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Preface

Mechanical theorem-proving is crucial to the automation of rea-
soning about computer programs. Today, few computer pro-
grams can be mechanically certified to be free of “bugs.” The
principal reason is the lack of mechanical theorem-proving power.

In current research on automating program analysis, a com-
mon approach to overcoming the lack of mechanical theorem-
proving power has been to require that the user direct a proof-
checking program. That is, the user is required to construct
a formal proof employing only the simplest rules of inference,
such as modus ponens, instantiation of variables, or substitution
of equals for equals. The proof-checking program guarantees the
correctness of the formal proof. We have found proof-checking
programs too frustrating to use because they require too much
direction.

Another approach to overcoming the lack of mechanical theorem-
proving power is to use a weak theorem-proving program and
to introduce axioms freely. Often these axioms are called “lem-
mas,” but they are usually not proved. While using a proof
checker is only frustrating, introducing axioms freely is deplorable.
This approach has been abused so far as to be ludicrous: we
have seen researchers “verify” a program by first obtaining for-
mulas that imply the program’s correctness, then running the
formulas through a simplifier, and finally assuming the resulting
slightly simplified formulas as axioms. Some researchers admit
that these “lemmas” ought to be proved, but never get around to
proving them because they lack the mechanical theorem-proving
power. Others, however, believe that it is reasonable to assume
lots of “lemmas” and never try to prove them. We are strongly
opposed to this latter attitude because it so completely under-

xiii
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mines the spirit of proof, and we therefore reply to the arguments
we have heard in its defense.

1. It is argued that the axioms assumed are obvious facts
about the concepts involved. We say that a great number
of mistakes in computer programs arise from false “obvi-
ous” observations, and we have already seen researchers
present proofs based on false lemmas. Furthermore, the
concepts involved in the complicated computer systems one
hopes eventually to certify are so insufficiently canonized
that one man’s “obvious” is another man’s “difficult” and
a third man’s “false.”

2. It is argued that one must assume some axioms. We agree,
but observe that mathematicians do not contrive their ax-
ioms to solve the problem at hand. Yet often the “lemmas”
assumed in program verification are remarkably close to
the main idea or trick in the program being checked.

3. It is argued that mathematicians use lemmas. We agree.
In fact, our theorem-proving system relies heavily on lem-
mas. But no proof is complete until the lemmas have been
proved, too. The assumption of lemmas in program prov-
ing often amounts to sweeping under the rug the hard and
interesting inferences.

4. It is argued that the definition of concepts necessarily in-
volves the addition of axioms. But the axioms that arise
from proper definitions, unlike most “lemmas,” have a very
special form that guarantees two important properties. First,
adding a definition never renders one’s theory inconsistent.
Second, the definition of a concept involved in the proof of
a subsidiary result (but not in the statement of one’s main
conjecture) can be safely forgotten. It does not matter if
the definition was of the “wrong” concept. But an ordinary
axiom (or “lemma”), once used, always remains a hypoth-
esis of any later inference. If the axiom is “wrong,” the
whole proof may be worthless and the validity of the main
conjecture is in doubt.
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One reason that researchers have had to assume “lemmas” so
freely is that they have not implemented the principle of mathe-
matical induction in their theorem-proving systems. Since math-
ematical induction is a fundamental rule of inference for the ob-
jects about which computer programmers think (e.g., integers,
sequences, trees), it is surprising that anyone would implement
a theorem prover for program verification that could not make
inductive arguments. Why has the mechanization of mathemat-
ical induction received scant attention?

Perhaps it has been neglected because the main research
on mechanical theorem-proving, the resolution theorem-proving
tradition (see Chang and Lee [15] and Loveland [29]), does not
handle axiom schemes, such as mathematical induction.

We suspect, however, that the mechanization of mathemat-
ical induction has been neglected because many researchers be-
lieve that the only need for induction is in program semantics.
Program semantics enables one to obtain from a given program
and specification some conjectures (“verification conditions”)
that imply the program is correct. The study of program se-
mantics has produced a plethora of ways to use induction. Be-
cause some programs do not terminate, the role of induction in
program semantics is fascinating and subtle. Great effort has
been invested in mechanizing induction in program semantics.
For example, the many “verification condition generation” pro-
grams implicitly rely upon induction to provide the semantics
of iteration.

But program semantics is not the only place induction is nec-
essary. The conjectures that verification condition generators
produce often require inductive proofs because they concern in-
ductively defined concepts such as the integers, sequences, trees,
grammars, formulas, stacks, queues, and lists. If you cannot
make an inductive argument about an inductively defined con-
cept, then you are doomed to assume what you want to prove.

This book addresses the use of induction in proving theorems
rather than the use of induction in program semantics.

We will present a formal theory providing for inductively
constructed objects, recursive definitions, and inductive proofs.
Readers familiar with programming languages will see a strong
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stylistic resemblance between the language of our theory and
that fragment of the programming language LISP known as
“pure LISP” (see McCarthy et al. [35]). We chose pure LISP
as a model for our language because pure LISP was designed
as a mathematical language whose formulas could be easily rep-
resented within computers. Because of its mathematical na-
ture (e.g., one cannot “destructively transform” the ordered pair
〈7,3〉 into 〈8,3〉), pure LISP is considered a “toy” programming
language. It is an easy jump to the non sequitur : “The lan-
guage and theory presented in this book are irrelevant to real
program analysis problems because they deal with a toy pro-
gramming language.” But that statement misses the point. It
is indeed true that our theory may be viewed as a program-
ming language. In fact, many programs are naturally written
as functions in our theory. But our theory is a mathematical
tool for making precise assertions about the properties of dis-
crete objects. As such, it can be used in conjunction with any
of the usual program specification methods to state and prove
properties of programs written in any programming language
whatsoever.

When we began our research into proving theorems about
recursive functions [7], [38], we thought of ourselves as prov-
ing theorems only about pure LISP and viewed our work as an
implementation of McCarthy’s [34] functional style of program
analysis. However, we now also regard recursion as a natu-
ral alternative to quantification when making assertions about
programs. Using recursive functions to make assertions about
computer programs no more limits the programming language
to one that implements recursion than using the ordinary quan-
tifiers limits the programming language to one that implements
quantification! In this book we use both the functional style and
Floyd’s inductive assertion style [18] of program specification in
examples. (For the benefit of readers not familiar with the pro-
gram verification literature, we briefly explain both ideas when
they are first used.) We have relegated the foregoing remarks to
the preface because we are not in general interested in program
semantics in this book. We are interested in how one proves
theorems about inductively constructed objects.
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Chapter 1

Introduction

Unlike most texts on logic and mathematics, this book is about
how to prove theorems rather than the proofs of specific results.
We give our answers to such questions as:

When should induction be used?

How does one invent an appropriate induction argu-
ment?

When should a definition be expanded?

We assume the reader is familiar with the mathematical no-
tion of equality and with the logical connectives “and,” “or,”
“not,” and “implies” of propositional calculus. We present a log-
ical theory in which one can introduce inductively constructed
objects (such as the natural numbers and finite sequences) and
prove theorems about them. Then we explain how we prove
theorems in our theory.

We illustrate our proof techniques by using them to discover
proofs of many theorems. For example, we formalize a version
of the propositional calculus in our theory, and, using our tech-
niques, we formally prove the correctness of a decision procedure
for that version of propositional calculus. In another example,
we develop elementary number theory from axioms introduc-
ing the natural numbers and finite sequences through the prime
factorization theorem.

Since our theory is undecidable, our proof techniques are not
perfect. But we know that they are unambiguous, well inte-
grated, and successful on a large number of theorems because

1



2 CHAPTER 1. INTRODUCTION

we have programmed a computer to follow our rules and have
observed the program prove many interesting theorems. In fact,
the proofs we describe are actually those discovered by our pro-
gram.

1.1 Motivation

Suppose it were practical to reason, mechanically and with math-
ematical certainty, about computer programs. For example, sup-
pose it were practical to prove mechanically that a given pro-
gram satisfied some specification, or exhibited the same output
behavior as another program, or executed in certain time or
space bounds.1 Then there would follow a tremendous improve-
ment in the reliability of computer programs and a subsequent
reduction of the overall cost of producing and maintaining pro-
grams.

To reason mechanically about programs, one must have a
formal program semantics, a formal logical theory, and a me-
chanical theorem prover for that theory. The study of formal
program semantics has provided a variety of alternative meth-
ods for specifying and modeling programs. But all the methods
have one thing in common: they reduce the question “Does this
program have the desired property?” to the question “Are these
formulas theorems?” Because of the nature of computers, the
formulas in question almost exclusively involve inductively con-
structed mathematical objects: the integers, finite sequences,
n-tuples, trees, grammars, expressions, stacks, queues, buffers,
etc. Thus, regardless of which program semantics we use to
obtain the formulas to be proved, our formal theory and me-
chanical theorem prover must permit definition and proof by
induction. This book is about such a theory and a mechanical
theorem prover for it.

1See Manna and Waldinger [31] for a description of the many other ways that
formal reasoning can be usefully applied in computer programming.
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1.2 Our Formal Theory

We will present a logical theory that we have tailored to the
needs of thinking about computer programs. It provides for
the introduction of new “types” of objects, a general princi-
ple of induction on well-founded relations (Noetherian Induc-
tion [6]), and a principle permitting the definition of recursive
functions. Recursive functions offer such a powerful form of
expression when dealing with discrete mathematics (such as un-
derlies computer programs) that we do not use any additional
form of quantification.2

1.3 Proof Techniques

After defining our formal theory, we describe many techniques
we have developed for proving theorems in it. We devote eleven
chapters to the description of these techniques and how, when,
and where they should be applied to prove theorems. The most
important of these techniques is the use of induction. The for-
mulation of an induction argument for a conjecture is based on
an analysis of the recursive definitions of the concepts involved
in the conjecture. Thus the use of recursively defined functions
facilitates proving theorems about inductively defined objects.
Many of the other proof techniques are designed to support our
induction heuristics.

1.4 Examples

All the techniques are illustrated with examples. Most of our
techniques are first illustrated with simple theorems about func-
tions on lists and trees. These elementary functions are simple
to define and are worth knowing if one is interested in mechan-
ical theorem-proving (as we assume many readers will be). In

2The program of using recursive functions and induction to understand com-
puter programs, and the use of computers to aid the generation of the proofs, were
begun by McCarthy [33], [34]. See also Burstall [12]. The idea of using recursive
functions and induction but no other form of quantification in the foundations
of mathematics (or at least of arithmetic) was first presented by Skolem in 1919
[52]. See also Goodstein [22].
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addition, it is more fun to work through the proofs of novel the-
orems than through the proofs of, say, the familiar theorems of
elementary number theory.

We have also included four complicated examples, chosen
from several different subject domains, to illustrate the general
applicability of the theory and our proof methods.

In the first such example, we write a tautology checker as
a recursive function on trees representing formulas in proposi-
tional calculus. We exercise the theory and proof techniques in
an interesting way by stating and proving that the tautology
checker always returns an answer, recognizes only tautologies,
and recognizes all tautologies. This example serves two impor-
tant purposes: it illustrates the theory and proof techniques
in use, and it gives the reader a precise definition of a simple
mechanical theorem prover (i.e., the tautology checker) without
requiring a digression into programming languages or computa-
tional issues.

In the second major example, we prove the correctness of
a simple algorithm that “optimizes” and “compiles” arithmetic
expressions into sequences of instructions for a hand-held calcu-
lator. In order to specify the algorithm and the calculator, we
use (and briefly explain) McCarthy’s “functional semantics” [34]
for programs. This example is the first part of the book that
deals explicitly with computational (rather than mathematical)
ideas. Because the example is simple (compared to real com-
pilers and real hardware) and because it is ideally suited to our
mathematical language, the reader unfamiliar with computing
should be able to read this chapter comfortably (and even learn
the basic ideas behind compiling expressions and one style of
program specification).

In the third major example, we prove the correctness of a
fast string searching algorithm. The algorithm finds the first
occurrence of one character sequence in another (if such an oc-
currence exists), and on the average, is the fastest such algo-
rithm currently known. In this example we explain and use a
second program specification style, called the “inductive asser-
tion” method (Floyd [18]).

Finally, we demonstrate that the theory and proof techniques
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can be used to prove theorems that are generally considered dif-
ficult (rather than just theorems that have not been generally
considered) by proving our statement of the unique prime fac-
torization theorem: (a) any positive integer can be represented
as the product of a finite sequence of primes and (b) any two
finite sequences of primes with the same product are in fact per-
mutations of one another. We derive this theorem starting from
the axioms of Peano arithmetic and finite sequences.

1.5 Our Mechanical Theorem Prover

It is one thing to describe a loosely connected set of heuristics
that a human might use to discover proofs and quite a differ-
ent thing to formulate them so that a machine can use them to
discover proofs.3 All of the heuristics described have been imple-
mented and together comprise our automatic theorem-proving
program. Our description of the heuristics makes little or no
reference to the fact that they can be mechanized. However, we
want competent readers to be able to reproduce and build upon
our results. Thus, we are more precise than we would be had
we desired only to teach a student how we prove theorems.

All of the example proofs discussed in this book are actu-
ally produced by our program. We present the theorem prover’s
proofs in an informal style. While describing proof techniques
we present small inference steps, but as we move on to the in-
teresting examples we ascend to the level upon which humans
usually deal with proofs. By the time we reach the prime fac-
torization theorem, the proofs we describe are very much like
those in number theory textbooks: we make large inference
leaps, use lemmas without describing their proofs, and dismiss
whole theorems with phrases like “the proof is by induction on
X.” However, our high-level descriptions of the machine’s proofs
should not be confused with what the machine does: before
pronouncing a conjecture proved, the machine discovers a com-
plete sequence of applications of our proof techniques establish-
ing the conjecture from axioms and previously proved lemmas.
Furthermore, given the detailed presentation of our proof tech-

3For a survey of non-resolution theorem-proving, see [5].
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niques and their orchestration, the reader should also be able to
discover the proofs mechanically.

It is perhaps easiest to think of our program much as one
would think of a reasonably good mathematics student: given
the axioms of Peano, he could hardly be expected to prove (much
less discover) the prime factorization theorem. However, he
could cope quite well if given the axioms of Peano and a list
of theorems to prove (e.g., “prove that addition is commuta-
tive,” . . . “prove that multiplication distributes over addition,”
. . . “prove that the result returned by the GCD function divides
both of its arguments,” . . . “prove that if the products over two
sequences of primes are identical, then the two sequences are
permutations of one another”).

The examples discussed are just part of a standard sequence
of approximately 400 definitions and theorems the program is
expected to reestablish whenever we incorporate a new tech-
nique. The sequence contains theorems some readers will have
trouble proving before they read the heuristics. In Appendix A
we list the entire sequence as evidence that the heuristics are
generally useful and well integrated. It should be noted that
when the latter theorems of the sequence are proved the theorem
prover is aware of the earlier theorems. The fact that previously
proved results are remembered permits their use as lemmas in
later proofs. The theorem prover would fail to prove many of
its most interesting theorems in the absence of such lemmas.
However, the more a theorem-proving program knows, the more
difficult it becomes for it to prove theorems because the program
is often tempted to consider using theorems that have no rele-
vance to the task at hand. That our theorem-proving program
does prove the entire list of theorems sequentially is a measure
of its capacity to avoid being confused by what it knows.

1.6 Artificial Intelligence or Logic?

While drawing heavily upon important facts of mathematical
logic, our research is really more artificial intelligence than logic.
The principal question we ask (and sometimes answer) is “how
do we discover proofs?” It has been argued that mechanical
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theorem-proving is an impossible task because certain theories
are known to be undecidable or super-super-exponential in com-
plexity. Such metamathematical results are, of course, no more
of an impediment to mechanical theorem-proving than to human
theorem-proving.4 They only make the task more interesting.

1.7 Organization

This book is structured as follows. We begin informally in
Chapter 2 by sketching our logical theory, formulating a sim-
ple conjecture, and proving that conjecture by using many of
the techniques we will discuss. We present the theory formally
in Chapter 3.

In Chapter 4 we state and prove in our theory the correctness
of a function for recognizing tautologies.

In Chapter 5 through Chapter 15 we develop and explain our
heuristics for proving theorems. These heuristics are illustrated
with simple proof steps taken from many theorems.

In Chapter 16, our theorem prover develops an interesting
initial segment of elementary number theory.

Finally, in Chapter 17 through Chapter 19 we discuss three
complex examples: the proof of correctness of a simple optimiz-
ing compiler for arithmetic expressions, the correctness of a fast
string searching algorithm, and the proof of the unique prime
factorization theorem.

Readers interested in ascertaining the power of our automatic
theorem-proving program and in seeing how recursive functions
can be used to formalize a variety of problems should first read
the informal overview (Chapter 2) and then look at the chapters
on the tautology checker (Chapter 4), compiler (Chapter 17),
string searching algorithm (Chapter 18), and prime factorization
theorem (Chapter 19).

The book has three appendixes. The first lists all the defi-
nitions and theorems the theorem prover routinely proves. The
second appendix presents implementation details concerning the
introduction of new types. The third appendix exhibits, in
clausal form, the axioms of our theory.

4Nils Nilsson, private communication.
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Chapter 2

A Sketch of the Theory
and Two Simple Examples

To prove theorems formally one must have in mind a formal the-
ory in which the proofs are to be constructed. We will present
our formal theory in Chapter 3. Following the precise presenta-
tion of the theory, we describe, in great detail, how we discover
proofs. However, before descending into detail, we here sketch
the theory informally, exhibit and explain several simple recur-
sive function definitions, and (without regard for mechanization)
work through several simple inductive proofs.

2.1 An Informal Sketch of the Theory

2.1.1 If and Equal

We employ the prefix notation of Church’s lambda calculus [16]
and McCarthy’s LISP [35] when writing down terms. Thus, we
write

(PLUS (H X) (B))

when others write

PLUS(H(X),B())

or even

H(X) + B()

9
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to denote the application of the two-argument function PLUS to
(1) the application of H to X and (2) the constant (i.e., function
of no arguments) B.

We wish to make it easy to define new functions and pred-
icates on inductively constructed objects. For example, given
axioms for the natural numbers we would like to define func-
tions such as addition and multiplication, and predicates such
as whether a given number is prime; given the axioms for se-
quences we would like to define operations such as sequence
concatenation and predicates such as whether one sequence is a
permutation of another.

We find it most convenient to define new functions with
equality axioms of the form:

(f x1 ... xn) = body

where certain constraints are placed on f, the xi, and the term
body.

It is often necessary to make conditional definitions. For
example, (PLUS X Y) is defined to be one thing if X=0, and
another thing if X 6=0. In order for definitions to be equality
axioms, the right-hand side of the definition, body, must be a
term. But in the usual treatment of logic it is not permitted to
embed a proposition (such as X=0) in a term. Thus, we find it
necessary to reproduce the logic of truth functions and equality
at the term level.

We add to the usual propositional calculus with variables,
function symbols, and equality an axiom supposing the existence
of two distinct constants, (TRUE) and (FALSE) (henceforth
written T and F), and four axioms defining the new function
symbols EQUAL and IF. The axioms are:

Axiom

T 6= F
Axiom

X = Y → (EQUAL X Y) = T
Axiom

X 6= Y → (EQUAL X Y) = F
Axiom

X = F → (IF X Y Z) = Z
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Axiom

X 6= F → (IF X Y Z) = Y.

We can paraphrase the above axioms as follows. T is not F. For
all X and Y, (EQUAL X Y) is T if X is Y, and is F if X is not
Y. (IF X Y Z) is Y if X is non-F and is Z otherwise. Thus (IF
(EQUAL X 0) Y Z) is equal to Y if X is 0 and is equal to Z
otherwise.

Strictly speaking, we never define “predicates,” for they can
only be used in the construction of formulas and thus cannot
be used in terms (such as function bodies). Without loss of
generality, we restrict our attention to functions. For example,
we will later define the function PRIME, so that (PRIME X) is
T if X is prime and F otherwise.

To permit terms or functions to test logical combinations of
expressions, it is convenient to define the functional versions of
“not,” “and,” “or,” and “implies.” For example, we want (NOT
P) to be T if P is F and to be F if P is not F. Similarly, we
want (AND P Q) to be T if both P and Q are non-F, and F
otherwise. Thus, we define the functions NOT, AND, OR, and
IMPLIES as follows:

Definition

(NOT P)
=

(IF P F T)
Definition

(AND P Q)
=

(IF P (IF Q T F) F)
Definition

(OR P Q)
=

(IF P T (IF Q T F))
Definition

(IMPLIES P Q)
=

(IF P (IF Q T F) T).

(We adopt the notational convention of treating AND and OR
as though they took an arbitrary number of arguments. For
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example, (AND p q r) is an abbreviation for (AND p (AND q
r)).)

It is easy to show that these definitions capture the semantics
of the ordinary logical connectives. For example, it is a theorem
that:

(P 6=F → Q 6=F) ↔ (IMPLIES P Q) 6= F.

Thus, it is also easy to prove that:

(IMPLIES (AND P Q) (OR P Q))

is not equal to F. Because of our emphasis on terms rather than
formulas we find it convenient to call a term, p, a “theorem” if it
can be proved that p 6=F. Of course, calling a term a “theorem”
is an abuse of terminology, since theorems are in fact understood
to be formulas. However, whenever we use a term, p, as though
it were a formula, it is always acceptable to read the formula
“p6=F” in its place.

2.1.2 Inductively Constructed Objects

Any theory concerned with the mathematics behind computing
must provide inductively constructed objects. For example, it
is clear that we must be able to talk formally about the natural
numbers, and so we will add to our theory axioms for the natural
numbers. In formalizing properties of programs we have found
that it is convenient to allow the introduction of “new” types of
inductively constructed objects, of which the integers are just
a single example. To eliminate the possibility that the axioms
for a new type will render the theory inconsistent (or not fully
specify the properties of the type) we have included in our theory
a general principle under which one can introduce new types.
We call the principle the “shell” principle. The name “shell”
derives from imagining the new objects to be colored structures
encapsulating a fixed number of components (possibly of certain
colors).

It is actually with the shell principle that we add the axioms
defining the nonnegative integers. We also use the principle
to add the set of literal atoms (i.e., atomic symbols such as
“NIL” and “X”), and the set of ordered pairs. For example, to
axiomatize the set of ordered pairs we incant:
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Add the shell CONS,
with recognizer LISTP, and
accessors CAR and CDR that return “NIL” on non-
LISTP objects,

which is a shorthand for adding a set of axioms that specifies
(CONS X Y) to be the red, say, ordered pair containing X and Y,
LISTP to be the function that returns T if its argument is a red
pair and F otherwise, and CAR and CDR to be the functions
that return the first and second components of red pairs (or
“NIL” if given an object other than a red pair).

For example, here are some of the axioms added by the above
incantation:

Axiom LISTP.CONS:

(LISTP (CONS X1 X2))
Axiom CAR.CONS:

(EQUAL (CAR (CONS X1 X2)) X1)
Axiom CDR.CONS:

(EQUAL (CDR (CONS X1 X2)) X2)
Axiom CAR/CDR.ELIM:

(IMPLIES (LISTP X)
(EQUAL (CONS (CAR X) (CDR X)) X))

Axiom CONS.EQUAL:

(EQUAL (EQUAL (CONS X1 X2)
(CONS Y1 Y2))

(AND (EQUAL X1 Y1)
(EQUAL X2 Y2)))

Axiom CAR.LESSP:

(IMPLIES (LISTP X)
(LESSP (COUNT (CAR X)) (COUNT X)))

Axiom CDR.LESSP:

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X))).

LESSP is the “less-than” function on the nonnegative integers.
The complete set of axioms for the CONS shell is given schemat-
ically in Chapter 3. Among the axioms not shown above are, for
example, axioms specifying that (CAR X) is “NIL” if X is not a
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LISTP, and that the set of LISTP objects does not overlap the
set of numbers, literal atoms, or other types.

We use ordered pairs in a variety of ways. For example, to
talk about finite sequences (sometimes called “lists”) we thing
of “NIL” as the empty sequence, and we think of (CONS X Y)
as the sequence whose first element is X and whose remaining
elements are those of Y. Thus, we think of

(CONS 1 (CONS 2 (CONS 3 ‘‘NIL’’)))

as the sequence containing 1, 2, and 3.

2.1.3 Recursively Defined Functions

Our theory includes a principle of definition allowing the in-
troduction of recursive functions. The principle is based on the
notion of well-founded relations. In particular, (f x1 . . . xn) may
be defined to be some term, body, involving “recursive calls” of
the form (f y1 . . . yn), provided there is a measure and well-
founded relation such that in every recursive call the measure of
the yi is smaller, according to the well-founded relation, than the
measure of the xi. Since “well-founded” means that there is no
infinite sequence of objects, each of which is smaller than its pre-
decessor in the sequence, the above restriction, together with a
few simple syntactic requirements, ensures that there exists one
and only one function satisfying the definition. The existence
of a function satisfying the definition implies that adding the
definition as an axiom does not render the theory inconsistent.

We explicitly assume that LESSP is well-founded. Further-
more, when the CONS shell is added, the axioms CAR.LESSP
and CDR.LESSP, above, inform us that the CAR and CDR
of a pair both have smaller size (as measured by the function
COUNT) than the pair itself. Thus, if in every recursive call
of a function some particular argument is replaced by its own
CAR or CDR, and we can establish that in each such case that
argument is a pair, then the principle of definition would admit
the function.

To illustrate a definition by recursion, suppose we wished to
concatenate two finite sequences X and Y. If X is empty, then the
result of concatenating X and Y is just Y. If X is nonempty, then
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X has a first element, (CAR X), and some remaining elements,
(CDR X). The concatenation of X and Y in this case is the
sequence whose first element is (CAR X) and whose remaining
elements are those in the concatenation of (CDR X) and Y.
Formally, we define the function APPEND so that (APPEND
X Y) is the concatenation of X and Y:

Definition

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y).

APPEND is a particularly simple recursive function. It is easy
to see why it is accepted under our principle of definition: the
axiom CDR.LESSP, above, establishes that (COUNT X) gets
LESSP-smaller in each (i.e., the) recursive call. Later in the
book we will introduce more interesting recursive functions –
functions for which a measure as obvious as the size of one ar-
gument will not suffice to justify their definition.

By the axioms of equality, we can replace any instance of
(APPEND X Y) with the corresponding instance of the right-
hand side of the definition above. For example, we can show that
(APPEND (CONS A D) Y) is equal to (CONS A (APPEND D
Y)) as follows. By definition, (APPEND (CONS A D) Y) is
equal to the instantiated body:

(IF (LISTP (CONS A D))
(CONS (CAR (CONS A D))

(APPEND (CDR (CONS A D)) Y))
Y).

By the axiom LISTP.CONS, above, (LISTP (CONS A D)) is
non-F. But, by the axioms defining IF, we know that when the
first argument in an IF-expression is non-F, the IF-expression
is equal to its second argument. Thus, the above IF-expression
can be replaced by its second argument:

(CONS (CAR (CONS A D)) (APPEND (CDR (CONS A D)) Y)).

Finally, applying the axioms CAR.CONS and CDR.CONS, above,
we rewrite (CAR (CONS A D)) to A, and (CDR (CONS A D))
to D, obtaining:
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(CONS A (APPEND D Y))

as desired.
Similarly, we can prove that (APPEND “NIL” Y) is Y.
We can use a series of such simplifications to “compute” the

result of concatenating the sequence containing 1, 2, and 3, to
the sequence containing 4 and 5:

(APPEND (CONS 1 (CONS 2 (CONS 3 ‘‘NIL’’)))
(CONS 4 (CONS 5 ‘‘NIL’’)))

=
(CONS 1 (APPEND (CONS 2 (CONS 3 ‘‘NIL’’))

(CONS 4 (CONS 5 ‘‘NIL’’))))
=
(CONS 1 (CONS 2 (APPEND (CONS 3 ‘‘NIL’’)

(CONS 4 (CONS 5 ‘‘NIL’’)))))
=
(CONS 1 (CONS 2 (CONS 3 (APPEND ‘‘NIL’’

(CONS 4 (CONS 5 ‘‘NIL’’))))))
=
(CONS 1 (CONS 2 (CONS 3 (CONS 4 (CONS 5 ‘‘NIL’’))))).

Using recursion, we can introduce, under our principle of defini-
tion, almost all the concepts in which we are interested. Indeed,
recursion is a very important tool when dealing with inductively
constructed objects such as the integers or sequences. For in-
stance, recursion can be regarded as a form of quantification: we
can use recursion to check that all or some elements of a se-
quence have some property. We do not use any other form of
quantification in our formal theory.

2.1.4 Induction

Because we are interested in proving theorems about inductively
constructed objects such as the natural numbers, sequences,
pairs, etc., we need a rule of inference that embodies the con-
struction process itself. For example, we know that if X is a
pair, then it can be constructed by applying CONS to two “pre-
viously” constructed objects, namely (CAR X) and (CDR X).
Thus, we can prove that some property holds for all X by con-
sidering two cases. The first case, called the “base case,” is to
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prove that all nonpairs have the property in question. The sec-
ond case, called the “induction step,” is to assume that X is a
pair and that (CAR X) and (CDR X) have the desired property,
and to prove that X has the property. Such a proof is called a
proof by “induction.”

The magic idea behind induction, the idea that made it ap-
pear unsound to both authors when they first encountered the
idea in high school, is that one gets to assume instances of the
conjecture being proved during its own proof. Why is induction
sound? For example, why can we conclude, after proving the
two cases above, that any X must have the property? Suppose
some object does not have the property. Then let X be a mini-
mal object not having the property, where we compare two such
objects by comparing their COUNTs using the LESSP function.
There is a minimal object not having the property in question
since, by the well-foundedness of LESSP, there is no infinite se-
quence of objects, each of which has smaller COUNT than the
previous one. X must be a pair, because otherwise the base case
establishes that X has the property. But if X is a pair, (CAR X)
and (CDR X) are both smaller than X (as measured by COUNT
and LESSP). Therefore, since everything smaller than X has the
property in question, (CAR X) and (CDR X) have the property.
But in that case the induction step establishes that X must have
it also. Thus the assumption that some object does not have the
property has lead to a contradiction.

In general, the induction principle in our theory permits one
to assume arbitrary instances of the conjecture being proved,
provided those instantiations decrease some measure in some
well-founded ordering. Because our induction principle allows
the use of arbitrary measures and well-founded relations, we
can make inductive arguments that are much more subtle than
the “structural induction” illustrated above.1 We will illustrate
more subtle inductions later in the book. Throughout this chap-
ter we confine ourselves to structural induction.

