2

]1/2
(−1)k−l−j−1

j!(k − l − j − 1)!(1/2)l+j+1
,

Al
′l|n|
m = (−1)m+l′−l)/2+n(2m+ 1) [(2l′ + 1)(2l + 1)]

1/2
(
l′ l m
0 0 0

)(
l′ l m
n −n 0

)
.

Moreover
(
a b c
α β γ

)
denotes the Wigner 3-j symbol and (·)m is the Pochhammer symbol.

Directly computing T-Matrix entries in Equation 8.20 for fixed k, l, k′, l′,m takes O(L3Nt) steps, where Nt is the number of
translations in one dimension. The overall complexity is thus L5 · O(L3Nt) = O(L8Nt). An important contribution of the
PFcorr algorithm is the fast and efficient computation of the T-Matrix entries in O(L7 + L6Nt) steps. Details of this speedup
can be found in the Appendix.
Having collected all the ingredients we state the following important Theorem.

Theorem 8.7. For a fixed cut-off degree L ∈ N0 and two given functions

A(ru) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

âklmR
l
k(r)Y ml (u), B(ru) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

b̂klmR
l
k(r)Y ml (u)

the objective function (8.1) can be evaluated by computing

C(zR, zt) = C(zR, zUzzez) =

L∑
k,k′=1

k−1∑
l=0

k′−1∑
l′=0

l′∑
m′=−l′

l∑
m=−l

min(l,l′)∑
n=−min(l,l′)

(−1)nâk′l′m′̂bklm

× D−nm
′

h (R)Dnm
l (U)Tnk′l′,kl(z)

for arbitrary choices of zR ∈ SO(3) and zt ∈ R3. Its proof can be found in the Appendix.
The mixed basis expansions can be used to compute rigid-body correlations. Let A and B be scalar-valued functions, and let

B undergo rotations R relative to A. We are interested in the pure rotational correlation C(R) =

∫
R3

A(x)(B(Rx))dx, where

the overbar represents complex conjugation2. The following two lemmas can be established, respectively, for mixed-basis
coefficients âklm, b̂klm and pure spherical basis coefficients âlm, b̂lm:

C(R) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

l∑
m′=−l

(−1)mâkl−m(−1)m
′
b̂kl−m′D

m,m′

l (α, β, γ). (8.21)

To derive the expression for general rigid-body correlations

C(R, t) =

∫
R3

A(x)B(Rx + t)dx

we can use Equation ?? along with an elementary fact: every rigid-body motion (R, t) can be factored into a combination
of five rotations and a single translation about the z-axis3. Let these five rotations be parametrized by z-y-z Euler angles
RA = (αA, βA, γA) and RB = (0, βB , γB). Then we obtain, for the mixed-basis functions:

Lemma 8.8. Given two functions A : R3 7→ C and B : R3 7→ C expanded in terms of a mixed basis as given in (8.8) the
rigid-body correlation can be obtained by evaluating

2The conjugation is used to simplify algebraic manipulations, and is otherwise redundant.
3It is enough to see that every translation t can be expressed as two rotations and a single translation along the z-axis. Starting at the origin, the point t can

be reached by translating along the z-axis by ‖t‖, and then rotating about the z and y−axes by θ and φ, the spherical coordinates of t.
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C(R, t) =
∑
klmn

âklmD
n,m
l (RA)

∑
k′l′m′

(−1)nb̂k′l′m′D
−n,m′
l′ (RB)T

|n|
kl,k′l′(z) (8.22)

for arbitrary choices of zR ∈ SO(3) and zt ∈ R3.

Following an observation in [90], it is not as efficient to use the pure spherical basis expansions to express a general rigid-
body correlation. Instead, Equation ?? is used along with a scan of the translational degrees of freedom, in which the basis
coefficients are recomputed for each distinct t ∈ R3. Hence we omit mentioning the case of pure spherical expansions here.
We conclude this section with some notes on the complexity of the evaluation of the introduced expansions. If we use the
NFSOFT [167] to compute Equations (8.21) then the pure rotational correlation in Lemma ?? can be computed inO(L4 +N3

R)
steps using the following recipe, where NR is the number of distinct rotation angles per rotational degree of freedom, i.e., per
Euler angle.
Recipe 1. Evaluate

C(R) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

l∑
n=−l

(−1)mâkl−mb̂klnD
m,n
l (R) (8.23)

for N3
R different choices of Euler angles.

Qξ1. Rearrange the multiple summations such that the sum over k becomes the innermost sum.

Qξ2. Compute

f̂lmn =

L∑
k=l+1

(−1)mâkl−mb̂kln

in O(L4) steps.

Qξ3. Use the SO(3) Fourier transform to compute the remaining sums

C(R) =

L−1∑
l=0

l∑
m=−l

l∑
n=−l

f̂lmnD
mn
l (zR)

in O(L3 log2 L+N3
R) steps, where NR is the number of unique Euler angles per rotation axis.

In a similar fashion, the pure rotational correlation in Lemma 8.5 can be computed inO(L3 log2 L+NR +L3I) steps where I
is the complexity of computing the integral

∫
R+ â(r)b̂(r)r2dr for a given pair of scalar-valued functions â, b̂ : R+ 7→ C. Since

there are O(L3) integrals
∫
R+ â(r)b̂(r)r2dr we get the aforementioned complexity.

Let us now consider general rigid-body motion. The general rigid-body correlation in Theorem 8.22 can be computed in
O(L6 + L4N2

R +N5
R)Nt steps using the outlined a way to speed up computations of the translation matrix entries (8.20) and

the NFSOFT, whereN3
R andN2

R are the number of rotations ofA andB respectively, andNt is the number of one-dimensional
translations. The computation is performed according to the following recipe.
Recipe 2. Evaluate

C(zR, zt) = C(zR, zUzzez) =

L∑
k,k′=1

k−1∑
l=0

k′−1∑
l′=0

l′∑
m′=−l′

l∑
m=−l

min(l,l′)∑
n=−min(l,l′)

(−1)nâk′l′m′̂bklm

× D−nm
′

h (R)Dnm
l (U)Tnk′l′,kl(z)

for NR different choices of zR and Nt different choices of one-dimensional translations z ∈ R

Qξ1. Compute

ĉm
′n

kll′ =

L∑
k′=l′+1

z1|n|≤l′ b̂k′l′m′T
n
k′l′,kl(z)

in O(L6) steps.
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Qξ2. Compute

c̃nkl =

L−1∑
l′=0

l′∑
m′=−l′

ĉm
′n

kll′ D
−n,m′
l′ (U)

using a modification of the NFSOFT in O(L5 logL+N2
RL

3) steps.

Qξ3. Compute

cmnl =

L∑
k=l+1

(−1)nâklm̃c
n
kl.

Qξ4. Compute

C(zR, zUzzez) =

L−1∑
l=0

l∑
m=−l

l∑
n=−l

cmnl Dn,m
l (RA)

using the standard NFSOFT [167] in O(N2
R(L4 + L3 logL+N3

R)) steps.

Hence, the overall cost is O(L6 + L5 logL+N2
R(L3 + L4) +N2

RN
3
R)Nt, i.e., O(L6 + L4N2

R +N5
R)Nt.

With these recipes established, we now outline algorithms to perform fast rigid-body correlations given a pair of scalar-valued
functions as input. Algorithm 1 uses the mixed basis, while Algorithm 2 uses the pure spherical harmonic basis.

Algorithm 1: Fast Rotational Correlation with mixed radial/spherical basis functions

Input: L : Expansion degree;
G : Spherical grid with sizes Nr, Nθ, Nφ in the radial, polar and azimuthal directions respectively. Let
N = max(Nr, Nθ, Nφ);
A,B : R3 7→ C : scalar-valued functions sampled on G centered at r = 0;
M⊂ R3 × SO(3) : a finite set of rigid-body motions;

1 foreach (k, l,m) with |m| ≤ l ≤ k ≤ L do
2 Calculate the coefficients âklm and b̂klm using Equation 8.7;
3 end
4 if t == 0 ∀(R, t) ∈M then
5 Find the maximum value of C(R) =

∫
R3 A(x)B(Rx)dx ∀R ∈M using Recipe 1.;

6 else Find the maximum value of C(R, t) =
∫
R3 A(x)B(Rx + t)dx ∀(R, t) ∈M using the steps from Recipe 2.;

7 ;
Output: The maximum correlation C ∈ C between A and B;

8 Complexity: O(Ccoeff + CPFcorr) flops, where Ccoeff = O(L3N3) is the complexity of computing the coefficients âklm,
and CPFcorr = O(L4 +NR) in the pure rotational case or O(L6 + L4N2

R +N5
R)Nt in the general case;

There are three sources of error . The first is the expansion error, i.e., the error induced by truncating the basis expansion at
a finite value of L. The second is the representation error, i.e., the error induced in numerically integrating the coefficients in
Equation (8.7). The third is the NFFT error, i.e., the error induced by approximating the exponential sums by the NFFT.
Following [175, 177, 90], the first two sources of error can be respectively mitigated by choosing an expansion degree between
20 ≤ L ≤ 25, and using a single-point quadrature rule. We provide further evidence in Section 8.4.1 of the former assertion.
The NFFT approximates exponential sums with a kernel basis expansion, providing a choice of several kernels, and several pa-
rameters govern the actual error of the expansion. In our implementation, we choose the Gaussian kernel with an oversampling
factor of 3, see [168], resulting in the errors in Table ??. On more information about the error of the NFFT and the NFSOFT
we refer to [168] and [167], respectively.
Note that, in solutions to the correlation problem, the absolute value of the correlation is less important than the value relative
to other rigid-body rotations, i.e., the ability of the search scheme to discriminate between two different rigid-body motions. A
measure of this ability is presented in Section 8.4.1 in the context of sampling arbitrary subsets of the motion group SE(3).
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Algorithm 2: Fast Rotational Correlations with pure spherical harmonic basis functions

Input: L : Expansion degree;
G : Spherical grid with sizes Nr, Nθ, Nφ in the radial, polar and azimuthal directions respectively. Let
N = max(Nr, Nθ, Nφ);
A,B : R3 7→ C : scalar-valued functions sampled on G centered at r = 0;
T ⊂ R3 × SO(3) : a finite set of pairs {(t,R)}, where t ∈ R3 is a translation andR ⊂ SO(3) is a finite set of rotations
corresponding to t;

1 foreach r ∈ G do
2 foreach (l,m) with |m| ≤ l ≤ L do
3 Compute âlm(r) using Equation 8.10;
4 end
5 end
6 foreach (t,R) ∈ T do
7 Translate B(x) by t ;
8 foreach (l,m) with |m| ≤ l ≤ L do
9 Compute b̂lm(r) using Equation 8.10;

10 end
11 Compute C(R) =

∫
R3 A(x)B(R(x + t))dx ∀R ∈ R as in Recipe 2.

