
Distributed and
Collaborative Visualization
Vinod Anupam, Chandrajit Bajaj, Daniel Schikore, and Matthew Schikore

Purdue University

, *. .,+. , *

A network of
low-cost

workstations can
be harnessed to

render large volume
data sets efficiently

and allow group
interaction with the
resulting images in a
distributed setting.

ith ongoing advances in high-speed networking and computer processor
and memory technology, distributed systems provide a mechanism for
effectively harnessing the total computational power of multiple work-

stations availablc on a network. Adopting a hybrid strategy that combines output dis-
tribution and task partitioning allows us to obtain the maximum benefit from dis-
tributed systems. Distributing the output of a large computational task emphasizes
sharing of resources among applications. Partitioning a large computational task into
independent subtasks and then distributing those subtasks accords us the benefit of
parallelism. The harnessed distributed system is thus made to serve as a cost-effec-
tive high-performancc virtual machine for performing large computations.

Visualization typically involves large computational tasks. often performed on su-
percomputers. The results of these tasks are usually analyzed by a design team con-
sisting of several members. Our goal is to depart from traditional single-user systems
and build a low-cost scientific visualization environment that enables computer-sup-
ported cooperative work in the distributed setting. A synchronously conferenced
collaborative visualization environment would let multiple users on a network of
workstations and supercomputers share large data sets, simultaneously view visual-
izations of the data. and interact with multiple views while varying parameters. Such
an environment would support collaboration in both the problem-solving phase and
the review phase of design tasks.

In this article we describe two distributed visualization algorithms and the facili-
ties that enable collaborative visualization. These are all implemented on top of the
distribution and collaboration mechanisms of an environment called Shastra,' de-
veloped by our research group and executing on a set of low-cost networked work-
stations.

Volume rendering
To demonstrate our distributed and collaborative visualization environment, we

will use the compute-intensive task of volume visualization. Volume visualization is
a highly intuitive way to interpret volumetric d a t a 2 Measurement-based volumetric
data sets result from sampling and may consist of geological and geophysical mea-
surements or data collected by three-dimensional scanning. In medical imaging, for
example, computed tomography. magnetic resonance imaging, and laser surface
imaging all produce volumetric data sets? Synthetic volume data sets are generated
by computer-based simulation and modeling, which may involve meteorological and
thermodynamic simulations, finite-element stress analyses. computational fluid dy-
namics, or molecular modeling. Volume visualization provides mechanisms for ex-

July 1994

pressing the information contained in
these data sets as images: the challenge.
of course, lies in handling these typically
large data sets efficiently and in making
the images easy to understand.

Volume rendering techniques can he
classified as forward projection or back-
ward projection. Forward projection
techniques project the volume from ob-
ject space into the screen space, similar t o
the way typical graphics hardware ren-
ders geometric primitives. Reverse pro-
jection techniques determine the final
color of each pixel in the image by casting
a ray through the viewing volume and in-
tersecting the ray with the data volume
and compositing the results. For both
techniques. the cost scales with the size of
the volume (N ' for an N x N x N data
set). Volume data sets are common with
N = 128 and are sometimes as large as N
= 512, which clearly demonstrates the
compute-intensive nature of the task.

The problem of visualizing such large
volume data sets interactively has fre-
quently been addressed by using multi-
processor parallel and vector parallel ar-
c h i t e c t u r e ~ . ~ , ~ The volume visualization
system we describe operates on a net-
work of low-cost workstations and pro-
vides several ways to view volumetric
data: cross-sectional viewing. isosurface
reconstruction. and direct volume ren-
dering using ray casting. It also provides
facilities for interactive control and spec-
ification of the visualization process.

Ray casting. Ray casting is a direct vol-
ume-rendering algorithm in which sight
rays are cast from the viewing plane
through the volume, accumulating the ef-
fects of sampled data encountered along
their Certain termination crite-
ria determine when the "tracing" stops.
for example, when opaque or visible vox-
els are encountered, or when some accu-

mulation threshold is achieved. The
opacity accumulation is based on a clas-
sification of the material giving rise to the
data values.h-'"

The basic process is to compute the
pixel color for each pixel in the final im-
age in the manner described below.
There exists a prespecified opacity value
a with each voxel.

(I) Compute the world space line (ray)
that maps to the pixel.