1The use of structural induction to prove programs correct is beautifully de-
scribed by Burstall in [12].
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2.2 A Simple Inductive Proof

One of the hardest problems in discovering an inductive proof is
discovering an appropriate application of the principle of induc-
tion itself. But the similarity between recursion and induction
offers an insight into the problem. For example, suppose we were
trying to prove some conjecture involving the expression (AP-
PEND A term). When APPEND was introduced into the theory
we were required to exhibit a measure of its arguments that was
decreasing. In particular, every time APPEND recurses, the
COUNT of its first argument goes down. Thus (APPEND A
term) “suggests” an induction: were we to apply the definition
of APPEND to “open up” (APPEND A term) we would find
ourselves recursively decomposing A into its constituents and
would want information about those constituents. But by the
observation above, we know those constituents are smaller than
A in some well-founded order. Thus, by the induction principle,
we can supply ourselves with inductive instances about those
constituents.

We illustrate the above reasoning with a simple example. We
will prove:

Theorem ASSOCIATIVITY.OF.APPEND:

(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C))).

Name the conjecture *1.
The proof is by induction. Three terms – each APPEND

expression with a variable in its first argument – suggest “plau-
sible” inductions. Two of these inductions are on A and the
third is on B. All occurrences of A are in argument positions
being recursively decomposed. Thus, by appropriately opening
up APPEND expressions we can reexpress *1 in terms of (CDR
A), about which we can supply an inductive hypothesis. (In this
case we say that the induction on A is “unflawed.”) The induc-
tion on B is flawed: B occurs sometimes as the first argument to
APPEND and sometimes as the second (which is never changed
in recursion). No matter how we expand APPEND expressions,
the conjecture will still involve B and (CDR B), and we are un-
able to supply an induction hypothesis about B while inducting
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on B.
Thus, we will induct on A, using the following scheme:

(AND (IMPLIES (NOT (LISTP A)) (p A B C))
(IMPLIES (AND (LISTP A)

(p (CDR A) B C))
(p A B C))).

That is, letting (p A B C) be a schematic representation of *1,
we will prove that (p A B C) holds when A is not a LISTP,
and we will prove that if A is a LISTP and (p (CDR A) B C)
holds, then (p A B C) holds. The induction is sound because
the axiom CDR.LESSP establishes that (COUNT A) decreases
according to the well-founded relation LESSP in the induction
step of the scheme. Instantiating the scheme above with *1 we
obtain two new goals. We block indent the proofs of the two
goals:

Case 1. (IMPLIES (NOT (LISTP A))
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C)))).
This is the base case. Since A is non-LISTP, (APPEND A B)
is equal to its second argument, B, by the definition of APPEND.
Similarly, (APPEND A (APPEND B C)) is equal to its second argument,
(APPEND B C). By rewriting these two terms in the conclusion
above we obtain:

(IMPLIES (NOT (LISTP A))
(EQUAL (APPEND B C)

(APPEND B C))),
which simplifies, using the axiom X=Y → (EQUAL X Y)=T, to:

(TRUE).
Case 2. (IMPLIES (AND (LISTP A)

(EQUAL (APPEND (APPEND (CDR A) B) C)
(APPEND (CDR A) (APPEND B C))))

(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C)))).

This is the induction step. Since A is a LISTP here,
(APPEND A Y), for any Y, is equal to (CONS (CAR A)
(APPEND (CDR A) Y)), by the definition of APPEND. Thus,
we can ‘‘unfold’’ the two (APPEND A term) expressions in the
conclusion above to get:

(IMPLIES (AND (LISTP A)
(EQUAL (APPEND (APPEND (CDR A) B) C)

(APPEND (CDR A) (APPEND B C))))
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(EQUAL (APPEND (CONS (CAR A)
(APPEND (CDR A) B))

C)
(CONS (CAR A)

(APPEND (CDR A) (APPEND B C))))).
But, by opening up the definition of APPEND, we know that
(APPEND (CONS A D) Y) is equal to (CONS A (APPEND D Y)).
Thus, we can expand the first APPEND term in the conclusion above,
to get:

(IMPLIES (AND (LISTP A)
(EQUAL (APPEND (APPEND (CDR A) B) C)

(APPEND (CDR A) (APPEND B C))))
(EQUAL (CONS (CAR A)

(APPEND (APPEND (CDR A) B) C))
(CONS (CAR A)

(APPEND (CDR A) (APPEND B C))))).
Note that the conclusion above is of the form:

(EQUAL (CONS x y) (CONS u v)).
But according to CONS.EQUAL, two pairs are equal if and
only if the components are pairwise equal. That is, the
concluding equality may be rewritten to the conjunction of
(EQUAL x u) and (EQUAL y v). But in the above application
x and u are identical -- they are both (CAR A). Thus, we
replace the concluding equality above with (EQUAL y v):

(IMPLIES (AND (LISTP A)
(EQUAL (APPEND (APPEND (CDR A) B) C)

(APPEND (CDR A) (APPEND B C))))
(EQUAL (APPEND (APPEND (CDR A) B) C)

(APPEND (CDR A) (APPEND B C)))).
However, this simplifies to:

(TRUE),
because the conclusion is identical to the second hypothesis.
In particular, by opening up the correct APPEND expressions we
transformed the induction conclusion into the induction hypothesis.

That finishes the proof of *1. Q.E.D.

2.3 A More Difficult Problem

The proof of the associativity of APPEND illustrates two of the
proof techniques we describe later: induction and simplification.
Some of the other heuristics we will describe are:

It is sometimes useful to trade “bad” terms for “good”
ones by re-representing terms in the conjecture. For
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example, one might transform a conjecture about I
and I-J to one about K+J and K, trading difference
for addition, by replacing all occurrences of I by K+J.

One obvious way to use an equality hypothesis, (EQUAL
x y), is to substitute x for y throughout the conjec-
ture. But it is sometimes useful to replace only some
of the y’s by x’s and then to “throw away” the equal-
ity hypothesis, so as to produce a more general con-
jecture to prove by induction. We call such use of an
equality hypothesis “cross-fertilization.”

In proofs by induction, it is easier to prove strong the-
orems than weak ones, because strong theorems per-
mit one to obtain strong induction hypotheses with
which to work. Thus, one should look for ways to
generalize a conjecture to be proved by induction.

We illustrate these proof techniques by working through another
simple example.

Consider the idea of the “fringe” of a tree of CONSes. Given
the tree:

*
/ \

* 3
/ \

1 2

that is, (CONS (CONS 1 2) 3), we wish to return the sequence
of tips of the tree, 1, 2, 3, that is, (CONS 1 (CONS 2 (CONS 3
“NIL”))).

An obvious way to “flatten” a tree, X, is to ask first whether
(LISTP X) is true. If so, X is a fork in the tree. The fringe of
a fork is the concatenation (as with APPEND) of the fringes of
the left and right subtrees (i.e., the recursively obtained fringes
of (CAR X) and (CDR X)). If (LISTP X) is false, X is a tip of
the tree. The fringe of a tip is the singleton sequence containing
the tip, i.e., (CONS X “NIL”).2

2Computing the fringe of binary trees brings to mind one of the lesser chest-
nuts of Artificial Intelligence: how to compute that two binary trees have the
same fringe without using much storage (in particular, without simply comput-
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The above description can be immediately transcribed into
the definition of a recursive function that we will call FLAT-
TEN. We exhibit the definition of FLATTEN later, when we
formalize the problem. Considered as a recipe for computing
the fringe of a tree, FLATTEN is somewhat inefficient. It visits
every fork and tip of the tree once, but for every fork, the con-
catenation process revisits every tip of the left-hand branch. In
trees heavily nested to the left, FLATTEN computes in time n2,
where n is the number of tips. John McCarthy (private commu-
nication) suggested the following more efficient algorithm, which
computes in linear time and which we call MC.FLATTEN.

The basic idea is that to collect all the tips in a tree one
can initialize a collection site to “NIL”, and then sweep the tree
adding tips to the site as they are encountered. If the tips are
added to the front of the collection site, the answer will be in
exactly the reverse of the order in which the tips were visited.
If we sweep the tree from right to left (instead of left to right),
the result will be in the order desired.

To write the algorithm as a recursive function, we use a sec-
ond argument, ANS, as the collection site. At a tip, we add the
tip to the front of ANS (with CONS) and return the new list
as the answer. At a fork, we first collect the tips in the CDR
(the right branch), and, using the resulting answer as the collec-
tion site, we then collect the tips in the CAR (the left branch).
Thus, (MC.FLATTEN X ANS) should append the fringe of X
onto ANS.

The formal statement of the relationship between MC.FLAT-
TEN and FLATTEN is:

(EQUAL (MC.FLATTEN X ANS)
(APPEND (FLATTEN X) ANS)).

ing both fringes and comparing them). We believe the original formulation of
the problem was by Carl Hewitt. Burstall and Darlington [13] have investigated
the solution of this problem by automatic program transformations. McCarthy
(private communication) has written a recursive function, exhibited as SAME-
FRINGE in Appendix A, that is more or less the recursive realization of the
usual “coroutining” solution to the problem. Our system can prove the correct-
ness of SAMEFRINGE, and we refer the interested reader to Appendix A. The
problem of computing the fringe of a tree relates to computer science as a whole,
since similar tree processing underlies such fundamental algorithms as parsers
and compilers.
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In the next section we define FLATTEN and MC.FLATTEN
formally, explain why they are admitted under our principle of
definition, and then work through the proof of the conjecture
above.

2.4 A More Difficult Proof

Definition

(FLATTEN X)
=

(IF (LISTP X)
(APPEND (FLATTEN (CAR X))

(FLATTEN (CDR X)))
(CONS X ‘‘NIL’’))

The lemmas CAR.LESSP and CDR.LESSP establish that (COUNT X) goes
down according to the well-founded relation LESSP in each recursive
call. Hence, FLATTEN is accepted under the definition principle.
Observe that (LISTP (FLATTEN X)) is a theorem.

Definition

(MC.FLATTEN X ANS)
=

(IF (LISTP X)
(MC.FLATTEN (CAR X)

(MC.FLATTEN (CDR X) ANS))
(CONS X ANS))

The lemmas CDR.LESSP and CAR.LESSP establish that (COUNT X)
decreases according to the well-founded relation LESSP in each
recursive call. Hence, MC.FLAT-
TEN is accepted under the definition
principle. Note that (LISTP (MC.FLAT-
TEN X ANS)) is a theorem.

Theorem FLATTEN.MC.FLATTEN:

(EQUAL (MC.FLATTEN X ANS)
(APPEND (FLATTEN X) ANS))

Name the conjecture *1.
Let us appeal to the induction principle. There are two plausible

inductions. However, they merge into one likely candidate induction.
We will induct according to the following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X ANS))
(IMPLIES (AND (LISTP X)

(p (CAR X) (MC.FLATTEN (CDR X) ANS))
(p (CDR X) ANS))
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(p X ANS))).
The inequalities CAR.LESSP and CDR.LESSP establish that the measure
(COUNT X) decreases according to the well-founded relation LESSP in
the induction step of the scheme. Note, however, the inductive
instances chosen for ANS. The above induction scheme produces two new
formulas:
Case 1. (IMPLIES (NOT (LISTP X))

(EQUAL (MC.FLATTEN X ANS)
(APPEND (FLATTEN X) ANS))),

which simplifies, applying CDR.CONS and CAR.CONS, and expanding the
definitions of MC.FLATTEN, FLATTEN and APPEND, to:

(TRUE).
Case 2. (IMPLIES (AND (LISTP X)

(EQUAL (MC.FLATTEN (CAR X)
(MC.FLAT-

TEN (CDR X) ANS))
(APPEND (FLATTEN (CAR X))

(MC.FLAT-
TEN (CDR X) ANS)))

(EQUAL (MC.FLATTEN (CDR X) ANS)
(APPEND (FLATTEN (CDR X)) ANS)))

(EQUAL (MC.FLATTEN X ANS)
(APPEND (FLATTEN X) ANS))).

This simplifies, unfolding the definitions of MC.FLAT-
TEN and FLATTEN,

to:
(IMPLIES (AND (LISTP X)

(EQUAL (MC.FLATTEN (CAR X)
(MC.FLAT-

TEN (CDR X) ANS))
(APPEND (FLATTEN (CAR X))

(MC.FLAT-
TEN (CDR X) ANS)))

(EQUAL (MC.FLATTEN (CDR X) ANS)
(APPEND (FLATTEN (CDR X)) ANS)))

(EQUAL (MC.FLATTEN (CAR X)
(MC.FLATTEN (CDR X) ANS))

(APPEND (APPEND (FLATTEN (CAR X))
(FLATTEN (CDR X)))

ANS))).
Appealing to the lemma CAR/CDR.ELIM, we now replace X by (CONS Z V)
to eliminate (CAR X) and (CDR X). This generates:

(IMPLIES (AND (LISTP (CONS Z V))
(EQUAL (MC.FLATTEN Z (MC.FLAT-

TEN V ANS))



2.4. A MORE DIFFICULT PROOF 25

(APPEND (FLATTEN Z)
(MC.FLATTEN V ANS)))

(EQUAL (MC.FLATTEN V ANS)
(APPEND (FLATTEN V) ANS)))

(EQUAL (MC.FLATTEN Z (MC.FLATTEN V ANS))
(APPEND (APPEND (FLATTEN Z) (FLATTEN V))

ANS))),
which further simplifies, clearly, to:

(IMPLIES (AND (EQUAL (MC.FLATTEN Z (MC.FLAT-
TEN V ANS))

(APPEND (FLATTEN Z)
(MC.FLATTEN V ANS)))

(EQUAL (MC.FLATTEN V ANS)
(APPEND (FLATTEN V) ANS)))

(EQUAL (MC.FLATTEN Z (MC.FLATTEN V ANS))
(APPEND (APPEND (FLATTEN Z) (FLATTEN V))

ANS))).
We use the first equality hypothesis by cross-fertilizing:

(APPEND (FLATTEN Z)
(MC.FLATTEN V ANS))

for (MC.FLATTEN Z (MC.FLAT-
TEN V ANS)) and throwing away the equality.

This generates:
(IMPLIES (EQUAL (MC.FLATTEN V ANS)

(APPEND (FLATTEN V) ANS))
(EQUAL (APPEND (FLATTEN Z)

(MC.FLATTEN V ANS))
(APPEND (APPEND (FLATTEN Z) (FLATTEN V))

ANS))).
We now use the above equality hypothesis by cross-fertilizing
(APPEND (FLATTEN V) ANS) for (MC.FLAT-

TEN V ANS) and throwing away
the equality. We thus obtain:

(EQUAL (APPEND (FLATTEN Z)
(APPEND (FLATTEN V) ANS))

(APPEND (APPEND (FLATTEN Z) (FLATTEN V))
ANS)),

which we generalize by replacing (FLATTEN V) by Y and (FLATTEN Z)
by A. We restrict the new variables by appealing to the type
restriction lemma noted when FLATTEN was introduced. The result is:

(IMPLIES (AND (LISTP Y) (LISTP A))
(EQUAL (APPEND A (APPEND Y ANS))

(APPEND (APPEND A Y) ANS))),
which we will finally name *1.1.

Let us appeal to the induction principle. The recursive terms
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in the conjecture suggest three inductions. They merge into two
likely candidate inductions. However, only one is unflawed. We will
induct according to the following scheme:

(AND (IMPLIES (NOT (LISTP A)) (p A Y ANS))
(IMPLIES (AND (LISTP A) (p (CDR A) Y ANS))

(p A Y ANS))).
The inequality CDR.LESSP establishes that the measure (COUNT A)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
two new conjectures:
Case 1. (IMPLIES (AND (NOT (LISTP (CDR A)))

(LISTP Y)
(LISTP A))

(EQUAL (APPEND A (APPEND Y ANS))
(APPEND (APPEND A Y) ANS))).

This simplifies, appealing to the lemmas CDR.CONS, CAR.CONS and
CONS.EQUAL, and expanding APPEND, to:

(IMPLIES (AND (NOT (LISTP (CDR A)))
(LISTP Y)
(LISTP A))

(EQUAL (APPEND (CDR A) (APPEND Y ANS))
(APPEND (APPEND (CDR A) Y) ANS))).

However this again simplifies, unfolding APPEND, to:
(TRUE).

Case 2. (IMPLIES (AND (EQUAL (APPEND (CDR A) (APPEND Y ANS))
(APPEND (APPEND (CDR A) Y) ANS))

(LISTP Y)
(LISTP A))

(EQUAL (APPEND A (APPEND Y ANS))
(APPEND (APPEND A Y) ANS))).

This simplifies, applying the lemmas CDR.CONS, CAR.CONS and
CONS.EQUAL, and expanding the definition of APPEND, to:

(TRUE).
That finishes the proof of *1.1, which, consequently, finishes the

proof of *1. Q.E.D.

2.5 Summary

The purpose of this chapter was to provide an introduction to
our function-based theory and to indicate how we prove theo-
rems in the theory. As noted, all our proof techniques have been
implemented in an automatic theorem-proving program. In fact,
the last section was written, in its entirety, by our automatic the-
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orem prover in response to three user commands supplying the
definitions of FLATTEN and MC.FLATTEN and the statement
of the theorem to be proved. This book is about such questions
as how function definitions are analyzed by our theorem-proving
system to establish their admissibility, how the system discov-
ers that (LISTP (FLATTEN X)) is a theorem when presented
with the definition of FLATTEN, why the system chooses the
inductions it does, and why some functions are expanded and
others are not. We describe our proof techniques in detail after
presenting a precise statement of our formal theory.

2.6 Notes

To illustrate several proof techniques, we instructed the theorem
prover to conduct the FLATTEN.MC.FLATTEN proof in an
environment in which it was aware only of the axioms of our
basic theory and the definitions of APPEND, FLATTEN, and
MC.FLATTEN. In the proof, the program derived a version of
the associativity of APPEND (formula *1.1) and proved it with
a second induction. Had the theorem prover previously proved
the associativity of APPEND (and been instructed to remember
it), the proof above would have been much shorter, as the lemma
would have been involved in early simplifications. Later in the
book, when we deal with more complicated examples such as the
system’s proof of the Fundamental Theorem of Arithmetic, we
will show the system working primarily from previously proved
theorems rather than axioms.

The total amount of CPU time required to analyze the two
definitions above and produce the proof is five-and-a-half sec-
onds running compiled INTERLISP [53], [41] on a Digital Equip-
ment Corporation KL-10. For an introduction to LISP see
Allen’s [1].

The English commentary produced during the definition-
time analysis of functions and during proofs is typical of the
system’s output. Examples will be found throughout the book.
The steps in a proof are described in real-time, as the proof
is developed, so that the user can follow the theorem prover’s
progress. To avoid boring the reader with repetitious phrasing,
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the system varies its sentence structure.



Chapter 3

A Precise Definition of
the Theory

In this chapter, we precisely define the mathematical theory un-
derlying our proof techniques, the theory in which our theorem
prover proves theorems. We will present the axioms and princi-
ples of definition and induction to which the system appeals. We
will not present the usual elementary rules of logic and equality,
but instead we assume the reader is familiar with these rules.
The parts of this chapter that are important are set off in boxes.
The remainder of the text is motivation for the boxed material.
In this motivational material we shall speak in a language of
“naive” set theory. It is possible to embed our theory within a
theory of sets and to derive our “principles” therein. However,
we do not regard set theory or even quantification as being a part
of our theory. The proofs our system produces depend only upon
(a) the propositional calculus with variables and function sym-
bols, (b) equality reasoning, (c) the rule of instantiation which
permits us to infer that any instance of a theorem is a theorem,
and (d) the boxed material that follows.

3.1 Syntax

We will use uppercase words, sometimes with embedded peri-
ods, hyphens, slashes, or digits, as variable symbols and function

29
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symbols. Examples are X, X1, PLUS, and PRIME.FACTORS.
Associated with each function symbol is a nonnegative integer,
the number of arguments the function symbol expects. The
number of arguments associated with certain function symbols
will become apparent as we proceed.

A term is a variable or a sequence consisting of a function
symbol of n arguments followed by n terms. If the term t is not
a variable and begins with the function symbol f, we say that t
is a call of f.

We depart from the usual notation of F(X,Y) for function
application and will instead write (F X Y). Examples of terms
are thus: X, (TRUE), and (P (ADD1 X) Y). The first term is
just a variable, the second is the application of the 0-ary function
symbol TRUE to no arguments (and hence denotes a constant),
and the third is the application of the dyadic function symbol P
to the term (ADD1 X) and the variable Y.

To talk about terms, it is convenient to use so-called “metavari-
ables” that are understood by the reader to stand for certain
variables, function symbols, or terms. We will use only lower
case words as metavariables, and we will make clear what type
of syntactic object the symbol is to denote. For example, if f
denotes the function symbol G, and t denotes the term (ADD1
Y), then (f t X) denotes the term (G (ADD1 Y) X).

When we are speaking in naive set theory we use both up-
per and lower case words as variables ranging over numbers,
sets, functions, etc. Context will make clear the range of these
variables.

We imagine that axioms, such as function definitions, are
added as “time goes by.” Whenever we add a new shell or
function definition, we insist that certain function symbols not
have been mentioned in any previous axiom. We call a function
symbol new until an axiom mentioning the function symbol has
been added.

If i is an integer, then by an abuse of notation we let Xi
denote the variable whose first character is X and whose other
characters are the decimal representation of i. Thus, if i is 4, Xi
is the variable X4.

A finite set s of ordered pairs is said to be a substitution
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provided that for each ordered pair 〈v,t〉 in s, v is a variable, t
is a term and no other member of s has v as its first component.
The result of substituting a substitution s into a term p (denoted
p/s) is the term obtained by simultaneously replacing, for each
〈v,t〉 in s, each occurrence of v as a variable in p with t.

3.2 The Theory of If and Equal

We find it necessary to reproduce the logic of truth functional
propositions and equality at the term level. We assume the
existence of two distinguished constants, (TRUE) and (FALSE).
We use T and F as abbreviations for (TRUE) and (FALSE),
respectively. We never use T or F as a variable. We axiomatize
below the function EQUAL, of two arguments, to return T or
F, depending on whether its two arguments are equal. We also
axiomatize the function IF, of three arguments, to return its
third argument if the first is F and otherwise return its second
argument.

Axiom

T 6= F
Axiom

X = Y → (EQUAL X Y) = T
Axiom

X 6= Y → (EQUAL X Y) = F
Axiom

X = F → (IF X Y Z) = Z
Axiom

X 6= F → (IF X Y Z) = Y.

The logical functions are defined with the following equations:

Definition

(NOT P)
=

(IF P F T)
Definition
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(AND P Q)
=

(IF P (IF Q T F) F)
Definition

(OR P Q)
=

(IF P T (IF Q T F))
Definition

(IMPLIES P Q)
=

(IF P (IF Q T F) T).

We adopt the notational convention of writing (AND a b c) for
(AND a (AND b c)), (AND a b c d) for (AND a (AND b (AND
c d))), and so on. We make the same convention for OR.

We also adopt the notational convention of sometimes writ-
ing a term where a formula is expected (e.g., we may refer to the
“theorem” p, where p is a term). When we write a term p where
a formula is expected, it is an abbreviation for the formula p 6=F.

If a term p is a theorem, then by the rule of instantiation,
the result of substituting any substitution into p is a theorem.

3.3 Well-founded Relations

In the following sections we state a principle of induction, intro-
duce inductively constructed objects such as the natural num-
bers and ordered pairs, and state a principle of definition for
recursive functions. All of these extensions hinge on the idea of
a “well-founded relation.”

A function r of two arguments is said to be a well-founded
relation if there is no infinite sequence x1, x2, x3, . . . with the
property that (r xi+1 xi)6=F for all integers i greater than 0. For
example, suppose that (L x y) is T if x and y are nonnegative
integers and x is less than y, and that (L x y) is F otherwise.
Then L is a well-founded relation because there is no infinite
sequence of nonnegative integers with the property that each
successive integer is less than the previous one. That is, there
is no infinite sequence x1, x2, x3, x4, . . . such that
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... x4 〈 x3 〈 x2 〈 x1.

On the other hand, suppose that (LE x y) is T if x and y are
nonnegative integers and x≤ y. LE is not a well-founded relation
because the infinite sequence 1, 1, 1, . . . has the property that:

... 1 ≤ 1 ≤ 1 ≤ 1.

If r is a well-founded relation and (r x y) holds, we say that x is
r-smaller than y.

For the purposes of our theory, functions are known to be
well-founded only by assumption in one of the following three
ways:

1. Whenever we axiomatize an inductively generated type of
object, e.g., the integers, we explicitly assume a certain new
function to be a well-founded relation. Such an assump-
tion is inherent in any axiomatization of an inductively
generated type. See section 3.5.

2. We assume explicitly that the function LESSP is a well-
founded relation in section 3.11. We present there an in-
formal proof that LESSP is well-founded.

3. Whenever we have two previously assumed well-founded
relations, we assume that the lexicographic relation in-
duced by them is well-founded. In section 3.10 we de-
fine “induced” and present an informal proof of the well-
foundedness of induced lexicographic relations.

The fact that a function has been assumed to be a well-
founded relation is used only in our principles of induction and
definition and in the formation of induced lexicographic rela-
tions.

It is possible to define formally in a theory of sets (for exam-
ple, see Morse [43] or Kelley [25]) the concept of well-founded
relation, to prove that certain relations are well-founded, and to
derive as metatheorems our principles of induction and defini-
tion. However, such a development is not within the scope of
this work.

We say that x is an r-minimal element of S provided x is a
member of S and no member of S is r-smaller than x. Later in
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this chapter we use the fact that if r is well-founded, then for
each nonempty set S, there exists an r-minimal element of S.
Proof. Suppose that r is well-founded and S is a nonempty set
with no r-minimal element. Let f be a choice function on the
power set of S. That is, suppose that for each nonempty subset
s of S that (f s) is a member of s. Define the sequence x1, x2,
x3, . . . by letting x1 be (f S) and by letting xi+1 be (f si), where
si is the set of all z in S r-smaller than xi. For each i, si+1 is
nonempty (otherwise, xi would be r-minimal). And for each i,
xi+1 is r-smaller than xi. Q.E.D.

3.4 Induction

A rough sketch of our principle of induction is:

Suppose that r denotes a well-founded relation, x is
a variable, d is a function symbol, q is a term and
(IMPLIES q (r (d x) x)) is a theorem. Then, to prove
p it is sufficient to prove the following two things:

(base case): (IMPLIES (NOT q) p), and

(induction step): (IMPLIES (AND q p’) p),
where p’ is the result of substituting (d x)
for x in p.

This is a version of the Generalized Principle of Induction or
Noetherian Induction (see Bourbaki [6] and Burstall [12]).

The induction principle we actually use generalizes the prin-
ciple sketched above in three ways:

Instead of limiting the principle to one variable that
is getting r-smaller, we use an n-tuple x1, . . . , xn of
variables and some function m such that (m x1 . . .
xn) is getting r-smaller. The function m is called a
“measure function.”

Instead of case splitting on q, we consider k+1 cases,
of which one is a base case and the remaining k are
induction steps.

We permit each of the k induction steps to have sev-
eral induction hypotheses.
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The Induction Principle

Suppose:
(a) p is a term;
(b) r is a function symbol that denotes a

well-founded relation;
(c) m is a function symbol of n arguments;
(d) x1, ..., xn are distinct variables;
(e) q1, ..., qk are terms;
(f) h1, ..., hk are positive integers; and
(g) for 1≤i≤k and 1≤j≤ hi, si,j

is a substitution and it is a theorem that:
(IMPLIES qi (r (m x1 ... xn)/si,j (m x1 ... xn))).

Then p is a theorem if
(IMPLIES (AND (NOT q1) ... (NOT qk))

p)
is a theorem and
for each 1≤i≤k,

(IMPLIES (AND qi p/si,1 ... p/si,hi)
p)

is a theorem.

Note in particular that we have to prove k+1 things (the
“base case” and k “induction steps”). Each induction step dis-
tinguishes a given case with one of the qi’s and provides hi in-
ductive instances of the conjecture being proved.

We now illustrate an application of the induction principle.
Imagine that LESSP is well-founded, that the axioms CAR.LESSP
and CDR.LESSP have been added, and that FLATTEN and
MC.FLATTEN have been introduced as in Chapter 2. The first
induction performed in the proof of the FLATTEN.MC.FLAT-
TEN theorem of Chapter 2 is obtained by the following instance
of our induction principle. p is the term (EQUAL (MC.FLAT-
TEN X ANS) (APPEND (FLATTEN X) ANS)); r is LESSP;
m is COUNT; n is 1; x1 is X; k is 1; q1 is the term (LISTP X);
h1 is 2; s1,1 is {〈X,(CAR X)〉,〈ANS,(MC.FLATTEN (CDR X)
ANS)〉}; s1,2 is {〈X,(CDR X)〉,〈ANS,ANS〉}; the axioms CAR.LESSP
and CDR.LESSP establish the two theorems required by con-
dition (g). The base case and the induction steps produced by
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this application of the induction principle are those exhibited in
Chapter 2.

We now prove that our induction principle is sound. Suppose
we have in mind particular p, r, m, xi, qi, hi, and si,j satisfying
conditions (a) through (g) above, and suppose the base case and
induction steps are theorems. Below is a set theoretic proof of
p.

Proof. Without loss of generality we assume that the xi are
X1, X2, . . . , Xn; that r is R; that m is M; that Xn+1, Xn+2,
. . . , Xz are all of the variables other than X1, X2, . . . , Xn in p,
the qi, and either component of any pair in any si,j; that p is
(P X1 . . . Xz); that qi is (Qi X1 . . . Xz); and that si,j replaces
Xv, 1≤v≤z, with some term di,j,v.

Let RM be the dyadic function on z-tuples defined by (RM
〈U1, . . . , Uz〉 〈V1, . . . , Vz〉) = (R (M U1 . . . Uz) (M V1 . . .
Vz)). Note that RM is well-founded. If p is not a theorem there
must exist a z-tuple 〈X1, . . . , Xz〉 such that (P X1 . . . Xz)=F.
Let 〈X1, . . . , Xz〉 be an RM-minimal such z-tuple.

We now consider the cases on which, if any, of the qi are true
on the chosen z-tuple.

Case 1: Suppose no qi is true, i.e., suppose (Q1 X1 . . .
Xz)=F, (Q2 X1 . . . Xz)=F, . . . , and (Qk X1 . . . Xz)=F. Then
by the base case (P X1 . . . Xz) 6=F, contradicting the assumption
that (P X1 . . . Xz)=F.

Case 2: Suppose that at least one of the qi is true. Without
loss of generality we can assume that (Q1 X1 . . . Xz) 6=F. By
condition (g) above we have:

(R (M d1,1,1 ... d1,1,n) (M X1 ... Xn)),
(R (M d1,2,1 ... d1,2,n) (M X1 ... Xn)),
..., and
(R (M d1,h1,1 ... d1,h1,n) (M X1 ... Xn)).

Thus, by the definition of RM, we have:

(RM 〈 d1,1,1, ..., d1,1,z 〉 〈X1, ..., Xz〉),
(RM 〈 d1,2,1, ..., d1,2,z 〉 〈X1, ..., Xz〉),
..., and
(RM 〈 d1,h1,1, ..., d1,h1,z 〉 〈X1, ..., Xz〉).