12 end
Output: The maximum correlation C ∈ C between A and B;

13 Complexity: O((Ccoeff + CPFcorr)|T |) flops, where Ccoeff = O(N2L2), and CPFcorr = O(L3 logL+N3
R);

For the T-Matrix computation, a dramatic speedup with respect to the direct algorithm is observed in L ≥ 10 regime, where the
L7 v/s L8 scaling is apparent. However, for typical values of L (see following paragraph), the computation times are still too
slow to be usable in the inner loop of any Fourier-based correlation approach, including our own. Like prior work that uses the
T-Matrix (See the introduction for an overview), we thus prefer to precompute and store T-Matrix entries for given values of z
and λ (See Equation 8.20).
From a practical standpoint, our rigid-body correlation search is seen to be a viable, if somewhat slower, alternative to existing
rigid-body correlation search techniques. Most of the degradation in performance is due to the NFFT, which uses, in its
implementation, an oversampled FFT to enable the non-uniformity inherent to it. Following [177], we choose L to typically lie
between 20 and 25, in which case typical run times for an exhaustive correlation involving about 1.5 · 107 distinct rigid-body
samples lie between 2 and 3 minutes. We also note that, other than the argument in Section 8.4.1, there is no reason to prefer
the non-uniformity inherent to PFcorr and, if performance is a concern, each of the steps involving the NFFT can be replaced
by the equispaced FFT.

8.4.1 Sampling arbitrary subsets of the motion group SE(3); addressing the drawbacks of existing
techniques

The main advantage of PFcorr is in sampling arbitrary (finite) subsets of the space of rigid body motion in three dimensions
SE(3) = R3×SO(3). In our implementation, this is as simple as specifying a set of rigid-body motions on which correlations
are to be performed. By contrast, all prior techniques require an equispaced angular grid for rotational search, a property that
results in a highly non-uniform search of the space of rotations (See Drawback 2 in the introduction).
For exhaustive correlations between a pair of scalar-valued functions, one typically employs uniform sampling of the space
of rotations SO(3). As we mention in the introduction, most of the uncertainty in the rigid-body correlation problem lies in
the space of rigid-body rotations, and it is thus more important to sample this space exhaustively. There are several existing
techniques that, given an angular sampling criterion, provide a set of samples that are uniform with respect to accepted metrics
of uniformity [106, 155, 230]. We use the approach from [155], in which the metrics of local separation and global coverage
compete to provide a set of highly uniform samples in SO(3).
The ability to sample and correlate over arbitrary subsets of SE(3) is only useful if, at any expansion degree, the fineness of
the rotational sampling does not exceed the accuracy with which âklm and b̂klm represent A and B respectively (See Equation
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(8.7)). Such a scenario would give rise to correlations that are so close to each other as to be essentially indistinguishable, and
would result in a set of correlations clustered around the average correlation. To measure this tendency, we compute the Z-score
z = x−µ

σ , a measure of the distance of each individual correlation from the average. The results, indicate that the top-ranking
Z-score increases with increase in degree, as expected, leveling off at L ≥ 20, where the error due to floating-point calculations
begins to rival the error due to representation, and that even at very low expansion degrees, the top-ranking Z-score is 3 standard
deviations from the mean, indicating a very high confidence. Another argument as to why the regime 20 ≤ L ≤ 25 is best, as
the latter provides a balance between the errors of representation and floating-point computation. For additional information on
the Z-score measure see e.g. [165].

8.5 Flexible correlations: main results
We present an algorithm (Algorithm 3) for domain-based protein matching. This algorithm, given as input

Qξ1. A protein P ,

Qξ2. A hierarchical domain decomposition, defined in Section 8.5.1, of P ,

Qξ3. A scalar-valued function B : R3 7→ R representing a stationary target, and,

Qξ4. A scalar-valued representation A of P ,

produces as output the optimal correlation betweenA andB under rigid-body motions of the domains of P . Algorithm 3 makes
use of the ability of PFcorr to uniformly sample arbitrary subsets of R3 × SO(3).

8.5.1 Domain-based protein flexibility framework
We assume a generic framework for domain-based protein flexibility. This framework consists of ideas from domain-decomposition
of proteins that have existed in various forms over the past decade (see especially [148]), as well as a set of techniques, descri-
bed, for instance, in [19], to assign motions to each of these domains.
Let a protein crystal structure P comprise a set of atoms. Designate a subset ofP as a domainD. A domain decomposition of P
is a setDD = {Di}, 1 ≤ i ≤ nDD, whereDi is a domain. A hierarchical domain decompositionHD = {DDi}, 1 ≤ i ≤ nHD
is a set of domain decompositions DDi such that each domain in DDi is a subdomain of some domain in DDi−1 (See, for
example, [29]). For each DDi of the hierarchical domain decompositionHD, a motion graph MG specifying relative motions
between domains of DDi can be specified. The motion graph consists of a set of edges Fij , called flexors, between pairs of
domains i, j that undergo relative motion. The geometric properties of each flexor imply a set of rigid-body transformations
(Rk

i,j , t
k
i,j), k ∈ {1 . . . NT} applied to Dj relative to Di [19].

8.5.2 Algorithm for flexible matching
Algorithm 3 applies to a particular domain decomposition of P , i.e, it applies to a particular index in the hierarchical domain
decomposition of P . It uses the ability of PFcorr to sample arbitrary subsets of SE(3) to match representations of domains
Ai ∈ A to a target scalar-valued function B : R3 7→ R. Note by contrast that a classic equispaced Fourier-based correlation
scheme would not be able to perform the tasks in Algorithm 3 without also producing several results that do not belong to the
chosen subset of SE(3). This focusing property enables PFcorr to combine the merits of both local and global optimization
schemes in the following sense. The algorithm is local in that it is restricted to the chosen subset of SE(3), but global in that it
samples that subset exhaustively. It thus combines the speed of a local search without being sensitive, as local search algorithms
are, to local optima.

8.6 Conclusion

Appendix
Here we give additional details on the mathematical background of the used algorithms.
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Algorithm 3: Greedy multi-domain matching

Input:
Qξ1. P : Protein;

Qξ2. DD = {Di,MG}, i ∈ {1 . . . ND} : A domain decomposition of P;

Qξ3. R(DDi) : A conversion from Di ∈ DD into a function Ai : R3 7→ R;

Qξ4. A : R3 7→ R : Scalar-valued function representing P;

Qξ5. B : R3 7→ R : Target scalar-valued function;

Qξ6. PQ : Priority queue with elements (j, r), j ∈ Z+, r ∈ R ordered least-first w.r.t r;

Output: The optimal correlation between Ai and B under rigid-body transformations of Ai, i ∈ {1 . . . ND}.
1 Use PFcorr to find the optimal rigid-body transformation (R, t) relating A to B;
2 foreach Di ∈ DD do
3 Compute the correlation Ci ←

∫
R3 AiBdx between each domain Di and the target B;

4 Push (i, Ci) to PQ;
5 end
6 i← 1;
7 while i ≤ ND do
8 k ← PQ[ND − i− 1].j;
9 Di ← Dk;

10 i← i+ 1;
11 end
12 foreach Di ∈ DD, i 6= 1 do
13 Using flexors Fi−1,i, compute the set of relative motions Ti−1,i ← {(Rk

i−1,i, t
k
i−1,i)}, k ∈ {1 . . . N i

T} of Di relative
to Di−1;

14 Compute the set of absolute motions Ti ← {(Rk
i , t

k
i )}, k ∈ {1 . . . N i

T} for each rigid-body transformation in the set
Ti−1,i relative to the stationary domain D1;

15 end
16 foreach (i, Ci) ∈ PQ do
17 Use PFcorr to find the optimal rigid-body transformation (Ri, ti) ∈ Ti relating Ai to B;
18 end

19 Complexity: O(CPFcorrND) flops, where CPFcorr is the complexity of PFcorr.
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T-Matrices Computation.
The translation coefficients T |m|k′l′,kl(z) · exp(z2/4λ) are polynomials of degree

max(n+ 2M) = max(n+ 2(j +
l + l′ − k

2
)) = max(2j + l + l′) = 2k − l + 2k′ − l′ − 4.

Let d = 2k − l + 2k′ − l′ − 4, n = min(p, l + l′)− s and i = p−n
2 Then Equation (8.20) can be arranged to obtain

T
|m|
k′l′,kl(z) exp(z2/4λ) =

2k−l+2k′−l′−4∑
p=0

αp · zp

where

αp =

min(p,l+l′)−|l−l′|∑
s=0

All
′|m|
n

k−l+k′−l′−2∑
j=max(i− l+l′−n2 ,0)

Ck,l,k
′l′

j M !
(1/2)M+n+1

(M − i)!(1/2)n+i+1
· 1

(−4λ)ii!
,

and s is even if and only if d is even.

