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A network of 
low-cost 

workstations can 
be harnessed to 

render large volume 
data sets efficiently 

and allow group 
interaction with the 
resulting images in a 
distributed setting. 

ith ongoing advances in high-speed networking and computer processor 
and memory technology, distributed systems provide a mechanism for 
effectively harnessing the total computational power of multiple work- 

stations availablc on a network. Adopting a hybrid strategy that combines output dis- 
tribution and task partitioning allows us to  obtain the maximum benefit from dis- 
tributed systems. Distributing the output of a large computational task emphasizes 
sharing of resources among applications. Partitioning a large computational task into 
independent subtasks and then distributing those subtasks accords us the benefit of 
parallelism. The harnessed distributed system is thus made to  serve as a cost-effec- 
tive high-performancc virtual machine for performing large computations. 

Visualization typically involves large computational tasks. often performed on su- 
percomputers. The results of these tasks are usually analyzed by a design team con- 
sisting of several members. Our  goal is to  depart from traditional single-user systems 
and build a low-cost scientific visualization environment that enables computer-sup- 
ported cooperative work in the distributed setting. A synchronously conferenced 
collaborative visualization environment would let multiple users on a network of 
workstations and supercomputers share large data sets, simultaneously view visual- 
izations of the data. and interact with multiple views while varying parameters. Such 
an environment would support collaboration in both the problem-solving phase and 
the review phase of design tasks. 

In this article we describe two distributed visualization algorithms and the facili- 
ties that enable collaborative visualization. These are all implemented on top of the 
distribution and collaboration mechanisms of an environment called Shastra,' de- 
veloped by our research group and executing on a set of low-cost networked work- 
stations. 

Volume rendering 
To demonstrate our distributed and collaborative visualization environment, we 

will use the compute-intensive task of volume visualization. Volume visualization is 
a highly intuitive way to interpret volumetric d a t a 2  Measurement-based volumetric 
data sets result from sampling and may consist of geological and geophysical mea- 
surements or data collected by three-dimensional scanning. In medical imaging, for 
example, computed tomography. magnetic resonance imaging, and laser surface 
imaging all produce volumetric data sets? Synthetic volume data sets are generated 
by computer-based simulation and modeling, which may involve meteorological and 
thermodynamic simulations, finite-element stress analyses. computational fluid dy- 
namics, or  molecular modeling. Volume visualization provides mechanisms for ex- 
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pressing the information contained in 
these data sets as images: the challenge. 
of course, lies in handling these typically 
large data sets efficiently and in making 
the images easy to understand. 

Volume rendering techniques can he 
classified as forward projection or  back- 
ward projection. Forward projection 
techniques project the volume from ob- 
ject space into the screen space, similar t o  
the way typical graphics hardware ren- 
ders geometric primitives. Reverse pro- 
jection techniques determine the final 
color of each pixel in the image by casting 
a ray through the viewing volume and in- 
tersecting the ray with the data volume 
and compositing the results. For both 
techniques. the cost scales with the size of 
the volume (N '  for an N x N x N data 
set). Volume data sets are common with 
N = 128 and are sometimes as large as N 
= 512, which clearly demonstrates the 
compute-intensive nature of the task. 

The problem of visualizing such large 
volume data  sets interactively has fre- 
quently been addressed by using multi- 
processor parallel and vector parallel ar- 
c h i t e c t u r e ~ . ~ , ~  The volume visualization 
system we describe operates on a net- 
work of low-cost workstations and pro- 
vides several ways to  view volumetric 
data: cross-sectional viewing. isosurface 
reconstruction. and direct volume ren- 
dering using ray casting. It also provides 
facilities for interactive control and spec- 
ification of the visualization process. 

Ray casting. Ray casting is a direct vol- 
ume-rendering algorithm in which sight 
rays are  cast from the viewing plane 
through the volume, accumulating the ef- 
fects of sampled data encountered along 
their Certain termination crite- 
ria determine when the "tracing" stops. 
for example, when opaque or visible vox- 
els are encountered, or  when some accu- 

mulation threshold is achieved. The 
opacity accumulation is based on a clas- 
sification of the material giving rise to the 
data values.h-'" 

The basic process is to  compute the 
pixel color for each pixel in the final im- 
age in the manner described below. 
There exists a prespecified opacity value 
a with each voxel. 