(2) Intersect this line with the volume
to be rendered to compute the in-
tersections o f the line passing
through the volume.

(3) Determine the intersections with
voxels along the ray. This is per-
formed quickly using an extension
of the Bresenham line-drawing al-
gorithm.

(4) Do one or the other o f the following:
(a) Accumulate the values along

the ray to determine the pixel color.
The standard accumulation equation

rgh,,,, = a * rgh,, +
(1 ~ a) *: rgb,,,,

accumulates values from back to
front. This is inefficient if highly
opaque voxels near the eye elim-
inate the contribution o f voxels far-
ther from the eye. To allow for early
ray termination. we rearrange the
equation to accumulate opacity val-
ues from front to back so that rays
may be terminated when the final
pixel value is nearly opaque.

(b) Determine the first intersec-
tion with a threshold surface value
and apply an illumination model to
the surface at the intersection. An
illumination model determines the
light intensity. hue. and saturation
on the basis of the surface's ambient
and specular reflection properties.

Distributed volume
rendering

There are two very good ways to paral-
lelize volume-data rendering by ray cast-
ing. With the first method, object space
distribution, we can partition the volume
into subvolumes to be rendered indepen-
dently by remote processors. With the sec-
ond method. image space distribution. we
can subdivide the final image space and
assign image partitions to remote proces-
sors in a cyclic fashion until the entire im-
age has been rendered. An examination
of both methods reveals trade-offs based
on data-set sizes, number of workstations,
and network bandwidth.

Figure 1 shows example renderings of
a 512 x 512 x 113 volume of a skull and a
512 x 512 x 109 volume of a head with
cutaways (measured in voxels). The ren-
derings were produced by the object
space distribution algorithm.

Object space distribution. Subdivision
of the volume into subvolumes for inde-
pendent rendering is one method for dis-
tributing the computation of a volume
rendering. Partitioning the volume is
highly beneficial if there are enough
workstations with sufficient total mem-
ory for the volume to be statically parti-
tioned among the network's compute
nodes. This lets us distribute the volume
only once: subsequent communication
consists solely o f the rendered subimages
and associated information. When using
object space partitioning, we must choose
a partitioning that allows the results from
each server to be efficiently combined to
form the final image.

Ohjecl spcice partitioning. In perform-
ing object spacc partitioning, we choose
the common approach of subdividing the

Some commonly used volume visualization terms

Interpolant - A method for computing density values inte-
rior to the voxel by constructing a function based on the
values at the corners of the voxel.
lsoswtace - A surface of constant density in the sampled
continuous interpolant.
Ray w i n g - A method for volume rendering based on ray

in the image to determine which objects in the scene con-
tribute to the pixel's color.
Rectilinear - Describes a volume data set in which all data
lies on twodimensional cross sections that are perpendicular
to the coordinate axes.
Voxel- An abbreviation for "volume element" or "volume
celi.'' It is the three-dimensional equivalent to the pixel. A
voxel is a hexahedral element with data values at each of its
eight comers.

volume into groups of slices parallel to the
x-y plane. In this simple technique, deter-
mining the order for merging the sub-
images is trivial. However. the amount of
work required to composite the results
from each server is greater than would be
necessary through other subdivision ap-
proaches, such as octree subdivision.

Merging results. Merging results from
object space distribution is similar to the
problem of ray-casting the initial volume.
As described above, we accumulate opac-
ities of voxels encountered along the ray
from front to back. When compositing
images, we perform the same accumula-
tion from front to back using the com-
puted color and opacity values for a given
pixel from each subvolume. The front-
to-back order is easily determined from
the viewing direction because the sub-
volumes are all parallel in object space.

Image space distribution. Subdividing
a volume’s image space has several ad-
vantages. First, when performing the par-
titioning in image space. all computation
for each pixel is local to a single proces-
sor; hence, there is no need for com-
positing the results from various proces-
sors. Second, the amount of data required
to render a portion of the image is small
and can be adjusted by modifying the
partitioning scheme.

h u g e spucepurritioning. The first step
in image space distribution is to partition
the image space into regions to be dis-
tributed to the various servers. The goals
in partitioning the image space are to sep-
arate the image space into regions re-
quiring roughly equal computational time
and to balance the amount of time needed
to transmit data and render image cells
such that both the servers and the client
remain as busy as possible. Becausz thz
cost for transmission of data and ray-cast
volume rendering of a subvolume is di-
rectly related to the volume’s size, we con-
sider the cell’s .‘weight” to be the amount
of volumetric data contributing to the ren-
dering of the cell. Several subdivision
methods, both adaptive and nonadaptive,
have been explored.