The coefficients αp can be computed for all p inO(L3) steps. For fixed k, l, k′, l′,m, the T-Matrix polynomial can be computed
inO(LNt). The complexity for fixed k, l, k′, l′,m is henceO(L3 +LNt), resulting in an overall complexity ofO(L8 +L6Nt).
A polynomial can be evaluated at a set of equispaced arguments with O(L) multiplications. Applying Nuttall’s update rule for
polynomials [162] reduces these multiplications to additions without altering the number of operations required. This affords a
small speedup.
T-Matrices Computation Speedup. IfAll

′|m|
n is precomputed for allm, the other terms in Equation (8.20) have to be calculated

only once for fixed k, l, k′, l′. In the first step, we compute

bn :=

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M ! exp(−z2/4λ) (z2/4λ)n/2L
(n+1/2)
M (z2/4λ)

for all m and fixed n, l, n′, l′. The summation over j and the computation of Ln+1/2
M each takes O(L) steps, implying a

complexity of O(L2) for each bn, and a complexity for all m of O(L3).

In the second step we compute the T-Matrix entries T |m|k′l′,kl =

l+l′∑
n=|l−l′|

bn ·All
′|m|
n .

Since the above calculation has to be done for all k, l, k′, l′ and for Nt translations, the overall complexity for T |m|k′l′,kl is now
O(L7Nt), instead of O(L8).

Computation of the coefficients Ckl,k
′l′

j can also be sped up. Only these coefficients and the boundary of the innermost sum
depend on k and k′. If k and k′ are switched, the boundary of the sum does not change, so for switched k and k′ only the value
Ckl,k

′l′

j changes. In the first step

l(z2/4λ) := L
(n+1/2)
M (z2/4λ)

is computed for all j, n, l, l′. In the second step

tkl,k′l′ :=

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M ! exp(−z2/4λ) (z2/4λ)n/2l(z2/4λ)
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and tk′l,kl′ respectively are computed. In the third step

T
|m|
k′l′,kl =

l+l′∑
n=|l−l′|

All
′|m|
n · tkl,k′l′

and T |m|kl′,k′l respectively are computed.

Moreover, the symmetry property [175] T |m|k′l′,kl = (−1)l−l
′
T
|m|
kl,k′l′ implies T |m|kl′,k′l = (−1)l−l

′
T
|m|
k′l,kl′ . Hence, the dynamic

programming approach above allows us to calculate T |m|kl,k′l′ , T
|m|
kl′,k′l and T |m|k′l,kl′ by calculating T |m|k′l′,kl.

The complexity of the approach of representing the T -coefficients as a polynomial can be reduced by using the speed-up by
dynamic programming as explained above. To achieve the reduction in the complexity we consider the calculation of αp.
Instead of computing αp directly, first

bps :=
1

(−4λ)i · i!(1/2)n+i+1

k−l+k′−l′−2∑
j=max(i− l+l′−n2 ,0)

Ck,l,k
′l′

j M !
(1/2)M+n+1

(M − i)!

is precomputed. Due to the summation and the parameters s and p, this computation has the complexity O(L3) Afterwards the
αp

αp =

min(p,l+l′)−|l−l′|∑
s=0

All
′|m|
n · bps .

are computed This has the complexity O(L2), implying a complexity of O(L3) for the precomputation of αp for all m. The
total computation of the αp for all m is hence O(L3 + L3) = O(L3).
The subsequent computation of

T
|m|
kl′,k′l exp(z2/4λ) =

2k−l+2k′−l′−4∑
p=0

αp · zp

is for fixed k, l, k′, l′,m and allm isO(L2Nt). Therefore the overall complexity for fixed k, l, k′, l′ and allm isO(L3 +L2Nt).
Thus, for all k, l, k′, l′ the complexity is O(L4)O(L3 + L2Nt) = O(L7 + L6Nt).

Proof of Lemma 8.3. Let Ω be subdivided in N grid-cells Ωi with centers zxi, volume Vi and diameter di. The approximation
error in the ith grid-cell is given by

Ei =

∣∣∣∣∫
Ωi

A(x)dx−A(xi)Vi

∣∣∣∣ =

∣∣∣∣∫
Ωi

(A(x)−A(xi)) dx

∣∣∣∣ .
Expanding A(x) in a Taylor series about xi, we get

Ei =

∣∣∣∣∫
Ωi

(x− xi)
T∇A(xi) +O(||zx− zxi||2) dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ωi

c · di dx

∣∣∣∣ ≤ c · di · Vi.
for some constant c, due to A(zx) being 2-Lipschitz continous on Ω . Thus the error across all grid cells is the sum E =∑
∀i

Ei ≤ cmax
∀i

di|Ω|. Since the maximum diameter of the grid-cells is proportional to the grid fineness h, we haveE ≤ Ch|Ω|

for a fixed constant C.
Proof of Theorem 8.22. Consider a rotation zR ∈ SO(3) that is applied to the molecule A. By the representation property of
spherical harmonics 8.11 the affinity function becomes

A(zRT zx) = A(rzRT zu) =

∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

âklmD
nm
l (R)Rlk(r)Y nl (u).
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The molecule B will be rotated by zU = zRZ(ϕ)zRY (θ) and translated by the vector (0, 0, z)T. Using (8.19), this yields the
series expansion

B(zUzx− zzez) = B(rz(zU
T zu)z) =

∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

b̂klmD
nm
l (U)Rlk(rz)Y

n
l (uz)

=

∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

∞∑
k′=0

k′−1∑
l′=0

b̂klmD
nm
l (U)Tnk′l′,kl(z)R

l′

k′(r)Y
n
l′ (zu).

After inserting both of the above expansions of the affinity functions into the correlation integral (8.18), we are now able to use
the orthonormality property

〈Rlk(r)Y ml (u), Rl
′

k′(r)Y
m′

l′ (u)〉 = δk,k′δl,l′δm,m′

to simplify the correlation integral to

C(zR, zUzzez) =

∫
R3

A(zRT zx)B(zUT zx− zzez) dzx

=

∞∑
k,k′,k′′=1

k′′−1∑
l′′=0

l′′∑
m′,n′=−l′′

k−1∑
l=0

l∑
m,n=−l

k′−1∑
l′=0

(−1)n
′
âk′′l′′m′D

n′m′

l′′ (R)

× b̂klmD
nm
l (U)Tnk′l′,kl(z)δk′,k′′δl′,l′′δn,−n′

=

∞∑
k,k′=1

k−1∑
l=0

k′−1∑
l′=0

l′∑
m′=−l′

l∑
m=−l

min(l,l′)∑
n=−min(l,l′)

(−1)nâk′l′m′̂bklm

× D−nm
′

l′ (R)Dnm
l (U)Tnk′l′,kl(z).

If we now approximate the infinite sums by sums with a certain maximum degree L we obtain the formula from Theorem 8.22.

8.7 Sampling

8.7.1 Monte Carlo method

Let g : [0, 1] → [0, 1] be integrable and |g′(x)| ≤ c. We are interested in computing
∫ 1

0
g(x) dx using m samples with some

probability bound on the error.
Let f : {0, 1}n → [0, 1] be a function mapping n-bit strings to reals such that f(x) = g(x̃), where x̃ is the value of the binary
string prepending by a radix point. Then, we have

1

2n

∑
x∈{0,1}n

(
f(x)− c

2n

)
≤
∫ 1

0

g(x) dx ≤ 1

2n

∑
x∈{0,1}n

(
f(x) +

c

2n

)
.

This implies that the average estimate f̃ = 1
2n

∑
x∈{0,1}n f(x) of f is a close approximation to the integral

∫ 1

0
g(x) dx.

Theorem 8.9 ([156, Theorem 13.5]). Let f and f̃ be defined as above and let x1, . . . ,xm be m samples chosen i.i.d. uniform
in {0, 1}n. If m > 1

2ε2 ln 2
δ , then

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− f̃
∣∣∣∣∣ ≥ ε

]
≤ δ.

Suppose we want to obtain similar error with fewer number of purely random bits. Let x1,x2, . . . ,xm be pairwise independent.
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Let Y = 1
m

∑m
i=1 f(xi). Then, E[Y ] = E[f(x)]. By Chebyshev inequality,

Pr [|Y − E[f(x)]| ≥ ε] ≤ Var[Y ]

ε2

=
Var[ 1

m

∑m
i=1 f(xi)]

ε2

=
Var[

∑m
i=1 f(xi)]

m2ε2

≤ 1

mε2
.

Thus, Pr[|Y − f̃ ]| ≥ ε] ≤ δ when m ≥ 1
δε2 .

8.7.2 Quasi Monte Carlo method

Suppose P = {x0, x1, x2, . . . , xN−1}. The star discrepancy is defined as

∆P (t) =
1

N

N−1∑
i=0

1[0,t](xi)− t,

where

1[0,t](x) =

{
1 if x ∈ [0, t]

0 otherwise

is the characteristic function. The star discrepany can be regarded as a test of randomness (i.e. how uniform is the distribution)
using the family of all intervals with the left endpoint at the origin. It is related to the Kolmogorov-Smirnov test.
The Koksma-Hlawka inequality can be used the bound the integration error. See [196] for a list of references.

Theorem 8.10 (Koksma-Hlawka inequality). For all 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1,∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣ ≤ ‖∆P ‖p‖f ′‖q.