Since 〈X1, . . . Xz〉 is an RM-minimal z-tuple such that (P X1
. . . Xz)=F, we have:
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(P d1,1,1 ... d1,1,z) 6=F,
(P d1,2,1 ... d1,2,z) 6=F,
..., and
(P d1,h1,1 ... d1,h1,z) 6=F.

Hence, by the first induction step, we derive (P X1 . . . Xz) 6=F,
contradicting the assumption that (P X1 . . . Xz)=F. Q.E.D.

3.5 Shells

Thus far the theory is somewhat impoverished in that it does
not have any “interesting” objects. It would be convenient, for
example, if we could refer to the natural numbers 0, 1, 2, . . .
and ordered pairs from within our theory (as we have several
times in discussions of our theory). We could invent appropri-
ate axioms for each individual “type” of object. However, we
want to ensure that no natural number is T, F, or an ordered
pair. In addition, we want to specify how the primitive functions
behave on “unexpected” arguments (e.g., what does the succes-
sor function return when given T as an argument?).1 Because
of considerations such as these, we address the general problem
of extending the theory by adding a new “type” of object.

Among the most common objects in the applications of our
theory are what we will call “shells.”2 A shell can be thought of
as a colored n-tuple with restrictions on the colors of objects that
can occupy its components. For example, the natural numbers
can be thought of as shells: a number is either a blue 0 or a blue
1-tuple containing another blue object (namely, the predecessor
of the tuple). Ordered pairs can be red 2-tuples containing ar-
bitrary objects. The type consisting of lists of numbers can be
either the green, empty list of numbers or else green 2-tuples,
〈x,y〉, such that x is a number (blue) and y is a list of numbers

1One way to make sure that T is not a number or to escape from asking
what is the successor of T is to employ a typed syntax. Indeed, Aubin [2] and
Cartwright [14] have implemented theorem provers for recursive functions that
use typed syntax. However, we have grown so accustomed to the untyped syntax
of predicate calculus, set theory, LISP, MACRO-10, and POP-2 that we simply
do not like typed syntax.

2Our shells are inspired by the “structures” used by Burstall [12]. Recently,
Oppen [45] has established the decidability of a theory similar to our shell theory.
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(green). The fact that ordered pairs and lists of numbers have
different colors prevents an ordered pair consisting of a number
and a list of numbers from being confused with a list of numbers.

Because it is useful to be able to extend the theory by adding
the axioms defining a new shell class and because the required
set of axioms can be represented schematically, we will adopt a
notational shorthand for adding new shells. We now specify in-
formally the properties of a shell. The basic function for a shell
class is one that “constructs” n-tuples of the appropriate color
(e.g., the successor function or the pairing function). It is con-
venient if each shell class can (optionally) have one object that
is in the class but is not such an n-tuple (e.g., 0 and the empty
list of numbers). Because we will have many kinds of shells, we
will need a function, called the “recognizer” of the class that
returns T on objects of the class and F otherwise. We also re-
quire n “accessor” (or “destructor”) functions associated with
the class, that, when given an n-tuple of the right color, return
the corresponding components of the n-tuple (e.g., the prede-
cessor function is the “accessor” corresponding to the shell for
numbers). Finally, we posit that any object in the class can be
generated with a finite number of “constructions” starting with
the bottom object and objects not in the class. This is arranged
by assuming a certain function to be a well-founded relation
(e.g., one under which the predecessor of a nonzero number is
smaller than the number itself).

Because we wish to have restrictions on the types of objects
that can be components of a shell n-tuple, we must adopt some
convention for specifying the restriction. We also adopt con-
ventions for specifying what a constructor returns when one of
its arguments fails to meet the required restriction and what an
accessor returns when given an object of the wrong type as an
argument. We require that there be associated with each ar-
gument position of each shell constructor a “type restriction”
that limits the colors of objects that may occupy that compo-
nent. The restriction is expressed in one of two ways: (a) that
an object must have a color that is a member of an explicitly
given set of previously (or currently being) axiomatized colors,
or (b) that an object may not have a color in such a set. The
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type restriction is written as a propositional term (see condition
(b) below). We also require that each argument have a “default
value” that is permitted by the type restriction to occupy the
corresponding component of the shell tuple. When one of the
arguments to a constructor does not satisfy the corresponding
type restriction, the default value for that argument position is
used in its place. Finally, we arrange that the accessor for a po-
sition return the corresponding default value when given either
the bottom object or an object of the wrong color.

The Shell Principle

To add the shell const of n arguments

with (optionally, bottom object (btm),)
recognizer r,
accessors ac1, ..., acn,
type restrictions tr1, ..., trn,
default values dv1, ..., dvn, and

well-founded relation wfn,
where:

(a) const is a new function symbol of n arguments,
(btm is a new function symbol of no arguments,
if a bottom object is supplied),
r, ac1, ..., acn are new function symbols
of one argument,
wfn is a new function symbol of two arguments, and
all the above function symbols are distinct;

(b) each tri is a term that mentions no symbol
as variable besides Xi and mentions no symbol
as a function symbol besides IF, TRUE, FALSE,
previously introduced shell recognizers, and r; and

(c) if no bottom object is supplied, the dvi

are bottom objects of previously introduced
shells, and for each i,
(IMPLIES (EQUAL Xi dvi) tri) is a theorem;
if a bottom object is supplied, each dvi

is either (btm) or a bottom object of some
previously introduced shell, and for each i,
(IMPLIES (AND (EQUAL Xi dvi)

(r (btm)))
tri)

is a theorem,
means to extend the theory by doing the following (using
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T for (r (btm)) and F for all terms of the form
(EQUAL x (btm)) if no bottom object is supplied):

(1) assume the following axioms:
(OR (EQUAL (r X) T) (EQUAL (r X) F)),
(r (const X1 ... Xn)),
(r (btm)),
(NOT (EQUAL (const X1 ... Xn) (btm))), and
(IMPLIES (AND (r X)

(NOT (EQUAL X (btm))))
(EQUAL (const (ac1 X) ... (acn X))

X));
(2) for each i from 1 to n, assume the following axiom:

(IMPLIES tri

(EQUAL (aci (const X1 ... Xn))
Xi));

(3) for each i from 1 to n, assume the following axiom:
(IMPLIES (OR (NOT (r X))

(EQUAL X (btm))
(AND (NOT tri)

(EQUAL X (const X1 ... Xn))))
(EQUAL (aci X) dvi));

(4) assume the axioms:
(NOT (r T)) and
(NOT (r F));

(5) for each recognizer, r’, of a shell class previously
added to the theory, assume the following axiom:
(IMPLIES (r X) (NOT (r’ X)));

(6) assume the axiom:
(wfn X Y) = (OR t

(AND (r Y)
(NOT (EQUAL Y (btm)))
(OR (EQUAL X (ac1 Y))

...
(EQUAL X (acn Y))))),

where t is the term (FALSE) if no shell has
been added previously, and otherwise is (wfn’ X Y)
where wfn’ is the well-founded relation name for
the last shell previously added; and

(7) assume wfn denotes a well-founded relation.

If the tri are not specified, they should each be assumed to be
T.

The n axioms in (3) specify what the values of the accessors
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are when given “unexpected” arguments.
It is possible to prove the consistency of the theory resulting

from the addition of a finite number of shells by exhibiting a
model. A suitable model may be constructed by representing
a (nonbottom) member of a shell class having n accessors as
an n+1-tuple whose first component is an integer encoding the
“color.”

Note that merely because we add a finite number of shells
we are not assured that every object in the world is in one of
our shell classes. That is, we do not have an axiom that says:
for any x, x is either T, or x is F, or x satisfies one of the
shell recognizers. Indeed, this is an intended feature of the shell
principle; we desire that any extension produced by adding shells
can be further extended by additional shells without giving rise
to inconsistency.

From the point of view of modeling programming language
constructs, shells are valuable. They can play a role in the se-
mantics of the usual kinds of “records” since records are often
n-tuples with type restrictions on their components. Shells can
also be used to model other kinds of common programming ob-
jects, such as the integers, atomic objects (words, capabilities,
characters, file names), push down stacks, and character strings.
In the next three sections, we will use shells to add the natural
numbers, literal atoms, and ordered pairs to our theory.

3.6 Natural Numbers

We now axiomatize the natural numbers, 0, 1, 2, etc. using the
shell principle:

Shell Definition.
Add the shell ADD1 of one argument
with bottom object (ZERO),
recognizer NUMBERP,
accessor SUB1,
type restriction (NUMBERP X1),
default value (ZERO), and
well-founded relation SUB1P.
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This axiomatizes a new type of object we will call the “num-
bers.” The numbers consist of the new object (ZERO) and all
of the objects returned by the new function ADD1. We now
informally repeat the axioms added by the shell principle. The
numbers in parentheses indicate the corresponding clause of the
definition of the shell addition principle. (1) The function NUM-
BERP (which recognizes numbers), always returns either T or
F, and returns T on (ADD1 X) and (ZERO). (ZERO) is never
returned by ADD1. If X is a non-(ZERO) number, then (ADD1
(SUB1 X)) is X. (2) If X is a number, then (SUB1 (ADD1
X)) is X. (3) SUB1 returns (ZERO) if applied to a nonnum-
ber, (ZERO), or (ADD1 X1) when X1 is a nonnumber. (4) T
and F are nonnumeric. (5) Because no other shells have been
added, clause (5) does not contribute any axioms. (6) We define
the function SUB1P so that (SUB1P X Y) is T if Y is a number
other than (ZERO) and X is (SUB1 Y), and (SUB1P X Y) is F
otherwise. (7) Finally, we assume that SUB1P is a well-founded
relation.

Note the fundamental nature of the assumption that SUB1P
is a well-founded relation: by virtue of this assumption (and
our principle of induction), (P X) can be proved, for all X, by
proving (P X) when X is not a number, proving (P (ZERO)),
and proving that if X is a number other than (ZERO), then (P
(SUB1 X)) implies (P X).

Among the theorems that can be derived from the above
axioms is the theorem that if X and Y are numeric, then (ADD1
X) is equal to (ADD1 Y) if and only if X is equal to Y. See
Appendix B.

We will abbreviate (ZERO) as 0, and any well-formed nest
of ADD1’s around a 0 as the decimal numeral expressing the
number of ADD1 terms in the nest. Thus, 1 is an abbreviation
for (ADD1 0), 2 is an abbreviation for (ADD1 (ADD1 0)), etc.

3.7 Literal Atoms

We want to be able to prove theorems about functions that ma-
nipulate symbols. For example, in Chapter 17 we prove the
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correctness of a function that translates from symbolic arith-
metic expressions to sequences of instructions for a hand-held
calculator. We write symbols as sequences of characters de-
limited by quotation marks (e.g., “X” and “ABC”). We could
adopt the convention that “X”, for example, was an abbrevia-
tion for 24. Such a convention is part of the logician’s standard
method for representing terms, known as Goedelization. How-
ever, we want to arrange for the symbols to be different from
the integers. To this end we add a new shell class called the
“literal atoms,” and we adopt a syntactic convention that trans-
lates from quoted character sequences to literal atoms. The shell
class is recognized by the new Boolean function LITATOM. The
new function PACK, of one argument, takes an arbitrary object
and returns a literal atom. (The name PACK derives from the
INTERLISP operation for constructing literal atoms by concate-
nating sequences of characters.) (PACK x) is the same literal
atom as (PACK y) if and only if x is the same object as y. The
new function UNPACK, given a literal atom, returns the object
used to construct it.

Shell Definition.
Add the shell PACK of one argument
with bottom object (NIL),
recognizer LITATOM,
accessor UNPACK,
default value 0, and
well-founded relation UNPACKP.

Note that since ADD1 was the last shell added and the well-
founded relation for it was SUB1P, the new well-founded rela-
tion UNPACKP holds between X and Y either if SUB1P holds
between X and Y or if X is the result of UNPACKing (the non-
(NIL) literal atom) Y.

We now adopt a convention for abbreviating literal atoms
as symbols. We suppose an enumeration s1, s2, s3, . . . of all
symbols (character sequences) except “NIL”. When we write
“NIL” in a term position, it is an abbreviation for (NIL). When
we write si delimited by quotation marks in a term position, it
is an abbreviation for (PACK i).
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3.8 Ordered Pairs

We axiomatize ordered pairs as follows:

Shell Definition.
Add the shell CONS of two arguments
with recognizer LISTP,
accessors CAR and CDR,
default values ‘‘NIL’’ and ‘‘NIL’’, and
well-founded relation CAR.CDRP.

We sometimes think of ordered pairs as sequences, binary
trees, or terms. For example

(CONS 1 (CONS 2 (CONS 3 ‘‘NIL’’)))

may be thought of as the sequence 1, 2, 3.
(CONS (CONS 1 2) 3) may be thought of as the binary tree:

*
/ \

* 3
/ \

1 2

Finally,

(CONS ‘‘PLUS’’
(CONS ‘‘X’’ (CONS 3 ‘‘NIL’’))).

may be thought of as the term (PLUS X 3).

Because nests of CARs and CDRs are frequently used, we
provide a definition for each function symbol beginning with
the letter C, ending with the letter R, and containing only A’s
and D’s in between. The body of the definition is just the ap-
propriate nest of CARs and CDRs. For example,

Definition

(CADDR X)
=

(CAR (CDR (CDR X))).
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3.9 Definitions

We have already defined certain simple functions, such as AND,
OR, NOT, and IMPLIES. For example,

Definition

(AND P Q)
=

(IF P (IF Q T F) F).

Another simple function we define is ZEROP; it returns T if its
argument is virtually 0 (in the sense that ADD1 and SUB1 treat
it as 0) and F otherwise:

Definition

(ZEROP X)
=

(OR (EQUAL X 0) (NOT (NUMBERP X)))

In general, if the function symbol f is new, if x1, . . . , xn are
distinct variables, if the term body mentions no symbol as a
variable other than these xi, and if body does not mention f as
a function symbol, then adding the axiom:

(f x1 ... xn) = body

is a proper way to define a new function. Indeed, any use of
the symbol f as a function symbol in a term, such as (f t1 . . .
tn), can be completely eliminated by replacing the term with
the result of substituting {〈x1,t1〉, . . . , 〈xn,tn〉} into body.

However, one apparently mild generalization of the above
scheme results in our being able to define functions that are
considerably more interesting. This generalization allows the
use of f as a function symbol in the body of its own definition.
For example, to define a function that returns the integer sum
of its two arguments we could write:

Definition

(SUM X Y)
=
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(IF (ZEROP X)
Y
(ADD1 (SUM (SUB1 X) Y))).

Unlike our previous definitions, the body of SUM mentions the
function symbol being defined. That is, SUM is defined recur-
sively. Nevertheless, SUM is well-defined. For example, consider
(SUM 3 4).

(SUM 3 4) = (ADD1 (SUM 2 4))
= (ADD1 (ADD1 (SUM 1 4)))
= (ADD1 (ADD1 (ADD1 (SUM 0 4))))
= (ADD1 (ADD1 (ADD1 4)))
= 7.

If we were to allow the new function symbol to occur arbitrarily
in the right-hand side, we could define all “general recursive”
functions. However, we could also fall into inconsistency. For
example, were we to add the axiom:

(RUSSELL X) = (IF (RUSSELL X) F T),

our theory would be inconsistent. To sketch a proof: (RUSSELL
X) must be equal to F or not equal to F. If the former, then by
the definition of RUSSELL it follows that (RUSSELL X) = T,
a contradiction. If the latter, it follows that (RUSSELL X) =
F, another contradiction. Q.E.D.

We now present a principle of definition that allows the intro-
duction of recursive functions. The principle will not allow us to
introduce all “general recursive” functions or even all “recursive”
functions.3 However, it will permit the definition of almost all
the functions in which we are currently interested. And we shall
prove that every application of the principle is sound (unlike the
axiomatization of RUSSELL above).

The Definition Principle

In stating our principle of definition below, we say that a
term is f-free if the symbol f does not occur in the term as a
function symbol.

3See Peter [46] for a thorough treatment of general recursive functions.
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We say that a term t governs an occurrence of a term s in
a term b either if b contains a subterm of the form (IF t p q)
and the occurrence of s is in p, or if b contains a subterm of the
form (IF t’ p q), where t is (NOT t’) and the occurrence of s is
in q. Thus, P and (NOT Q) govern the first occurrence of S in:

(IF P
(IF (IF Q F S)

S
R)

T).

Note that P and (IF Q F S) govern the second occurrence of S.
Our principle of definition is:

To define f of x1, ..., xn

to be body
(usually written ‘‘Definition. (f x1 ... xn) = body’’),
where:

(a) f is a new function symbol of n arguments;
(b) x1, ..., xn are distinct variables;
(c) body is a term and mentions no symbol as a

variable other than x1, ..., xn; and
(d) there is a well-founded relation denoted by

a function symbol r and a function symbol m
of n arguments, such that for each occurrence of a
subterm of the form (f y1 ... yn) in body
and the f-free terms t1, ..., tk
governing it, it is a theorem that:
(IMPLIES (AND t1 ... tk)

(r (m y1 ... yn) (m x1 ... xn))),
means to add as an axiom the defining equation:

(f x1 ... xn) = body.

We now illustrate an application of the principle of defini-
tion. Imagine that LESSP is well-founded and that the axioms
CAR.LESSP and CDR.LESSP have been added as in Chapter 2.
The defining equation for MC.FLATTEN is added to our theory
by the following instantiation of our principle of definition. f is
the function symbol MC.FLATTEN; n is 2; x1 is X and x2 is
ANS; body is the term:

(IF (LISTP X)
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(MC.FLATTEN (CAR X)
(MC.FLATTEN (CDR X) ANS))

(CONS X ANS));

r is LESSP; m is the function symbol COUNT1, where (COUNT1
X Y) is defined to be (COUNT X). The two theorems required
by (d) are:

(IMPLIES (LISTP X)
(LESSP (COUNT1 (CDR X) ANS)

(COUNT1 X ANS))), and
(IMPLIES (LISTP X)

(LESSP (COUNT1 (CAR X)
(MC.FLATTEN (CDR X) ANS))

(COUNT1 X ANS))).

Both theorems are easily proved from CAR.LESSP, CDR.LESSP
and the definition of COUNT1. Note that the second theo-
rem is proved before any axiom about MC.FLATTEN has been
posited, even though MC.FLATTEN is used as a function sym-
bol in the theorem.

If we have defined (f x1 . . . xn) to be body, then we say that
body is the body of f and that xi is the ith formal parameter
of f. If body mentions f as a function symbol, we say that f is
recursive and otherwise we say that f is nonrecursive.4 If f has
not been defined but has been mentioned as a function symbol
of n arguments in an axiom, we say that Xi is the ith formal
parameter of f, for i from 1 to n.

We now offer a justification for admitting recursive defini-
tions. This justification will relieve the fears raised by RUS-
SELL. Roughly speaking, we shall prove that for each correct
application of the definition principle, we can prove that there
exists a unique function f that satisfies the defining equation (f
x1 . . . xn) = body.

We shall construct the desired function using a standard set-
theoretic method of partial functions that “approximate” the

4This is potentially confusing, since in both cases the function is (general)
recursive in the usual mathematical sense. No confusion should arise from our
convention – which is derived from everyday usage in computer programming –
since we will nowhere discuss in this book functions that are not general recursive
in the mathematical sense. Our definition principle does not permit mutually
recursive definitions. If f were defined in terms of a new function g, then after
the definition, g would no longer be new, and hence g could not be defined.
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desired function. Unfortunately, different set theories supply
different answers to the question: what is the value of applying
a function to an object not in the function’s domain. Instead of
adopting a particular theory of sets, we shall instead make sure
in the following proof not to apply any function to an object
not in the function’s domain. Furthermore, we shall assume the
existence of some universal set D to be the domain of discourse
for all the functions that we axiomatize in our theory. To be
precise, we assume that:

There exists a set D such that each function symbol f
mentioned as a function symbol in any axiom denotes
a function whose domain is Dn and whose range is a
subset of D, where n is the number of arguments of f.

If G is a function whose domain is a subset of Dn, for some
n, and whose range is a subset of D, then the extension of G is
the function on Dn to D that is defined to be (G X1 . . . Xn) if
〈X1, . . . , Xn〉 is a member of the domain of g and is defined to
be (TRUE) otherwise.

Suppose that we have in mind some specific f, x1, . . . , xn,
body, r, and m and suppose they satisfy the conditions (a)
through (d) of the definition principle. Before we add the defin-
ing axiom (f x1 . . . xn) = body, we wish to prove that there
exists a unique function f defined on Dn to D satisfying the equa-
tion. Without loss of generality, suppose that f, x1, . . . , xn, r,
and m are the symbols FN, X1, . . . , Xn, R, and M respectively.

Let us adopt the notational convention that b[s] is an ab-
breviation for the term obtained by replacing every occurrence
of FN as a function symbol in the term b with the symbol s.
(For example, if term is (ADD1 (FN X1)), then term[G] is an
abbreviation for (ADD1 (G X1)).)

Let RM be the well-founded relation defined on n-tuples by
(RM 〈U1, . . . , Un〉 〈V1, . . . Vn〉) = (R (M U1 . . . Un) (M V1
. . . Vn)).

Let us say that a subset S of Dn is RM-closed if and only if
every member of Dn RM-smaller than a member of S is itself a
member of S.

Let us say that a function H is partially correct if (a) its
domain is an RM-closed subset of Dn, (b) its range is a subset
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of D, and (c) if H’ is the extension of H, then for each 〈X1, . . . ,
Xn〉 in the domain of H, (H X1 . . . Xn) = body[H’].

We now prove a lemma that is used frequently below. Its
proof is quite tedious.

Lemma. Suppose:
F1 is a function whose domain is a subset of

of Dn and whose range is a subset of D,
F1’ is the extension of F1,
G1 is partially correct,
G1’ is the extension of G1,
〈X1, ..., Xn〉 is in Dn, and
F1 and G1 are defined and agree upon every

member of Dn that is RM-smaller than
〈X1, ..., Xn〉.

Then body[F1’] = body[G1’].

Proof. Let subterm1, . . . , subtermk be an enumeration of
the occurrences of the subterms of body, and suppose that if the
term subtermi is a proper subterm of the term subtermj then
i〈j. Let testsi, for 1≤i≤k, be the conjunction of the FN-free
terms governing subtermi.

We prove, for i from 1 to k,

*1 (IMPLIES testsi

(EQUAL subtermi[F1’] subtermi[G1’])).

Suppose that we have proved *1 for all j〈i. To prove *1 for i, we
consider the form of subtermi.

Case 1: the term subtermi is a variable. The proof in this
case is immediate.

Case 2: the term subtermi has function symbol IF. Then
subtermi is (IF subterma subtermb subtermc) for some a, b,
and c all less than i. Hence we have previously proved:

*2 (IMPLIES testsa

(EQUAL subterma[F1’] subterma[G1’])),
*3 (IMPLIES testsb

(EQUAL subtermb[F1’] subtermb[G1’])), and
*4 (IMPLIES testsc

(EQUAL subtermc[F1’] subtermc[G1’])).

If subterma uses FN as a function symbol, then testsi = testsa

= testsb = testsc because the FN-free terms governing the oc-
currence of subtermi are the same as those governing subterma,
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subtermb, and subtermc. So *1 follows from *2, *3, and *4.
If subterma does not use FN as a function symbol, testsi =
testsa, testsb = (AND testsi subterma) and testsc = (AND
testsi (NOT subterma)). If subterma 6= F, then subtermi[F1’] =
subtermb[F1’] and subtermi[G1’] = subtermb[G1’], so *1 follows
from *3. If subterma = F, then subtermi[F1’] = subtermc[F1’]
and subtermi[G1’] = subtermc[G1’], so *1 follows from *4.

Case 3: the term subtermi has a function symbol other than
IF. Suppose subtermi has the form (g subtermj1 . . . subtermjb

)
for some function symbol g, where ja〈i, 1≤a≤b. Note that
testsi=testsja , for i≤a≤b. We have previously proved, for i≤a≤b:

*a (IMPLIES testsi

(EQUAL subtermja
[F1’] subtermja

[G1’])).

If g is not the function symbol FN, then *1 follows immediately
from the *a.

So suppose g is FN and b is thus n. If testsi= F, then *1 is
true. If testsi 6= F, then by condition (d) of the application of
the definition principle, it is a theorem that:

*d (IMPLIES testsi

(R (M subtermj1 ... subtermjb
)

(M X1 ... Xn))).

When *d was proved no axioms about FN had been posited.
Hence, a proof of:

*d1 (IMPLIES testsi

(R (M subtermj1[F1’] ... subtermjb
[F1’])

(M X1 ... Xn)))
and a proof of:
*d1 (IMPLIES testsi

(R (M subtermj1[G1’] ... subtermjb
[G1’])

(M X1 ... Xn)))

may be similarly produced. Hence, 〈subtermj1 [F1’], . . . , subtermjb
[F1’]〉

is RM-smaller than 〈X1, . . . , Xn〉 and so is 〈subtermj1 [G1’], . . . ,
subtermjb

[G1’]〉. But F1 and G1 are defined and agree on mem-
bers of Dn RM-smaller than 〈X1, . . . , Xn〉. Thus, *1 follows
from the hypothesis that testsi 6= F and the *a. Q.E.D.

We now turn to the construction of the unique function sat-
isfying the defining equation (FN X1 . . . Xn) = body.
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Let F0 be the union of all partially correct functions. We will
prove that F0 is the desired function by demonstrating that (a)
F0 is a function, (b) F0 is partially correct, and (c) the domain
of F0 is Dn. The uniqueness of F0 follows from (a), (b), (c), and
the fact that any other function defined on Dn to D satisfying
the defining equation is partially correct and hence a subset of
F0.

Proof that F0 is a function. If F0 is not a function it is mul-
tiply defined somewhere. Let 〈X1, . . . , Xn〉 be an RM-minimal
member of Dn such that for some two distinct values, Z1 and Z2
say, both 〈〈X1, . . . , Xn〉,Z1〉 and 〈〈X1, . . . , Xn〉,Z2〉 are mem-
bers of F0. Let F1 and G1 be partially correct functions that
contributed 〈〈X1, . . . , Xn〉,Z1〉 and 〈〈X1, . . . , Xn〉,Z2〉 to F0.
Let F1’ and G1’ be the extensions of F1 and G1. Both F1 and
G1 are defined upon all members of Dn RM-smaller than 〈X1,
. . . ,Xn〉 because both are partially correct. F1 and G1 have the
same values on all members of Dn RM-smaller than 〈X1, . . . ,
Xn〉 because 〈X1, . . . , Xn〉 is RM-minimal. Therefore, by the
lemma, body[F1’] = body[G1’]. But Z1 = (F1 X1 . . . Xn) =
body[F1’] = body[G1’] = (G1 X1 . . . Xn) = Z2 because both
F1 and G1 are partially correct. Q.E.D.

Proof that F0 is partially correct. The domain of F0 is an
RM-closed subset of Dn because it is the union of RM-closed
subsets of Dn. The range of F0 is a subset of D. Let F0’ be
the extension of F0. Let 〈X1, . . . , Xn〉 be any member of the
domain of F0 such that (F0 X1 . . . Xn) 6= body[F0’]. Let G
be a partially correct function with 〈X1, . . . , Xn〉 in its domain
such that (G X1 . . . Xn) = (F0 X1 . . . Xn). Let G’ be the
extension of G. By applying the lemma to F0, F0’, G, G’, and
〈X1, . . . , Xn〉 we infer that body[F0’] = body[G’]. But (F0 X1
. . . Xn) = (G X1 . . . Xn) = body[G’] = body[F0’]. Q.E.D.

Before proving that the domain of F0 is Dn we adopt the
notational convention that body’ is an abbreviation for the result
of substituting Yi for Xi in body[F0’]. For example, if body is
the term (IF (LISTP X1) (FN X1 X2) F), then body’ is (IF
(LISTP Y1) (F0’ Y1 Y2) F).

Proof that the domain of F0 is Dn. Suppose that F0 is not
defined on every element of Dn. Let 〈Y1, . . . , Yn〉 be an RM-
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minimal element of Dn not in the domain of F0. Let F0’ be the
extension of F0. Let G be the function that results from adding
to F0 the ordered pair 〈〈Y1, . . . , Yn〉,body’〉. If we can show
that G is partially correct a contradiction will arise because then
G would be a subset of F0 by the definition of F0. The domain
of G is an RM-closed subset of Dn because it was formed by
adding to an RM-closed subset of Dn an RM-minimal element
of Dn not in that subset. Let G’ be the extension of G. We need
to show that for every n-tuple 〈X1, . . . , Xn〉 in the domain of
G that (G X1 . . . Xn) = body[G’]. For every 〈X1, . . . , Xn〉 in
the domain of G, we may apply the lemma for G, G’, F0, F0’,
and 〈X1, . . . , Xn〉 to infer that body[G’] = body[F0’]. If 〈Y1,
. . . , Yn〉 = 〈X1, . . . , Xn〉, then (G X1 . . . Xn) = body[F0’] =
body[G’]. If 〈Y1, . . . , Yn〉 6= 〈X1, . . . , Xn〉 then (G X1 . . . Xn)
= (F0 X1 . . . Xn) = body[F0’] = body[G’]. Q.E.D.

That concludes the proof that the definition principle is sound.
No constructivist would be pleased by the foregoing justification
of recursive definition because of its freewheeling, set-theoretic
character. The truth is that induction and inductive definition
are more basic than the truths of high-powered set theory, and it
is slightly odd to justify a fundamental concept such as inductive
definition with set theory.

We have presented this proof only to provide the careful
reader with some clear talk about our definition principle. The
only other kind of discussion we might have presented would
have consisted of examples and the truly hand-waving phrase
“and so on.” One of our teachers, Paul Lorenzen, once pro-
claimed that the correct way to introduce induction to a student
in an ideal society was simply to draw strokes: —, ——, ———,
————, and so on until the student “caught on.”

3.10 Lexicographic Relations

Our theory requires one more concept: the idea of lexicographic
relations.

To define l to be the lexicographic relation induced by r and
s, where:
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(a) l is a new function symbol of 2 arguments,
(b) r and s are function symbols of 2 arguments, and
(c) neither r nor s is l,

means to add as an axiom the following defining equation:
(l P1 P2) = (OR (r (CAR P1) (CAR P2))

(AND (EQUAL (CAR P1) (CAR P2))
(s (CDR P1) (CDR P2)))).

That is, l orders pairs of objects by first comparing their
CAR components using r, but using s on their CDR compo-
nents if the test with r fails and the CARs are equal. (The
name “lexicographic” is inspired by the alphabetic order used
by lexicographers.)

If r and s denote well-founded relations and l is defined to be
the lexicographic relation induced by r and s, then l denotes a
well-founded relation.