In each case, we divide the image space
into rectangles orthogonal to the screen
coordinate system (see Figure 2). The eas-
iest static method for defining the cells is
to divide the space into squares of equal
size. This method is fast but suffers from
being insensitive to the image size and to
the amount of data within the volume cor-

responding to the cell. Repeated subdivi-
sion is an adaptive method that takes both
of these factors into consideration. Using
this method, we begin with a region that
contains the entire image to be rendered
and subdivide in a quadtree manner on
the basis of cell weights. This way we can
guarantee an upper and a lower bound on
the amount of data to be sent to a server
and balance the network transmission
time with the server rendering time.

Input vo l ime partitioning. T o deter-
mine the portion of the data volume con-
tained within an image cell, we consider
the world space within a cell to be the in-
tersection of four half-spaces defined by
four planes bounding the volume from
top. bottom. left. and right. We map the
corners of the cell to eight points in world
space defining these planes. Each slice in
the volume is a polygon in a constant Z
plane. We clip this polygon by each of the

Figure 1. Renderings of a 512 x 512 x 113
volume of a human skull and a 512 x 512
x 109 volume of a head with cutaway.

planes bounding the cell to determine the
portion of each slice contained in the cell.
Since we send only rectangular portions
of slices to the server processes, we take
the bounding box of the clipped polygon
as the required data to be distributed.

Figure 3 shows distributed volume-ren-
dered images of a 512 x 512 x 920 mag-
netic resonance imaging data set of a hu-
man cadaver. The image on the left shows
a frontal view, with bone viewed as
opaque and other tissues visualized as
transparent, revealing the entire skeletal
structure. The remaining two images
show different views, with tissues as-
signed translucency values in relation to
their density.

Data coriinziinic.ririon opriniizations.
The data sent from client to server con-
sists of rectangular portions of input data
slices containing the region of the slice
required to render one of the cells of the
image space. In certain applications, such
as medical imaging, volume data fre-
quently contains large regions of empty
space. We take advantage of this fact
when data is being transmitted between
workstations by run-length encoding the
zeroes in the stream of input data values
sent to the server processes. In the worst
case. there may be numerous isolated ze-
roes that would be doubled by the run-
length encoding, but in practice we have
realized compression ratios ranging from
4.1 to 1O:l with this method.

An important factor to consider is the
classic issue of data packet size versus

July 1994
Figure 2. Image space partitioning for distributed rendering of a 512 x 512 x 920
human cadaver.

Figure 3. Distributed rendering of a 512 x 512 x 920 human
cadaver with different levels of skin transparency.

number of packets. Since a large amount
of data needs to be moved from the client
t o multiple servers, the local area net-
work can easily get congested. However.
if the data slices sent to servers are small.
communication overhead dominates the
total cost of distribution because of the
very large number of data transfers. A
balance, therefore, needs to be struck be-
tween the two. In practice. we have ob-
served the balance to be sensitive to am-
bient network traffic. Our current system
runs on an Ethernet (10 megabits per sec-
ond) and would benefit greatly if we
could use very high bandwidth network
technologies such as ATM (asynchronous
transfer mode).

4 - 4 4 4 4 4

I t T I
$. $.

Functional interhe mamr

t +
I Application engine I

Figure 4. The architecture of applications in Shastra, a collab-
orative multimedia scientific manipulation environment.

Heterogeneity issues. In a heteroge-
neous computing environment. Shastra
applications achieve hardware indepen-
dence by building on top of high-level ab-
stractions, above the greatest common
denominator. We assume the availabil-
ity of the X Window System (Xl lR5) for
user interfaces. Multiplatform develop-
ment is usually cumbersome because
high-performance graphics platforms
have different graphics models and ap-
plication programming interfaces (APIs).
The solution in Shastra is to achieve plat-
form independence by building applica-
tions atop abstract libraries that hide
hardware specifics. These abstract li-
braries can be easily extended to support

standardized interfaces as they evolve.
Platform heterogeneity problems in the
realm of data representation are obviated
by using the Shastra protocol for data
transport, which uses XDR (external
data representation) to encode data in a
device-independent manner.