( I )  Compute the world space line (ray) 
that maps to  the pixel. 

(2) Intersect this line with the volume 
to be rendered to compute the in- 
tersections o f  the line passing 
through the volume. 

(3) Determine the intersections with 
voxels along the ray. This is per- 
formed quickly using an extension 
of the Bresenham line-drawing al- 
gorithm. 

(4)  Do one or the other o f  the following: 
(a )  Accumulate the values along 

the ray to determine the pixel color. 
The standard accumulation equation 

rgh,,,, = a * rgh,, + 
( 1  ~ a )  *: rgb,,,, 

accumulates values from back to 
front. This is inefficient if highly 
opaque voxels near the eye elim- 
inate the contribution o f  voxels far- 
ther from the eye. To allow for early 
ray termination. we rearrange the 
equation to  accumulate opacity val- 
ues from front to back so that rays 
may be terminated when the final 
pixel value is nearly opaque. 

(b)  Determine the first intersec- 
tion with a threshold surface value 
and apply an illumination model to 
the surface at the intersection. An 
illumination model determines the 
light intensity. hue. and saturation 
on the basis of the surface's ambient 
and specular reflection properties. 

Distributed volume 
rendering 

There are two very good ways to paral- 
lelize volume-data rendering by ray cast- 
ing. With the first method, object space 
distribution, we can partition the volume 
into subvolumes to be rendered indepen- 
dently by remote processors. With the sec- 
ond method. image space distribution. we 
can subdivide the final image space and 
assign image partitions to remote proces- 
sors in a cyclic fashion until the entire im- 
age has been rendered. An examination 
of both methods reveals trade-offs based 
on data-set sizes, number of workstations, 
and network bandwidth. 

Figure 1 shows example renderings of 
a 512 x 512 x 113 volume of a skull and a 
512 x 512 x 109 volume of a head with 
cutaways (measured in voxels). The ren- 
derings were produced by the object 
space distribution algorithm. 

Object space distribution. Subdivision 
of the volume into subvolumes for inde- 
pendent rendering is one method for dis- 
tributing the computation of a volume 
rendering. Partitioning the volume is 
highly beneficial if there are enough 
workstations with sufficient total mem- 
ory for the volume to be statically parti- 
tioned among the network's compute 
nodes. This lets us distribute the volume 
only once: subsequent communication 
consists solely o f  the rendered subimages 
and associated information. When using 
object space partitioning, we must choose 
a partitioning that allows the results from 
each server to  be efficiently combined to  
form the final image. 

Ohjecl spcice partitioning. In perform- 
ing object spacc partitioning, we choose 
the common approach of subdividing the 

Some commonly used volume visualization terms 

Interpolant - A method for computing density values inte- 
rior to the voxel by constructing a function based on the 
values at the corners of the voxel. 
lsoswtace - A surface of constant density in the sampled 
continuous interpolant. 
Ray w i n g  - A method for volume rendering based on ray 

in the image to determine which objects in the scene con- 
tribute to the pixel's color. 
Rectilinear - Describes a volume data set in which all data 
lies on twodimensional cross sections that are perpendicular 
to the coordinate axes. 
Voxel- An abbreviation for "volume element" or "volume 
celi.'' It is the three-dimensional equivalent to the pixel. A 
voxel is a hexahedral element with data values at each of its 
eight comers. 



volume into groups of slices parallel to the 
x-y  plane. In this simple technique, deter- 
mining the order for merging the sub- 
images is trivial. However. the amount of 
work required to  composite the results 
from each server is greater than would be 
necessary through other subdivision ap- 
proaches, such as octree subdivision. 

Merging results. Merging results from 
object space distribution is similar to the 
problem of ray-casting the initial volume. 
As described above, we accumulate opac- 
ities of voxels encountered along the ray 
from front to  back. When compositing 
images, we perform the same accumula- 
tion from front to  back using the com- 
puted color and opacity values for a given 
pixel from each subvolume. The front- 
to-back order is easily determined from 
the viewing direction because the sub- 
volumes are all parallel in object space. 