Proof. Suppose that x1, x2, . . . were an infinite sequence
and that for all positive i, (l xi+1 xi) 6= F. By the definition of l,
(r (CAR xi+1) (CAR xi)) 6= F or (CAR xi+1) = (CAR xi). But
since r is well-founded, the sequence (CAR x1), (CAR x2), . . .
cannot be infinitely descending in r. Hence, for some j, for all
positive p, (CAR xj) = (CAR xj+p). But the sequence (CDR
xj), (CDR xj+1), . . . must then be infinitely descending in s, a
contradiction. Q.E.D.

3.11 Lessp and Count

We have now finished defining the formal theory that we use as
the logical basis of our theorem-proving system. We now use
the theory to define two functions, LESSP and COUNT, that
play central roles in our proofs (but have no role in the formal
definition of the theory).

LESSP and COUNT are the well-founded relation and mea-
sure function we use most often in applying our principles of
induction and definition.

(LESSP X Y) returns T if X is less than Y and F otherwise.
LESSP treats nonnumeric arguments as 0. LESSP determines
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whether X is less than Y by counting them both down to 0,
seeing which gets there first.

Definition

(LESSP X Y)
=

(IF (ZEROP Y)
F
(IF (ZEROP X)

T
(LESSP (SUB1 X) (SUB1 Y)))).

Since (IMPLIES (NOT (ZEROP X)) (SUB1P (SUB1 X) X))
is a theorem, the first argument of LESSP gets SUB1P smaller
in the recursive call. (In fact, so does the second argument.)
Thus, LESSP is admitted under the principle of definition.

We claim that LESSP is a well-founded relation. That is,
we claim there is no infinite sequence x1, x2, . . . such that
xi+1 is LESSP-smaller than xi. It is easy to see how to prove
that LESSP is well-founded in a suitable theory of sets, since
SUB1P is well-founded, and x is LESSP-smaller than y if and
only if a finite number of SUB1s will reduce y to x (when both
are numbers). We cannot state or prove the well-foundedness of
LESSP within our theory.

We assume LESSP to be a well-founded relation.

By virtue of this assumption, it is permitted to make induc-
tion arguments in which some measure gets LESSP-smaller in
the induction hypotheses. Similarly, it is permitted to define
recursive functions in which some measure gets LESSP-smaller
in the recursive calls.

A particularly useful measure is the “size” of a shell object
obtained by adding one to the sum of the sizes of its compo-
nents. We first define the addition function for the nonnegative
integers. We could use the function SUM defined above. How-
ever, SUM suffers from the disadvantage of sometimes returning
a nonnumber (it returns Y, whatever that is, when X is 0). SUM
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is thus not commutative (e.g., (SUM 0 T) = T, while (SUM T
0) = 0). We thus make the following definitions:

Definition

(FIX X)
=

(IF (NUMBERP X) X 0)
Definition

(PLUS X Y)
=

(IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

We adopt the notational convention of writing (PLUS a b c) for
(PLUS a (PLUS b c)), etc.

Now assume we have added all the shells we will use. We
define the function COUNT to return 0 on bottom objects, to
return 1 plus the sum of the COUNTs of the components of a
nonbottom shell object, and to return 0 on any nonshell object.
For example, if the only shells we were ever to add were ADD1,
PACK, and CONS, we would define COUNT as:

Definition

(COUNT X)
=

(IF (NUMBERP X)
(IF (EQUAL X 0) 0

(ADD1 (COUNT (SUB1 X))))
(IF (LITATOM X)

(IF (EQUAL X ‘‘NIL’’)
0
(ADD1 (COUNT (UNPACK X))))

(IF (LISTP X)
(ADD1 (PLUS (COUNT (CAR X))

(COUNT (CDR X))))
0))).

The immediately preceding definition of COUNT would be
admitted under the principle of definition since at each stage the
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argument is CAR.CDRP-smaller. In general, the definition of
COUNT is admitted under the principle of definition, because at
each stage the argument is smaller according to the well-founded
relation of the last shell.

To permit the illusion that shells may be added at any time,
our theorem-proving program does not actually employ the full
definition of COUNT, but instead records (a) for each shell const
the theorems:

(EQUAL (COUNT (const X1 ... Xn))
(ADD1 (PLUS (IF tr1 (COUNT X1) 0)

...
(IF trn (COUNT Xn) 0)))) and

(EQUAL (COUNT (btm)) 0)

(omitting the latter if const has no bottom object), and (b) for
each i from 1 to n, the theorem:

(IMPLIES (AND (r X) (NOT (EQUAL X (btm))))
(LESSP (COUNT (aci X)) (COUNT X)))

(using T for (NOT (EQUAL X (btm))) if const has no bottom
object). These theorems may be proved from the shell axioms
and the definition of COUNT.

3.12 Conclusion

This concludes the discussion of our formal theory. We recap
the topics presented:

We defined with axioms certain functions including
IF and EQUAL.

We introduced the idea of well-founded relations.

We introduced a principle of induction.

We introduced a general mechanism for adding “new”
types of “colored” n-tuples called “shells.”

We used the shell principle to add axioms for the
natural numbers, literal atoms, and ordered pairs.

We introduced a principle of definition which allows
the introduction of recursive functions.
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We introduced the concept of a lexicographic relation.

We used the principle of definition to introduce the
usual “less than” function, assumed it was well-founded,
and defined the measure function COUNT that com-
putes the size of an object.



Chapter 4

The Correctness of a
Tautology Checker

Before we describe how we prove theorems in the theory just
presented, it is important that the reader be familiar with the
theory itself. In addition, it is useful to go through the proofs of
some difficult theorems, so that the reader gets a feel for what
is coming in subsequent chapters. Finally, readers unfamiliar
with mechanical theorem-proving may be curious about how one
proves theorems mechanically. Since all three of these objectives
should be addressed before we begin to present our proof tech-
niques, we have chosen to illustrate them all in a rather novel
example: the mechanical proof of the correctness of a simple me-
chanical theorem prover. In particular, we prove the correctness
of a decision procedure for the propositional calculus.

In the standard development of logic, the propositional cal-
culus is presented first. As in our theory, it often forms part
of the logical underpinnings of richer theories. In addition, it
offers a simple way of introducing certain important ideas such
as soundness, completeness, and decision procedures. Because
of its foundational role, discussions of the propositional calculus
are usually carried on in the informal “metalanguage.” For ex-
ample, a common definition of the value of the formula “p & q”
is that it is “true if both p and q have the value true, and false
otherwise.” In this chapter we exercise the expressive power of
our theory, and clarify certain aspects of it, by formalizing the
semantics of a version of propositional calculus in our theory. We

59
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then introduce certain very simple theorem-proving ideas (such
as how to apply a theorem as a rewrite rule, and how to keep
track of what assumptions govern a subformula of a formula) by
writing, as a recursive function in our theory, a decision proce-
dure for the propositional calculus. Finally, we illustrate some
of our proof techniques by proving that the decision procedure
is well-defined, recognizes only tautologies, and recognizes all
tautologies. The proofs described are actually carried out by
our own mechanical theorem prover, and the discussion of the
proofs illustrates the role of the human user in our automatic
theorem-proving system.

4.1 Informal Development

Throughout this chapter we will be concerned with the set of
terms constructed entirely from variables, T, F, and the function
symbol IF. We call such terms “propositional IF-expressions.”
Examples of propositional IF-expressions are:

(IF A B C),
(IF T F (IF A B C)), and
(IF (IF P Q F) (IF P T Q) T).

Note that the first of these expressions sometimes has the value
F (when A is T and B is F, for example) but sometimes does
not have the value F (when A is T and B is T, for example). On
the other hand, the second expression always has the value F,
and the third expression never has the value F. We call a propo-
sitional IF-expression that never has the value F a “tautology.”
Note that any formula of the ordinary propositional calculus
can be converted to an equivalent propositional IF-expression
by using the definitions of AND, OR, NOT, and IMPLIES pre-
sented in Chapter 3. (Throughout the remainder of this chapter
we shall use “expression” as a shorthand for “propositional IF-
expression.”)

It is our aim in this chapter to construct a procedure for
deciding whether an expression is a tautology. Our first step
is to indicate more precisely what we mean by “the value of
an expression.” Informally, let us say that v is an assignment
provided that v is a function, its domain includes T, F, and the
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variables, and v maps T to T and F to F. If v is an assignment,
then by “the assignment of x under v” we mean v(x). Then
the value of the expression x under the assignment v is defined
recursively as:

if x has the form (IF p q r),
then if the value of p under v is F

then return the value of r under v,
else return the value of q under v;

else return the assignment of x under v.

We want to define a mechanical procedure that when given an
expression x returns non-F if for every assignment v, the value
of x under v is non-F, and returns F if for some assignment v,
the value of x under v is F. We will call our procedure TAU-
TOLOGY.CHECKER.

There are many ways to write TAUTOLOGY.CHECKER.
The question: “What is the most efficient way to write TAU-
TOLOGY.CHECKER?” is actually one of the most important
unsolved problems in computer science. One method, called the
“truth table” method, considers all possible assignments of T
and F to the variables in the given expression. The truth table
method requires execution time exponential in the number of
variables in the expression. No one knows a method that does
not require exponential time in the worst case. Furthermore, no
one has yet proved that all algorithms require exponential time
in the worst case.

The version of TAUTOLOGY.CHECKER that we present
is more efficient than the truth-table method on one important
class of expressions, namely those in “IF-normal form.”1 An
expression x is said to be in IF-normal form provided that no
subterm of x beginning with an IF has as its first argument an-
other term beginning with an IF. Of the three example formulas
above, the first two are in IF-normal form and the last is not.

When a formula is in IF-normal form, we can decide whether
it is a tautology very easily: we consider each “branch” through

1“This nomenclature is an excellent example of the time-honored custom of
referring to a problem we cannot handle as abnormal, irregular, improper, degen-
erate, inadmissible, and otherwise undesirable.” From Kelley [25], on “normal”
spaces.
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the expression and require either that the tests through which
we pass are contradictory or that the tests through which we
pass force the output to be something other than F. Consider,
for example, the expression:

(IF P (IF T T
F)

(IF Q (IF P F
Q)

T)).

There are five branches through this expression (one output per
line). The first branch returns T. The second branch returns
F but can never be taken because the second test, on T, never
fails. The third branch can never be taken because the first test
on P must have returned F so the second must also. The fourth
branch returns Q, which is not F because the earlier test on Q
determined that Q was not F. And the last branch returns T.
So the expression is a tautology.

Informally, then, we have a method for deciding which ex-
pressions in IF-normal form are tautologies. To use the method
on expressions in general (rather that just those in IF-normal
form), we convert the given expression into an equivalent one
(that is, one that always has the same value) in IF-normal form.
We achieve this normalization by applying the theorem

(EQUAL (IF (IF P Q R) LEFT RIGHT)
(IF P (IF Q LEFT RIGHT) (IF R LEFT RIGHT)))

repeatedly, as a rewrite rule from left to right. That is, whenever
we find an expression of the form (IF (IF p q r) left right), we
replace it with the equivalent (IF p (IF q left right) (IF r left
right)). Normalizing an expression may produce a formula that
is exponentially larger than the one with which we started. So
in the worst case, our procedure is at least exponential.

The foregoing sketch of a decision procedure for the tautol-
ogy problem is very informal. Below we reconsider both the
problem and its solution very formally – in fact we formalize
both the problem and its solution using the theory presented in
Chapter 3.

One way to view the formal presentation is as an interac-
tion between four participants: a “buyer” who wants to pur-
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chase a recursive function satisfying his specification of a tau-
tology checker; an “implementor” who encodes his knowledge
of theorem-proving in a recursive function claimed to meet the
specifications; a “theorem prover” that proves that the imple-
mentor did his job; and a “mathematician user” who aids the
theorem prover by suggesting that it prove certain lemmas.

4.2 Formal Specification of the Problem

In this section we play the role of the buyer: we specify our re-
quirements by formally defining what a propositional IF-expression
is, what the value of such an expression is, and what it means
for a function to be a decision procedure.

4.2.1 Representing Expressions

Since we want to define functions on IF-expressions, we must
represent IF-expressions as objects in our theory. From the point
of view of general-purpose theorem-proving programs, the most
natural and convenient way to represent terms is to represent
variables as literal atoms and to represent the term (f x1 . . . xn)
as the sequence whose CAR is the literal atom f and whose CDR
is the sequence of objects representing the terms x1 through xn.
This is the representation we use in our theorem prover. How-
ever, this representation makes it awkward to refer to subterms.
For example, if x represented (IF test left right), then in order to
refer to the third argument one would write (CAR (CDR (CDR
(CDR x)))).

With ease of reading in mind, we represent IF-expressions in
this chapter by employing a new shell class (the green triples,
say), called the IF.EXPRPs, which we introduced with

Shell Definition.
Add the shell CONS.IF of three arguments with
recognizer IF.EXPRP,
accessors TEST, LEFT.BRANCH, and RIGHT.BRANCH,
default values ‘‘NIL’’, ‘‘NIL’’, and ‘‘NIL’’, and
well-founded relation TEST.LEFT.BRANCH.RIGHT.BRANCHP.

Thus, we represent the term:
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(IF x y z)
as

(CONS.IF x’ y’ z’)

where x’, y’, and z’ are the representations of x, y, and z respec-
tively.

We use T and F to represent T and F respectively. For the
purposes of this example we agree that any object other than
T, F, or an IF.EXPRP represents a variable.

4.2.2 Formal Definitions of Assignment and Value

To represent assignments we use the standard “association list”
technique from LISP programming. An association list (or sim-
ply “alist”) is a sequence of pairs interpreted as associating with
the CAR of each pair the item of information in the CDR.
The recursive function ASSIGNMENT interprets alists as as-
signments of values to terms. ASSIGNMENT returns the value
assigned to a given term in a given alist (or F if it is not explic-
itly assigned). ASSIGNMENT assigns T and F to themselves.
Here is the definition of ASSIGNMENT:

Definition

(ASSIGNMENT VAR ALIST)
=

(IF (EQUAL VAR T)
T
(IF (EQUAL VAR F)

F
(IF (NLISTP ALIST)

F
(IF (EQUAL VAR (CAAR ALIST))

(CDAR ALIST)
(ASSIGNMENT VAR (CDR ALIST)))))).

(NLISTP x) is defined to be (NOT (LISTP x)).
The formal definition of the value of the expression X under

the assignment ALIST is:

Definition

(VALUE X ALIST)
=
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(IF (IF.EXPRP X)
(IF (VALUE (TEST X) ALIST)

(VALUE (LEFT.BRANCH X) ALIST)
(VALUE (RIGHT.BRANCH X) ALIST))

(ASSIGNMENT X ALIST)).

4.2.3 The Formal Correctness Specifications

As the buyer we want a decision procedure for the propositional
calculus. We now specify what we require of a decision proce-
dure.

First of all, we require that the decision procedure be intro-
duced as a function. Let us call it TAUTOLOGY.CHECKER.

Second, we require that if TAUTOLOGY.CHECKER recog-
nizes an expression (in the sense that TAUTOLOGY.CHECK-
ER returns something other than F when given the expression),
then the expression must have a value other than F under all
assignments2. Stated formally, this requirement is:

Theorem TAUTOLOGY.CHECKER.IS.SOUND:

(IMPLIES (TAUTOLOGY.CHECKER X)
(VALUE X A)).

When specifying requirements, one must be very careful to say
enough. The careless buyer might think that we have fully
specified TAUTOLOGY.CHECKER. However, a function that
always returned F (i.e., recognized nothing) would satisfy the
above specification. We require more than that of TAUTOL-
OGY.CHECKER. In fact, we require that it recognize all tau-
tologies; when TAUTOLOGY.CHECKER fails to recognize an
expression there must exist an assignment for which the VALUE
of the expression is F. Since we do not use existential quantifica-
tion, how can we express the proposition that when TAUTOL-
OGY.CHECKER fails to recognize an expression there exists a
falsifying assignment?

2The purist may note that in a freewheeling set theoretic approach to validity,
one would consider all assignments rather than merely the finite assignments to
which we limit ourselves when we represent assignments as finite alists. Of course,
no real damage is done, because (in a suitable theory of sets) one can prove that
it is sufficient to restrict one’s attention to assignments that assign a meaning to
the finite number of variables in the term in which one is interested.
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The answer is that we require that somebody define a recur-
sive function that explicitly constructs a falsifying assignment
for a nontautological expression. We call the function FAL-
SIFY. Then the statement that the tautology checker recognizes
all tautologies is:

Theorem TAUTOLOGY.CHECKER.IS.COMPLETE:

(IMPLIES (NOT (TAUTOLOGY.CHECKER X))
(EQUAL (VALUE X (FALSIFY X)) F)).

That is, if the tautology checker fails to recognize an expres-
sion, then there is an assignment (namely (FALSIFY X)) for
which the value of the expression is F. From our perspective
as the buyer, the definition of FALSIFY is irrelevant. That is,
if somebody were to supply us with a legal definition of TAU-
TOLOGY.CHECKER (and also one of FALSIFY) such that the
above two conjectures were theorems, then we would believe that
TAUTOLOGY.CHECKER was a decision procedure.

4.3 The Formal Definition of Tautology.checker

We now take on the role of the implementor. The buyer’s defini-
tions and conjectures in the last section specify what is required
of TAUTOLOGY.CHECKER. As the implementor, we now de-
fine a function we claim has the desired properties. Since the
specified task is to write a simple mechanical theorem prover, it
happens (in this example) that the implementor must appeal to
some of the basic ideas in mechanical theorem-proving.

4.3.1 Tautology.checker

The definition of TAUTOLOGY.CHECKER requires two sub-
sidiary concepts:

NORMALIZE, which given an expression returns an
equivalent expression in IF-normal form and

TAUTOLOGYP, which given an expression in IF-
normal form and a list of assumptions determines if
the expression is never F under those assumptions.
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Given NORMALIZE and TAUTOLOGYP we define TAU-
TOLOGY.CHECKER as:

Definition

(TAUTOLOGY.CHECKER X)
=

(TAUTOLOGYP (NORMALIZE X) ‘‘NIL’’).

Normalize

Recall that the basic idea behind NORMALIZE is to apply the
theorem

(EQUAL (IF (IF P Q R) LEFT RIGHT)
(IF P (IF Q LEFT RIGHT) (IF R LEFT RIGHT)))

as a rewrite rule until we have removed all IFs from the tests
of other IFs. Thus, to normalize an expression x we proceed as
follows:

If x is not an IF.EXPRP, we return x.
If x is of the form (IF test left right), then we ask
whether test is of the form (IF p q r).

If so, we return the result of normalizing the
expression (IF p (IF q left right)

(IF r left right)).
If not, we return the expression
(IF test left’ right’), where left’ and right’
are the results of normalizing left and right.

The formal definition of this process is:

Definition

(NORMALIZE X)
=

(IF
(IF.EXPRP X)
(IF
(IF.EXPRP (TEST X))
(NORMALIZE (CONS.IF (TEST (TEST X))

(CONS.IF (LEFT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
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(LEFT.BRANCH X)
(RIGHT.BRANCH X))))

(CONS.IF (TEST X)
(NORMALIZE (LEFT.BRANCH X))
(NORMALIZE (RIGHT.BRANCH X))))

X).

Tautologyp

Now that we can put an expression into normal form, we con-
sider TAUTOLOGYP, which determines whether an expression,
x, in IF-normal form, is never F. Recall that the basic idea is to
explore every branch through the IF-expression and check that
either the tests along the branch are contradictory or else that
the output of the branch is forced by the tests to be non-F.
Our definition requires that TAUTOLOGYP have a second ar-
gument, alist, used to remember the tests that have been seen
and whether they are being assumed true or false on the current
branch. Since all the tests in a normalized IF-expression are
variables (or else the constants T or F) the alist of assumptions
can also be thought of as an assignment to some of the variables
in x. Here is how TAUTOLOGYP determines that x is never F
under the assumptions in alist:

If x is not an IF.EXPRP, then it is either T, F, or a
variable.

If x is T, then it is never F.

If x is F, then clearly it is “sometimes” F.

If x is neither T nor F, then it is a variable.
If x is currently assumed non-F, then x is
never F under alist; otherwise x is some-
times F.

If x is an IF.EXPRP, say representing (IF test left
right), then there are three possibilities:

If test (which must be a variable, T, or F) is
T or assumed non-F in alist, then x is never
F under alist if and only if left never is.
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If test is F or assumed F in alist, then x is
never F under alist if and only if right never
is.

Otherwise, x is never F under alist if and
only if both:

left is never F under the assump-
tions in alist plus the additional as-
sumption that test is non-F, and
right is never F under the assump-
tions in alist plus the additional as-
sumption that test is F.

To define TAUTOLOGYP formally we use four auxiliary
functions:

ASSIGNEDP, which determines whether a given vari-
able is explicitly assumed F or non-F in a given alist,

ASSIGNMENT (defined above), which returns the
assumed value of a variable in an alist,

ASSUME.TRUE, which adds to an alist the pair that
indicates that a given variable is being assumed non-
F, and

ASSUME.FALSE, which adds to an alist the pair that
indicates that a given variable is being assumed F.

The definitions of these functions are in Appendix A. AS-
SIGNEDP is very similar to ASSIGNMENT. ASSUME.TRUE
and ASSUME.FALSE simply CONS the appropriate pair onto
the alist.

The formal definition of TAUTOLOGYP is:

Definition

(TAUTOLOGYP X ALIST)
=

(IF
(IF.EXPRP X)
(IF (ASSIGNEDP (TEST X) ALIST)

(IF (ASSIGNMENT (TEST X) ALIST)
(TAUTOLOGYP (LEFT.BRANCH X) ALIST)
(TAUTOLOGYP (RIGHT.BRANCH X) ALIST))
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(AND (TAUTOLOGYP (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(TAUTOLOGYP (RIGHT.BRANCH X)
(AS-

SUME.FALSE (TEST X) ALIST))))
(ASSIGNMENT X ALIST)).

4.3.2 Summary of the Simple Theorem-proving Ideas

As implementor of the buyer’s specifications, we claim that our
job is done: TAUTOLOGY.CHECKER is a decision procedure
for the propositional calculus. Before discussing the proof of
this assertion we review the simple theorem-proving techniques
illustrated:

Terms can (and must) be represented as objects. In
our case, we used the shell facility to define a new
class of objects, called the IF-expressions.

Both NORMALIZE and TAUTOLOGYP illustrate
how terms can be explored mechanically.

The function NORMALIZE shows how a theorem can
be exhaustively applied as a rewrite rule in a mechan-
ical way.

TAUTOLOGYP illustrates the use of alists of as-
sumptions (manipulated by the functions ASSUME.TRUE,
ASSUME.FALSE, ASSIGNEDP, and ASSIGNMENT)
to remember one’s context while exploring a formula.

The use of NORMALIZE to produce an equivalent
expression that is amenable to exploration by TAU-
TOLOGYP illustrates the value of “simplification”
even when it produces a larger expression.

Our own proof techniques (in contrast to those of an imple-
mentor concerned only with the propositional calculus), involve
ideas such as those above, but usually in much more elaborate
form. In fact, the next five chapters of this book are concerned
entirely with how we represent formulas, how we remember the
assumptions governing the subexpressions in an expression, and
how we use rewrite rules to simplify expressions.



4.4. THE MECHANICAL PROOFS 71

4.4 The Mechanical Proofs

We now describe the proofs of TAUTOLOGY.CHECKER.IS.SOUND
and TAUTOLOGY.CHECKER.IS.COMPLETE. The proofs are
constructed entirely by our mechanical theorem prover. How-
ever, the mathematician user of the system plays an important
role by suggesting that the theorem prover prove certain lemmas
first, thus making the system cognizant of truths that were not
evident to it previously. It is important to understand from the
outset that an incompetent human user may not be able to get
the theorem prover to admit that a valid conjecture is a theo-
rem. On the other hand, the user does not have to be trusted: if
a monkey were to cause the theorem prover to announce that
a conjecture were a theorem, the conjecture would indeed be a
theorem.

In this section we primarily play the role of the mathemati-
cian user. However, occasionally we take the role of the the-
orem prover to illustrate how the proofs go. The precise user
commands to our theorem prover can be found in Appendix A.
Events CONS.IF through TAUTOLOGY.CHECKER.IS.SOUND
are what the user had to type to define the necessary concepts
and cause the theorem prover to prove the desired results.

4.4.1 Complying With the Principle of Definition

Before anything can be proved, the necessary concepts must be
introduced. In particular, we must introduce the CONS.IF shell
class and the functions derived above. Furthermore, the system
must confirm that the shell principle and the definition principle
admit the definitions.

The introduction of CONS.IF is trivial. The only restrictions
are syntactic in nature and the system immediately adds the
axioms indicated in Chapter 3.

As for the function definitions, the system must confirm that
in each definition some measure of the arguments is decreas-
ing according to a well-founded relation in every recursive call.
All but one of the functions easily pass the test because either
they have no recursive calls (e.g., ASSUME.TRUE) or they do
simple recursion on components of LISTPs or IF.EXPRPs (e.g.,
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ASSIGNMENT and TAUTOLOGYP) so that the COUNT of
some argument is always decreasing. However, one function,
namely NORMALIZE, provides a nontrivial challenge because
in one of its recursive calls the COUNT of its only argument
increases. Before the theorem prover will accept the definition
of NORMALIZE, we must lay a certain amount of groundwork.
If the reader has not yet discovered a measure and well-founded
relation that decrease when NORMALIZE recurses, he is en-
couraged to do so before reading further.

We know of several measures and well-founded relations jus-
tifying the definition of NORMALIZE. We discuss only one of
them, namely the first one we discovered.

In general one has to justify all the recursive calls simulta-
neously. That is, it will not do to find one measure that goes
down in one call and a different one that goes down in another
unless they can be lexicographically combined to account for all
the recursions. We will eventually exhibit such a lexicographic
combination. To derive it, we will start with the first recursive
call in NORMALIZE, the one in which the COUNT of its ar-
gument increases as a result of transforming (IF (IF p q r) left
right) to (IF p (IF q left right) (IF r left right)).

Consider the function IF.DEPTH:

Definition

(IF.DEPTH X)
=

(IF (IF.EXPRP X)
(ADD1 (IF.DEPTH (TEST X)))
0).

IF.DEPTH is admitted under the principle of definition since
it recurses on components of IF.EXPRPs. In particular, the
lemma

(IMPLIES (IF.EXPRP X)
(LESSP (COUNT (TEST X)) (COUNT X)))

(added by the shell mechanism when the CONS.IF shell was
axiomatized) is precisely the theorem required by the definition
principle.
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Now that IF.DEPTH has been admitted, consider what it
does: it counts the depth of IF-nesting in the TEST compo-
nent of a propositional IF-expression. Thus, when a function
(such as NORMALIZE) recurses by changing (IF (IF p q r) left
right) to (IF p (IF q left right) (IF r left right)), it drives down
the IF.DEPTH of its argument, according to the well-founded
relation LESSP. Thus, the lemma

Theorem IF.DEPTH.GOES.DOWN:

(IMPLIES
(AND (IF.EXPRP X) (IF.EXPRP (TEST X)))
(LESSP (IF.DEPTH (CONS.IF (TEST (TEST X)) Y Z))

(IF.DEPTH X)))

suggests a justification of NORMALIZE. The system proves
IF.DEPTH.GOES.DOWN using the definitions of LESSP and
IF.DEPTH.

But now let us consider the other two recursive calls in
NORMALIZE, those that recurse on the LEFT.BRANCH and
RIGHT.BRANCH of IF.EXPRPs. If IF.DEPTH decreased ac-
cording to LESSP in those recursions, we would be finished: IF.DEPTH
would be a measure that got LESSP-smaller in all recursions,
and LESSP is well-founded. But IF.DEPTH does not necessarily
decrease in the last two recursions. For example, the IF.DEPTH
of the expression:

(IF X (IF (IF A B C) D E) Y)

is 1, while the IF.DEPTH of its LEFT.BRANCH is 2. In general,
the IF.DEPTH of a branch of an IF.EXPRP is unrelated to that
of the expression itself and might be arbitrarily bigger.

We remedy the situation by defining a second measure, called
IF.COMPLEXITY, and by proving that it gets LESSP-smaller
on the latter two recursive calls while not changing on the first
recursive call. Given such results it is clear that the measure:

(CONS (IF.COMPLEXITY X) (IF.DEPTH X))

gets lexicographically smaller on each call (using the well-founded
relation induced by LESSP and LESSP).

Defining IF.COMPLEXITY so that it that decreases on the
branches of IF.EXPRPs is easy. (For example, COUNT goes
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down.) But defining IF.COMPLEXITY so that it also stays
unchanged when (IF (IF p q r) left right) is transformed to
(IF p (IF q left right) (IF r left right)) is more difficult. The
definition of IF.COMPLEXITY that we use is:

Definition

(IF.COMPLEXITY X)
=

(IF (IF.EXPRP X)
(TIMES (IF.COMPLEXITY (TEST X))

(PLUS (IF.COMPLEXITY (LEFT.BRANCH X))
(IF.COMPLEXITY (RIGHT.BRANCH X))))

1).

The three theorems:

Theorem IF.COMPLEXITY.GOES.DOWN1:

(IMPLIES (IF.EXPRP X)
(LESSP (IF.COMPLEXITY (LEFT.BRANCH X))

(IF.COMPLEXITY X))),
Theorem IF.COMPLEXITY.GOES.DOWN2:

(IMPLIES (IF.EXPRP X)
(LESSP (IF.COMPLEXITY (RIGHT.BRANCH X))

(IF.COMPLEXITY X))),
Theorem IF.COMPLEXITY.STAYS.EVEN:

(IMPLIES
(AND (IF.EXPRP X) (IF.EXPRP (TEST X)))
(EQUAL
(IF.COMPLEXITY

(CONS.IF (TEST (TEST X))
(CONS.IF (LEFT.BRANCH (TEST X))

(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))))

(IF.COMPLEXITY X)))

establish that IF.COMPLEXITY has the desired properties.
The system proves these theorems using the definitions of LESSP
and IF.COMPLEXITY, together with the inductively proved
lemma that IF.COMPLEXITY is never 0 and about 20 well-
known lemmas about PLUS, TIMES, and LESSP and the re-
lations between them. The user must have the theorem prover
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prove these 20 arithmetic lemmas before it proves the IF.COM-
PLEXITY lemmas. We do not descend into the proofs here.
The statements of the lemmas are among those preceding the
tautology theorems in Appendix A. (In fact, we had the system
prove these elementary arithmetic lemmas long before we even
considered the tautology problem; the system recalled them au-
tomatically during the IF.COMPLEXITY proofs.)