The XS graphics and windows library
was developed to provide a machine-in-
dependent interface to routines for
graphics. The use of this abstraction pro-
vides us with source-code-level portabil-
ity across multiple platforms without
compromising speed or graphics quality.'
The current suite of libraries supports
graphics using X11. SGI/GL, HP/Star-
base, and Windows 3.1.

Shared workspaces
Shastra is a collaborative multimedia

scientific manipulation environment in
which experts in a cooperating group
communicate and interact across a net-
work to solve problems. The Shastra en-
vironment consists of a group of interop-
erating applications collectively called
tools. Some tools are responsible for
managing the distributed environment
(the Kernel), and others are responsible
for maintaining collaborative sessions
(the Session Managers). Other tools pro-
vide specific communication services (the
Services), while yet others provide scien-
tific design and manipulation functional-
ity (the Toolkits). Service applications
are special-purpose tools for multimedia
support; they provide mechanisms for
textual. graphical, audio, and video ren-
dition and communication.

Figure 5. Using Poly, a Shastra application for collaborative visualization. COMPUTER

Different tools register with the envi-
ronment at start-up, providing informa-
tion about the kind of services they offer
(directory) and how and where they are
to be contacted for those services (loca-
tion). The environment provides mech-
anisms to create remote instances of
applications and connect to them in
client-server or peer-peer mode (distri-
bution). In addition, the environment
supports many modes of synchronous
multiuser interaction (collaboration). It
offers facilities for starting and terminat-
ing collaborative sessions and for joining
or leaving them. We have described the
infrastructure in detail in the literature.’

The distribution infrastructure. All
tools designed to run in the Shastra
environment have certain architectural
features that make them amenable to
interoperation. A typical tool has an
application-specific core - the applica-
tion engine - that implements all the
functionality offered by the toolkit or ser-
vice. On top of the engine is an interface
mapper that actually invokes functional-
ity embedded in the engine in response to
requests from the ASCII interface, the
graphical user interface, and network in-
terfaces. Users interact with a tool via the
ASCII interface o r the GUI . Intertool
communication occurs via the network
interfaces. Figure 4 shows a block dia-
gram of this architecture.

The Shastra layer, comprising the net-
work, session, and data communication
substrates, joins the network interfaces
of various tools. This layer provides con-
nection setup and multiple-connection
management facilities in the distributed
environment. It also implements the
Shastra communication protocol for
peer-to-peer communication. The con-
nected application-object interfaces of
Shastra tools constitute a distributed vir-
tual machine over which parallel algo-
rithms are implemented and synchronous
conferences are conducted.

A collaborative visualization tool.
Klinker describes a telecollaborative data
exploration environment” in which users
share images and control their presenta-
tion. Gerald-Yamasaki describes an en-
vironment for cooperative visualization
of computational fluid dynamics.I2 The
Shastra environment goes a step further
by providing facilities for media-rich in-
teraction over the context of shared vi-
sualizations.

Poly is a rendering and visualization

tool in the Shastra environment. New
Shastra toolkits use Poly as their graphics
interface. since it encapsulates graphical
object manipulation, rendering, and vi-
sualization functionality. Poly provides a
variety of mechanisms for visualizing
multidimensional data. It understands
numerous graphical object formats,
which it converts to an internal form for
efficient display and transport. A t its
network interfaces. Poly interoperates
with other Shastra tools and provides a
very high level abstraction for manipu-
lating graphical data. A Motif-based GUI
is used to manipulate visualized objects in
multiple XS graphics windows.

Figure 5 shows the visualization sys-
tem’s user interface. The top image is a
rendering of the head and upper torso of
the cadaver. The skeletal structures are
opaque and shaded, while the rest of the
structures have been assigned different

Participants can leave
a session at any time,

and late arrivals
can be brought

up to date quickly.

levels of transparency. The bottom im-
age shows a surface rendering of a hu-
man head with a cutaway of the skull to
show part of the brain surface.