Proof. Observe that f(x) and t can be written as follows.

f(x) = f(1)−
∫ 1

x

f ′(t) d t

= f(1)−
∫ 1

0

1[0,t](x)f ′(t) d t

t =

∫ 1

0

1[0,t](x) dx

We can rewrite the integral as follows.∫ 1

0

f(x) dx =

∫ 1

0

(
f(1)−

∫ 1

0

1[0,t]f
′(t) d t

)
dx

= f(1)−
∫ 1

0

∫ 1

0

1[0,t](x)f ′(t) d tdx

= f(1)−
∫ 1

0

tf ′(t) dx. (8.24)
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we can rewrite the average as follows.

1

N

N−1∑
i=0

f(xi) =
1

N

N−1∑
i=0

(
f(1)−

∫ 1

0

1[0,t](xi)f
′(t) d t

)

= f(1)−
∫ 1

0

1

N

N−1∑
i=0

1[0,t](xi)f
′(t) d t (8.25)

The result follows by subtracting (8.24) from (8.25) and applying Hölder inequality.

Hölder Inequality

If x = (x1, x2, . . . , xN ), then its `p norm is defined as ‖x‖p =
(∑N

i=1|xi|p
)1/p

.

Theorem 8.11 (Hölder Inequality). For all 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1,

N∑
i=1

|xi| · |yi| ≤
(

N∑
i=1

|xi|p
)1/p( N∑

i=1

|yi|q
)1/q

.

If x(t) is a function, then its Lp norm is defined as
(∫
|x(t)|p d t

)1/p
. So, the error bound in the Koksma-Hlawka inequality

reads (∫ 1

0

|∆P (t)|p d t

)1/p(∫ 1

0

|f ′(t)|q d t

)1/q

.

Monte Carlo and Quasi Monte Carlo Integration

Let g : [0, 1] → [0, 1] be an integrable function. Suppose that its derivative exists and is bounded by |g′(x)| ≤ c. We want
to calculate I(g) =

∫ 1

0
g(x) dx. Note that if X is a random variable and Xi ∼ U(0, 1) are n independent random values

uniformly distributed in the interval [0, 1] then E[g(X)] = 1
n

∑n
i=1 g(Xi) →

∫ 1

0
g(x) dx and with probability 1 as n → ∞.

The error in the Monte Carlo (MC) estimate of the integral is supplied by the variance, i.e. an application of Chernoff bounds.
Var[g(X)] = ( 1

n

∑m
i=1 g(Xi)−

∫ 1

0
g(x) dx)2 = σ2

n

Let f : {0, 1}n → [0, 1] be a function mapping n-bit strings to reals such that f(x) = g(x̃), where x̃ is the value of the binary
string prepending by a radix point. Then, we have

1

2n

∑
x∈{0,1}n

(
f(x)− c

2n

)
≤
∫ 1

0

g(x) dx ≤ 1

2n

∑
x∈{0,1}n

(
f(x) +

c

2n

)
.

This implies that the average estimate f̃ = 1
2n

∑
x∈{0,1}n f(x) of f is a close approximation to the integral

∫ 1

0
g(x) dx.

Theorem 8.12 ([156, Theorem 13.5]). Let f and f̃ be defined as above and let x1, . . . ,xm be m samples chosen i.i.d. uniform
in {0, 1}n. If m > 1

2ε2 ln 2
δ , then

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− f̃
∣∣∣∣∣ ≥ ε

]
≤ δ.

Suppose we want to obtain similar error with fewer number of purely random bits. Let x1,x2, . . . ,xm be pairwise independent.
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Let Y = 1
m

∑m
i=1 f(xi). Then, E[Y ] = E[f(x)]. By Chebyshev inequality,

Pr [|Y − E[f(x)]| ≥ ε] ≤ Var[Y ]

ε2

=
Var[ 1

m

∑m
i=1 f(xi)]

ε2

=
Var[

∑m
i=1 f(xi)]

m2ε2

≤ 1

mε2
.

Thus, Pr[|Y − f̃ ]| ≥ ε] ≤ δ when m ≥ 1
δε2 .

8.8 Biological Applications

8.8.1 Docking Problem

8.8.2 Flexible Fitting

Summary

References and Further Reading

Exercises
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Chapter 9

Optimization

9.1 Convex and Non-Convex

9.1.1 Convex Set

• Convex Set C Line joining all pair of points is always contained in the set C

∀ x1, x2 ∈ C 0 ≤ t ≤ 1 =⇒ x1t+ x2(1− t) ∈ C

• Convex combination of x1, x2, . . . , xk is given by

x = x1t1 + x2t2 + . . .+ xktk = 1, t1 + t2 + . . .+ tk = 1, tk ≥ 0

• For a point set S, Convex hull(s): Conv (s)
def
= set of all combinations of points in S (This is called Partition of Unity)

• Conic combination of x1 and x2 is any point x = t1x1 + t2x2, ∀ t1 ≥ 0, t2 ≥ 0.Convex Cone: set of all conic
combinations of points in the set.Note, it generalizes/sweeps out the line segment between x1 and x2.

• Hyperplane: {x | wTx = b, w 6= 01}, where w is normal vector.

• Half-space: {x | wTx ≤ b, w 6= 0}.

• Polygons and Polyhedra: Intersection of Half-spaces

• Norm Balls and norm cones are convex. Norm unit ball at origin {x | ‖x‖ ≤ 1}. Norm ball at center xc and radius r is
{x | ‖x− xc‖ ≤ r}, norm cone is defined as {(x, t) | ‖x‖ ≤ t}

9.1.2 Convexity of functions

We say f : IRd → IR is convex if dom f is convex and

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ dom f, 0 ≤ t ≤ 1

.
If all inequalities are strict inequalities, i.e.,

f(tx + (1− t)y) < tf(x) + (1− t)f(y), ∀x, y ∈ dom f, 0 < t < 1

then this is strictly convex. Or, equivalently one can define a convex function as:

135
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Definition 9.1. A continuously differentiable function f : IRp → IR is considered convex if for every x,y ∈ IRp we have

f(y) ≥ f(x) + 〈∇f(x),y − x〉

, where ∇f(x) is the gradient of f at x. Moreover, if f is non-differentiable, one can replace ∇f(x) with the notion of
subgradient.

We can say f is concave if −f is convex.
Here are several examples of convex functions.

• Affine transformation: f(x) = WTx + b

• Exponential function: etx for any t ∈ R

• Powers: x∝, ∀α ≥ 1 or α ≤ 0

• Negative entropy : x lnx

• Norms: f(X) = ‖X‖2 = σmax(X) = (λmax(XTX))1/2, X is a matrix.

• Quadratic Form: f(x) = 1
2x

TPx+ qTx+ r,∇f(x) = P+PT

2 x+ q = Px+ q, Hf = ∇2(f(x)) = P . This is convex if
P � 0 (P is positive semi-definite)

• Sub-Level Set of f : IRd → IR :
Cα = {x ∈ dom f | f(x) ≤ α}

sub-level sets of convex functions are convex and of co-dimension 1

• Epigraph of f : IRd → IR. epi = {(x, t) ∈ IRn+1 | x ∈ dom f, f(x) ≤ t}. Then f is convex if and only if epi f is a
convex set.

9.2 Convex Optimization Problems
• Linear Programming

• Quadratic Programming

• Polynomial Optimization

• Geometric Programming

• Semi-Definite Programming

The general convex optimization problem can be formulated as:

min f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m

hj(x) = 0, ∀j = 1, . . . , p

(9.1)

here x ∈ Rd is an objective variable. f0 : IRd → IR is an objective or cost function. fi : IRd → IR,∀i are inequality
constrains while hi : IRd → IR are equality constraints.
We denote the optimal value of the optimization problem: p? = inf{f0(x) | fi(x) ≤ 0, hj(x) = 0}
We say p? = ∞ if the problem is infeasible (no solution satisfies free constraints) and p? = −∞ if the problem is unbounded
below

• x is feasible if x ∈ domf0 and satisfies all equality and inequality constraints
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• a feasible point x is optimal if f0(x) = p? ; xopt = set of all optimal points

• x is locally optimal if ∃ R > 0 such that x is optimal for

min
z∈IRn

f0(z)

s.t. fi(z) ≤ 0, ∀i = 1, . . . ,m

hj(z) = 0, ∀j = 1, . . . , p

‖z − x‖2 ≤ R

(9.2)

Here are several examples:

– f0(x) = 1
x , the domain of the function is dom f0 = IR\{0}, the optimal value is p? = 0 and no optimal point for

x ∈ (−∞,∞).

– f0(x) = − lnx, the domain of the function is dom f0 = IR+, the optimal value is p? = −∞, the problem is
unbounded below.

– f0(x) = x lnx, the domain of the function is dom f0 = IR+, the optimal value is p? = − 1
e , x = 1

e is the optimal
point.

• General Problem has implicit constraint x ∈ D = (∩mi=0 dom fi) ∩ (∩pi=0 dom hi)

• Unconstrained Problem (m = p = 0) is a special case where the optimization problem can be simplified since no explicit
constraints are given. However, they might have implicit constraints. One example would be

min f0(x) = −
k∑
i=1

log(bi − aTi x)

Domain of the problem has no explicit constraint but aTi x < bi needs to be satisfied.