Once the IF.COMPLEXITY theorems have been proved by
the theorem prover (and thus brought to its attention), the the-
orem prover accepts the definition of NORMALIZE under our
principle of definition and responds with:

The lemmas IF.COMPLEXITY.GOES.DOWN1,
IF.COMPLEXITY.GOES.DOWN2, IF.COMPLEXITY.STAYS.EVEN and
IF.DEPTH.GOES.DOWN can be used to prove that:

(CONS (IF.COMPLEXITY X) (IF.DEPTH X))
decreases according to the well-founded lexicographic relation
induced by LESSP and LESSP in each recursive call. Hence,
NORMALIZE is accepted under the principle of definition.
Observe that:

(OR (IF.EXPRP (NORMALIZE X))
(EQUAL (NORMALIZE X) X))

is a theorem.
CPU time (devoted to theorem-proving): 1.388 seconds

It is important to note that the admissibility of NORMAL-
IZE has been proved and in no way assumed. In particular,
we defined certain functions (IF.DEPTH and IF.COMPLEXI-
TY) that were admitted to the theory because of shell axioms.
Then we proved certain theorems about those functions, namely
that the IF.DEPTHs (or IF.COMPLEXITYs) of certain expres-
sions were LESSP-smaller than those of others. Some of these
theorems required induction to prove – inductions justified by
shell axioms. Finally, invoking the theorems just proved, the
well-foundedness of LESSP, and the principle of lexicographic
relations, we exhibited a measure and well-founded relation jus-
tifying the definition of NORMALIZE. Note further that the
newly invented measure and well-founded relation permit an in-
duction not permitted by the shell axioms alone – an induction
in which we may assume an instance about (IF p (IF q left right)
(IF r left right)) while trying to prove a conjecture about (IF
(IF p q r) left right).



76CHAPTER 4. THE CORRECTNESS OF A TAUTOLOGY CHECKER

4.4.2 Mechanical Proof of Tautology.checker.is.sound

Now we turn our attention to the proofs of our main theorems.
To enable the theorem prover to prove TAUTOLOGY.CHECK-
ER.IS.SOUND we decompose the problem into three main lem-
mas establishing properties of NORMALIZE and TAUTOLO-
GYP, the two “subroutines” of TAUTOLOGY.CHECKER. To
prove one of these main lemmas the theorem prover needs sev-
eral subsidiary lemmas about assignments. Below we present
the decomposition, the subsidiary lemmas, and the proofs of the
main lemmas. Finally, we combine the main lemmas to prove
TAUTOLOGY.CHECKER.IS.SOUND.

Decomposition

We can establish that TAUTOLOGY.CHECKER recognizes only
tautologies by proving that:

When TAUTOLOGYP returns non-F on an expres-
sion in IF-normal form, the value of the expression is
non-F under all assignments,

NORMALIZE produces expressions in IF-normal form,
and

NORMALIZE produces an expression with the same
VALUE as its input (so that if one is a tautology, the
other is also).

Note that this was exactly the decomposition of the problem
employed when we, in the role of the implementor, defined TAU-
TOLOGY.CHECKER.

We define NORMALIZED.IF.EXPRP to be the recursive
function that determines whether or not an expression is in IF-
normal form (see Appendix A). The formal statements of the
three main lemmas are:

Theorem TAUTOLOGYP.IS.SOUND:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X A1))

(VALUE X (APPEND A1 A2))),
Theorem NORMALIZE.NORMALIZES:
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(NORMALIZED.IF.EXPRP (NORMALIZE X)),
Theorem NORMALIZE.IS.SOUND:

(EQUAL (VALUE (NORMALIZE X) A)
(VALUE X A)).

Note that the first lemma is more general than required by the
decomposition. The decomposition calls for:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X ‘‘NIL’’))

(VALUE X A)).

That is, if X is in IF-normal form and (TAUTOLOGYP X
“NIL”) is non-F, then the VALUE of X is non-F under all assign-
ments. The more general TAUTOLOGYP.IS.SOUND, which
can be proved by induction, says that if X is in IF-normal form
and (TAUTOLOGYP X A1) is non-F, then the VALUE of X is
non-F under any assignment having A1 as an initial segment.
TAUTOLOGYP.IS.SOUND reduces to the desired lemma when
A1 is “NIL”, since (APPEND “NIL” A2) is A2.

Subsidiary Lemmas

Before proving the three main lemmas, we make explicit four
facts about assignments and VALUE.

First, since ASSIGNMENT returns F if the variable in ques-
tion is not explicitly assigned in A, we conclude that when (AS-
SIGNMENT X A) is non-F, X must be explicitly assigned:

Theorem ASSIGNMENT.IMPLIES.ASSIGNEDP:

(IMPLIES (ASSIGNMENT X A)
(ASSIGNEDP X A)).

Second, since ASSIGNMENT returns the first assignment it
finds for X in an alist, the assignment of X in the alist (AP-
PEND A B) is either the assignment of X in A (if X is explicitly
assigned in A) or else is the assignment of X in B:

Theorem ASSIGNMENT.APPEND:

(EQUAL (ASSIGNMENT X (APPEND A B))
(IF (ASSIGNEDP X A)

(ASSIGNMENT X A)
(ASSIGNMENT X B))).
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Third, if an alist contains a pair that can be deleted without
changing the assignment of the variable involved, then the value
of any expression under the original alist is equal to that under
the shorter alist. In particular, if VAR already has value VAL in
A, then the value of any given expression under (CONS (CONS
VAR VAL) A) is the same as its value under A. Since we are
interested only in whether VALUEs of expressions are F or non-
F, we can generalize the theorem to:

(IMPLIES (IFF VAL (ASSIGNMENT VAR A))
(IFF (VALUE X (CONS (CONS VAR VAL) A))

(VALUE X A))),

where (IFF X Y) is T if X and Y are both F or both non-F and
F otherwise. In order to make the lemma useful as a rewrite
rule, we actually express it as two implications:

Theorem VALUE.CAN.IGNORE.REDUNDANT.ASSIGNMENTS:

(AND
(IMPLIES (AND (IFF VAL (ASSIGNMENT VAR A))

(VALUE X A))
(VALUE X (CONS (CONS VAR VAL) A)))

(IMPLIES (AND (IFF VAL (ASSIGNMENT VAR A))
(NOT (VALUE X A)))

(NOT (VALUE X (CONS (CONS VAR VAL) A))))).

Fourth, and finally, if X is an IF.EXPRP and is in IF-normal
form, then the VALUE of (TEST X) under A is just the assign-
ment of (TEST X) in A:

Theorem VALUE.SHORT.CUT:

(IMPLIES (AND (IF.EXPRP X)
(NORMALIZED.IF.EXPRP X))

(EQUAL (VALUE (TEST X) A)
(ASSIGNMENT (TEST X) A))).

The proofs of these four lemmas are all straightforward. The
first three are proved by induction and the fourth is immediate
from the definitions of NORMALIZED.IF.EXPRP and VALUE.
We do not discuss the proofs.
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Main Lemmas

We now return to the main lemmas in the decomposition of
TAUTOLOGY.CHECKER.IS.SOUND. The hardest of these lem-
mas is the first:

Theorem TAUTOLOGYP.IS.SOUND:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X A1))

(VALUE X (APPEND A1 A2))).

We now sketch the machine’s proof. Let (p X A1 A2) be a
schematic representation of the above conjecture. The machine
describes its induction analysis as follows:

Let us appeal to the induction principle. The
recursive terms in the conjecture suggest four inductions.
They merge into three likely candidate inductions, none of
which is unflawed. However, one is more likely than the
others. We will induct according to the following scheme:

(AND (IMPLIES (NOT (IF.EXPRP X))
(p X A1 A2))

(IMPLIES (AND (IF.EXPRP X)
(p (RIGHT.BRANCH X)

(CONS (CONS (TEST X) F) A1)
A2)

(p (LEFT.BRANCH X)
(CONS (CONS (TEST X) T) A1)
A2)

(p (RIGHT.BRANCH X) A1 A2)
(p (LEFT.BRANCH X) A1 A2))

(p X A1 A2))).
The inequalities LEFT.BRANCH.LESSP and RIGHT.BRANCH.LESSP
establish that the measure (COUNT X) decreases according
to the well-founded relation LESSP in the induction step
of the scheme. Note, however, the inductive instances
chosen for A1.

(The inequalities LEFT.BRANCH.LESSP and RIGHT.BRANCH.LESSP
are axioms added by the addition of the CONS.IF shell.)

The base case (in which X is not an IF.EXPRP) can be
simplified to:

(IMPLIES (AND (NOT (IF.EXPRP X))
(ASSIGNMENT X A1))

(ASSIGNMENT X (APPEND A1 A2)))
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by applying the definitions of NORMALIZED.IF.EXPRP, TAU-
TOLOGYP, and VALUE, and further reduces to T using ASSIGN-
MENT.APPEND and ASSIGNMENT.IMPLIES.ASSIGNEDP.

The induction step is considerably more complicated. We
break our analysis of it into two cases according to the VALUE of
(TEST X) under (APPEND A1 A2), which, by VALUE.SHORT.CUT
and ASSIGNMENT.APPEND, gives rise to many cases depend-
ing on whether (TEST X) is assigned in A1 or A2 and what the
assignment is. We sketch just one of these cases to indicate how
the proof goes.

Suppose that (TEST X) is unassigned in A1 and has a non-F
assignment in A2. The conclusion, (p X A1 A2), of the induction
step simplifies to:

*concl (IMPLIES (AND (NOT (IF.EXPRP (TEST X)))
(NORMALIZED.IF.EXPRP (LEFT.BRANCH X))
(NORMALIZED.IF.EXPRP (RIGHT.BRANCH X))
(TAUTOLOGYP (LEFT.BRANCH X)

(CONS (CONS (TEST X) T) A1))
(TAUTOLOGYP (RIGHT.BRANCH X)

(CONS (CONS (TEST X) F) A1)))
(VALUE (LEFT.BRANCH X) (APPEND A1 A2)))

using the definitions of NORMALIZED.IF.EXPRP, TAUTOL-
OGYP, and VALUE, the lemmas ASSIGNMENT.APPEND and
ASSIGNMENT.IMPLIES.ASSIGNEDP, and the case assump-
tions about the assignment of (TEST X).

Consider the second induction hypothesis

(p (LEFT.BRANCH X) (CONS (CONS (TEST X) T) A1) A2),

which, after applying the definition of APPEND, is:

*hyp (IMPLIES (AND (NORMALIZED.IF.EXPRP (LEFT.BRANCH X))
(TAUTOLOGYP (LEFT.BRANCH X)

(CONS (CONS (TEST X) T) A1)))
(VALUE (LEFT.BRANCH X)

(CONS (CONS (TEST X) T) (APPEND A1 A2)))).

By virtue of ASSIGNMENT.APPEND and our case analysis, we
know that (TEST X) is already assigned non-F in (APPEND A1
A2). Thus, by VALUE.CAN.IGNORE.REDUNDANT.ASSIGN-
MENTS, the pair (CONS (TEST X) T) can be deleted from the
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alist (CONS (CONS (TEST X) T) (APPEND A1 A2)) (oc-
curring in the conclusion of *hyp above) without changing the
truth-value of any expression. That is, we know that *hyp is
equivalent to

*hyp’ (IMPLIES (AND (NORMALIZED.IF.EXPRP (LEFT.BRANCH X))
(TAUTOLOGYP (LEFT.BRANCH X)

(CONS (CONS (TEST X) T) A1)))
(VALUE (LEFT.BRANCH X)

(APPEND A1 A2))).

Since *hyp’ propositionally implies the induction conclusion,
*concl, we have completed the proof of the case in which (TEST
X) is unassigned in A1 and assigned non-F in A2.

The remaining cases of the induction step are similar.
The proofs of the two NORMALIZE lemmas, namely that

NORMALIZE produces expressions in IF-normal form while
preserving their values, are straightforward by induction. How-
ever, the inductions are interesting because of the unusual re-
cursion in NORMALIZE. To illustrate the induction, we exhibit
the machine’s proof of NORMALIZE.IS.SOUND. The proof of
NORMALIZE.NORMALIZES is similar.

Theorem NORMALIZE.IS.SOUND:

(EQUAL (VALUE (NORMALIZE X) A)
(VALUE X A))

Give the conjecture the name *1.
Perhaps we can prove it by induction. The recursive

terms in the conjecture suggest two inductions, neither of
which is unflawed, and both of which appear equally likely.
So we will choose the one that will probably lead to
eliminating the nastiest expression. We will induct
according to the following scheme:

(AND
(IMPLIES (NOT (IF.EXPRP X)) (p X A))
(IMPLIES

(AND (IF.EXPRP X)
(IF.EXPRP (TEST X))
(p (CONS.IF (TEST (TEST X))

(CONS.IF (LEFT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))
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(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X)))

A))
(p X A))

(IMPLIES (AND (IF.EXPRP X)
(NOT (IF.EXPRP (TEST X)))
(p (RIGHT.BRANCH X) A)
(p (LEFT.BRANCH X) A))

(p X A))).
The inequalities IF.COMPLEXITY.GOES.DOWN1,
IF.COMPLEXITY.GOES.DOWN2, IF.COMPLEXITY.STAYS.EVEN and
IF.DEPTH.GOES.DOWN establish that the measure:

(CONS (IF.COMPLEXITY X) (IF.DEPTH X))
decreases according to the well-founded lexicographic relation
induced by LESSP and LESSP in each induction step of the
scheme. The above induction scheme generates three new
conjectures:
Case 1. (IMPLIES (NOT (IF.EXPRP X))

(EQUAL (VALUE (NORMALIZE X) A)
(VALUE X A))).

This simplifies, unfolding NORMALIZE and VALUE, to:
(TRUE).

Case 2. (IMPLIES
(AND
(IF.EXPRP X)
(IF.EXPRP (TEST X))
(EQUAL
(VALUE
(NORMALIZE

(CONS.IF (TEST (TEST X))
(CONS.IF (LEFT.BRANCH (TEST X))

(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))))

A)
(VALUE (CONS.IF (TEST (TEST X))

(CONS.IF (LEFT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X)))
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A)))
(EQUAL (VALUE (NORMALIZE X) A)

(VALUE X A))),
which we simplify, applying RIGHT.BRANCH.CONS.IF,
LEFT.BRANCH.CONS.IF and TEST.CONS.IF, and expanding the
definitions of VALUE and NORMALIZE, to:

(TRUE).
Case 3. (IMPLIES

(AND (IF.EXPRP X)
(NOT (IF.EXPRP (TEST X)))
(EQUAL (VALUE (NORMALIZE (RIGHT.BRANCH X)) A)

(VALUE (RIGHT.BRANCH X) A))
(EQUAL (VALUE (NORMALIZE (LEFT.BRANCH X)) A)

(VALUE (LEFT.BRANCH X) A)))
(EQUAL (VALUE (NORMALIZE X) A)

(VALUE X A))).
This simplifies, appealing to the lemmas
RIGHT.BRANCH.CONS.IF, LEFT.BRANCH.CONS.IF and
TEST.CONS.IF, and unfolding the functions NORMALIZE and
VALUE, to:

(TRUE).
That finishes the proof of *1. Q.E.D.

CPU time (devoted to theorem-proving): 8.853 seconds

The induction performed above is analogous to the recursion in
NORMALIZE. There is a base case for the possibility that X is
not a CONS.IF and there are two induction steps. In the first,
X is assumed to be of the form (IF (IF p q r) left right) and
a single inductive instance is provided, in which X is replaced
by (IF p (IF q left right) (IF r left right)). In the second, X is
assumed to be of the form (IF p left right), where p is not an
IF-expression, and two inductive instances are provided, one in
which X is replaced by left and the other in which X is replaced
by right. The induction is justified by the measure and well-
founded relation justifying NORMALIZE. The simplifications
of the three cases of the induction rely upon definitions and the
axioms of the CONS.IF shell.

Tautology.checker.is.sound

The proof of TAUTOLOGY.CHECKER.IS.SOUND follows im-
mediately from our three main lemmas, given the following “bridge”
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lemma:

Theorem TAUTOLOGY.CHECKER.SOUNDNESS.BRIDGE:

(IMPLIES (AND (TAUTOLOGYP Y A1)
(NORMALIZED.IF.EXPRP Y)
(EQUAL (VALUE X A2)

(VALUE Y (APPEND A1 A2))))
(VALUE X A2)).

The bridge lemma tells the mechanical theorem prover that to
prove that (VALUE X A2) is true it is sufficient to show that
it is equal to (VALUE Y (APPEND A1 A2)), where Y is in
IF-normal form and a TAUTOLOGYP under A1. The bridge
lemma is trivial to prove: the result of substituting (VALUE Y
(APPEND A1 A2)) for (VALUE X A2) in the bridge lemma is
an instance of TAUTOLOGYP.IS.SOUND. Without the bridge
lemma, the mechanical theorem prover would not consider “re-
ducing” a problem about (VALUE X A) to one about (VALUE
(NORMALIZE X) (APPEND “NIL” A)), which is a necessary
step in our decomposition of the problem.

Given the bridge, the proof of

Theorem TAUTOLOGY.CHECKER.IS.SOUND:

(IMPLIES (TAUTOLOGY.CHECKER X)
(VALUE X A))

is trivial. After replacing TAUTOLOGY.CHECKER by its def-
inition, the theorem prover obtains:

(IMPLIES (TAUTOLOGYP (NORMALIZE X) ‘‘NIL’’)
(VALUE X A)).

But the theorem prover can derive the above conjecture from
the bridge lemma as follows. It instantiates the bridge lemma,
replacing Y by (NORMALIZE X), A1 by “NIL” and A2 by A:

(IMPLIES (AND (TAUTOLOGYP (NORMALIZE X) ‘‘NIL’’)
(NORMALIZED.IF.EXPRP (NORMALIZE X))
(EQUAL (VALUE X A)

(VALUE (NORMALIZE X)
(APPEND ‘‘NIL’’ A))))

(VALUE X A)).
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The second hypothesis reduces to T by NORMALIZE.NOR-
MALIZES and the third reduces to T by NORMALIZE.IS.SOUND
and the definition of APPEND. After thus removing these true
hypotheses the theorem prover obtains:

(IMPLIES (TAUTOLOGYP (NORMALIZE X) ‘‘NIL’’)
(VALUE X A)).

Q.E.D.

4.4.3 Mechanical Proof of Tautology.checker.is.complete

All of the above proof steps were described from the theorem
prover’s point of view. We now turn our attention to the proof
of:

Theorem TAUTOLOGY.CHECKER.IS.COMPLETE:

(IMPLIES (NOT (TAUTOLOGY.CHECKER X))
(EQUAL (VALUE X (FALSIFY X)) F)),

and describe it from the user’s point of view.

Falsify

In our scenario, neither the buyer nor the implementor were re-
quired to define FALSIFY. However, before the theorem prover
can prove TAUTOLOGY.CHECKER.IS.COMPLETE the math-
ematician user must define FALSIFY.

Recall that FALSIFY must return an assignment that falsi-
fies any expression not recognized by our tautology checker. The
definition of FALSIFY is extremely similar to that of TAUTOL-
OGY.CHECKER. FALSIFY puts the expression into IF-normal
form with NORMALIZE and tries to construct a falsifying as-
signment for that equivalent expression, using a function called
FALSIFY1 that is very similar to TAUTOLOGYP.

FALSIFY1 walks through a normalized IF-expression with
an alist that assigns values to some variables. The function tries
to extend that alist to one that falsifies the current expression.
FALSIFY1 returns F if it fails to find such an alist, and otherwise
returns the extended alist. The following two observations are
basic to how FALSIFY1 works:
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An unassigned variable can be falsified by assuming
it false.

(IF test left right), where test is an unassigned vari-
able, can be falsified by assuming test true and falsi-
fying left (if possible) or by assuming test false and
falsifying right (if possible).

Of course, FALSIFY1 must respect its current assignments (e.g.,
if the test of an IF is already assigned, FALSIFY1 must try to
falsify the appropriate branch).

The definitions of FALSIFY1 and FALSIFY are:

Definition

(FALSIFY1 X ALIST)
=

(IF (IF.EXPRP X)
(IF (ASSIGNEDP (TEST X) ALIST)

(IF (ASSIGNMENT (TEST X) ALIST)
(FALSIFY1 (LEFT.BRANCH X) ALIST)
(FALSIFY1 (RIGHT.BRANCH X) ALIST))

(IF (FALSIFY1 (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(FALSIFY1 (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(FALSIFY1 (RIGHT.BRANCH X)
(AS-

SUME.FALSE (TEST X) ALIST))))
(IF (ASSIGNEDP X ALIST)

(IF (ASSIGNMENT X ALIST) F ALIST)
(CONS (CONS X F) ALIST))).

Definition

(FALSIFY X)
=

(FALSIFY1 (NORMALIZE X) ‘‘NIL’’).

Both definitions are accepted immediately by the theorem prover.

Sketch of the Proof of Tautology.checker.is.complete

We prove that if TAUTOLOGY.CHECKER returns F then there
exists a falsifying assignment by proving that:
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when TAUTOLOGYP fails to recognize a normal-
ized IF-expression, FALSIFY1 returns an assignment
(rather than F) on the expression, and

if FALSIFY1 returns an assignment (rather than F)
for a normalized IF-expression, then the value of the
expression under the assignment is F.

The formal statements of these lemmas are:

Theorem TAUTOLOGYP.FAILS.MEANS.FALSIFY1.WINS:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(NOT (TAUTOLOGYP X A))
A)

(FALSIFY1 X A)),
Theorem FALSIFY1.FALSIFIES:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(FALSIFY1 X A))

(EQUAL (VALUE X (FALSIFY1 X A)) F)).

TAUTOLOGY.CHECKER.IS.COMPLETE follows from the above
two lemmas and NORMALIZE.NORMALIZES and NORMAL-
IZE.IS.SOUND. To get the theorem prover to put them together
in the desired way, a “bridge” version of FALSIFY1.FALSIFIES
is required:

Theorem TAUTOLOGY.CHECKER.COMPLETENESS.BRIDGE:

(IMPLIES (AND (EQUAL (VALUE Y (FALSIFY1 X A))
(VALUE X (FALSIFY1 X A)))

(FALSIFY1 X A)
(NORMALIZED.IF.EXPRP X))

(EQUAL (VALUE Y (FALSIFY1 X A)) F)).

The proof of the bridge is trivial using FALSIFY1.FALSIFIES.
All that remains is to prove FALSIFY1.FALSIFIES and TAU-

TOLOGYP.FAILS.MEANS.FALSIFY1.WINS. These two theo-
rems yield immediately to the correct induction provided the
previously proved ASSIGNMENT.IMPLIES.ASSIGNEDP and
VALUE.SHORT.CUT are used and the following property of
FALSIFY1 is known by the theorem prover: if VAR is explic-
itly assigned in A, then the assignment of VAR in (FALSIFY1
X A) is the assignment of VAR in A if (FALSIFY1 X A) is non-
F. The formal statement of the relationship between FALSIFY1
and ASSIGNMENT is:
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Theorem FALSIFY1.EXTENDS.MODELS:

(IMPLIES (ASSIGNEDP X A)
(EQUAL (ASSIGNMENT X (FALSIFY1 Y A))

(IF (FALSIFY1 Y A)
(ASSIGNMENT X A)
(EQUAL X T)))).

This property of FALSIFY1 is a crucial aspect of the process of
falsification: it is illegal to change the assignment of a variable
in midstream. FALSIFY1.EXTENDS.MODELS is proved by
induction. The proof appeals to the previously proved ASSIGN-
MENT.IMPLIES.ASSIGNEDP.

4.5 Summary

The theorem prover (with some guidance from the user) has thus
established that TAUTOLOGY.CHECKER is well-defined, only
recognizes tautologies, and recognizes all tautologies.

It is worthwhile to summarize our objectives in this chapter.
Hopefully, the reader better understands our theory and its

expressive power. The utility and power of IF and the con-
venience of T and F as objects was demonstrated. The shell
principle was used to introduce IF-expressions as objects. The
use of measures and well-founded relations to justify recursive
definitions was illustrated. In addition, we demonstrated how
we could justify definitions by introducing new measures and
proving theorems establishing that the measures decrease. We
also illustrated the induction principle in use. Finally, FALSIFY
illustrated how we use recursive functions to express existential
quantification. Advocates of quantification may feel that our
lack of quantification makes it difficult for us to state certain
conjectures. We agree; but we observe that the use of explicit
existential quantification makes it more difficult to find construc-
tive proofs. Any constructive proof of a conjecture involving ex-
istential quantification (such as the proposition that when TAU-
TOLOGY.CHECKER returns F on an expression there exists
a falsifying assignment) must exhibit a method (such as FAL-
SIFY) for obtaining the objects alleged to exist.

The second objective of this chapter was to expose the reader
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to our proof techniques and to indicate the role of the user in
the theorem-proving process. Perhaps the easiest way to sum-
marize the description of the proofs is to note that the proof
of TAUTOLOGY.CHECKER.IS.COMPLETE is in many ways
harder than the proof of TAUTOLOGY.CHECKER.IS.SOUND
but that our discussion of it was much more brief. The rea-
son is that we presented a good deal of the proof of TAUTOL-
OGY.CHECKER.IS.SOUND from the theorem prover’s point
of view: we talked about such things as induction schemes,
case splitting, and use of function definitions and previously
proved theorems. The discussion of TAUTOLOGY.CHECK-
ER.IS.COMPLETE, on the other hand, was almost entirely
from the user’s point of view: we talked about the concepts
and “obvious” relationships that hold between them, and left
the proofs to the theorem prover.

The third objective of this chapter was to illustrate briefly
some simple theorem-proving ideas. We illustrated how to rep-
resent and manipulate terms mechanically, how to use theorems
to rewrite expressions, and how to maintain a representation of
one’s knowledge about the context of a term in an expression.

Finally, let us note one unstated objective: illustrating the
value of definitions and proofs. Consider what the mathemati-
cian user of the theorem prover must tell the buyer when the final
proof is completed. He can say, simply, “Here is the function you
ordered. Your two conjectures are theorems. Go in peace.” The
mathematician does not have to mention the decomposition of
the problem, because all the lemmas were proved. Furthermore,
he does not have to mention NORMALIZED.IF.EXPRP or any
of the other functions not written by the buyer, because those
functions were all introduced under the principle of definition.
In contrast, consider the mathematician’s duty to the buyer had
the proofs required adding nondefinitional axioms about con-
cepts (even concepts, such as NORMALIZED.IF.EXPRP, not
involved in the statement of the main results but just in their
proofs); he would have had to say “I’m afraid we did not prove
your conjectures. However, I have managed to shift the burden
of proof back to you. If you will just accept these few axioms. . . ”
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4.6 Notes

Church, on pages 129 to 132 of [17], discusses a formulation of
the propositional calculus very similar to ours. He uses [B, A,
C] to denote what we denote by (IF A B C). Interestingly, he
suggests the oral reading: “[p, q, r]” is “p or r according as q or
not q.” Church’s version of propositional calculus differs from
ours principally because our IF may return arbitrary objects, not
merely truth values. It is odd that logicians have not sufficiently
seen the utility of IF to include it in their formal theories. To
our knowledge, McCarthy [34] first introduced the IF we use.

We are grateful to Greg Nelson, of Stanford University, who
first suggested that we try to prove TAUTOLOGYP.IS.SOUND.
We tried to do so several months before beginning to write this
book and failed, primarily because, as users of the system, we
failed to see the importance of VALUE.CAN.IGNORE.REDUN-
DANT.ASSIGNMENTS. After beginning the book we realized
it would be beneficial to take advantage of the theory’s expres-
sive power to exhibit a simple theorem prover in it. Thus, we
returned to the TAUTOLOGYP example with the results re-
ported above. We then elaborated it by introducing NORMAL-
IZE and TAUTOLOGY.CHECKER, and proving that TAU-
TOLOGY.CHECKER is a decision procedure. The entire ef-
fort required about 12 hours of real time by one of the authors
playing the role of the buyer, implementor, and user. Most of
that time was spent watching the theorem prover failing to prove
theorems, figuring out the facts that were “obvious” to the user
but unknown to the system, and instructing the system to prove
those facts as lemmas. The total amount of computer time ex-
pended to check all the definitions and prove all the theorems
in the final sequence is about 10 minutes.



Chapter 5

An Overview of How We
Prove Theorems

In this and the next ten chapters, we describe some techniques
for proving theorems in our theory. In fact, we describe how
our mechanical theorem-proving program works. The reader
familiar with mechanical theorem-proving should be able to re-
construct our theorem prover from these discussions. However,
the reader not familiar with mechanical theorem-proving will be
able to follow our presentation without difficulty. No knowledge
of computer programming is required, but we describe our proof
techniques in complete detail and leave no important decisions
to the reader’s imagination.

5.1 The Role of the User

Suppose that someone, whom we shall call “the user,” has con-
jectures that he wants proved by a very careful but unimagina-
tive device that we shall call “the theorem prover.” The user
typically intuits a theorem and perhaps even sketches a proof on
paper. We assume the user is willing to help the theorem prover
by formulating the conjectures in the most general way and by
laying appropriate groundwork.

We require that when the user brings a conjecture to the the-
orem prover’s attention (by asking it to prove it or assume it as
an axiom), he give the theorem prover hints regarding how the

91
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theorem should be used subsequently. A theorem may be used
in any of four ways: as a rewrite, elimination, generalization, or
induction lemma. Rewrite lemmas are used to simplify conjec-
tures by replacing terms with other terms. Elimination lemmas
are used to remove certain “undesirable” expressions from con-
jectures. Generalization lemmas point out properties of terms
that are good to keep in mind when generalizing formulas. In-
duction lemmas point out that a given operation drives a given
measure down according to some well-founded relation. The
precise meaning of these lemma types will be provided when we
describe our heuristics for proving theorems. When the user sug-
gests the types for a lemma, he is not merely suggesting that the
lemma can be used in the ways indicated (that can be checked
mechanically), but that he wants the lemma to be used in the
ways indicated.

5.2 Clausal Representation of Conjectures

We now present the concept of clause as used in our theorem
prover. Through the remainder of this work, a clause is a list of
terms. The meaning that we attach to a clause is the disjunction
of its members. Following Robinson [49], we sometimes delimit
clauses with set brackets. For example, if p, q, and r are terms,
the clause {p, q, r} is the list of the three terms p, q, and r
and means p 6=F, q 6=F, or r 6=F. Sometimes we display clauses
as terms to make them easier to read. We may display the
clause {p, (NOT q), r} as (IMPLIES (AND (NOT p) q) r), we
may display the clause {p, q} as (IMPLIES (NOT p) q), and
we may display the clause {p} as p. In the remainder of this
book, whenever we refer to a conjecture, theorem, or formula
being manipulated by the theorem-proving program, the reader
should understand that a clause is being processed.

The members of a clause are called literals. If a literal p has
the form (NOT atm), then the atom of p is atm, and otherwise
the atom of p is p.

Because our earlier work [7] did not use clauses and because
many researchers in mechanical theorem-proving have come to
believe that using clauses is counterproductive, we now explain
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why we choose to use them.
The basic propositional connective in our theory is IF. Con-

sider how we might represent a term such as (IF p T q), where
p and q are Boolean (i.e., always return T or F). (IF p T q) is
the term representing (OR p q). When we recursively explore
(IF p T q) with a process such as TAUTOLOGYP, we naturally
have assumed that p is false when we encounter q. But when we
encounter p, we have assumed nothing about q, because we have
not yet seen q. But (IF p T q) is equal to (IF q T p), and thus,
when we encounter p, we could assume q false. The asymmetry
is magnified if the q in (IF p T q) is itself an IF-expression, such
as (IF r s t), for then when we encounter p we should actually
note that either (a) r is true and s is false, or (b) r is false and
t is false.