The Shastra environment consists of a
collection of Poly instances. A collabo-
rative session is initiated by one of the
Poly users in the environment. This user
becomes the group leader and specifies to
the local Kernel the list of Poly users who
will be invited to participate in the ses-
sion. The Kernel instantiates a Session
Manager. which starts a session with the
group leader as its sole participant and
then invites the specified users of con-
currently executing remote Pol!; in-
stances to participate. Users who accept
are incorporated into the session. Any
Poly instance. or user. not in the confer-
ence can request admittance by using
Shastra facilities to communicate with the
group leader. who can admit that person
to the session. A participant can leave an
ongoing session at any time. Users can be
invited dvnamically to join and can be re-

moved from conferences by the group
leader or the leader’s designees.

The hybrid computation model for
conferences in Shastra consists of a cen-
tralized Session Manager for each ses-
sion, which regulates the activity of mul-
tiple instances of Poly across a network.
Although this model suffers from prob-
lems of scale because of the centralized
Session Manager, it performs well for
typical group sizes of two to 10 partici-
pants. Replication of the Poly tool pro-
vides an important benefit in the realm of
platform heterogeneity: Individual ap-
plication instances are responsible for
dealing with idiosyncrasies of the hard-
ware and software platform they execute
on. In addition, since the conference con-
sists of cooperating applications, the no-
tion of private and shared workspace, as
well as private and shared interaction, is
naturally supported. The centralization
of the Session Manager for a collabora-
tive session accords us the benefit of a
centralized state. The Session Manager
serves as a repository of shared objects.
making it easy for late arrivals to sessions
to be brought up to date quickly. It also
eases the task of serialization of input ac-
tions for multipoint synchronous inter-
action, and constraint management for
mutual consistency.

A permissions-based regulatory sub-
system regulates dataflow and control
flow at runtime, providing a variety of in-
teraction modes. Collaboration in Shas-
tra occurs in the regulated (turn-taking)
mode or in the unregulated (free inter-
action) mode. In the regulated mode,
users take turns by passing a baton. Shas-
tra’s collaboration infrastructure has a
two-tiered permissions-based regulatory
subsystem used to control interaction in
the unregulated mode. Shastra permis-
sions control “access” to a view of the
conference, local viewing controls to
“browse” a view. rights to “modify” con-
ference state, and rights to “copy” shared
objects.

The Session Manager allohs only one
user to manipulate “hot spots” (places
where contention is possible) in the
shared space at any one time. It uses the
first-come. first-served paradigm to de-
cide which user gets temporary exclusive
control. The system’s baton-passing fa-
cility can be used to take turns adjusting
visualization parameters. Alternatively,
for arbitration or to regulate access, de-
signers can use the auxiliary communica-
tion channels - audio. video, and text -
by initiating Phone. Video, or Talk ses-

July 1994 41

Figure 6. One site in a collaborative visualization. Collaborating users can adjust
visualization modes and parameters and modify viewing modes and direction.

sions.' Operations are performed via the
central Session Manager. which is re-
sponsible for keeping all sites up to date.
so that the users have a dynamically
changing and continuously updated view
of the interaction in the shared windows.

Collaborative volume visualization.
Every participating Poly instance creates
a shared window in which all coopera-
tive interaction occurs. Users introduce
graphics objects into the session by se-

lecting them and then placing them in the
collaboration window. The Session Man-
ager is responsible for providing access
to the objects at all participating sites that
have access permission and for permit-
ting interaction relevant to the operation
at sites that have modify permission for
the collaboration. Collaborating users
can adjust visualization modes and pa-
rameters and modify viewing modes and
direction. In the shared windows, the sys-
tem provides telepointers that each col-

Table 1. A comparison of the two distribution methods. The results, given in whole
seconds of real time, show how long the user must wait before the final image is
available.*

Data Set
NO. Object Image

Size Processors Space Space

Voxelized function 274 Kvoxels. 1 130 123
287 Kbytes 2 75 112

3 42 91

Head data 28 Mvoxels. 1 377 330
57 Mbytes 2 168 300

4 92 260

Skull data 30 Mvoxels. I 296 255
62 Mbytes 2 157 195

4 81 165

Cadaver 240 Mvoxels. 1 nla 2,340

4 nla 1.390
3 382 Mbytes - nla 1.640

+This time includes network I;itency. p roces swappinp. and nctwork-file-\>btcm access time.

laborating user can manipulate. It also
indicates remote presence, revealing the
viewing location of remote users in the
collaborative session.