Image space distribution. Subdividing 
a volume’s image space has several ad- 
vantages. First, when performing the par- 
titioning in image space. all computation 
for each pixel is local to  a single proces- 
sor; hence, there is no need for com- 
positing the results from various proces- 
sors. Second, the amount of data required 
to render a portion of the image is small 
and can be adjusted by modifying the 
partitioning scheme. 

h u g e  spucepurritioning. The first step 
in image space distribution is to partition 
the image space into regions to  be dis- 
tributed to  the various servers. The goals 
in partitioning the image space are to sep- 
arate the image space into regions re- 
quiring roughly equal computational time 
and to balance the amount of time needed 
to  transmit data and render image cells 
such that both the servers and the client 
remain as busy as possible. Becausz thz 
cost for transmission of data and ray-cast 
volume rendering of a subvolume is di- 
rectly related to the volume’s size, we con- 
sider the cell’s .‘weight” to  be the amount 
of volumetric data contributing to the ren- 
dering of the cell. Several subdivision 
methods, both adaptive and nonadaptive, 
have been explored. 

In each case, we divide the image space 
into rectangles orthogonal to the screen 
coordinate system (see Figure 2). The eas- 
iest static method for defining the cells is 
to divide the space into squares of equal 
size. This method is fast but suffers from 
being insensitive to the image size and to 
the amount of data within the volume cor- 

responding to the cell. Repeated subdivi- 
sion is an adaptive method that takes both 
of these factors into consideration. Using 
this method, we begin with a region that 
contains the entire image to be rendered 
and subdivide in a quadtree manner on 
the basis of cell weights. This way we can 
guarantee an upper and a lower bound on 
the amount of data to be sent to a server 
and balance the network transmission 
time with the server rendering time. 

Input vo l ime  partitioning. T o  deter- 
mine the portion of the data volume con- 
tained within an image cell, we consider 
the world space within a cell to  be the in- 
tersection of four half-spaces defined by 
four planes bounding the volume from 
top. bottom. left. and right. We map the 
corners of the cell to eight points in world 
space defining these planes. Each slice in 
the volume is a polygon in a constant Z 
plane. We clip this polygon by each of the 

Figure 1. Renderings of a 512 x 512 x 113 
volume of a human skull and a 512 x 512 
x 109 volume of a head with cutaway. 

planes bounding the cell to determine the 
portion of each slice contained in the cell. 
Since we send only rectangular portions 
of slices to  the server processes, we take 
the bounding box of the clipped polygon 
as the required data to be distributed. 

Figure 3 shows distributed volume-ren- 
dered images of a 512 x 512 x 920 mag- 
netic resonance imaging data set of a hu- 
man cadaver. The image on the left shows 
a frontal view, with bone viewed as 
opaque and other tissues visualized as 
transparent, revealing the entire skeletal 
structure. The remaining two images 
show different views, with tissues as- 
signed translucency values in relation to  
their density. 

Data coriinziinic.ririon opriniizations. 
The data sent from client to server con- 
sists of rectangular portions of input data 
slices containing the region of the slice 
required to  render one of the cells of the 
image space. In certain applications, such 
as medical imaging, volume data fre- 
quently contains large regions of empty 
space. We take advantage of this fact 
when data is being transmitted between 
workstations by run-length encoding the 
zeroes in the stream of input data values 
sent to the server processes. In the worst 
case. there may be numerous isolated ze- 
roes that would be doubled by the run- 
length encoding, but in practice we have 
realized compression ratios ranging from 
4.1 to 1O:l with this method. 

An important factor to  consider is the 
classic issue of data packet size versus 
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Figure 3. Distributed rendering of a 512 x 512 x 920 human 
cadaver with different levels of skin transparency. 

number of packets. Since a large amount 
of data needs to be moved from the client 
t o  multiple servers, the local area net- 
work can easily get congested. However. 
if the data slices sent to  servers are small. 
communication overhead dominates the 
total cost of distribution because of the 
very large number of data transfers. A 
balance, therefore, needs to  be struck be- 
tween the two. In practice. we have ob- 
served the balance to  be sensitive to am- 
bient network traffic. Our current system 
runs on an Ethernet (10 megabits per sec- 
ond) and would benefit greatly if we 
could use very high bandwidth network 
technologies such as ATM (asynchronous 
transfer mode). 

4 - 4 4 4 4  4 
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Figure 4. The architecture of applications in Shastra, a collab- 
orative multimedia scientific manipulation environment. 