To avoid this asymmetry, we reduce a term containing an
IF to an IF-free conjunction of clauses. It is easy to put an
expression into this form by using the fact that (IF p q r) is a
theorem if and only if the two clauses {(NOT p) q} and {p r}
are theorems. The clauses for an IF-expression correspond to
the branches through the IF-normal form of the expression.

If we are trying to prove a clause, then when we consider
any given literal of it, we assume the remaining literals false.
Furthermore, if we ever manage to reduce a literal to T (or
any other non-F expression), the clause is true, and if we ever
manage to reduce a literal to F, we remove that literal from the
clause.

5.3 The Organization of our Heuristics

When should induction be used? We believe that induction
should only be used as a last resort when all other methods
of proof have failed. Furthermore, we believe that induction
should be applied only to the most simple and generally stated
propositions possible.

To this end we have developed a series of heuristics for prepar-
ing formulas for induction:

Simplify the conjecture by applying axioms, rewrite
lemmas, and function definitions and by converting
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the conjecture to a conjunction of IF-free clauses.
Sometimes simplification will prove the conjecture.
When it does not, at least it will reduce the complex-
ity of the conjecture.

When possible, reformulate the conjecture to elimi-
nate “undesirable” concepts.

Use equalities and then throw them away.

Generalize the conjecture by introducing variables for
terms that have “played their role.”

Eliminate irrelevant terms from the conjecture.

We apply first the safest operations (those, such as simplifica-
tion, that always convert a conjecture into an equivalent one)
before trying more daring operations (such as generalization).
Induction is applied last for two reasons: It is difficult to in-
vent the right induction argument for anything but the simplest,
strongest conjecture available, and induction increases the size
and complexity of the conjecture.

Given a conjecture to prove, we apply the above heuristics
in the order listed. Each of these heuristics can be regarded
as taking a clause as input and returning a set of clauses as
output. If each of the output clauses is a theorem, the input
clause is a theorem. Thus, each of the output clauses is to be
proved instead of the input. To get the process started on a
user-supplied term, p, we start with the unit clause {p}.

Sometimes a clause is proved by one of these heuristics, in
which case the empty set of clauses is returned. If a heuristic
cannot prove or improve its input clause, it returns the singleton
set containing the input, and then the next heuristic is tried.
But if a heuristic changes its input, then we recursively start
the whole sequence of heuristics over again on each of the output
clauses. A clause only emerges from this sequence of heuristics
when it can no longer be changed by any of them.

A good metaphor for the organization of these heuristics is
an initially dry waterfall. One pours out a clause at the top.
It trickles down and is split into pieces. Some pieces evaporate
as they are proved. Others are further split up and simplified.
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Eventually at the bottom a pool of clauses forms whose con-
junction suffices to prove the original formula.1 We clean up
this pool by removing any clause that is a substitution instance
of another (i.e., we delete subsumed clauses). Having thus ob-
tained the simplest and most general set of clauses we know how,
we attempt to prove each by induction.2

We choose a clause, remove it from the pool, invent an in-
duction scheme for it, and generate a conjunction of new clauses
to prove (the base case and the induction steps). We then try
to prove each of the new clauses by pouring each of them over
the waterfall. Descendants of these clauses may also eventually
trickle into the same pool from which we drew the one upon
which we inducted. If we are successful, then eventually no
clause will be in the pool or trickling over the waterfall. We will
have proved the original conjecture.

5.4 The Organization of our Presentation

In the next ten chapters, we present the details of the various
heuristics we have developed. We begin the presentation with a
general discussion of how we extract from an expression certain
information about the type of its value and how such informa-
tion is used to help us keep track of what we know in any given
context. Then we discuss how rewrite axioms and theorems
are used to rewrite terms. Following that, we explain how we
use function definitions. After these three topics have been dis-
cussed, we describe how they are used to simplify clauses. We

1The only thing wrong with this analogy is that our waterfall is recursive: ev-
ery time a clause splits up, no matter how far down the waterfall, the pieces spill
over the top of the fall.

2There are theorems that seem to require induction on a conjunction of for-
mulas to permit sufficiently strong induction hypotheses. A classic example is the
theorem that (GCD X Y) divides both X and Y (rather than just one of them).
We do not know mechanical ways of recognizing this situation. Thus, if the user
has stated a conjecture that, by the time it first reaches the induction stage, has
been split into two or more formulas, we abandon the work we did to split the
conjecture up and go into induction on the original formula, assuming the user
would not have suggested that we prove a conjunction of two conjectures, each
of which required an inductive proof, unless induction on their conjunction is
necessary. After the first induction, this restriction is no longer applied.
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thus devote four chapters to simplification.
Recall that simplification is the first of the heuristics we ap-

ply when trying to prove a theorem. After simplification, there
follow the elimination of “undesirables,” utilization of equali-
ties, generalization, and the elimination of irrelevant terms. A
chapter is devoted to each of these heuristics.

Finally comes induction. We have devoted two chapters to
that topic. The first deals with observations about recursive
functions that enable the recognition of appropriate induction
schemes. The second describes how we choose an induction
scheme for a conjecture, given the previously computed infor-
mation about how the functions in it recurse.

We illustrate each heuristic with particularly appropriate ex-
amples. We touch upon a great many theorems and problem do-
mains during this discussion. To tie all the heuristics together,
we have also chosen one simple example about list processing.
At the end of the discussion on simplification (Chapter 9) and
at the end of each subsequent chapter, we advance the proof of
this simple theorem.

When we have completed our presentation of our heuristics,
we discuss several much more complicated examples.



Chapter 6

Using Type Information
to Simplify Formulas

The ability to simplify formulas is central to the ability to prove
theorems by induction; a principal activity during an inductive
proof is transforming the induction conclusion into an expres-
sion resembling the induction hypothesis so that the induction
hypothesis can be used. To simplify a formula, we simplify its
subterms under the assumptions we can glean from the context
of the subterms in the formula. In this chapter, we describe
how we represent such assumptions so that they can be readily
used. We also explain how we derive from an expression or a
recursive function definition a superset of the types of objects
the expression or function returns. The ability to look at a term
and immediately see that it may return certain types of objects
is used in almost all our theorem-proving heuristics.

6.1 Type Sets

In the chapter on the tautology checker we arranged to remem-
ber assumptions that certain terms were F or non-F by main-
taining a sequence of pairs. As we explored an expression to de-
termine whether it was a tautology under such a sequence (alist)
of assumptions, we both added new assumptions and searched
through the current assumptions to determine whether any had
been made about a certain term. In the simplification techniques
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of our theorem-proving system, we use a refinement of the idea
of alists of assumptions. Instead of simply pairing terms with
T or F, we pair terms with “type sets,” which indicate that the
terms have certain “types.”

In this chapter, we define type set, and we describe an algo-
rithm that computes a type set for an expression. The algorithm
can itself be viewed as a refinement of the function TAUTOL-
OGYP, which determined whether an expression (in IF-normal
form) never returned F. The type set algorithm recursively ex-
plores an expression, sometimes adding new assumptions about
the types of certain terms and often asking whether an assump-
tion has been made about a given term. While TAUTOLOGYP
only made use of knowledge about the functions IF, TRUE, and
FALSE, the type set algorithm also uses knowledge of EQUAL,
knowledge of shell constructor, accessor, and recognizer func-
tions, and knowledge of defined functions.

Assume that 3+n shells have been added to our theory, with
the recognizers NUMBERP, LITATOM, LISTP, and r1, . . . , rn.
Let F be the set {F}, let T be the set {T}, let NUMBERP be the
set of all objects for which NUMBERP returns T, let LITATOM
be the set of all objects for which LITATOM returns T, and so
on for the sets LISTP, r 1, . . . , rn. Let OTHERS be the set of
all objects not in any of T, F, NUMBERP, LITATOM, LISTP,
r 1, . . . , rn.

The types are the sets T, F, NUMBERP, LITATOM, LISTP,
r 1, . . . , rn, and OTHERS. A type set is a set of types. Let
UNIVERSE be the set of all types. A term t is said to have
type set s provided s is a type set and the value of t under any
interpretation of the variables of t is a member of some member
of s. For example, the following terms have the corresponding
type sets.

term type set
X UNIVERSE

(ZERO) {NUMBERP }
(ADD1 X) {NUMBERP }
(EQUAL X Y) {T F }
(IF P (ADD1 X) (CONS X Y)) {NUMBERP LISTP }
(IF P X 0) UNIVERSE

(IF (NUMBERP X) X 0) {NUMBERP }
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(IF (NUMBERP X) T X) UNIVERSE - {NUMBERP }

To say that t has type set {NUMBERP LISTP} is just to say
that t is a number or a list. To say that t has type set UNI-
VERSE - {NUMBERP} is to say that t is anything but a num-
ber.

Our algorithm for computing a type set for an expression
actually computes a type set for the expression under some as-
sumptions that certain terms have certain type sets.

Our algorithm does not always return the smallest type set
for the given expression; any algorithm that did so would be
able to decide for any formula p whether it was a theorem by
determining whether F was not in the computed type set of p.
Instead of computing the smallest type set, our algorithm always
returns a superset of the smallest type set.

Before describing how we determine a type set for an expres-
sion, we first illustrate with a few examples the kind of reasoning
employed in computing and using type sets.

Suppose we knew that x had type set s. What could we infer
if we encountered the term (NUMBERP x), while simplifying a
formula, say? If s contained NUMBERP and no other element,
then we would know that (NUMBERP x) were true. If s did not
contain NUMBERP, then we would know that (NUMBERP x)
were false. If s contained both NUMBERP and another element,
then if we were asked to suppose that (NUMBERP x) were true,
we could assume that x had type set {NUMBERP}, and if we
were asked to suppose that (NUMBERP x) were false, we could
assume that x had type set s - {NUMBERP}.

As another example, suppose that we knew that x had type
set {NUMBERP} and y had type set {LISTP}. Then if we
encountered the term (EQUAL x y), we would know that it was
false because the two type sets had an empty intersection.

Our type set algorithm utilizes an auxiliary algorithm for
adding to a set of assumptions a new assumption that a given ex-
pression is true or false. More precisely, the auxiliary algorithm
accepts an expression together with a collection of assumptions
(that certain terms have certain type sets), and returns one of
three possible answers. The first possible answer is that the ex-
pression must be true (i.e., non-F) under the assumptions given.
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The second possible answer is that the expression must be false
(i.e., F) under the assumptions given. The third possible answer
has two parts. The first part is a set of assumptions (that cer-
tain terms have certain type sets) equivalent to the conjunction
of the input assumptions and the new assumption that the in-
put expression is true. The second part is a set of assumptions
equivalent to the conjunction of the input assumptions and the
new assumption that the input expression is false.

The algorithm for making assumptions is mutually recursive
with the type set algorithm. In the next two sections, we present
first the details of the assumption algorithm and then the details
of the type set algorithm.

6.2 Assuming Expressions True or False

To assume an expression p true or false in the context of certain
assumptions about type sets of some terms, we consider the form
of p.

6.2.1 Assuming an Equal-expression True or False

If p has the form (EQUAL t1 t2), then we first compute type
sets for t1 and t2, say s1 and s2. If s1 and s2 have an empty
intersection, then p must be false. If s1 and s2 are equal, s1

has only one member, and that member has only one member,
we conclude that p must be true. Examples of such singleton-
singleton type sets are {T}, {F}, and the singleton of the type
for a shell of no components and no bottom object. Otherwise,
we return two sets of assumptions.

To assume p true, we add to our current assumptions that p
has type set {T}. “Add” means that the assumption overrides
any previous assumption about the type set of p. We also add
the assumption that the commuted version of p, (EQUAL t2 t1),
has type set {T}. Finally, we add the two assumptions that t1
and t2 each have as type sets the intersection of s1 and s2. Thus,
if t1 were known to be a list or a literal atom, and t2 were known
to be a nonlist, then in assuming (EQUAL t1 t2) true we would
assume that both t1 and t2 were literal atoms.
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To assume p false, we add the assumption that p has type set
{F}. We also add the assumption that (EQUAL t2 t1) has type
set {F}. If s1 is a singleton-singleton, we add the assumption
that t2 has type set s2−s1. We perform the symmetric addition
if s2 is a singleton-singleton.

6.2.2 Assuming a Recognizer Expression True or False

If p has the form (r t), where r is a shell recognizer, we first
compute the type set, s, of t. If s is {r}, then p must be true.
If s does not contain r, then p must be false.

Otherwise, to assume p true we add the assumption that t
has type set {r}, and to assume p false we add the assumption
that t has type set s-{r}.

6.2.3 Assuming Other Expressions True or False

If p is not an equality or recognizer expression, we first compute
the type set, s, of p. If s is {F}, then p must be false. If s does
not contain F, then p must be true. Otherwise, to assume p true
we add the assumption that the type set of p is s-{F}, and to
assume p false we add the assumption that the type set of p is
{F}.

6.3 Computing Type Sets

Given the ability to determine that a term must be true, must
be false, or to assume it true or false, we now describe how we
determine a type set of an expression under a set of assumptions
that certain terms have certain type sets.

If the expression is among those terms with an assumed type
set, then that type set is the answer. Otherwise, we consider
the form of the expression.

6.3.1 The Type Set of a Variable

If the expression is a variable, then we return UNIVERSE.
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6.3.2 Fixed Type Sets

If the expression is not a variable, we consider the function sym-
bol of the expression.

If the function symbol is TRUE or FALSE, we return {T}
or {F}, respectively.

If the function symbol is EQUAL or a shell recognizer, we
return {T F}. (If a type set of a term is a subset of {T F}, we
say the term is Boolean.)

If the function is a shell constructor or the function symbol
of a bottom object, we return {r}, where r is the corresponding
recognizer.

For each shell accessor, we return the type set determined by
the type restrictions on the corresponding shell component (e.g.,
all SUB1 expressions have type set {NUMBERP} by virtue of
the type restriction (NUMBERP X1) on the ADD1 shell, and
similarly, all CAR expressions have type set UNIVERSE by
virtue of the default type restriction T on the types of arguments
to CONS).

6.3.3 The Type Set of If-expressions

The case for IF is more interesting. If we can determine that the
test of the IF must be true or must be false under our current
assumptions, then we merely return the type set of the appro-
priate branch of the IF. Otherwise we obtain the type sets of
the two branches – assuming the test true on the one and false
on the other – and return the union of those two type sets.

6.3.4 The Type Set of Other Functions

To explain how we compute a type set for other function sym-
bols, we first define:

The pair 〈ts,args〉 is a type prescription for the func-
tion symbol f provided (1) ts is a type set, (2) args
is a subset of the set of formal parameters of f, and
(3) whenever terms t1, . . . , tn have type sets s1, . . . ,
sn, then (f t1 . . . tn) has as a type set the union of
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ts with the union of those si such that the ith formal
parameter of f is in args.

In the next section, we explain how we determine a particular
type prescription for a function symbol, given its definitional
equation or a theorem about the type of the function.

However, given a previously determined type prescription,
〈ts,args〉, for f, it is easy to compute a type set for (f t1 . . . tn).
In particular, we return the union of ts with the type sets of those
ti indicated by args (under the current list of type assumptions).

6.4 Type Prescriptions

We now turn to the problem of computing a type prescription
for a newly introduced function. Aside from the primitives and
shell functions (whose type sets are described explicitly above),
a function symbol can be introduced into our theory in one of
two ways. The function symbol can be “declared” to take a
given number of arguments and forever remain undefined, or
else it can be defined under the principle of definition. In the
former case we associate the type prescription 〈UNIVERSE,{}〉
with the function symbol. In the latter case, we compute a type
prescription from the definition.

If the user adds a rewrite type axiom or proves a rewrite type
theorem that is equivalent to a certain function’s having a par-
ticular type prescription, then we store that axiom or theorem
as the type prescription for the function.

For example, in Chapter 17 we add the rewrite type axiom:

Axiom NUMBERP.APPLY:

(NUMBERP (APPLY FN X Y)),

where APPLY is an undefined (and otherwise unaxiomatized)
function symbol. The axiom is stored as the type prescription
〈{NUMBERP},{}〉 for APPLY.

6.4.1 Examples of Type Prescriptions

Before describing how we compute the type prescription for a
defined function, we first consider a few examples.
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Given the definition of APPEND:

Definition

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y),

we conclude that APPEND returns either a LISTP object (due
to the CONS expression) or the second argument, Y. That is, it
is a theorem that:

(OR (LISTP (APPEND X Y))
(EQUAL (APPEND X Y) Y)).

The type prescription for APPEND is thus 〈{LISTP},{Y}〉.
Some examples of type sets computed for APPEND-expressions
are:

expression type set
(APPEND X Y) UNIVERSE

(APPEND X (CONS A B)) {LISTP }
(APPEND X ‘‘NIL’’) {LISTP LITATOM }

Given the definition of REVERSE:

Definition

(REVERSE X)
=

(IF (LISTP X)
(APPEND (REVERSE (CDR X))

(CONS (CAR X) ‘‘NIL’’))
‘‘NIL’’),

we observe that REVERSE either returns a LISTP (because
we have already observed that (APPEND r (CONS c n)) is al-
ways a LISTP) or else returns a LITATOM (because “NIL” is a
LITATOM). Thus any term beginning with the function symbol
REVERSE has type set {LISTP LITATOM }.

Given the definition of SUM:

Definition

(SUM X Y)
=

(IF (ZEROP X) Y (ADD1 (SUM (SUB1 X) Y))),
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we observe that SUM returns either a NUMBERP or its second
argument. Thus, if y is known to be a number, then (SUM x y)
has type set {NUMBERP}.

If we were to define TIMES in terms of SUM 1:

Definition

(TIMES I J)
=

(IF (ZEROP I)
0
(SUM J (TIMES (SUB1 I) J))),

we could observe that TIMES would always return a number.
For, when TIMES returned the 0 it would be returning a num-
ber. When it returned the value of the SUM expression it either
would be returning a number (because SUM may return a num-
ber) or it would be returning the second argument to the SUM
expression (because SUM may return its second argument). But
the second argument to the SUM expression would be a recur-
sive call of TIMES. Thus, it could be nothing but a number.
The computation of the type prescription of a recursive func-
tion involves such an inductive argument.

6.4.2 Computing the Type Prescription

To compute the type prescription for a function, we use a gen-
eralized version of the idea of type set. A definition type set is
a pair consisting of a type set and a finite set of variables. A
term has definition type set 〈ts, s〉, provided ts is a type set, s
is a set of variables, every variable in s occurs in the term, and
the value of the term under any interpretation of the variables
in the term either is a member of a member of ts or is the value
of some member of s under the same interpretation.

For example, a definition type set for the term

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

1We actually define TIMES in terms of the numeric function PLUS.
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is 〈{LISTP},{Y}〉. Given accurate type prescriptions for the
functions concerned, the computation of a definition type set for
an expression (under some assumptions about the definition type
sets of certain terms) is closely analogous to the computation of
a type set for the expression. Because of the similarity, we do
not further discuss the definition type set computation. Instead,
we describe how we use it to discover a type prescription for a
newly defined function.

Note that one way to confirm that 〈ts,args〉 is a type prescrip-
tion for a newly defined function symbol, f, is to assume that
〈ts,args〉 is such a type prescription, to compute a definition type
set, 〈ts’,s’〉 for the body of f (under the assumption that each
formal parameter x of f has definition type set 〈{},{x}〉), and to
check that ts’ is a subset of ts and that s’ is a subset of args.
If so, the definition type set computation above constitutes an
inductive proof that f does have type prescription 〈ts,args〉.

The type prescription 〈UNIVERSE, formals〉, where formals
is the set of formal parameters of f, is a type prescription for any
function f. However, we prefer to find a more restrictive type
prescription. Instead of searching exhaustively through all pos-
sible type prescriptions, we adopt the following search strategy.
First we assume that f has the type prescription 〈{}, {}〉. Then
we compute the definition type set of the body of f. We next as-
sume that f has as its type prescription the pairwise union of the
previously assumed type prescription and the newly computed
definition type set. We iterate until the computed definition type
set is a pairwise subset of the type prescription just previously
assumed. We then use the type prescription just previously as-
sumed as the final type prescription for f. The iteration always
stops because on each iteration the type prescription “grows,”
but there are only a finite number of type prescriptions.

The type prescription computation is performed only after
the definition has been accepted by the definition principle, for
otherwise the inductive argument inherent in the computation
may be invalid.
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6.5 Summary

In this chapter we explained:

What information we glean from assuming a term
true or false,

How we store that information as type sets,

How we compute type sets for terms, and

How we compute type prescriptions for recursive func-
tions from their definitions.

The definition-time discovery of a type set for a function is an
important and sometimes surprising aspect of our mechanical
theorem prover. Recall, for example, in Chapter 2, that when
FLATTEN was defined as:

Definition

(FLATTEN X)
=

(IF (LISTP X)
(APPEND (FLATTEN (CAR X))

(FLATTEN (CDR X)))
(CONS X ‘‘NIL’’)),

the theorem prover announced “Observe that (LISTP (FLAT-
TEN X)) is a theorem.” The fact that FLATTEN always returns
a list is nonobvious, but it is important in proofs about FLAT-
TEN. By following the recipe given above, the reader should
be able to “discover” the theorem (LISTP (FLATTEN X)) for
himself.

6.6 Notes

Since type sets are finite sets, we implement them as bit strings.
For example, we obtain the union of two type sets by computing
their “logical or.”

Because type set information is used so extensively by all our
heuristics, our theorem-proving program never reports the use
of a type set axiom or lemma. The reader may assume that if
a proof involved a function symbol f, then the proof may have
tacitly employed type set lemmas about f.
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Chapter 7

Using Axioms and
Lemmas as Rewrite Rules

We have been discussing the handling of type information and
how it can be used to represent our current set of assumptions as
we walk through a formula. Let us now move on to the second
major aspect of the simplification of expressions: how one can
use axioms and lemmas as rewrite rules.

7.1 Directed Equalities

If one has a lemma of the form:

(EQUAL lhs rhs),

it is sound to use it to replace any instance of lhs with the
corresponding instance of rhs. (Term t is an instance of term
lhs provided t is the result of substituting some substitution into
lhs.)

For example, in Chapter 4 we saw how the theorem:

(EQUAL (IF (IF P Q R) X Y)
(IF P (IF Q X Y) (IF R X Y)))

could be used as a rewrite rule.
In general, we want to use arbitrary user-supplied theorems

as rewrite rules. For example, if we proved (and have been
instructed to use as a rewrite rule):

109
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(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z))),

then whenever we encounter a term of the form (APPEND (AP-
PEND a b) c) we replace it by (APPEND a (APPEND b c)).

Treating equalities in this directed way is arbitrary. Given
that equality is symmetric, it is just as reasonable to replace
(APPEND a (APPEND b c)) with (APPEND (APPEND a b)
c) as vice versa. (Indeed, it is just as reasonable to rewrite
neither term and merely to note that they are equal.) We do
not know how to decide mechanically in which direction to use
a rewrite rule.1 We leave it to the user to declare what theo-
rems are to be used as rewrite rules and to recognize that we
use equalities in this asymmetric, left-to-right fashion when he
formulates theorems.

7.2 Infinite Looping

Even with the proviso that the supplier of theorems be cognizant
of our conventions, many useful equality theorems could lead us
around in circles. A simple example is the commutativity of
PLUS:

*CP1 (EQUAL (PLUS X Y) (PLUS Y X)).

It is definitely advantageous to know that PLUS is commutative.
However, using the above lemma as a simple rewrite rule would
cause the following sequence of rewrites to occur on (PLUS A
B):

(PLUS A B) rewrites to
(PLUS B A), which rewrites to
(PLUS A B), which rewrites to
....

To prevent such loops, one can observe the following simple
(indeed, almost mindless) rule: if a rewrite rule is permutative
(i.e., the left- and right-hand sides are instances of one another),
then do not apply the rewrite rule when the application would

1But see Knuth and Bendix [26] and Lankford and Ballantyne [28] for inter-
esting work on such questions.
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move a term to the left into a position previously occupied by
an alphabetically smaller term.

Thus, while the rule would permit the use of the commuta-
tivity of PLUS to rewrite (PLUS B A) to (PLUS A B), it would
not permit the use of the rule to rewrite (PLUS A B) to (PLUS
B A). While this may seem a capricious way to prevent loops,
it does have a certain normalizing effect on terms. For example,
let us consider another permutative rewrite about PLUS:

*CP2 (EQUAL (PLUS X (PLUS Y Z))
(PLUS Y (PLUS X Z))).

Given the term (PLUS (PLUS A B) C), the following is the only
allowed sequence of rewrites involving *CP1 and *CP2:

(PLUS (PLUS A B) C) rewrites to
(PLUS C (PLUS A B)), using *CP1, which rewrites to
(PLUS A (PLUS C B)), using *CP2, which rewrites to
(PLUS A (PLUS B C)), using *CP1.

Note that at each stage the term is getting alphabetically smaller.
Furthermore, after the third rewrite neither *CP1 nor *CP2 can
be legally applied.

Finally, note that we just proved that PLUS is associative. In
fact, using *CP1, *CP2, and the associativity of PLUS (stated
to right-associate PLUS), we can rewrite any nest of PLUS ex-
pressions to the nest that is right-associated with the arguments
in ascending alphabetic order. Thus any two nests of PLUS ex-
pressions with the same “bag” of arguments can be rewritten
to identical expressions. Moreover, the analogous lemmas about
any other function symbol (such as TIMES or GCD) allow us
to normalize nests of that function symbol.

7.3 More General Rewrite Rules

Up to now we have considered only rewrite rules of the form
(EQUAL lhs rhs). The idea of using a theorem to rewrite ex-
pressions can be generalized considerably. In the first place, any
literal can be interpreted as an equality in our theory. For exam-
ple, (NOT p) can be regarded as (EQUAL p F). If p is Boolean,
then the literal p can be interpreted as (EQUAL p T). If p is



112CHAPTER 7. USING AXIOMS AND LEMMAS AS REWRITE RULES

not Boolean, then, although the literal p cannot be interpreted
as (EQUAL p T), it is sound, knowing that p is nonfalse, to
replace p by T in any position of a formula in which only the
“truth value” and not the identity of p is of concern. For exam-
ple, knowing that p is nonfalse is as good as knowing that it is
explicitly T in the test of an IF. Thus, requiring a rewrite rule
to be of the form (EQUAL lhs rhs) is actually no restriction.

A more substantial generalization is the idea of using multi-
literal formulas as rewrite rules. Consider a formula of the form:

(IMPLIES (AND h1 ... hn)
(EQUAL lhs rhs)).

A “natural” interpretation of this is that any instance of lhs can
be replaced by the corresponding instance of rhs, provided the
corresponding instances of the hi are true.

A good example of such a rule is:

(IMPLIES (NOT (LISTP X))
(EQUAL (CAR X) ‘‘NIL’’)).

A natural way to interpret this as a rewrite rule is to observe that
we can rewrite any expression of the form (CAR x) to “NIL”,
provided we can establish that (LISTP x) is false (in the context
in which the expression occurs).

Once again we see an element of arbitrariness. The above
lemma can just as easily be interpreted as a way to establish
that (LISTP x) is true: establish that (CAR x) is not “NIL”.
Rather than try to develop heuristics for guessing the ways the
lemma should be used (or, worse, using it in all possible ways),
we obtain this information implicitly from the statement of the
lemma. In particular, if the user states a lemma as an implica-
tion, we take it to mean that the conclusion is to be used as a
rewrite rule when the hypotheses are established.

How can we establish the hypotheses? The answer is sim-
ple: rewrite them recursively and if each is reduced to true,
then the conclusion may be applied. By recursively rewriting
hypotheses we are enabling our knowledge of type sets, lemmas,
and recursive functions to be applied to them.

Thus, the following scheme for using rewrite lemmas suggests
itself. Suppose we have a term (f t1 . . . tn) and we have recur-
sively rewritten the arguments, ti, and now wish to apply our
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known lemmas to the term. Then we look for a lemma with a
conclusion of the form (EQUAL lhs rhs), where (f t1 . . . tn) is
an instance of lhs under some substitution s. If one is found, we
instantiate the hypotheses of the lemma with s. Then we recur-
sively rewrite each hypothesis. (Note that, like the tests of IFs
and the literals of a clause, only the truth-value of a hypothesis
matters. Thus, if we know p is not false, we rewrite it to T when
it appears as a hypothesis.) If each of the hypotheses rewrites
to nonfalse, then we replace (f t1 . . . tn) by the instantiated rhs
and then recursively rewrite that. Of course, the application of
the rewrite rule is subject to our rule about infinite looping due
to permutative lemmas.

7.4 An Example of Using Rewrite Rules

Suppose we have proved as rewrite lemmas the following theo-
rems from Chapter 4:

*T1 (EQUAL (VALUE (NORMALIZE X) A) (VALUE X A)),
*T2 (NORMALIZED.IF.EXPRP (NORMALIZE X)),
*T3 (IMPLIES (AND (NOT (TAUTOLOGYP X A))

(NORMALIZED.IF.EXPRP X)
A)

(FALSIFY1 X A)), and
*T4 (IMPLIES (AND (EQUAL (VALUE Y (FALSIFY1 X A))

(VALUE X (FALSIFY1 X A)))
(NORMALIZED.IF.EXPRP X)
(FALSIFY1 X A))

(NOT (VALUE Y (FALSIFY1 X A)))).

The first three are lemmas discussed carefully in Chapter 4.
We have used shorter names here. The fourth theorem, *T4,
is the “bridge” lemma mentioned. It is FALSIFY1.FALSIFIES
phrased in a way that makes it a more powerful rewrite rule
in our system. FALSIFY1.FALSIFIES says that under some
conditions we can conclude a certain thing about (VALUE X
(FALSIFY1 X A)). *T4 says that under identical conditions
we can conclude the same thing about the more general term
(VALUE Y (FALSIFY1 X A)) – provided we can prove those
two VALUE-expressions equal.
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Let us see how our rewrite scheme would prove TAUTOL-
OGY.CHECKER.IS.COMPLETE. After expanding the defini-
tions of TAUTOLOGY.CHECKER and FALSIFY, we obtain:

*T5 (IMPLIES (NOT (TAUTOLOGYP (NORMALIZE P) ‘‘NIL’’))
(NOT (VALUE P (FALSIFY1 (NORMALIZE P) ‘‘NIL’’)))).

We cannot rewrite the hypothesis of *T5. Thus, we start to
rewrite the conclusion of *T5. However, in the process we can
assume the hypothesis true. That is, we can assume:

*A1 (TAUTOLOGYP (NORMALIZE P) ‘‘NIL’’) has type set {F }.

Under this assumption we rewrite the atom of the conclusion of
*T5:

*T5.2 (VALUE P (FALSIFY1 (NORMALIZE P) ‘‘NIL’’)).