Figure 6 depicts one site in a three-way
collaborative visualization. The entire
rendering of the cadaver is shared by all
collaborating sites; they share the data
set and the viewing location as well as vi-
sualization control parameters. In the
other two renderings of MRI data sets of
the human head, the collaborators share
data sets and viewing location but use dif-
ferent cutaways to examine different
parts of the data.

In its simplest form, the Shastra im-
plementation for collaborative visualiza-
tion is used by just one person to perform
scientific visualizations, just as in a non-
collaborative setting. Additional users
can be allowed to join the session with
only access and browse permissions, thus
setting up the environment like an elec-
tronic blackboard to teach novices the
basics of the process. An appropriate set-
ting of collaboration permissions and
turn-taking allows hands-on experience.
In conjunction with Shastra's audio and
video communication services, this be-
comes a powerful instructional environ-
ment. Collaborative sessions using Poly
are a valuable tool for review and analy-
sis of problem solutions. Multimedia
communication facilities permit a rapid
exchange of rationales for choices, inter-
pretations of analyses, and iterative im-
provement.

W e have used the distributed
and collaborative environ-
ment to render large data sets

efficiently. Our computing environment
for the distributed rendering tasks con-
sisted of an Iris Indigo R4000 and Sun
4/50 (Sparc IPX) workstations with 32
megabytes of RAM, linked by a 10-
megabit-per-second Ethernet. The data
sets we used are stored on remote file sys-
tems and are accessed through a network
file system. Preliminary measurements of
total time taken to render different volu-
metric data sets (during normal network
traffic conditions) are very encouraging:
They reveal a close-to-linear speedup us-
ing multiple workstations to render large
volume data sets by object space subdi-
vision. As Table 1 shows, object space
subdivision was superior in many cases;
however, it was not possible to render the
very large cadaver data set using static
object-space partitioning because of the

COMPUTER

sheer size of the data set.
We are fine-tuning both distributed al-

gorithms in terms o f (I) mcmory access
patterns to minimize swapping. (2) dis-
tributed data size to reduce network traf-
fic, and (3) congestion and load balancing
t o get better performance. A t present.
multiple distinct views of the same vol-
ume data set are rendered separately. We
are adding an optimization to be made
when two views differ only in the cut-
aways. Then we will be able to identify
the parts of the final image that are com-
mon to both views and render them only
once. To further improve the speed of
rendering, we are exploring other parti-
tioning and distribution strategies. Specif-
ically. we are integrating the distributed
rendering algorithm with the brokering
and load-balancing facilities of Shastra to
make optimal use of network computa-
tional power.

Several additional collaborative appli-
cations have been developed within the
Shastra environment. The client-server.
collaborative multimedia tools and ser-
vices. and libraries of the Shastra envi-
ronment are available to both academic
and commercial software developers.
Detailed information on the software is
available by querying shastra@cs.pur-
due.edu, via Mosaic http:llwww.cs.pur-
due.eduiresearchishastraishastra.htm1. or
telephone (317) 494-6531. o r fax (317)
494-0739. W

Acknowledgments
We are grateful to the research centers at

Johns Hopkins University (Elliot Fishman and
Diane Hauser) for the human cadaver data
set, the State University of New York at Stony
Brook (Ark Kaufman) for one of the human
head data sets, and the University of North
Carolina for anonymous ftp access to the skull
and the other human head data set. This re-
search was supported in part by NSF Grants
CCR 92-22467 and DMS 91 -0 1424. Air Force
Office of Scientific Research Grant F49620-
93-10138, NASA Grant NAG-1-1473. and a
gift from AT&T.

References

1. V. Anupam and C. Bajaj. "Shastra: Multi-
media Collaborative Design Environ-
ment." I E E E Micltimcvfia. Vol. I . No. 2.
Summer 1994. pp. 39-49.

2. A. Kaufman. Volunie Vi.siirrlizatiori. IEEE
CS Press, Los Alamitos. Calif.. Order No.
2020,1990.

3. B. Collins, "Data Visualization," in Direc-
r i o n s in Geornetric Coinpiiring. R. Martin,
cd.. Information Geomcters Press. Winch-
ester. UK. 1093. pp. .3-80.

4. W.M. Hsu. "Segmented Ray Casting for
Data Parallel Volume Rendering," Proc.
l Y Y 3 Prirollel Rrnrlrring Svnip.. IEEE CS
Press. Los Alamitos. Calif.. Order No.
4920. 1993. pp. 7-14.