Heterogeneity issues. In  a heteroge- 
neous computing environment. Shastra 
applications achieve hardware indepen- 
dence by building on top of high-level ab- 
stractions, above the greatest common 
denominator. We assume the availabil- 
ity of the X Window System (Xl lR5)  for 
user interfaces. Multiplatform develop- 
ment is usually cumbersome because 
high-performance graphics platforms 
have different graphics models and ap- 
plication programming interfaces ( APIs). 
The solution in Shastra is to achieve plat- 
form independence by building applica- 
tions atop abstract libraries that hide 
hardware specifics. These abstract li- 
braries can be easily extended to  support 

standardized interfaces as they evolve. 
Platform heterogeneity problems in the 
realm of data representation are obviated 
by using the Shastra protocol for data 
transport, which uses XDR (external 
data representation) to  encode data in a 
device-independent manner. 

The XS graphics and windows library 
was developed to provide a machine-in- 
dependent interface to  routines for 
graphics. The use of this abstraction pro- 
vides us with source-code-level portabil- 
ity across multiple platforms without 
compromising speed or graphics quality.' 
The current suite of libraries supports 
graphics using X11. SGI/GL, HP/Star- 
base, and Windows 3.1. 

Shared workspaces 
Shastra is a collaborative multimedia 

scientific manipulation environment in 
which experts in a cooperating group 
communicate and interact across a net- 
work to  solve problems. The Shastra en- 
vironment consists of a group of interop- 
erating applications collectively called 
tools. Some tools are responsible for 
managing the distributed environment 
(the Kernel), and others are responsible 
for maintaining collaborative sessions 
(the Session Managers). Other tools pro- 
vide specific communication services (the 
Services), while yet others provide scien- 
tific design and manipulation functional- 
ity (the Toolkits). Service applications 
are special-purpose tools for multimedia 
support; they provide mechanisms for 
textual. graphical, audio, and video ren- 
dition and communication. 

Figure 5. Using Poly, a Shastra application for collaborative visualization. COMPUTER 



Different tools register with the envi- 
ronment at start-up, providing informa- 
tion about the kind of services they offer 
(directory) and how and where they are 
to be contacted for those services (loca- 
tion). The environment provides mech- 
anisms to  create remote instances of 
applications and connect to them in 
client-server or peer-peer mode (distri- 
bution). In addition, the environment 
supports many modes of synchronous 
multiuser interaction (collaboration). It 
offers facilities for starting and terminat- 
ing collaborative sessions and for joining 
or leaving them. We have described the 
infrastructure in detail in the literature.’ 

The distribution infrastructure. All 
tools designed to  run in the Shastra 
environment have certain architectural 
features that make them amenable to 
interoperation. A typical tool has an 
application-specific core - the applica- 
tion engine - that implements all the 
functionality offered by the toolkit or ser- 
vice. On  top of the engine is an interface 
mapper that actually invokes functional- 
ity embedded in the engine in response to 
requests from the ASCII interface, the 
graphical user interface, and network in- 
terfaces. Users interact with a tool via the 
ASCII interface o r  the GUI .  Intertool 
communication occurs via the network 
interfaces. Figure 4 shows a block dia- 
gram of this architecture. 

The Shastra layer, comprising the net- 
work, session, and data communication 
substrates, joins the network interfaces 
of various tools. This layer provides con- 
nection setup and multiple-connection 
management facilities in the distributed 
environment. It also implements the 
Shastra communication protocol for 
peer-to-peer communication. The con- 
nected application-object interfaces of 
Shastra tools constitute a distributed vir- 
tual machine over which parallel algo- 
rithms are implemented and synchronous 
conferences are conducted. 

A collaborative visualization tool. 
Klinker describes a telecollaborative data 
exploration environment” in which users 
share images and control their presenta- 
tion. Gerald-Yamasaki describes an en- 
vironment for cooperative visualization 
of computational fluid dynamics.I2 The 
Shastra environment goes a step further 
by providing facilities for media-rich in- 
teraction over the context of shared vi- 
sualizations. 

Poly is a rendering and visualization 

tool in the Shastra environment. New 
Shastra toolkits use Poly as their graphics 
interface. since it encapsulates graphical 
object manipulation, rendering, and vi- 
sualization functionality. Poly provides a 
variety of mechanisms for visualizing 
multidimensional data. It understands 
numerous graphical object formats, 
which it converts to an internal form for 
efficient display and transport. A t  its 
network interfaces. Poly interoperates 
with other Shastra tools and provides a 
very high level abstraction for manipu- 
lating graphical data. A Motif-based GUI  
is used to manipulate visualized objects in 
multiple XS graphics windows. 