We can use *T4 to rewrite this to F (and thus reduce *T5 to
a tautology since *T5.2 is negated in *T5) if we can only es-
tablish the three hypotheses of *T4 after instantiating them by
replacing X by (NORMALIZE P), Y by P, and A by “NIL”.

The first instantiated hypothesis of *T4 is:

*T4.1 (EQUAL (VALUE P (FALSIFY1 (NORMALIZE P) ‘‘NIL’’))
(VALUE (NORMALIZE P) (FALSIFY1 (NORMALIZE P) ‘‘NIL’’))).

But, using *T1, we rewrite the right-hand side of this equality to
precisely the left-hand side (since the VALUE of (NORMALIZE
P) is the VALUE of P). Thus, we have established the first
hypothesis of *T4.

The second hypothesis of *T4 is:

*T4.2 (NORMALIZED.IF.EXPRP (NORMALIZE P)).

But we recursively rewrite this to T using *T2.
The third hypothesis of *T4 is:

*T4.3 (FALSIFY1 (NORMALIZE P) ‘‘NIL’’).

We can rewrite this to T (since it is in a hypothesis position)
using *T3, if we can establish the three hypotheses of *T3. The
first hypothesis of *T3 is:

*T3.1 (NOT (TAUTOLOGYP (NORMALIZE P) ‘‘NIL’’)).
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But according to *A1, the type set of the atom of this literal
is {F}. Thus, the negation of it is T and we have established
*T3.1.

The second hypothesis of *T3 is:

*T3.2 (NORMALIZED.IF.EXPRP (NORMALIZE P)),

which once again rewrites to T using *T2.
The third and final hypothesis of *T3 is just:

*T3.3 ‘‘NIL’’,

which is non-F (by type set reasoning, for example).
Therefore, we apply *T3 to rewrite *T4.3 to T, and hence,

apply *T4 to rewrite *T5.2 to F, and have thus proved *T5.
Of course, we did not have to cite such a complicated exam-

ple to illustrate the use of rewrite lemmas. In particular, the
reader should keep in mind that virtually everything our im-
plementation knows about arithmetic, lists, etc., is represented
with rewrite lemmas.

Below are some simple rewrite lemmas added by our imple-
mentation of the shell principle (see Appendix B):

(EQUAL (CAR (CONS X1 X2)) X1),
(IMPLIES (NOT (LISTP X))

(EQUAL (CAR X) ‘‘NIL’’)),
(EQUAL (EQUAL (CONS X1 X2)

(CONS Y1 Y2))
(AND (EQUAL X1 Y1)

(EQUAL X2 Y2))), and
(EQUAL (SUB1 (ADD1 X1))

(IF (NUMBERP X1) X1 0)).

Note that the last two examples illustrate the very useful idea of
stating a lemma, when possible, as an unconditional rewrite (by
using an IF or other propositional construct in the right-hand
side) rather than as a collection of multiliteral rewrite rules.

7.5 Infinite Backwards Chaining

The idea of recursively appealing to lemmas to establish the
hypotheses of other lemmas is called “backwards chaining.” Im-
plementing it mechanically requires addressing one major prob-
lem: it is possible to backwards chain indefinitely.
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For example, consider the rewrite lemma:

(IMPLIES (LESSP X (SUB1 Y))
(LESSP X Y)),

which says that we can rewrite (LESSP X Y) to T if we can
establish that X is less than Y-1. Note how we might be tempted
to use this theorem to establish that (LESSP I J) is true:

Using the lemma we can prove (LESSP I J),
if only we could prove (LESSP I (SUB1 J)).

Ah ha! We can prove (LESSP I (SUB1 J)),
if only we could prove (LESSP I (SUB1 (SUB1 J))).

Ah ha! We can prove (LESSP I (SUB1 (SUB1 J))),
if only ...

To prevent this from occurring, we remember what we are trying
to do and we give up when certain contraindications arise.

In particular, we keep a list of the negations of the hypotheses
we are currently trying to establish. Here is how we use the list.
Suppose we are trying to apply a rewrite rule r, one of whose
hypotheses is the term new. If we find new on the list, then it
is sound to assume new true and spend no further time trying
to establish it. (That is, because new is on the list, we know
that we are in the process of trying to establish its negation.
But it is permitted to assume p while trying to establish (NOT
p).) If we find new’s negation on the list, then we are looping,
and we abandon the attempt to apply r. We also decide we are
looping (but in a much more insidious way) when we find that
the atom of new is an “elaboration of” the atom of one of the
hypotheses we are already trying to establish. If none of these
contraindications are present, we store the negation of new on
the list, and then recursively rewrite new.

The basic idea of “elaboration” is suggested by the example
above. We say that new is an elaboration of old if either (1) new
is identical to old or (2) the number of occurrences of function
symbols in new is greater than or equal to the number in old
and new is “worse than” old.

We say that new is worse than old if (1) old is a variable and
properly occurs in new, or (2) neither old nor new is a variable
and either (2.a) new and old have different function symbols and
some subterm of new is worse than or identical to old, or (2.b)
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some argument of new is worse than the corresponding argument
of old but no argument of new is a variable or an “explicit value”
unless the corresponding argument of old is, and furthermore no
argument of old is worse than the corresponding argument of
new. The definition of “explicit value” is given in Chapter 8.

Thus, (LESSP I (SUB1 (SUB1 J))) is worse than (LESSP I
(SUB1 J)). (LESSP I (SUB1 (SUB1 J))) is not considered worse
than (LESSP (F I) (SUB1 J)) because I is a variable and (F I)
is not.

7.6 Free Variables In Hypotheses

The discussion of how we establish the hypotheses of rewrite
lemmas ignored an important point. We said that after discov-
ering that the term to be rewritten is an instance of the left-
hand side of the rewrite lemma’s conclusion, we instantiate the
hypotheses and rewrite them recursively. However, it is possible
that not all the variables in the hypotheses are mentioned in
the left-hand side of the conclusion, and hence, some variable
may not be instantiated. We refer to such a variable as a “free”
variable.

An example of a useful rewrite lemma with free variables in
it is:

(IMPLIES (AND (LESSP X Y)
(LESSP Y Z))

(LESSP X Z)).

That is, we can rewrite (LESSP X Z) to T if we can establish
that X is less than Y and Y is less than Z.

The correct way to use such a lemma is to try to find an in-
stantiation for Y that makes one of the two hypotheses true and
then to rewrite the appropriate instance of the other hypothesis
to establish it.

We try to find an instantiation y for Y by searching through
the current type set assumptions, looking for a term (LESSP x
y) assumed to be true, where x is the instantiation of X picked
up when (LESSP X Z) was initially instantiated. If such a y is
found, we use it for Y while trying to establish the remaining
hypothesis.
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Our approach to handling free-variables is very weak. In
particular, our system cannot establish a hypothesis with a free-
variable in it unless an instance of the hypothesis has previously
been assumed true.

Here is an example of the inadequacy of our handling of free-
variables. Assume we have proved the two lemmas:

(IMPLIES (NOT (ZEROP X))
(LESSP (SUB1 X) X)),

(IMPLIES (NOT (ZEROP Y))
(LESSP X (PLUS X Y))).

and suppose we wish to prove:

(IMPLIES (AND (NOT (ZEROP I))
(NOT (ZEROP J)))

(LESSP (SUB1 I)
(PLUS I J))).

All that is required is a single application of the transitivity
of LESSP, using I as the choice for Y and the two previously
mentioned lemmas to establish the hypotheses. Our system is
not able to do this.

The system can prove this lemma (and hundreds like it) by
induction. But it is painful to the user to state explicitly a
theorem that is an easy consequence of substitutions and modus
ponens.



Chapter 8

Using Definitions

We now move on to the third (and last) fundamental activity
involved in simplifying expressions: the use of function defini-
tions.

Suppose we have a function definition of the form:

(f v1 ... vn) = body.

By the axioms of equality we can replace a call of f, (f t1 . . . tn),
by the body of f, after substituting the ti for the corresponding
formals in the body. We call this “opening up” or “expanding”
the function call.

Since a function definition is just an equation, there is in prin-
ciple no difference between using function definitions and using
other equality theorems. However, following the rules sketched
above, we might expand recursive definitions indefinitely, since
the recursive calls in the instantiated body could also be ex-
panded.

Making intelligent decisions about whether to use a defini-
tion is crucial to proving theorems in a theory with a definition
principle (be it a recursive one or not). Unnecessary expansion
of definitions will swamp a theorem prover (mechanical or oth-
erwise) with irrelevant detail. Failure to expand a definition can
prevent a proof from being found at all.

In studying many hand proofs we have learned three heuris-
tics that are useful to know when considering whether to expand
a recursive definition. We discuss each of these in turn.

119
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8.1 Nonrecursive Functions

If one encounters a function call of f, and f is nonrecursive, it
is clear that expanding its definition is safe in the sense that it
will not lead to infinite loops.

In general, it is not necessarily wise to open up a function
simply because it is safe. For example, if P is defined nonrecur-
sively but the definition requires several pages to write down,
then the theorem (IMPLIES (P X) (P X)) will take longer to
prove if P is opened up. Nevertheless, our theorem prover opens
up every nonrecursive call it encounters.

This heuristic is tolerable only because most of the nonrecur-
sive functions with which our theorem prover deals have small
bodies. Recall the definitions of such typical nonrecursive func-
tions as NOT, AND, ZEROP, and FALSIFY.

8.2 Computing Values

It is sometimes possible to open up recursive functions and not
introduce new recursive calls. For example, recall the definition
of APPEND:

Definition

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

and consider the term:

(APPEND (CONS 1 (CONS 2 ‘‘NIL’’)) (CONS 3 ‘‘NIL’’)).

If we open up APPEND repeatedly and simplify the result we
obtain:

(CONS 1 (CONS 2 (CONS 3 ‘‘NIL’’))),

completely eliminating APPEND.
The key to this particular example is the use of “explicit val-

ues” as arguments. Examples of explicit values are “NIL”, 0, 1
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(i.e., (ADD1 0)) and (CONS 1 “NIL”). An explicit value is de-
fined to be either T, F, a bottom object of some shell, or else the
constructor of some shell applied to explicit values satisfying the
type restrictions for the constructor. Thus, while T and (ADD1
0) are explicit values, (ADD1 T) is not. (We will later need
the concept of an explicit value template, to wit: a nonvariable
term composed entirely of shell constructors, bottom objects,
and variables. Examples of explicit value templates are (CONS
X “NIL”) and (ADD1 I).)

The reason explicit values are mathematically interesting is
that they constitute a normal form for a certain class of expres-
sions. It can be proved inductively that two explicit values are
equal if and only if they are identical terms. If we did not require
that each component of an explicit value be of the right type,
then the theorem just mentioned would have counter examples
(ADD1 T) and (ADD1 0). For (ADD1 T) and (ADD1 0) are
equal but not identical.

We call a function f explicit value preserving if and only if f is
TRUE, FALSE, IF, EQUAL, one of the functions introduced by
the shell principle, or f was defined under our principle of defi-
nition and the body of f calls only f or explicit value preserving
functions. Most of the functions with which we deal are explicit
value preserving. The function EVAL, used in Chapter 17, is
an example of a function in our theory that is not explicit value
preserving because it uses the undefined function APPLY. If f is
explicit value preserving and t1, . . . , tn are explicit values, then
(f t1 . . . tn) can be rewritten to a unique equivalent explicit
value by literally computing it from the axioms and definitions.

Thus, we know we can open up (APPEND “NIL” (CONS 3
“NIL”)), for example, without even worrying that we will indef-
initely expand the recursion in the body.

In fact, we do not require that all the arguments be explicit
values. Recall that when we define a recursive function, the defi-
nition principle requires that we find a measure and well-founded
relation justifying the function’s definition. In APPEND, we see
that the function is accepted because (COUNT X) gets LESSP-
smaller on each (i.e., the) recursive call.
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We say that {X} is a “measured subset” of the formals of
APPEND since a measure of that subset decreases on every re-
cursive call in the definition of APPEND (we will define “mea-
sured subset” in Chapter 14). If some subset of the arguments
to a call (f t1 . . . tn) of a function are explicit values, and that
subset “covers” a measured subset of the function (in the sense
that ti is an explicit value when the ith formal parameter of f is
in the subset), then we open up the call.

For example, we open up:

(APPEND (CONS 1 (CONS 2 ‘‘NIL’’)) y),

regardless of what y is, and eventually get something that does
not involve APPEND at all (except where it might occur in y),
namely:

(CONS 1 (CONS 2 y)).

Of course, in general there may be more than one measured
subset. For example, in LESSP:

Definition

(LESSP X Y)
=

(IF (ZEROP Y)
F
(IF (ZEROP X)

T
(LESSP (SUB1 X) (SUB1 Y))))

there are two measured subsets, {X} and {Y}. Thus, we could
open up (LESSP x 2) and eventually get (after simplification):

(OR (NOT (NUMBERP x))
(EQUAL x 0)
(EQUAL (SUB1 x) 0)).

That is, opening up (LESSP x 2) forces us to consider the
cases: x is not a number, is 0, or is 1.

8.3 Diving In to See

The above two heuristics only scratch the surface and would
not allow us to prove many theorems by themselves, because
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they attempt to answer the question “Should I open up (f t1 . . .
tn)?” without considering the subterms of f’s body. In general,
the only way an intelligent decision can be made is to explore the
body of f and see whether it has anything to contribute. This
can be done by rewriting the body recursively, remembering
that when a formal parameter, vi, of f is encountered it should
be replaced by the already simplified ti. The result will be a new
term, val, and we must then decide whether we would prefer to
keep (f t1 . . . tn) or val.

One must be careful, when rewriting the body of f recursively,
not to give similar consideration to the recursive calls of f, since
that would lead to nonterminating recursion. We have found
that a suitable rule to follow is to keep a list of the function
names being tentatively opened up, and to refuse to consider
opening recursive calls of those functions.

Note that because we rewrite the bodies of functions recur-
sively before deciding whether to introduce those expressions
into the conjecture, we bring all our knowledge about type sets,
previously proved results, and recursive functions to bear on the
definition.

Sometimes the result of rewriting a body is just an instan-
tiated copy of the body. For example, tentatively opening up
(APPEND a b) may lead to:

(IF (LISTP a) (CONS (CAR a) (APPEND (CDR a) b)) b).

But, for example, if our type set or lemma reasoning could con-
clude that (LISTP a) were false, the result would be simply
b. If a were of the form (CONS u v), then the result would
be (CONS u (APPEND v b)), since axioms inform us of such
things as (LISTP (CONS u v)) and (EQUAL (CAR (CONS u
v)) u).

Sometimes the result is less trivial. For example, the recur-
sive call in the definition of (QUOTIENT I J) is (QUOTIENT
(DIFFERENCE I J) J). Had we previously proved the lemmas:

(IMPLIES (NUMBERP I)
(EQUAL (DIFFERENCE (PLUS J I) J) I)) and

(NOT (LESSP (PLUS I J) J)),

and if we knew that j were non-ZEROP and i were a number,
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then the result of tentatively opening up (QUOTIENT (PLUS
j i) j) would be (ADD1 (QUOTIENT i j)).

Thus, on complicated function bodies, we might do a consid-
erable amount of simplification before even beginning to decide
whether we want to keep the expanded body. We have found
that more economical methods of deciding whether to use a defi-
nition (such as preprocessing it, or exploring it without actually
simplifying it) are inadequate because they do not take into
account all that we know at the moment about the concepts
involved. Since failure to open a definition at the right time will
hide information from the proof and thus prevent a proof, it is
crucial to bring one’s full knowledge (both global and contex-
tual) to the problem.

Thus, having obtained the simplified function body, val, we
must decide if it is “better” than the call it would replace, (f t1
. . . tn).

8.3.1 Keeping Nonrecursive Expansions

If val does not mention f as a function symbol, then we consider
val to be better than (f t1 . . . tn). This happens frequently.
For example, the function may be directed down a nonrecursive
branch (as by the base case of an induction), or the recursive
calls might be reduced to nonrecursive expressions by contextual
information or lemmas. As an example of the latter, consider
expanding (MEMBER a b) under the assumption that (MEM-
BER a (CDR b)) is non-F (as might be supplied by an induction
hypothesis), where MEMBER is defined thus:

Definition

(MEMBER X L)
=

(IF (LISTP L)
(IF (EQUAL X (CAR L))

T
(MEMBER X (CDR L)))

F).

In this case, type set reasoning will allow us to replace (MEM-
BER a (CDR b)) in the body by T. Then (IF (EQUAL a (CAR
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b)) T T) will reduce to T, and then (IF (LISTP b) T F) will
reduce to (LISTP b) as the final result. As another example,
consider (QUOTIENT I I). The recursive call is (QUOTIENT
(DIFFERENCE I I) I), which, if we know the obvious facts
about DIFFERENCE, will reduce to (QUOTIENT 0 I), which
can be expanded again to eliminate QUOTIENT altogether by
the previously mentioned heuristic involving explicit values in
measured subsets.

8.3.2 Keeping Recursive Expansions

If the tentative result, val, involves recursive calls, then we are
forced to choose between those calls and (f t1 . . . tn). We have
found that it is usually a good idea to expand (f t1 . . . tn) (i.e.,
replace it by val) if each of the calls of f in val has one of three
“good” properties compared to (f t1 . . . tn).

No New Terms

The first “good” property is simple and yet the most fundamen-
tal: If each of the arguments of a call of f in val already appears
in the conjecture being proved, then the call is good. For ex-
ample, if the conjecture already involves (CDR a) and b, then
(APPEND a b) is best expressed in terms of (APPEND (CDR
a) b). This heuristic has a strong normalizing effect on the con-
jecture; terms are expressed in common terms when possible.
Of course, soon the conjecture “settles down” to those common
terms. How is it that we ever open up anything again? The
answer is induction.

For example, suppose we are proving some fact about (AP-
PEND A B). We simplify it as much as possible. But if (CDR
A) is not mentioned in the conjecture, we will not expand (AP-
PEND A B) to introduce (APPEND (CDR A) B). But if induc-
tion supplies us with an induction hypothesis about (CDR A),
it suddenly becomes a good idea to express (APPEND A B) in
terms of (APPEND (CDR A) B).

This first “good” property accounts for the vast majority of
openings performed by our program. As indicated, however, we
have found two other useful properties.
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More Explicit Values as Arguments

The second “good” property of a recursive call is that it contains
more explicit values as arguments than (f t1 . . . tn). Introducing
an explicit value where before we had an arbitrary term is a good
idea, since we can usually further simplify matters.

Less Complex Controllers

The third “good” property of a recursive call in the tentative
expansion is motivated by the example (LESSP I (ADD1 J)).
We have found in our hand proofs that it is usually more conve-
nient to express this as (LESSP (SUB1 I) J) – that is, to allow
the recursive call to introduce (SUB1 I) where no (SUB1 I) ap-
peared before, in order to get rid of (ADD1 J). As we will see
in Chapter 10, we can usually eliminate expressions like (SUB1
I) in other ways. Thus, the third “good” property of recursive
calls is that the symbolic complexity of some measured subset
is smaller than the complexity of that subset in the original (f
t1 . . . tn) call. A heuristically adequate measure of symbolic
complexity is the number of occurrences of function symbols.
In computing the symbolic complexity of (IF x y z), however,
we just take the maximum of the complexities of y and z, since
after the IF is distributed on the far outside of the conjecture,
only y and z will be arguments to the recursive call.



Chapter 9

Rewriting Terms and
Simplifying Clauses

9.1 Rewriting Terms

The three preceding chapters have presented the major ideas
involved in rewriting terms. In the next paragraph we explain
the context in which we do the rewriting. Then, we describe
how we put the various ideas together to rewrite terms.

When we rewrite a term, we do so in the context specified by
two lists of assumptions. The first list, called the type set alist,
is an alist of assumptions about the type sets of certain terms.
The second list, called the variable alist, is an alist associating
terms with variables and is used to avoid carrying out explicit
substitutions. For example, when we explore the definition of
APPEND while trying to expand (APPEND (CONS A B) C),
we use the variable alist to remember that the first argument is
(CONS A B) and the second is C, by associating (CONS A B)
with the first formal parameter of APPEND, X, and associating
C with the second formal parameter, Y. If the pair 〈v,t〉 is on
the variable alist, we say v is bound, and that t is the binding of
v. If v is bound to t, then v is assumed to be equal to t.

We proceed as follows to rewrite x under a type set alist and
a variable alist.

127
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9.1.1 Rewriting a Variable

If x is a variable, we ask if x is bound. If so, let t be its binding.
Because we will have previously rewritten t, we return t as the
result of rewriting x.1 If x is not bound, we return x.

If x is not a variable, we consider the cases on the form of x.

9.1.2 Rewriting Explicit Values

If x is an explicit value, we return x.

9.1.3 Rewriting If-expressions

If x is of the form (IF test left right), then we recursively rewrite
test and obtain some new term, test’. If test’ must be true
or must be false under the assumptions in the type set alist,
we recursively rewrite and return left or right, as appropriate. If
test’ can apparently be either true or false, we recursively rewrite
left using the type set alist obtained by assuming test’ true, and
we recursively rewrite right using the type set alist obtained by
assuming test’ false. Suppose this produces left’ and right’.

We then try to apply each of the following rewrite rules for
IF-expressions to (IF test’ left’ right’). We return the result of
the first applicable rule (if any), or else we return (IF test’ left’
right’):

(EQUAL (IF X Y Y) Y),
(EQUAL (IF X X F) X), and
(EQUAL (IF X T F) X), applied only if X is Boolean.

9.1.4 Rewriting Equal-expressions

If x is of the form (EQUAL t s), then we first obtain t’ and s’
by recursively rewriting t and s.

If t’ and s’ are identical, we return T.
If t’ and s’ could not possibly be equal, we return F. We

know four ways to decide that two terms are definitely unequal:

1Actually, t would have been rewritten under the assumptions available when
it was bound to x. It is possible that by rewriting t again, under the current set of
assumptions, we could further simplify it. In one of many heuristic compromises
between power and efficiency, we do not resimplify t before returning it.
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(a) their type sets do not intersect, (b) they are distinct explicit
values, (c) one term is a bottom object and the other is a call of
a shell constructor, or (d) one term is a call of a shell constructor
and the other term occurs as a component (of the right type) in
the first.

If none of the above rules apply, we next try rewriting (EQUAL
t’ s’) with each of the following rewrite rules:

(EQUAL (EQUAL X T) X), applied only if x is Boolean,
(EQUAL (EQUAL X (EQUAL Y Z))

(IF (EQUAL Y Z)
(EQUAL X T)
(EQUAL X F))),

(EQUAL (EQUAL X F) (IF X F T)).

Let val be the result of the first applicable rewrite, or (EQUAL
t’ s’) if none applies. We return the result of rewriting val with
all known rewrite lemmas.

To rewrite a term val with lemmas, we consider all known
rewrite lemmas in the reverse order in which they were intro-
duced and “apply” the first “applicable” lemma. If no lemma is
applicable, we return val.

A rewrite lemma:

(IMPLIES (AND h1 ... hn)
(EQUAL lhs rhs))

is applicable to val if val is an instance of lhs (under some substi-
tution s on the variables of lhs), s does not violate the alphabetic
ordering restriction if (EQUAL lhs rhs) is permutative, and we
can establish the hi.

To establish a hypothesis containing no free variables, we
rewrite the hypothesis, using s as the alist specifying the values
of variables. To establish a hypothesis containing free variables,
we try to extend s so that under the extended substitution the
hypothesis is one of the terms currently assumed true.

If the lemma is applicable, then we return the result of rewrit-
ing rhs (under the alist s plus any additional substitution pairs
obtained in relieving hypotheses containing free-variables).

Note that this scheme allows us to use lemmas that rewrite
equalities. For an example of such a lemma, consider:
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(EQUAL (EQUAL (PLUS X Y) (PLUS X Z))
(EQUAL (FIX Y) (FIX Z))),

which allows us to “cancel” the identical first arguments of two
equated PLUS-expressions.

9.1.5 Rewriting Recognizer Expressions

If x is of the form (r t), where r is a shell recognizer, we recur-
sively rewrite t to obtain t’.

Then, if the type set of t’ is {r}, we return T.
If the type set of t’ does not include r as an element, we

return F.
Otherwise, we rewrite (r t’) with lemmas (as above).

9.1.6 Rewriting Other Expressions

Otherwise, x is of the form (f t1 . . . tn). We first rewrite each
ti to ti’. If f is nonrecursive or a measured subset of the ti’ are
explicit values, we rewrite the body of f under a variable alist
that associates each formal with the corresponding ti’ and return
the result. If f is on the list of function names being tentatively
expanded, we return (f t1’ . . . tn’). Otherwise, we rewrite (f t1’
. . . tn’) with lemmas (as above).

If no rewrite rule is applicable, we determine whether f has
a definition. If so, we add f to the list of functions being ten-
tatively expanded, we rewrite the body of f under a variable
alist associating the formals of f with the corresponding ti’, and
then we compare its rewritten body with (f t1’ . . . tn’) as in
Chapter 8 to see which we should keep.

If f is not a defined function, we return (f t1’ . . . tn’).

9.1.7 Caveats

There are three discrepancies between the above description and
our actual implementation.

First, as noted in Chapter 7, we distinguish between when we
are concerned with maintaining the equality of the term being
rewritten and when we are concerned only with maintaining its
“truth-value.” In particular, we know that we are interested
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only in truth-values when we are rewriting the atom of a literal
in a clause, the test of an IF, or a hypothesis to a rewrite lemma.
At all other times we must maintain strict equality (including,
of course, when rewriting subterms of tests, etc.).

A second discrepancy is that we keep track of whether we are
“hoping” the term we are rewriting will be rewritten to T or F
(or be rewritten arbitrarily). In general, we do not care how the
term rewrites. However, when we try to establish a hypothesis of
a lemma, we do not waste time trying to rewrite the hypothesis
to false. Thus, when we rewrite the hypotheses of lemmas, we
actually rewrite the atom of the literal in the hypothesis. If the
literal is positive, we “hope” the atom will be rewritten to T. If
the literal is negative, we “hope” the atom will be rewritten to
F. If we hope a term will be rewritten to T (or actually, non-F),
we apply a rewrite rule only when the right-hand side of the
conclusion is not F. The analogous statement holds when we
hope the term will be rewritten to F. If we do not care how the
term rewrites, we apply all rules as described.

Thus, if we were trying to establish that (VALUE x a) were
true so that we could make a rewrite, we would not even consider
applying a lemma with conclusion (NOT (VALUE x a)).

The third discrepancy is that before we return from rewrit-
ing, we ask if the assumed type set of the answer is {T} or {F}
(or, in the case where we are interested only in the “truth value”
rather than the identity, we ask if the type set does not include
F ), and if so, return instead T or F as appropriate.

9.2 Simplifying Clauses

Given the ability to rewrite terms under a set of assumptions, it
is easy to simplify clauses by sequentially rewriting the literals.
The only interesting thing about simplifying clauses is how one
can convert IF-expressions to clausal form “on-the-fly.”

9.2.1 Converting If-expressions to Clausal Form

Suppose we are in the process of simplifying a clause:

{new1 ... newn old1 old2 ... oldk},
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by rewriting each of the literals in it. Suppose we have already
rewritten those to the left of old1 and are now ready to rewrite
old1 itself.

Then we assume all the literals except old1 to be false. (Actu-
ally, if a literal has the form (NOT atm) we assume atm true.)
Then we rewrite the atom of old1 using the type set alist ob-
tained from the foregoing assumptions and the empty variable
alist. We thus obtain some value which we negate if old1 was a
negative literal. Let val be the result.

If val is T, we have established that the clause is true. If
val is F, we delete old1 from the clause and continue with old2.
Otherwise, we can replace old1 by val and move on to old2.

However, if val contains IF-expressions, we first split the
clause into as many new clauses as necessary to remove all IFs
from val. To do this, we first move all the IFs in val to the top,
by repeatedly applying the rewrite rule:

(EQUAL (f X1 ... (IF P Q R) ... Xn)
(IF P

(f X1 ... Q ... Xn)
(f X1 ... R ... Xn))),

where f is any function symbol, to val until all the IFs are outside
all other function symbols.

Then we repeatedly apply the rule:

{new (IF p q r) old} ↔
{new (NOT p) q old} & {new p r old}

until none of the IFs introduced by val remain.
This results in a conjunction of clauses which we continue to

simplify recursively. We continue the rewriting process in each
of these clauses, starting with old2. The resulting set of clauses
is returned as the value of simplifying our input clause.

Of course, if we changed anything (i.e., the resulting set of
clauses is different from the singleton set containing our input
clause), then each of the resulting clauses is poured over the
waterfall again to be resimplified. Thus, we will get the op-
portunity to resimplify p, say, in the context of assuming the
rewritten old2 false.
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9.2.2 Caveats

There are three discrepancies between this description and our
actual implementation.

First, before we begin simplifying the literals of a clause,
we check whether any literal has the form (NOT (EQUAL x
t)), where x is a variable and t is a term not containing x as a
variable. If so, we replace every occurrence of x in the clause
with t and delete the literal.

The second discrepancy is that when we remove all of the IFs
from val by splitting the clause into a set of clauses, we actually
remove from the set any clause that is subsumed by any other
clause.2

The third discrepancy is that we implement Robinson’s “re-
placement principle” [49] here. In particular, if the splitting
process produces two clauses one of whose ground resolvents
subsumes either of them, we throw out the subsumed clause(s)
and keep the resolvent.

For example, the description above would transform the clause:

{(IF P
(IF Q R S)
(IF Q R V))}

into the following four clauses:

{(NOT P) (NOT Q) R}

{(NOT P) Q S}

{P (NOT Q) R}

{P Q V},
while our implementation would produce just three clauses:

{(NOT Q) R}
{(NOT P) Q S}.
{P Q V}

In particular, we must prove {(NOT Q) R} given P and {(NOT
Q) R} given (NOT P). Thus, we decide to prove {(NOT Q) R}.

2We use a subsumption algorithm of J.A. Robinson (private communication)
combining backtracking with the delicate treatment of unification in [50].
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9.3 The Reverse Example

Let us now look at an example theorem. We have picked a
simple one so that we can explain each “move” carefully.

Consider the idea of reversing a list. The reverse of the empty
list is the empty list. The reverse of the list x1, x2, . . . , xn is xn,
. . . , x2, x1. It can be recursively obtained by reversing x2, . . . ,
xn to get xn, . . . , x2 and then adding x1 to the right-hand end.

Definition

(REVERSE X)
=

(IF (LISTP X)
(APPEND (REVERSE (CDR X))

(CONS (CAR X) ‘‘NIL’’))
‘‘NIL’’).

If X is a “proper list” then (REVERSE (REVERSE X)) is just
X. A “proper list” is one that terminates in “NIL” rather than
some other non-LISTP object. Its definition is:

Definition

(PLISTP X)
=

(IF (LISTP X)
(PLISTP (CDR X))
(EQUAL X ‘‘NIL’’)).