5. K-L Ma c t al . . "A Data-Distributed. Par-
allel Algorithm for Ray-Traced Volume
Rendering," Proc. 1993 Parallel Render-
ing S ~ n 7 p . . IEEE CS Press. Los Alamitos.
Calif.. Order No. 4920. 1993. pp. 15-22.

6. R. Drebin. L.. Carpenter. and P. Hanra-
han. "Volume Rendering." C'ornpirrer
Grrrpl7ic.s (Proc. Siggraph 88). Vol. 22. No.
4. 1988. pp. 65-74.

7. L. Harris et al.. "Noninvasive Numerical
Dissection and Display of Anatomic Fea-
tures." K P ~ C I I I mi/ Firtiire Lkvdopinwits
in Mrdicril Iriiti,yirig. Vol. 152. Soc. Pho-
tooptical Instrumentation Engineers.
Bellingham. Wash.. 1978. pp. 10-18.

8. J. Kajiya and B. Von Herzen. "Ray Trac-
ing Volume Densities." Cornpiiter Graph-
ic.& (Proc. Siggraph 84). Vol. 18. No. 3.
1088. pp. 165-174.

9. M. Levoy. "Efficient Ray Tracing of Vol-
ume Data." ACM Trar7s. Graphics. Vol. 9.
No. 3. ACM. New York. 1990. pp. 245-261.

IO. P. Sabella. "A Rendering Algorithm for
Visualizing 3D Scalar Fields." Corr7piirer
Grtipliics (Proc. Siggraph 88). Vol. 22. No.
4. 1988. pp. 51-5x.

I I . G.J. Klinker. "An Environment for Tele-
collaborative Data Exploration." Proc.
I E E E Vi.sri~li:rrrion Y.7. IEEE CS Press.
Los Alamitos. Calif.. Order No. 3940,
1993.p~. 110-117.

12. M. Gerald-Yamasaki. "Cooperative Visu-
alization of Computational Fluid Dynam-
ics." Cornpirrrr Grciphics Forinn. Vol. 12.
No. .3. Aug. 1993. pp. 497-508.

Vinod Anupam is a PhD candidate in the De-
partment of Computer Sciences at Purdue
University. His research interests include com-
pUter-SUpported cooperative work and group-
ware. networking and distributed systems, ge-
ometric modeling. graphics and visualization.
hypermedia. and graphical user interfaces. He
received a hachelor's degree in computer sci-
ence from Birla Institute of Technology and
Science. Pilani. India. in 1988. Hc is a mem-
ber of lJpsilon Pi Epsilon.

Chandrajit Bajaj, a professor in the Depart-
ment of Computer Sciences at Purdue Uni-
versity. directs the Collaborative Modeling
Laboratory. His research areas are computa-
tional science. geometric modeling, computer
graphics. scientific visualization. and dis-
tributed and collaborative multimedia sys-
tems. He graduated from the Indian Institute
of Technology. Delhi. in 1980 with a bache-
lor's degree in electrical engineering. He sub-
sequently received MS and PhD degrees in
computer science from Cornell University in
1983 and 1984. respectively. Bajaj is a mem-
ber of ACM. the Society for Industrial and
Applied Mathematics, and the IEEE Com-
puter Society.

laniel Schikore is doctoral candidate in the
Department of Computer Sciences at Purdue
University. His research interests include sci-
entific visualization. rendering techniques. vol-
ume visualization, and distributed systems. He
received a BS in computer science and math-
ematics in 1992 and an MS in computer sci-
ence in 1993. both from Purdue University. He
is a student member of ACM. Siggraph. IEEE.
and the IEEE Computer Society.

Matthew Schikore is an undergraduate stu-
dent in the Department of Computer Sciences
at the University of Iowa. The work described
in this article began while he was participat-
ing in a National Science Foundation program
at Purdue LJniversity. His research interests
include volume visualization and physically
based modeling. He is a student member of
IEEE and the IEEE Computer Society.

The author4 can be contacted at the De-
partment of Computer Science. Purdue Uni-
versity. West Lafayette, IN 47907-1398; e-mail.
(anupam. bajaj. dry. mcs]@cs.purdue.edu.

July 1994 43

http://due.edu
http:llwww.cs.pur
mailto:mcs]@cs.purdue.edu