Figure 5 shows the visualization sys- 
tem’s user interface. The top image is a 
rendering of the head and upper torso of 
the cadaver. The skeletal structures are 
opaque and shaded, while the rest of the 
structures have been assigned different 

Participants can leave 
a session at any time, 

and late arrivals 
can be brought 

up to date quickly. 

levels of transparency. The bottom im- 
age shows a surface rendering of a hu- 
man head with a cutaway of the skull to 
show part of the brain surface. 

The Shastra environment consists of a 
collection of Poly instances. A collabo- 
rative session is initiated by one of the 
Poly users in the environment. This user 
becomes the group leader and specifies to 
the local Kernel the list of Poly users who 
will be invited to participate in the ses- 
sion. The Kernel instantiates a Session 
Manager. which starts a session with the 
group leader as its sole participant and 
then invites the specified users of con- 
currently executing remote Pol!; in- 
stances to participate. Users who accept 
are incorporated into the session. Any 
Poly instance. or user. not in the confer- 
ence can request admittance by using 
Shastra facilities to communicate with the 
group leader. who can admit that person 
to the session. A participant can leave an 
ongoing session at any time. Users can be 
invited dvnamically to join and can be re- 

moved from conferences by the group 
leader or the leader’s designees. 

The hybrid computation model for 
conferences in Shastra consists of a cen- 
tralized Session Manager for each ses- 
sion, which regulates the activity of mul- 
tiple instances of Poly across a network. 
Although this model suffers from prob- 
lems of scale because of the centralized 
Session Manager, it performs well for 
typical group sizes of two to  10 partici- 
pants. Replication of the Poly tool pro- 
vides an important benefit in the realm of 
platform heterogeneity: Individual ap- 
plication instances are  responsible for 
dealing with idiosyncrasies of the hard- 
ware and software platform they execute 
on. In addition, since the conference con- 
sists of cooperating applications, the no- 
tion of private and shared workspace, as 
well as private and shared interaction, is 
naturally supported. The centralization 
of the Session Manager for a collabora- 
tive session accords us the benefit of a 
centralized state. The Session Manager 
serves as a repository of shared objects. 
making it easy for late arrivals to sessions 
to be brought up to  date quickly. It also 
eases the task of serialization of input ac- 
tions for multipoint synchronous inter- 
action, and constraint management for 
mutual consistency. 

A permissions-based regulatory sub- 
system regulates dataflow and control 
flow at runtime, providing a variety of in- 
teraction modes. Collaboration in Shas- 
tra occurs in the regulated (turn-taking) 
mode or in the unregulated (free inter- 
action) mode. In  the regulated mode, 
users take turns by passing a baton. Shas- 
tra’s collaboration infrastructure has a 
two-tiered permissions-based regulatory 
subsystem used to control interaction in 
the unregulated mode. Shastra permis- 
sions control “access” to  a view of the 
conference, local viewing controls to  
“browse” a view. rights to “modify” con- 
ference state, and rights to “copy” shared 
objects. 

The Session Manager allohs only one 
user to  manipulate “hot spots” (places 
where contention is possible) in the 
shared space at any one time. It uses the 
first-come. first-served paradigm to de- 
cide which user gets temporary exclusive 
control. The system’s baton-passing fa- 
cility can be used to take turns adjusting 
visualization parameters. Alternatively, 
for arbitration or to regulate access, de- 
signers can use the auxiliary communica- 
tion channels - audio. video, and text - 
by initiating Phone. Video, or Talk ses- 
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Figure 6. One site in a collaborative visualization. Collaborating users can adjust 
visualization modes and parameters and modify viewing modes and direction. 

sions.' Operations are performed via the 
central Session Manager. which is re- 
sponsible for keeping all sites up to date. 
so that the users have a dynamically 
changing and continuously updated view 
of the interaction in the shared windows. 