If f0 is differentiable, then the optimality criterion for f0 would be:

∇f0(x)T (y − x) ≥ 0 ∀feasible y

i.e. ∇f0(x) is the tangent Hyperplane to feasible set at x.
As an example, let us review the least square problem. The least square problem aims at minimizing ‖Ax− b‖22, where A is a
constant matrix and b is a constant vector.
The solution of this problem is x? = A†b, where A† is the pseudo inverse of A. The time complexity of the computation is
Θ(n2 k), if A ∈ IRk×n

9.2.1 Linear Programming(LP)
The primal form of LP is:

min
x∈IRn

cTx c ∈ IRn, A ∈ IRm×n,b ∈ IRm

s.t. Ax ≤ b (or Ax ≥ b or Ax = b)

x ≥ 0

(9.3)

• Has many applications (industry)

• Proof technique for polynomialness

• Possibility of Polynomial time algorithms

Several algorithms has been made for solving LP problems:
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• Simplex Method (Dantzig 1947)

• Ellipsoid Algorithm (Shor, Khachian 1979)

• Interior Point Methods (Karmarkar 1984)

Equivalent form:

Max to Min max cTx ↔ min −cTx
Equality to Inequality aTi x = bi ↔ {aTi x ≤ bi, aTi x ≥ bi}

Inequality to Non-negativity aTi x ≤ bi ↔
{
aTi x + si = bi

s ≥ 0 s ∈ IRn

Variables unrestricted in sign xj unrestricted in sign ↔ {x+
j ≥ 0, x−j ≥ 0}

9.2.2 Duality
Q: Given a solution x to an LP, how do we decide whether or not x is in fact an optimum solution?
A: Calculate a lower bound on min cTx, given Ax = b, x ≥ 0

Suppose ∃ y such that ATy ≤ c, then yTb = yTAx = (ATy)Tx ≤ cTx. Hence yTb is a lower bound on LP; so to get best
lower bound, which is the duality form of the original linear programming problem. The dual LP problem is defined as:

max bTy

s.t. ATy ≤ c
(9.4)

The Weak Duality condition is related with the following theorem:

Theorem 9.2. (Lower Bound Theorem)
If the primal LP problem has an optimum value z, then it has a dual LP with optimum value w and z ≥ w. Moreover, for
infeasible LP problem:

infeasible min prob↔ value = +∞
unbounded min prob↔ value = −∞
infeasible max prob↔ value = −∞

unbounded max prob↔ value = +∞

There is also a Strong Duality condition for the LP problem.

Theorem 9.3. If Primal or Dual is feasible, then z = w

In general optimization problem, one can consider the Lagrangian of the optimization problem:

L : IRn × IRm × IRp → IR with dom L = D × IRm × IRp

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) =

p∑
j=1

νjhj(x)

where λ and µ are Lagrange Multipliers.
The Lagrange Dual Function of the optimization problem can be defined as g : IRm × IRp → R

g(λ, ν) = inf
x
L(x, λ, ν)

The function satisfies Lower Bound Property automatically: if λ ≥ 0 then g(λ, ν) ≤ b∗
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Let us consider the following optimization as an example:

min xTx

s.t. Ax = b
(9.5)

The Lagrangian is L(x, ν) = xTx + νT (Ax− b). Thus, the Lagrangian will reach its minimum if

∇xL(x, ν) = 2x +AT ν = 0

Hence we solved out for x: x = − 1
2A

T ν. If we substitute the equation into L, then we could obtain the Lagrangian Dual
Function.

g(ν) = L(−1

2
AT ν, ν) = −1

4
νTAAT ν − bT ν, ∀ ν

The Lower Bound Property tells us that the optimal value p? satisfies:

p? ≥ −1

4
νTAAT ν − bT ν, ∀ ν

9.2.3 Non-convex Problems

9.3 Combinatorial and Geometric

9.4 Biological Applications

9.4.1 Fast Computation Methods

Summary

References and Further Reading

Exercises
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Chapter 10

Statistics

10.1 Probability Primer

10.1.1 Probability Definitions
Data in bioinformatics is noisy. It can be due to measurement noise or errors in computation. For instance, sometimes we need
to take Fourier transform and error may propagate. If we want to prove the effective rate of a drug, we would like to say that the
drug has maximum binding affinity. This translates to solving an optimization problem, and we would like to be able to tell how
close our solution is to the true maximum. So, we can regard input as random variables with certain mean and variance. For
example, each data pixel in an image is a random variable, with some mean and variance. We can then track the propagation of
uncertainly in the algorithm. Useful techniques include spectral properties and inequalities for vectors, matrices and tensors.

Random Variable

A random variable (r.v.) X is values as result of an outcome. A sample space is a set of all possible outcomes. Pr[x] ∈ [0, 1] is
the probability of occurrence of each outcome. A function that assigns probabilities is called a probability distribution function.
For example, the uniform distributions, the Gaussian distributions (which have nice concentration properties), and the Poisson
distributions (which often appear in image pixels because they count the number of hits over time).
Sometimes, probability mass function does not exists. For example, if X has uniform probability in [0, 1], then Pr[X =
0.527] = 1

∞ = 0. We can define probability density function (pdf) p such that

Pr[a ≤ X ≤ b] =

∫ b

a

p(x) dx.

Notice that the integral is a linear operator on p. The cummulative distribution function (cdf) is

P (a) = Pr[X ≤ a] =

∫ a

−∞
p(x) dx.

Figure 10.1(a) shows the integrals as areas under the probability density function.
An event is a subset of the sample space. For example, if we have n unbiased coin flips giving random variables x1, x2, . . . , xn ∈
{0, 1}, then the sample space is {0, 1}n. The event of an odd number of ones occurring in the sequence consists of elements in
{0, 1}n.

Independence

For two events A and B, we define the conditional probability as

Pr[A|B] = Pr[A ∩B]/Pr[B],

where Pr[A ∩B] is the probability of the joint occurrence of the events.

141
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Figure 10.1: (a) The probability Pr[a ≤ X ≤ b] =
∫ b
a
p(x) dx and the cummulative probability P (a) = Pr[X ≤ a] =∫ a

−∞ p(x) dx as areas under the probability density function p(x). (b) Approximately 68.3%, 95.4% and 99.7% of probability
mass of a Gaussian within σ, 2σ and 3σ from the mean µ.

We say that two events A and B are independent if Pr[A ∩ B] = Pr[A] Pr[B], or equivalently Pr[A|B] = Pr[A]. A sequence
of n random variables x1, x2, . . . , xn are mutually independent if for all possible A1, A2, . . . , An, of values of x1, x2, . . . , xn,

Pr[x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] = Pr[x1 ∈ A1] Pr[x2 ∈ A2] . . .Pr[xn ∈ An].

Notice that pairwise independence (or even k-wise independence) is weaker than mutual independence.
Sometime, our sample points are not mutually independent. Suppose we want to generate sample points from the d-dimensional
cube leaving no large gap. A naive way would be to use a regular lattice (Figure 10.2(a)). A better way used in Quasi Monte
Carlo method is to generate a sample of bounded discrepancy (Figure 10.2(b)).

Figure 10.2: (a) Samples from a regular lattice. (b) Low discrepancy samples from the Sobol sequence.

Notice that normalization kills independence. If x, y ∈ IR are independent, then

normalize(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
may no longer be independent.



10.1. PROBABILITY PRIMER 143

Expectation

The expectation of a random variable X with pdf p is defined as

E[X] =

∫ +∞

−∞
xp(x) dx.

The linearity of expectation
E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + . . .+ E[Xn]

holds even without independence.
The union bound

Pr[A1 ∪A2 ∪ . . . ∪An] ≤
n∑
i=1

Pr[Ai]

is an upper bound of the unions of events.
The inclusion-exclusion principle says that

Pr[A1 ∪A2 ∪ . . . ∪An] =

n∑
i=1

Pr[Ai]−
∑
i<j

Pr[Ai ∩Aj ] +
∑
i<j<k

Pr[Ai ∩Aj ∩Ak]− . . . .

One application of the inclusion-exclusion principle is volume calculation of molecules represented as a union of atoms. An
atom consists of a nucleus in its center surrounded by a electron cloud, which can be represented by a ball with radius equal to
the range of its van der Waals force. The atoms are bonded together, forming a geometry of union of balls. Examples include
NaCl salt, protein, and water molecule (H2O) which polarizes like a magnet with Hydrogen (H) positively charged and Oxygen
(O) negatively charged. Two (or a small number of) balls may overlap each other. Since the volume is proportional to finding
electrons in certain region, we can apply the inclusion-exclusion principle.

Variance

The variance of a random variable X ∈ IR is given by

V ar(X) = σ2(X) = E[X − E2[X]]2

= E[X2]− 2E[X]E[X] + E2[X]

= E[X2]− E2[X].

For a Gaussian random variable, its standard deviation σ tells that more than 68% of the probability mass is with σ from its
mean. For 2σ and 3σ from the mean, the probability masses are more than 95% and 99% respectively. (Figure 10.1(b))
In general, V ar(X1 +X2) 6= V ar(X1) + V ar(X2). However, equality holds if X1 and X2 are pairwise independent. In fact,
if X1, X2, . . . , Xn are pairwise independent, then

V ar(X1 +X2 + . . .+Xn) =

n∑
i=1

V ar(Xi).

10.1.2 Probability Distributions
Gaussian Distributions

The Gaussian distribution is related to Central Limit Theorem.

Theorem 10.1 (Central Limit Theorem [31, Theorem 12.2]). If X1, . . . , Xn ∈ IR is a sequence of independent identically
distributed (i.i.d.) random variables each with mean µ and variance σ2, then

X =
1√
n

( n∑
i=1

Xi − nµ
)

converges to the distribution N(0, σ2).
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The univariate Gaussian distribution N(µ, σ2) is given by the pdf

φ(x) =
1√

2πσ2
e−(x−µ)2/(2σ2).

For d-variate Gaussian distribution N(µ,Σ) where µ ∈ IRd is the mean vector and Σ ∈ IRd×d is the covariance matrix, the
pdf is given by

φ(x) =
1

(2π)d/2|Σ|1/2Exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
.