Collaborative volume visualization. 
Every participating Poly instance creates 
a shared window in which all coopera- 
tive interaction occurs. Users introduce 
graphics objects into the session by se- 

lecting them and then placing them in the 
collaboration window. The Session Man- 
ager is responsible for providing access 
to the objects at all participating sites that 
have access permission and for permit- 
ting interaction relevant to the operation 
at sites that have modify permission for 
the collaboration. Collaborating users 
can adjust visualization modes and pa- 
rameters and modify viewing modes and 
direction. In the shared windows, the sys- 
tem provides telepointers that each col- 

Table 1. A comparison of the two distribution methods. The results, given in whole 
seconds of real time, show how long the user must wait before the final image is 
available.* 

Data Set 
NO. Object Image 

Size Processors Space Space 

Voxelized function 274 Kvoxels. 1 130 123 
287 Kbytes 2 75 112 

3 42 91 

Head data 28 Mvoxels. 1 377 330 
57 Mbytes 2 168 300 

4 92 260 

Skull data 30 Mvoxels. I 296 255 
62 Mbytes 2 157 195 

4 81 165 

Cadaver 240 Mvoxels. 1 nla 2,340 

4 nla 1.390 
3 382 Mbytes - nla 1.640 

+This time includes network I;itency. p roces  swappinp. and nctwork-file-\>btcm access time. 

laborating user can manipulate. It also 
indicates remote presence, revealing the 
viewing location of remote users in the 
collaborative session. 

Figure 6 depicts one site in a three-way 
collaborative visualization. The entire 
rendering of the cadaver is shared by all 
collaborating sites; they share the data 
set and the viewing location as well as vi- 
sualization control parameters. In the 
other two renderings of MRI data sets of 
the human head, the collaborators share 
data sets and viewing location but use dif- 
ferent cutaways to examine different 
parts of the data. 

In its simplest form, the Shastra im- 
plementation for collaborative visualiza- 
tion is used by just one person to perform 
scientific visualizations, just as in a non- 
collaborative setting. Additional users 
can be allowed to join the session with 
only access and browse permissions, thus 
setting up the environment like an elec- 
tronic blackboard to  teach novices the 
basics of the process. An appropriate set- 
ting of collaboration permissions and 
turn-taking allows hands-on experience. 
In conjunction with Shastra's audio and 
video communication services, this be- 
comes a powerful instructional environ- 
ment. Collaborative sessions using Poly 
are a valuable tool for review and analy- 
sis of problem solutions. Multimedia 
communication facilities permit a rapid 
exchange of rationales for choices, inter- 
pretations of analyses, and iterative im- 
provement. 

W e have used the distributed 
and collaborative environ- 
ment to render large data sets 

efficiently. Our computing environment 
for the distributed rendering tasks con- 
sisted of an Iris Indigo R4000 and Sun 
4/50 (Sparc IPX) workstations with 32 
megabytes of RAM, linked by a 10- 
megabit-per-second Ethernet. The data 
sets we used are stored on remote file sys- 
tems and are accessed through a network 
file system. Preliminary measurements of 
total time taken to render different volu- 
metric data sets (during normal network 
traffic conditions) are very encouraging: 
They reveal a close-to-linear speedup us- 
ing multiple workstations to render large 
volume data sets by object space subdi- 
vision. As  Table 1 shows, object space 
subdivision was superior in many cases; 
however, it was not possible to render the 
very large cadaver data set using static 
object-space partitioning because of the 
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sheer size of the data set. 
We  are fine-tuning both distributed al- 

gorithms in terms o f  ( I )  mcmory access 
patterns to  minimize swapping. (2 )  dis- 
tributed data size to  reduce network traf- 
fic, and (3) congestion and load balancing 
t o  get better performance. A t  present. 
multiple distinct views of the same vol- 
ume data set are rendered separately. We 
are  adding an optimization to be made 
when two views differ only in the cut- 
aways. Then we will be able to identify 
the parts of the final image that are com- 
mon to  both views and render them only 
once. To further improve the speed of 
rendering, we are exploring other parti- 
tioning and distribution strategies. Specif- 
ically. we are integrating the distributed 
rendering algorithm with the brokering 
and load-balancing facilities of Shastra to 
make optimal use of network computa- 
tional power. 

Several additional collaborative appli- 
cations have been developed within the 
Shastra environment. The client-server. 
collaborative multimedia tools and ser- 
vices. and libraries of the Shastra envi- 
ronment are available to both academic 
and commercial software developers. 
Detailed information on the software is 
available by querying shastra@cs.pur- 
due.edu, via Mosaic http:llwww.cs.pur- 
due.eduiresearchishastraishastra.htm1. or 
telephone (317) 494-6531. o r  fax (317) 
494-0739. W 
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