When d = 3, an isotropic Gaussian has 4 degrees of freedom, corresponding to the number of parameters necessary to define
a sphere in IR3. Meanwhile, an anisotropic Gaussian would have 9 =

(
2+3

2

)
− 1 degrees of freedom, corresponding to the

number of parameters necessary to define an ellipsoid. If the ellipsoid is isothetic, then the degree of freedom reduces to 6.

Binomial Distributions

A Bernoulli distribution is a stochastic process with two outcomes

X =

{
1 with prob. p
0 with prob. 1− p .

Figure 10.3: (a) The above plot shows the Binomial distribution of exactly n successes out of N = 20 trials with p = q = 1
2 . (b)

The above plot shows the Poisson distribution for four different values of λ.

The binomial distribution Bin(n, p) counts the number X of ones in n independent Bernoulli trials.

Pr[X = k] = Pr[(total number of ones) = k] =

(
n

k

)
pk(1− p)n−k.

It has mean np and variance np(1 − p). It also satisfies the property that if X ∼ Bin(n1, p) and Y ∼ Bin(n2, p) are
independent, then X + Y ∼ Bin(n1 + n2, p).

Poisson Distribution

Let λ be the average rate per unit of time and n be the number of division of a unit time interval into segments, where the
probability of two events occurring in the same segment is negligible. The Poisson distribution counts the number X of events
occurring in a unit of time as n → ∞. It is the limit of Bin(n, p = λ/n). For the Poisson distribution both the mean and
variance equal λ.

Pr[X = k] = Pr[k events occurs in a unit of time] = lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!
e−λ
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10.1.3 Pairwise independence
A set of events E1, E2, . . . , En are mutually independent if for any subset I ⊆ {1, 2, . . . , n},

Pr

[⋂
i∈I

Ei

]
=
∏
i∈I

Pr[Ei].

A set of discrete random variables X1, X2, . . . , Xn are mutually independent if for any subset I ⊆ {1, 2, . . . , n},

Pr

[∧
i∈I

Xi = xi

]
=
∏
i∈I

Pr[Xi = xi].

For example, if X = (X1, X2, . . . , Xn) ∼ N(0, I), then Xi ∼ N(0, 1) are mutually independent. If X = (X1, X2, . . . , Xn) is
uniformly distributed on the hypercube [0, 1]n, then Xi ∼ U(0, 1) are mutually independent.
A set of events E1, E2, . . . , En are k-wise independent if for any subset I ⊆ {1, 2, . . . , n} such that |I| ≤ k,

Pr

[⋂
i∈I

Ei

]
=
∏
i∈I

Pr[Ei].

A set of discrete random variablesX1, X2, . . . , Xn are k-wise independent if for any subset I ⊆ {1, 2, . . . , n} such that |I| ≤ k,

Pr

[∧
i∈I

Xi = xi

]
=
∏
i∈I

Pr[Xi = xi].

When k = 2, it is also called pairwise independence. In other words, X1, X2, . . . , Xn are pairwise independent if for all i 6= j
and any pair of values (a, b),

Pr[X1 = a ∧X2 = b] = Pr[X1 = a] Pr[X2 = b].

Lemma 10.2 ([156, Lemma 13.1]). We can generate m = 2n − 1 uniform pairwise independent bits from n uniform mutually
independent bits. (A random bit is uniform if it assumes values 0 or 1 with equal probability 1/2).

Idea of proof. Generate n uniform random bits X1, X2, . . . , Xn ∈ {0, 1}. Enumerate all (2n − 1) non-empty subsets of
{1, 2, . . . , n}. Let Sj be the jth subset of the enumeration. Then, set

Yj =

∑
i∈Sj

Xi

 mod 2

=
⊕
i∈Sj

Xi,

where ⊕ denotes XOR.

Lemma 10.3 ([156, Lemma 13.2]). Let X1 and X2 be independent and uniform over GF(p). Generate Yi = (X1 + iX2)
mod p for i ∈ {0, 1, 2, p− 1}. Then, Y0, Y1, Y2, . . . , Yp−1 are pairwise independent.

Proof. For a given X2, we know that Yi is uniform over GF(p) as X1 is uniform over GF(p).
Consider Yi and Yj , where i 6= j. For any a, b ∈ {0, 1, 2, . . . , p− 1},

Yi = X1 + iX2 = a and Yj = X1 + jX2 = b

⇐⇒ X2 =
b− a
j − i and X1 = a− i(b− a)

j − i .

Hence, Pr[Yi = a ∧ Yj = b] = 1
p2 .
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Finite Field

Finite fields appear in Rijndael — the AES cryptographic system. The Reed Solomon code uses the Galois field GF(2n), which
is a field of characteristic 2.
The field GF(2n) consists over polynomials

P (x) =

n−1∑
i=0

cix
i (ci ∈ GF(2) = {0, 1})

of degree less than n over the field GF(2) modulo an irreducible polynomial over GF(2). (For example, the polynomial
x2 + 2x + 1 = (x + 1)2 is reducible over IR. The polynomial x2 + 1 = (x + i)(x − i) is irreducible over IR, but reducible
over C.)
The 2n polynomials can be encoded by 2n strings of bits. For example, x7 + x6 + x4 + 1 can be encoded by the bit string
11010001 of length 8.
In algebraic geometry, we can study polynomials modulo over the sphere. The famous result of Bézout Theorem says that a
curve of degree d and a curve of degree e, with some caveats, intersect at (d · e) points.

10.1.4 Transformation of Random Variables
Consider next a transformation of random variables. We shall revisit the Box-Muller method from lecture 3, and prove that it
indeed uniformly samples the Gaussian.
Suppose we generate a sample point (X1, X2) according to the joint pdf µ(x1, x2), and then apply an injective function f to
obtain (Y1, Y2) = f(X1, X2). It can be shown that the sample (Y1, Y2) follows the joint pdf

ρ(y1, y1) = µ(f−1(y1, y2)) ·
∣∣∣∣det

(
∂ x

∂ y

)∣∣∣∣,
where the Jacobian matrix is defined as

∂ x

∂ y
=

(
∂ x1

∂ y1
∂ x1

∂ y2
∂ x2

∂ y1
∂ x2

∂ y2

)
.

Similar techniques also work in IRd.
The Box-Muller method transforms a sample point (X1, X2) generated uniformly random from (0, 1)2, and transforms it to

(Y1, Y2) =

(√
−2 lnX1 cos(2πX2) ,

√
−2 lnX1 sin(2πX2)

)
.

We now calculate the partial derivatives and verify that the resulting (Y1, Y2) distributes according toN(0, I). First, we express
x1 and x2 in terms of y1 and y2.

x1 = exp(−(y2
1 + y2

2)/2)

x2 = arctan(y2/y1)/(2π)

Then, we calculate the partial derivatives.

∂ x1

∂ y1
= − y1 exp(−(y2

1 + y2
2)/2)

∂ x1

∂ y2
= − y2 exp(−(y2

1 + y2
2)/2)

∂ x2

∂ y1
=

−y2/y
2
1

(2π)(1 + y2
2/y

2
1)

∂ x2

∂ y2
=

1/y1

(2π)(1 + y2
2/y

2
1)
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Hence, the Jacobian determinant is∣∣∣∣∂ x∂ y
∣∣∣∣ =

∣∣∣∣∣∂ x1

∂ y1
∂ x1

∂ y2
∂ x2

∂ y1
∂ x2

∂ y2

∣∣∣∣∣
=

∣∣∣∣∣−y1 exp(−(y2
1 + y2

2)/2) −y2 exp(−(y2
1 + y2

2)/2)
−y2/y21

(2π)(1+y22/y
2
1)

1/y1
(2π)(1+y22/y

2
1)

∣∣∣∣∣
=

exp(−(y2
1 + y2

2)/2)

(2π)(1 + y2
2/y

2
1)

∣∣∣∣ −y1 −y2

−y2/y
2
1 1/y1

∣∣∣∣
=

exp(−(y2
1 + y2

2)/2)

(2π)(1 + y2
2/y

2
1)
· (−1− y2

2/y
2
1)

= − exp(−(y2
1 + y2

2)/2)/(2π)

Therefore, the pdf of (Y1, Y2) is

µ(f−1(y)) ·
∣∣∣∣det

(
∂ x

∂ y

)∣∣∣∣ = 1 · 1

2π
e−(y21+y22)/2 =

1

2π
e−(y21+y22)/2,

which shows that (Y1, Y2) ∼ N(0, I).

10.1.5 Annular Concentration of Gaussian
A one-dimensional Gaussian has its mass close to its mean (Figure 10.1(b)). However, for large d, a d-dimensional Gaussian
N(0, σ2I) with pdf

p(x) =
1

(2π)d/2σd
e−‖x‖

2/(2σ2)

has very little mass close to the origin, even though its maximum probability density is at the origin. In fact,∫ 1

0

p(r) d r

is vanishing small, where r is the Ell2 distance from the center (Figure 10.4(b)) and p(r) is the marginal probability density
(Figure 10.4(c)). For N(0, I), we know that

p(r) ∝ rd−1er
2/2.

So, where is the maximum mass? We can set the derivative to zero.

d

d r
rd−1er

2/2 = (d− 1)rd−2e−r
2/2 − rde−r2/2 = 0

r2 = d− 1

r =
√
d− 1

So, we need r ≈
√
d to see significant probability mass. For r �

√
d, the mass is non-significant. For r �

√
d, mass also

disappears.

Theorem 10.4 ([31, Theorem 2.9]). Let X = X1 + X2 + . . . + Xn, where Xi are mutually independent with mean 0 and
variance at most σ2. Let 0 ≤ a ≤

√
2nσ2. Suppose |E[Xs

i ]| ≤ σ2s! for all 3 ≤ s ≤ (a2/(4nσ2), then

Pr[|X| ≥ a] ≤ 3e−a
2/(12nσ2).

We will prove the above theorem in the next lecture, and using Markov inequality. Here we use this theorem to prove the
multivariate spherical Gaussian Annulus Theorem. Recall the intimate relationship of the level sets of spherical Gaussian in Rd

and balls in Rd . So similar to the Theorem 2.8 of BHK for unit balls, we discussed in lecture 2, we have
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Figure 10.4: (a) A univariate Gaussian concentrated around its mean. (b) Spherical level sets of Ell2 distance. (c) The marginal
distribution p(r) with peak at r =

√
d− 1.

Theorem 10.5 (Gaussian Annulus Theorem [31, Theorem 2.8]). For a d-dimensional spherical GaussianN(0, I) and c ≤
√
d,

all but 3e−c
2/96 of the probability mass lies within an annulus of

√
d− c ≤ r ≤

√
d+ c.

Proof. For a point x = (x1, x2, . . . , xd) ∼ N(0, I), we have

r2 = ‖x‖2 = x2
1 + x2

2 + . . .+ x2
d.

Consider

|r −
√
d| ≥ c

=⇒ r2 − d = |r −
√
d| · |r +

√
d| ≥ c

√
d (since |r +

√
d| ≥

√
d)

=⇒ |y1 + y2 + . . .+ yd| ≥ c
√
d (yi = x2

i − 1)

=⇒ |z1 + z2 + . . .+ zd| ≥ c
√
d/2. (zi = yi/2)

To use the above theorem, we bound the moments of zi using the Gamma integral.

|E[zsi ]| = 2−sE[|yi|s]
≤ 2−sE[1 + x2

i ]

= 2−s + 2−s
√

2

π

∫ ∞
0

x2se−x
2/2 dx

= 2−s +
1√
π

∫ ∞
0

us−0.5e−u du (substitue x =
√

2u)

≤ s!
Hence, we can apply the above theorem with σ2 = E[z2

i ] ≤ 4 and |E[zsi ]| ≤ 4(s!).

Pr[|z1 + z2 + . . .+ zd| ≥ c
√
d/2] ≤ 3e−c

2/96.

10.1.6 Distribution Sampling
How can we sample points from a given distribution, for example N(0, I)? If x ∈ IR has pdf p(x), then we can define use its
cdf

P : IR→ IR

x 7→ P (x) =

∫ x

−∞
p(t) d t.
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If u is uniformly sampled from [0, 1], then x = P−1(u) will be distributed according to pdf p(x). So, for d-dimensional
Gaussian N(0, I), we can draw u = (u1, u2, . . . , ud) uniformly from [0, 1]d and take inverse of the cdf componentwise
x = (x1, x2, . . . , xd) = (P−1(u1), P−1(u2), . . . , P−1(ud)).
Another example is the Cauchy distribution with pdf

p(x) =
1

π(1 + x2)
.

Its cdf is given by

P (x) =

∫ x

−∞

1

π(1 + t2)
d t =

1

π
arctanx+

1

2
.

Box-Muller Method

Independent samples X1, X2 ∼ U(0, 1) can be used to generate samples (Y1, Y2) of a bivariate Gaussian distribution N(0, I)
using the Box-Muller method as follows.

Y1 =
√
−2 lnX1 cos(2πX2)

Y2 =
√
−2 lnX1 sin(2πX2)

Then, we have the following.

X1 = e−(Y 2
1 +Y 2

2 )/2

X2 = arctan(Y2/Y1)

The Jacobian determinant equals

J =

(
1√
2π
e−y

2
1/2

)(
1√
2π
e−y

2
2/2

)
.

10.1.7 Mixture of Gaussians

x

y

√
d

√
d
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𝛿

𝛿 2 + 2𝑑

Figure 10.5: (a) Nearly orthogonal Gaussian samples x and y. (b) Samples x and y from two Gaussians centered at p and q
respectively.

Given a mixture of two Gaussian densities
p(x) = w1p1(x) + w2p2(x),

where w1 + w2 = 1 is a convex combination. It can be shown that if the means of the d-dimension spherical unit-variance
Gaussians are separated by Ω(d1/4), then they are separable. The idea is that with high probability, points in the same cluster
belong to the same Gaussian because most of the points are concentrated. More formally, with high probability ‖x − y‖2 =
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2d ± O(
√
d) if they come from the same Gaussian, and ‖x − y‖2 = δ2 + 2d ± O(

√
d) if they come from different Gaussian

separated by δ.
Suppose x,y ∼ N(µ, I) come from the same Gaussian (Figure 10.5(a)). Observe that most probability mass lies in an annulus
of width O(1) and radius

√
d− 1. Rotate the coordinate system so that x is at the North pole. With high probability, y is in the

slab {(y1, y2, . . . , yd) : −c ≤ y1 ≤ c} for some c ∈ O(1). So, y is nearly orthogonal to x and hence ‖x−y‖ ≈
√
‖x‖2 + ‖y‖2.

More precisely, we can further rotate the coordinate system so that

x = (
√
d±O(1), 0, 0, . . . , 0) and y = (±O(1),

√
d±O(1), 0, . . . , 0).

Hence, ‖x− y‖2 = (d±O(
√
d)) + (d±O(

√
d)) = 2d±O(

√
d). See also (Figure 10.5(b))

Suppose x ∼ N(p, I) and y ∼ N(q, I) come from different Gaussians . With high probability, x and y lies in an annulus
of of width O(1) and radius

√
d− 1 centered at p and q respectively. Also, (x − p), (p − q), (q − y) are nearly mutually

perpendicular. Hence, ‖x− y‖2 ≈ ‖x− p‖2 + δ2 + ‖q− y‖2 = δ2 + 2d±O(
√
d).

Thus, if δ = Ω(d1/4), we can separable constant number of points with constant failure probability.
In general, we can ask the question of separating many Gaussians. It can be solved if they are well-separated. One application
of separating a mixture of Gaussians is in locating the position of atoms by sampling, which is possible if the separation of
atoms in the lattice is large enough.

10.1.8 Concentration Theorems
The following probability inequalities by Markov and Chebyshev are used to prove the Law of Large Numbers.

Theorem 10.6 (Markov Inequality [31, Theorem 2.1] [156, Theorem 3.1]). Let X ≥ 0 be a random variable and a > 0.

Pr[X ≥ a] ≤ E[X]/a.

Proof. For a continuous non-negative random variable x with probability density p(x)

E[X] =

∫ ∞
0

xp(x) dx

=

∫ a

0

xp(x) dx+

∫ ∞
a

xp(x) dx

≥
∫ ∞
a

xp(x) dx

≥
∫ ∞
a

ap(x) dx

= a

∫ ∞
a

p(x) dx

= aPr[X ≥ a]

Note the proof works for discrete probability distributions. Replace summations for all the integrals.

Corollary 10.7. Let X be a non-negative random variable and c > 0. Then, Pr[X ≥ cE[X]] ≤ 1/c.

The above says that the value of X is not far from the mean E(X). The Chebyshev’s inequality (below) can be proved by
applying Markov’s inequality on the variance.

Theorem 10.8 (Chebyshev Inequality [31, Theorem 2.3] [156, Corollary 3.7]). Let X be a random variable with mean m and
variance σ2. Then, for all a > 0,

Pr[ |X −m| ≥ aσ ] ≤ 1/a2.

Using the Chebyshev inequality, we can now prove the Law of Large Numbers.

Theorem 10.9 (Law of Large Numbers). Let S be the sample mean of n independent random variables X1, X2, . . . , Xn with
means E[Xi] = m and variances Var[Xi] = σ2. Then, for all ε > 0,

Pr[|S −m| ≥ ε] ≤ σ2

nε2
.
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Proof. Applying Chebyshev Inequality on S with a = ε/σ(S), we get

Pr [|S −m| ≥ ε] ≤ σ2(S)/ε2

=
1

ε2
σ2

(
X1 +X2 + . . .+Xn

n

)
=

1

n2ε2
σ2(X1 +X2 + . . .+Xn)

=
σ2

nε2
.

10.1.9 Application of Markov and Chebyshev Inequalities
Theorem 10.10 ([31, Theorem 2.9]). Let X = X1 + X2 + . . . + Xn, where Xi are mutually independent with mean 0 and
variance at most σ2. Let 0 ≤ a ≤

√
2nσ2. Suppose |E[Xs

i ]| ≤ σ2s! for all 3 ≤ s ≤ (a2/(4nσ2), then

Pr[|X| ≥ a] ≤ 3e−a
2/(12nσ2).

Proof. We will bound |E[Xr]| and use Markov inequality.
Consider the expansion

(X1 +X2 + . . .+Xn)r =
∑

∑
ri=r

(
r

r1 r2 . . . rn

)
Xr1

1 Xr2
2 . . . Xrn

n ,

where
(

r
r1 r2 ... rn

)
= r!

r1!·r2!·...·rn! .
Since Xi are independent,

E

[
(X1 +X2 + . . .+Xn)r

]
=

∑
∑
ri=r

(
r

r1 r2 . . . rn

)
E[Xr1

1 ] E[Xr2
2 ] . . .E[Xrn

n ].

Note that E[Xi] = 0. So, all terms with ri = 1 are zero. So, all non-zero terms have ri ≥ 2 or ri = 0. Since
∑
i ri = r, this

implies that in a non-zero term, there are at most r/2 non-zero indices ri.
The number of non-zero terms with exactly t indices ri ≥ 2 equals(

n

t

)(
r − t− 1

t− 1

)
,

because there are
(
n
t

)
ways to choose a subset of {1, 2, . . . , n} of cardinality t corresponding to the t indices with weight at least

2, and there are
(

(r−2t)+(t−1)
t−1

)
=
(
r−t−1
t−1

)
ways to allocate the remaining (n− 2t) weights. (This is analogous to the fact that

the number of monic monomials in a polynomial of degree at most e = r − 2t in n = t− 1 variables equals
(
e+n
n

)
=
(
e+n
e

)
.)

Also using |E[Xi]
ri | ≤ σ2ri!, we get

E[Xr] ≤ r!
r/2∑
t=1

(
n

t

)(
r − t− 1

t− 1

)
σ2t

≤ r!
r/2∑
t=1

(nσ2)t

t!
2r−t−1.

Let h(t) = (nσ2)t

t! 2r−t−1. Since a ≤
√

2nσ2 and s ≤ a2/(4nσ2), we have r ≤ s ≤ nσ2/2. For t ≤ r/2, increasing t by 1
increases h(t) by nσ2/(2t) ≥ 2. Thus,

E[Xr] ≤ r!
r/2∑
t=1

h(t)

≤ r! · h
(r

2

)(
1 +

1

2
+

1

4
+ . . .

)
≤ r! · (nσ2)r/2

(r/2)!
2r/2.
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Applying the Markov Inequality, we get

Pr[|X| ≥ a] = Pr[Xr ≥ ar] ≤ r! · (nσ2)r/2 · 2r/2
(r/2)! · ar ≤

(
2nrσ2

a2

)r/2
.

Setting r to be the largest even integer less than a2/(6nσ2) completes the proof.

Lemma 10.11. For any integer s > 0, the sth moment of X ∼ N(0, 1) is at most (s!).

Proof. It follows from the following integral.

E[Xs] =

∫ +∞

−∞

xs√
2π
e−x

2/2 dx =

{
0 if s is odd
(s− 1)!! if s is even

10.1.10 Chernoff Bounds
Recall the binomial distribution Bin(n, p) counts the number X of ones in n independent Bernoulli trials.

Pr[X = k] = Pr[(total number of ones) = k] =

(
n

k

)
pk(1− p)n−k.

It can be written as a sum X =
∑
Xi of Bernoulli random variables Xi with parameter p, in other words,

Xi =

{
0 with prob. (1− p)
1 with prob. p the ith trial is a success

.

It has expectation E[X] = np and variance Var[X] = np(1− p). What we desire is a bound on the probability that the sum
random variable X , does not deviate too far from this expected value.
What we next present is a general technique to compute such probability bounds.
The Chernoff bounds [31, Theorem 12.3 & Theorem 12.4] [156, Theorem 4.4 & Theorem 4.5] say that for all δ > 0,

Pr[X > (1 + δ)m] ≤
[

eδ

(1 + δ)1+δ

]m
,

and for all 0 ≤ γ ≤ 1,
Pr[X < (1− γ)m] ≤ e−γ2m/2,

where X =
∑
iXi and m = E[X].

For several NP-hard problems, we can use input or data sampling to obtain a probabilistic approximation algorithm. We can then
apply Markov, Chebyshev and Chernoff tail bounds. Sometimes, we can also weaken the assumption of mutually independent
sample to k-wise independence (e.g. k = 2). More on this in the next lecture.
In Monte Carlo methods, we use random sampling. In Quasi Monte Carlo, we use deterministic methods and measure the
distortion from uniformity by discrepancy (for example, by considering the family of isothetic rectangles). See for e.g. [?]
There are also methods known as Markov Chain Monte Carlo (MCMC) or Markov Chain Quasi Monte Carlo (MCQMC).

Estimating π

We can use the Monte Carlo method to estimate π. Sample z1, z2, . . . , zm independently and uniformly from [0, 1]2. Define
indicator random variables

Zi =

{
1 if ‖zi‖2 ≤ 1

0 otherwise
.

Then,

Pr[Zi = 1] =
(area of the unit circle inside [0, 1]2)

(area of the unit square)
=
π

4
.
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Let W =
∑m
i=1 Zi. Then,

E[W ] =

m∑
i=1

E[Zi] =
mπ

4
.

Let W ′ = 4
mW . Then, E[W ′] = π. Hence, W ′ gives an estimate for π.

In fact, it improves as m gets larger. By the Chernoff inequality bounds, we get

Pr[|W − E[W ]| ≥ εE[W ]] ≤ 2e−mπε
2/12.

For ε < 1, we can choose m ≥ 12
πε2 ln 2

δ . Then, the above algorithm is an (ε, δ)-approximation.

Probabilistic Approximation Algorithm

A randomized algorithm gives an (ε, δ)-approximation for a value v if the output X of the algorithm satisfies

Pr[|X − v| ≤ εv] ≥ 1− δ.

Theorem 10.12 ([156, Theorem 10.1]). Let X1, X2, . . . , Xm be i.i.d. indicator random variables with µ = E[Xi]. If m ≥
3
ε2µ ln 2

δ , then Pr
[∣∣( 1

m

∑m
i=1Xi

)
− µ

∣∣ ≥ εµ] ≤ δ. That is, an m-sampling provides an (ε, δ)-approximation.

Proof. This can be proved using the above stated Chernoff bound.

10.2 Bayesian

10.2.1 Bayes Rule
We will learn to use probability theory to use sampling for parameter estimation. Consider the Bayes rule.

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]

This follows from Pr[A|B] Pr[B] = Pr[B|A] Pr[A]. We can regard B as the measurement samples that we have. Using this
data, we try to estimateA. In the numerator, Pr[B|A] is the likelihood ofA and Pr[A] is the prior probability. The normalization
appears in the denominator Pr[B]. The left hand side is the posterior probability Pr[A|B].
For example, suppose that a product is defective 0.1% of the time, and a test fails 1% of the time to detect a defective product.
Also, assuming that a product is not defective, a test says a product is defective 2% of the time.
Let A be the event that a product is defective. Let B be the event that a test says a product is defective. Then, we have the
followings.

Pr[B|A] = 0.99

Pr[A] = 0.001

Pr[B|A] = 0.02

Pr[B] = Pr[B|A] Pr[A] + Pr[B|A] Pr[A] = 0.99× 0.001 + 0.02× 0.999 = 0.02097

So, using the Bayes rule, we can estimate

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]
=

0.99× 0.001

0.0297
≈ 0.047,

which is surprising.
The Bayes rule can be applied to molecule reconstruction from projection images. In such applications, the molecule imaging
is used to reconstruct the structure of the molecule. This is analogous to using measurements to make estimations according to
the Bayes rule.
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10.2.2 Maximum Likelihood Estimator
Suppose a probability distribution of a random variable X depends on parameter r. So, Pr[X|r] denotes the probability of
observing X if parameter value is r. If r is also random, after observing the value of X , one can find the best r maximizing the
posterior probability

Pr[r|X] =
Pr[X|r] Pr[r]

Pr[X]
.

Assume Pr[r] is the same for all r. Since the unconditional probability of X in the denominator is independent of r, it reduces
to finding the maximum likelihood estimator (MLE)

arg max
r

L(r|X) = arg max
r

Pr[X|r].

Example
Consider the example of flipping a biased coin in n trials with unknown probability r of getting head. The probability of getting
k heads follows the binomial disbtribution Bin(n, r) such that

Pr[k|r] =

(
n

k

)
rk(1− r)n−k.

If we get 62 heads and 38 tails in 100 trails, the maximum likelihood estimator gives r = 0.62 when Pr[62|r] is maximized.
One can see this by setting the derivative (with respect to r) to 0.
We can study a single particle using cryo-electron microscopy. To do so, we build a specimen grid of millions of in-vitro
molecules and take a snapshot by shooting X-ray and measuring its projection. We can reconstruct the locations of the molecules
by solving a least square optimization with regularizer, but it is unstable. How many samples would we need? We want to show
that the solution converges as the sample size increase. We can recast the problem by regarding the data as a random variable
with certain mean and variance. We can then solve for the maximum a-posterior estimator. We would also like to output a
confidence level of our estimation.

10.2.3 Unbiased Estimator
Let X = (X1, X2, . . . , Xn) be samples or observations from a distribution having parameter θ. (For example, the Gaussian
distribution N(µ, σ2) has parameters mean µ and variance σ2, while the binomial distribution Bin(n, p) has parameters n and
success probability p.)
Let D(X) be an estimator of some function h(θ). The bias is defined as

E[D(X)− h(θ)].

It is called an unbiased estimator when the bias equals zero.
The quality of the estimator can be measured by the mean squared error (MSE)

E[(D(X)− h(θ))2] = Var(D(X)) + Bias2.

Theorem 10.13. Let X1, X2, . . . , Xn be independent samples, each with mean µ and variance σ2.

Qξ1. [?, Example 14.3] D(X) = 1
n

∑n
i=1Xi is an unbiased estimator of µ.

Qξ2. If µ is known, then D(X) = 1
n

∑n
i=1(Xi − µ)2 is an unbiased estimator of σ2.

Qξ3. [?, Example 14.5] If µ is not known, then D(X) = 1
n−1

∑n
i=1(Xi −m)2 is an unbiased estimator of σ2, where m =

1
n

∑n
i=1Xi.

Proof of 3. Let S2 = 1
n

∑n
i=1(Xi −m)2. Observe that

n∑
i=1

(Xi − µ)2 =

n∑
i=1

[
(Xi −m) + (m− µ)

]2

=

n∑
i=1

(Xi −m)2 + n(m− µ)2
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Hence,

S2 =
1

n

n∑
i=1

(Xi −m)2

=
1

n

n∑
i=1

(Xi − µ)2 − (m− µ)2

E[S2] =
1

n

n∑
i=1

Var(Xi)−Var(m)

=
n− 1

n
σ2

Thus,
(

n
n−1S

2
)

is an unbiased estimator of σ2.

10.3 Biological Applications

Summary

References and Further Reading
ExerSection
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