That is, if X is a LISTP it must have a proper CDR, and if X
is not a LISTP it must be “NIL”.

Let us prove:

*RR (IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X)) X)),

using only the axioms of our theory of Chapter 3 and the defi-
nitions of APPEND, REVERSE, and PLISTP.

9.4 Simplification In the Reverse Example

A careful inspection of *RR (considered as a clause of two lit-
erals) will show that we can do nothing to simplify it further.



9.4. SIMPLIFICATION IN THE REVERSE EXAMPLE 135

In particular, we have no lemmas to apply to it, and none of
the recursive functions will expand without violating our guide-
lines. Perhaps we can prove it by induction. We will discuss
how induction analysis is handled in Chapter 15. At the mo-
ment, suffice it to say that we are led to the following three new
conjectures to prove:

*RR1 (IMPLIES (AND (NOT (LISTP X))
(PLISTP X))

(EQUAL (REVERSE (REVERSE X)) X)),
*RR2 (IMPLIES (AND (LISTP X)

(NOT (PLISTP (CDR X)))
(PLISTP X))

(EQUAL (REVERSE (REVERSE X)) X)),
and
*RR3 (IMPLIES (AND (LISTP X)

(PLISTP X)
(EQUAL (REVERSE (REVERSE (CDR X)))

(CDR X)))
(EQUAL (REVERSE (REVERSE X)) X)).

(The conjunction of *RR2 and *RR3 is propositionally equiva-
lent to the induction step.)

Let us now try to prove each of these by simplification. That
means we try to rewrite each of the literals in the clausal form
of the formulas, assuming the other literals to be false.

We begin with *RR1. The intuitive reason *RR1 is true is
that if X is not a LISTP but is a proper list, it must be “NIL”,
and if it is “NIL” then we can confirm with computation that
(REVERSE (REVERSE X)) is X. To show how our mechanical
process follows this line of reasoning, we proceed to simplify each
literal in turn.

*RR1 is the three-literal clause:

{(LISTP X)
(NOT (PLISTP X))
(EQUAL (REVERSE (REVERSE X)) X)}.

Assuming the second and third literals false, we first try to
rewrite the first literal, (LISTP X). However, it cannot be sim-
plified because the type set of X is UNIVERSE and we have
no known rewrite lemmas for LISTP. Next, assuming the first
and third literals false, we rewrite the atom of the second literal,
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(PLISTP X). When we assume (LISTP X) false, we note that X
has type set UNIVERSE - {LISTP}. Thus, when we explore the
definition of PLISTP while trying to expand (PLISTP X), we
rewrite the test (LISTP X) to F and thus rewrite (PLISTP X)
to (EQUAL X “NIL”). Thus, the intermediate clause obtained
after rewriting the first two literals of *RR1 is:

{(LISTP X)
(NOT (EQUAL X ‘‘NIL’’))
(EQUAL (REVERSE (REVERSE X)) X)}.

Finally, we explore the third literal, assuming (LISTP X) false
and (EQUAL X “NIL”) true. The inner REVERSE term in
the third literal simplifies to “NIL” (because X is now known
to have type set {LITATOM }) and so the outer REVERSE
term opens up to “NIL”. Thus, the value of the third literal is
(EQUAL “NIL” X), which has type set {T} and hence is T.
Having reduced a literal of *RR1 to T, we have proved it.

Goal *RR2 is also easy. Reasoning informally, we can see
that if X is a LISTP and its CDR is not proper, then X cannot
be a proper list. But this contradicts the third literal of *RR2.
Our simplification heuristic proceeds as follows. The first lit-
eral in the clausal form of *RR2, (NOT (LISTP X)), cannot be
simplified at all. The second, (PLISTP (CDR X)), is also in
simplest form. Of course, we consider opening PLISTP up, but
find that such a move would introduce (CDR (CDR X)), which
is not currently involved in *RR2. But when we simplify the
atom, (PLISTP X), of the third literal, (NOT (PLISTP X)),
in the clausal representation of *RR2, we assume X has type
set {LISTP} and (PLISTP (CDR X)) has type set {F} (i.e., is
false). Thus, (PLISTP X) opens up to F (because its recursive
call, (PLISTP (CDR X)), has been assumed false), and the third
literal of *RR2 is thus rewritten to (NOT F) or T. Consequently,
we are done with *RR2.

Goal *RR3 is the interesting one. The first hypothesis, (LISTP
X), cannot be simplified. The second, (PLISTP X), can be re-
placed by (PLISTP (CDR X)), since when we tentatively open
up PLISTP assuming (LISTP X) is false, we obtain (PLISTP
(CDR X)), and (CDR X) is mentioned in the conjecture already.
The third hypothesis, (EQUAL (REVERSE (REVERSE (CDR
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X))) (CDR X)), cannot be simplified without introducing recur-
sive calls (such as (REVERSE (CDR (CDR X)))) that violate
our guidelines. Finally, in the conclusion, (EQUAL (REVERSE
(REVERSE X)) X), we can open up (REVERSE X) to:

(APPEND (REVERSE (CDR X)) (CONS (CAR X) ‘‘NIL’’)),

since (CDR X) is already involved in the conjecture. None of
our rules allow the resulting conjecture to be further simplified
and we are left with:

*RR4 (IMPLIES (AND (LISTP X)
(PLISTP (CDR X))
(EQUAL (REVERSE (REVERSE (CDR X)))

(CDR X)))
(EQUAL (REVERSE (APPEND (REVERSE (CDR X))

(CONS (CAR X) ‘‘NIL’’)))
X)).

To prove this, we must do something besides the kind of simplifi-
cation we have been discussing. In fact, the proof will ultimately
require many of our heuristics and we will advance the proof in
each of the subsequent chapters on proof techniques.



138CHAPTER 9. REWRITING TERMS AND SIMPLIFYING CLAUSES



Chapter 10

Eliminating Destructors

10.1 Trading Bad Terms for Good Terms

A standard trick when trying to prove a theorem involving X-1,
where the variable X is known to be a number other than 0, is
to replace X everywhere by Y+1. This means that the formula
now mentions Y and Y+1 where before it mentioned X-1 and
X. This trading of SUB1 for ADD1 makes the relation between
X-1 and X more obvious: representing X as (ADD1 Y) makes
it clear that X is a number, that it is not 0, and that (SUB1 X)
(i.e., Y) literally occurs within its structure.

Consider another example. A formula about (QUOTIENT
X Y) and (REMAINDER X Y) (i.e., the integer quotient and
remainder of X divided by Y) can be reformulated by represent-
ing X as I+Y*J, where I is a number less than Y. This trades
the terms (QUOTIENT X Y), (REMAINDER X Y), and X, for
J, I, and I+Y*J. In particular, it eliminates QUOTIENT and
REMAINDER at the expense of introducing PLUS and TIMES.
This is usually a good trade because it makes clear that the quo-
tient and remainder can have arbitrary values (within certain
constraints). For example, we could induct on J, the number of
times Y divides X. Furthermore, PLUS and TIMES are simpler
functions than QUOTIENT and REMAINDER, and it happens
that we know a lot of theorems about them. Once we have
proved that any number can be represented as I+Y*J, where
I is less than Y, we can deduce things about the quotient and
remainder using our already established knowledge of addition

139
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and multiplication.
What justifies this elimination of some terms in favor of oth-

ers? Let’s look at the elimination of SUB1 in favor of ADD1
more carefully and explain it in terms of axioms about arith-
metic.

Suppose we have a formula of the form:

*1 (p (SUB1 x) x),1

where x is a variable and (SUB1 x) actually occurs in the for-
mula.

If x is not a number, or else is 0, then the (SUB1 x) term is
degenerate and it is useful to consider that case separately. But
if x is known to be a number and not 0, then we can soundly
replace x by (ADD1 y), where y is a new variable known to be
numeric. The result is that instead of proving *1 we try to prove
both of the following:

*2 (IMPLIES (OR (NOT (NUMBERP x))
(EQUAL x 0))

(p (SUB1 x) x)) and
*3 (IMPLIES (NUMBERP y)

(p y (ADD1 y))).

Why is this move sound? That is, why does the conjunction of
*2 and *3 suffice to prove *1? Clearly, if x is nonnumeric or is
0, then *2 implies *1. On the other hand, if x is numeric and
non-0, then we can derive *1 from *3 as follows. Instantiate *3,
replacing y by (SUB1 x), to obtain:

(IMPLIES (NUMBERP (SUB1 x))
(p (SUB1 x) (ADD1 (SUB1 x)))).

1We now loosen our notational conventions by permitting lower case words
in function symbol positions to represent schemas. For example, we think of (p
(SUB1 x) x) as standing for a term such as (EQUAL (PLUS V Y) (TIMES (SUB1
X) Z)). If (p (SUB1 x) x) was understood to denote the above example, then when
we refer to (p A B) we would have in mind (EQUAL (PLUS V Y) (TIMES A
Z)). It is possible to abuse notational conventions; however, since we are now
engaged in explaining heuristics and assume that the reader is mathematically
competent, we feel that our occasional use of this convention does not warrant
the complexity that precision here would entail. In sections “precisely” describing
how our theorem prover works, we revert to using lower case words in function
symbol positions to represent only function symbols, not schemas.
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Then use the axiom:

*A1 (IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0)))

(EQUAL (ADD1 (SUB1 X))
X))

to rewrite (ADD1 (SUB1 x)) to x (since we are assuming x is a
non-0 number). This produces:

(IMPLIES (NUMBERP (SUB1 x))
(p (SUB1 x) x)).

Finally, use the axiom:

*A2 (NUMBERP (SUB1 X))

to remove the hypothesis. The result is (p (SUB1 x) x), which
is *1.

Given that we believe it is easier to prove something about
y and (ADD1 y) than about (SUB1 x) and x, the problem for
a theorem prover is to take note of *A1 and *A2 and generate
*2 and *3 as goals when asked to prove *1. The process is
exactly the reverse of the justification. Given *1, split it into
two parts according to whether the hypotheses of *A1 hold. *2
is the case that they do not. In the case where they hold replace
certain of the x’s by (ADD1 (SUB1 x)), as allowed by *A1. Then
generalize the result by replacing (SUB1 x) by y. The process
of generalizing a conjecture is discussed in detail in Chapter 12.
As we shall see then, when (SUB1 x) is generalized to some new
variable y, it is usually a good idea to restrict the new variable
to having some of the properties of (SUB1 x). In particular, we
can take note of *A2 to restrict y to being numeric. The result
is *3. The precise description of how we use *A1 and *A2 to
generate *2 and *3 from *1 is given later in this chapter.

The really difficult question is where we get the idea that RE-
MAINDER and QUOTIENT are “bad” and PLUS and TIMES
are “good.” Merely knowing that we can eliminate REMAIN-
DER and QUOTIENT because we have proved some facts anal-
ogous to *A1 and *A2 is not reason enough to eliminate them.
For example, the following two axioms are exactly analogous to
*A1 and *A2 above, and allow us to eliminate ADD1 in favor
of SUB1:
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(IMPLIES (NUMBERP X)
(EQUAL (SUB1 (ADD1 X)) X)) and

(NUMBERP (ADD1 X)).

In general, we let the user tell us which functions should be elimi-
nated by allowing him to label certain theorems as “elimination”
type theorems. For example, *A1 is an elimination theorem. As
for *A2, it is to be explicitly labeled as a “generalization” lemma
if it should be noted when (SUB1 x) is generalized.2

10.2 The Form of Elimination Lemmas

An elimination theorem must have the form:

*ELIM
(IMPLIES hyp (EQUAL lhs var)),

where (1) var is a variable, (2) there is at least one proper sub-
term of lhs of the form (d v1 . . . vn), where d is a function
symbol and the vi are distinct variables and are the only vari-
ables in the theorem, and (3) var occurs in lhs only in such (d
v1 . . . vn). Examples of elimination lemmas are:

Axiom SUB1.ELIM:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0)))

(EQUAL (ADD1 (SUB1 X))
X))

Axiom CAR/CDR.ELIM:

(IMPLIES (LISTP X)
(EQUAL (CONS (CAR X) (CDR X))

X))
Theorem DIFFERENCE.ELIM:

(IMPLIES (AND (NUMBERP Y)
(LESSEQP X Y))

(EQUAL (PLUS X (DIFFERENCE Y X)) Y))

2In the special case of shells, over which we have complete control, it is the
implementation of the shell principle that declares how an axiom should be used.
When the ADD1 shell is added, *A1 and *A2 are classed as “elimination” and
“generalization” theorems.
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We call the (d v1 . . . vn) terms in the left-hand side of the conclu-
sion “destructor terms.” In the above examples, the destructor
terms are (SUB1 X), (CAR X), (CDR X), and (DIFFERENCE
Y X). The name “destructor” refers to the fact that these func-
tions can be viewed as decomposing one of their arguments into
its components in some representation.

10.3 The Precise Use of Elimination Lemmas

An elimination lemma can be used to eliminate any instance of
a destructor term by following the scenario sketched above for
SUB1. However, we have found that it is usually a mistake to
eliminate an instance in which the vi are bound to nonvariables,
or when several of the vi are bound to the same variable. For
example, eliminating (SUB1 (PLUS X Y)), while sound, usually
produces something that is more general than the original con-
jecture and often a nontheorem, because the connection between
the new variable introduced, and other uses of X and Y, is lost.
Similarly, while (REMAINDER X X) could be eliminated as
sketched, it would be a heuristic mistake (since (REMAINDER
X X) is in fact 0).

Suppose we are trying to prove some conjecture p, involving
a term (d x1 . . . xj . . . xn), where x1, . . . , xj, . . . , xn are
distinct variables and (d x1 . . . xj . . . xn) is an instance of a
destructor term (d v1 . . . vj . . . vn) in an elimination lemma:

*ELIM (IMPLIES hyp (EQUAL lhs vj)).

We will eliminate (d x1 . . . xj . . . xn) from p by using *ELIM
to re-represent xj. The result will be two new clauses, which are
sufficient to establish p.

Let *ELIM’ be the formula obtained by simultaneously re-
placing each vi in *ELIM by xi:

*ELIM’ (IMPLIES hyp’ (EQUAL lhs’ xj)).

Since *ELIM’ is a theorem, our goal p is equivalent to the con-
junction of:

*ELIM1 (IMPLIES (NOT hyp’) p) and
*ELIM2 (IMPLIES (AND hyp’ (EQUAL lhs’ xj))

p).
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*ELIM1 is one of the two formulas produced by eliminating (d
x1 . . . xj . . . xn) from p. *ELIM1 is the degenerate case. We
derive the second output formula from *ELIM2 as follows.

We generalize *ELIM2 in two steps. The first step is to add
to *ELIM2 an additional hypothesis gen known to be a theorem:

*ELIM3 (IMPLIES (AND gen hyp’ (EQUAL lhs’ xj))
p).

Intuitively, gen is a theorem about the destructor terms in lhs’
and serves to restrict the coming generalization. The selection of
gen is described in Chapter 12. The second generalization step is
to uniformly replace throughout *ELIM3 each of the destructor
terms in lhs’ by some distinct variable not already occurring in
*ELIM3:

*ELIM4 (IMPLIES (AND gen’ hyp’’ (EQUAL lhs’’ xj))
p’).

Note that *ELIM4 is sufficient to prove *ELIM2: instantiate the
new variables in *ELIM4 to produce *ELIM3 and then use the
theorem gen to derive *ELIM2. (Actually, the generalization
heuristic described in Chapter 12 is used to produce *ELIM4
from *ELIM2 given the destructor terms in lhs.)

The final step in eliminating (d x1 . . . xj . . . xn) from p is
to use the equality hypothesis (EQUAL lhs” xj) in *ELIM4 by
uniformly replacing xj throughout *ELIM4 by lhs” and deleting
the hypothesis:

*ELIM5 (IMPLIES (AND gen’’ hyp’’’) p’’).

*ELIM1 and *ELIM5 are the results of eliminating (d x1 . . . xj

. . . xn) from p.

10.4 A Nontrivial Example

This may seem like a very complicated way to replace X by
(ADD1 Y). However, the idea of rerepresenting terms is im-
portant in many difficult proofs. Let us consider a nontrivial
example. We will carry it out in the same step-by-step fashion
we described above.

Suppose we have proved the following two theorems:
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*T1 (IMPLIES (AND (NOT (ZEROP Y)) (NUMBERP X))
(EQUAL (PLUS (REMAINDER X Y)

(TIMES Y (QUOTIENT X Y)))
X))

and
*T2 (EQUAL (LESSP (REMAINDER X Y) Y)

(NOT (ZEROP Y))).

These are probably the two most important properties of RE-
MAINDER and QUOTIENT. The first says that by adding the
remainder to the product of the quotient and the divisor one
obtains the dividend. The second says that the remainder is
less than the divisor.3 Our mechanical theorem prover proves
these two theorems by induction, using the recursive definitions
of REMAINDER and QUOTIENT and previously proved the-
orems about PLUS, TIMES, LESSP, and DIFFERENCE. The
theorem prover’s proof of *T1 is the last proof exhibited in Chap-
ter 16. Let us suppose *T1 and *T2 have been proved and that
*T1 is available as an elimination theorem and *T2 as a gener-
alization theorem (they are both useful as rewrite rules as well).

Let us now prove:

(IMPLIES (DIVIDES A B) (DIVIDES A (TIMES B C)))

where the definition of (DIVIDES A B) is (EQUAL (REMAIN-
DER B A) 0).

This is usually proved with the following argument. If (DI-
VIDES A B), then we can write B as (TIMES A J), making
a factor of A in (TIMES B C) manifest. Of course, one has to
consider the possibility that B cannot be represented as (TIMES
A J). For example, what if B is nonnumeric or A is 0?

Let us now go through the mechanical proof and see how this
reasoning is done formally and completely.

By opening up the definition of (DIVIDES A B) we obtain:

*4 (IMPLIES (EQUAL (REMAINDER B A) 0)
(EQUAL (REMAINDER (TIMES B C) A)

0)).

3This particular statement is stronger and more useful as a rewrite rule. It
says that (REMAINDER X Y) is less than Y if and only if Y is non-ZEROP.
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Noting that (REMAINDER B A) is an instance of a destructor
term in *T1 and that the arguments are all distinct variables,
we can use *T1 to eliminate (REMAINDER B A). First we split
*4 into two parts:

*5 (IMPLIES (AND (OR (NOT (NUMBERP B))
(ZEROP A))

(EQUAL (REMAINDER B A) 0))
(EQUAL (REMAINDER (TIMES B C) A) 0)) and

*6 (IMPLIES (AND (NUMBERP B)
(NOT (ZEROP A))
(EQUAL (PLUS (REMAINDER B A)

(TIMES A (QUOTIENT B A)))
B)

(EQUAL (REMAINDER B A) 0))
(EQUAL (REMAINDER (TIMES B C) A)

0)).

Formula *5 corresponds to formula *ELIM1 in the schematic
description of elimination, above. We do not further manipulate
it as part of eliminating (REMAINDER B A).

Formula *6 corresponds to formula *ELIM2 above, and we
want to remove the destructor terms. First we generalize those
terms away, replacing (REMAINDER B A) by the new variable
I and (QUOTIENT B A) by the new variable J. The general-
ization heuristic will take note of *T2 as a generalization lemma
and will also note that both REMAINDER and QUOTIENT
are always numerically valued (by computing the type sets of
the expressions generalized). The result of generalizing *6 is:

(IMPLIES (AND (NUMBERP I)
(NUMBERP J)
(EQUAL (LESSP I A) (NOT (ZEROP A)))
(NUMBERP B)
(NOT (ZEROP A))
(EQUAL (PLUS I (TIMES A J)) B)
(EQUAL I 0))

(EQUAL (REMAINDER (TIMES B C) A)
0)).

(The first three hypotheses are the restrictions placed on the
new variables by the generalization. The rest of the formula is
just *6 with the destructor terms replaced by I and J.)
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Now we use the hypotheses, (EQUAL (PLUS I (TIMES A
J)) B), to replace B everywhere in the formula. Afterwards, we
throw away the hypothesis. The result is:

*7 (IMPLIES (AND (NUMBERP I)
(NUMBERP J)
(EQUAL (LESSP I A) (NOT (ZEROP A)))
(NUMBERP (PLUS I (TIMES A J)))
(NOT (ZEROP A))
(EQUAL I 0))

(EQUAL (REMAINDER (TIMES (PLUS I (TIMES A J))
C)

A)
0)).

This formula corresponds to *ELIM5 in the schematic presenta-
tion of elimination, above. *5 and *7 together are the result of
eliminating (REMAINDER B A) from *4.

At first sight things appear worse than they were. However,
*5 is the degenerate case in which B is nonnumeric or A is ZE-
ROP. Quoting from our sketch of the proof: “Of course, one
has to consider the possibility that B cannot be represented as
(TIMES A J). For example, what if B is nonnumeric or A is 0?”
In fact, *5 can be simplified to true using only our definitions of
TIMES and REMAINDER.

As for *7, it too can be simplified drastically. For exam-
ple, since PLUS is always numeric, the (NUMBERP (PLUS I
(TIMES A J))) term simplifies to T. But the really important
observation is that our hypothesis (DIVIDES A B) has been
transformed into (EQUAL I 0). Simplification will substitute 0
for I everywhere. After routine simplification the result is:

(IMPLIES (AND (NUMBERP J)
(NUMBERP A)
(NOT (EQUAL A 0)))

(EQUAL (REMAINDER (TIMES A (TIMES C J))
A)

0)).

Once again quoting from our earlier sketch: “If (DIVIDES A
B), then we can write B as (TIMES A J), making a factor of A in
(TIMES B C) manifest.” The actual process was: “If (EQUAL
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(REMAINDER B A) 0) then we can represent B as (PLUS I
(TIMES A J)), where (EQUAL I 0).”

In the informal proof sketch, the word “manifest” assumed
that the reader was familiar with the theorem (DIVIDES J
(TIMES J I)), or, opening DIVIDES up, (EQUAL (REMAIN-
DER (TIMES J I) J) 0). If we had previously proved this as a
rewrite rule, then *7 would simplify to true (i.e., we would have
gotten something out of the observation that indeed a factor of
A was manifest). If we had not proved the above theorem then
we would have to prove the simplified version of *7 by induction.

10.5 Multiple Destructors and Infinite Loop-
ing

Two final aspects of destructor elimination should be mentioned.
Occasionally one has the opportunity of eliminating several de-
structors. For example, SUB1, DIFFERENCE, and REMAIN-
DER are all destructors and frequently occur in the same conjec-
tures (since they are defined in terms of one another). We have
found that when one has a choice of what terms to eliminate it
is best to eliminate the simplest first. Thus we would eliminate
SUB1 (with ADD1) before eliminating DIFFERENCE (with
PLUS), and eliminate DIFFERENCE before we eliminated RE-
MAINDER (with PLUS and TIMES). We define “simplest” here
by considering the order in which the functions were introduced
into the theory, since “subroutines” must be introduced before
the functions using them.

When a conjecture contains several eliminable destructors,
we eliminate the simplest first. Then we repeatedly eliminate
destructor terms introduced by the previous elimination. The
resulting set of clauses is returned to the top of the waterfall.
For example, if a conjecture contained (SUB1 (SUB1 X)) and
(REMAINDER U V), we would first eliminate (SUB1 X) by
replacing X with (ADD1 J). This would transform (SUB1 (SUB1
X)) to (SUB1 J). Then we would eliminate (SUB1 J). Then we
would return to simplification and not eliminate (REMAINDER
U V) until after simplification. (The result in this case is just
what we would have obtained by initially eliminating (SUB1
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(SUB1 X)) by letting X be I+2.)
In tandem with simplification, destructor elimination could

cause infinite loops. An example is the term (LESSP (SUB1
I) I). Here we would “eliminate” (SUB1 I) by replacing it with
(ADD1 J) to obtain (LESSP J (ADD1 J)). Then simplification
would expand LESSP once to produce (LESSP (SUB1 J) J), and
we would begin again. To avoid looping, we never eliminate a
term that involves a variable that was introduced by a previous
elimination pass unless there has been an intervening induction.

10.6 When Elimination Is Risky

As presented, and as implemented, the elimination of destruc-
tors can be heuristically risky, because it can result in a conjec-
ture more general than the initial one. Elimination of destruc-
tors is always sound, because by construction, if *ELIM1 and
*ELIM5 are theorems, then p is a theorem. However, it is pos-
sible for p to be a theorem but for *ELIM5 to be a nontheorem.
For example, if we transformed:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0)))

(p (SUB1 X) X))

to:

(p Y (ADD1 Y)),

instead of:

(IMPLIES (NUMBERP Y)
(p Y (ADD1 Y))),

the result might not be a theorem.
We now present sufficient conditions under which elimination

is not risky. In the following proof we suppose that our elimina-
tion lemma has two destructor terms and that each destructor
term has two arguments; a proof for the general case can be
constructed in strict analogy with the following.

Suppose we are trying to prove:

*GOAL (p (d x y) (e x y) x y),
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where x and y are distinct variables. Suppose further that we
have an elimination lemma

*ELIM (IMPLIES (hyp u v)
(EQUAL (lhs (d u v) (e u v) v)

u)).

Next suppose that we have the generalization lemma:

*GEN (g (d w z) (e w z) w z),

where w and z are distinct variables.
The results of using the elimination lemma *ELIM (together

with the generalization lemma *GEN) upon *GOAL are the two
formulas:

*ELIM1 (IMPLIES (NOT (hyp x y))
(p (d x y) (e x y) x y)) and

*ELIM5 (IMPLIES (AND (hyp (lhs r s y) y)
(g r s (lhs r s y) y))

(p r s (lhs r s y) y)),

where r and s are new variables. Our no-risk insurance is: If
*GOAL is a theorem, then *ELIM1 and *ELIM5 are theorems
if:

*COND (IMPLIES (g r s (lhs r s y) y)
(AND (EQUAL (d (lhs r s y) y) r)

(EQUAL (e (lhs r s y) y) s)))

is a theorem. *ELIM1 follows immediately from *GOAL. To
prove *ELIM5, choose r, s, and y and assume the hypothesis (g
r s (lhs r s y) y). Instantiate *GOAL to obtain:

(p (d (lhs r s y) y)
(e (lhs r s y) y)
(lhs r s y)
y).

From *COND, our assumptions, and the last formula, we con-
clude:

(p r s (lhs r s y) y).

Q.E.D.
Given this theorem, we can check that the elimination of

SUB1 by the introduction of ADD1 is not risky since we have:
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(IMPLIES (NUMBERP U)
(EQUAL (SUB1 (ADD1 U))

U)).

Similarly, we can check that the elimination of REMAINDER
and QUOTIENT is not risky. The basic idea is that for any nu-
meric U less than Y and any numeric V, U+Y*V has remainder
U when divided by Y and quotient V when divided by Y.

Our implementation does not check that an elimination lemma
is risk free, since it is not necessary to the soundness of the sys-
tem. As users, we have never employed risky elimination theo-
rems.

10.7 Destructor Elimination In the Reverse
Example

Let us now return to the proof of the theorem about (REVERSE
(REVERSE X)). Recall that after induction we had three cases.
Simplification reduced the first two to true and the third one to:

*RR4 (IMPLIES (AND (LISTP X)
(PLISTP (CDR X))
(EQUAL (REVERSE (REVERSE (CDR X))) (CDR X)))

(EQUAL (REVERSE (APPEND (REVERSE (CDR X))
(CONS (CAR X) ‘‘NIL’’)))

X)).

We can eliminate (CAR X) by using the elimination lemma for
it added by our implementation of the shell principle:

Axiom CAR/CDR.ELIM:

(IMPLIES (LISTP X)
(EQUAL (CONS (CAR X) (CDR X))

X)).

In a conjecture of the form (p (CAR X) (CDR X) X), destructor
elimination would produce two cases:

(IMPLIES (NOT (LISTP X))
(p (CAR X) (CDR X) X))

and



152 CHAPTER 10. ELIMINATING DESTRUCTORS

(IMPLIES (LISTP (CONS A B))
(p A B (CONS A B))).

Since our current conjecture, *RR4, has a (LISTP X) hypothe-
sis, the first case produced by destructor elimination is trivial.4

The second case, after simplification, is:

*RR5 (IMPLIES (AND (PLISTP B)
(EQUAL (REVERSE (REVERSE B)) B))

(EQUAL (REVERSE (APPEND (REVERSE B) (CONS A ‘‘NIL’’)))
(CONS A B))).

Note that in *RR5 the equality hypothesis about B can be used
in the conclusion about (CONS A B) in a way that the equality
hypothesis in *RR4 cannot. In particular, we see that there is an
occurrence of B in the right-hand side of the conclusion, where
none was obvious before.

We continue the proof of the REVERSE example in the next
chapter.

The use of elimination in the REVERSE example illustrates
an important aspect of destructor elimination not mentioned
elsewhere. Note that *RR5 is exactly what we would have had,
had we initially used an induction step such as (IMPLIES (p B)
(p (CONS A B))), instead of (IMPLIES (AND (LISTP X) (p
(CDR X))) (p X)). Similarly, an elimination of (SUB1 X) would
convert an induction step such as:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0))
(p (SUB1 X)))

(p X))

to the more conventional:

(IMPLIES (AND (NUMBERP I)
(p I))

(p (ADD1 I))).

The latter induction is usually nicer for the same reasons that
elimination of destructors is desirable at all.

4It is a propositional tautology and would not in fact be produced by the
implementation for that reason.
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One might ask why we did not do such an induction in the
first place. The reason is that in general it is impossible because
not all operations have inverses.

For example, consider the function DELETE:

Definition

(DELETE X Y)
=

(IF (NLISTP Y)
Y
(IF (EQUAL X (CAR Y))

(CDR Y)
(CONS (CAR X) (DELETE X (CDR Y))))),

which returns the result of deleting the first occurrence of X
in Y. There is no function PUT.BACK such that (IMPLIES
(PLISTP Y) (EQUAL (PUT.BACK X (DELETE X Y)) Y)). In
the function DSORT, we use DELETE as the destructor func-
tion in the recursive call. In proving the correctness of DSORT
in the theorem DSORT.SORT2, we perform an induction with
the scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X))
(IMPLIES (AND (LISTP X)

(p (DELETE (MAXIMUM X) X)))
(p X))).

This induction is appropriate, and in the absence of an elimina-
tion lemma for DELETE, it is difficult to imagine the “construc-
tive” (as opposed to “destructive”) version of this induction.

Thus induction must, in general, operate by supplying hy-
potheses about the “destructors” actually employed by the re-
cursive functions in the theorem, rather than conclusions about
“constructors.” Since some destructors are eliminable and the
need to eliminate them arises outside of induction as well as
inside it, we decided to formulate the destructor elimination
heuristic in the general way described.
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Chapter 11

Using Equalities

11.1 Using and Throwing Away Equalities

When a formula has been maximally simplified and has had all
the eligible destructor terms eliminated, we next try to use any
equality hypotheses that may exist in the formula.

We try to use an equality hypothesis such as (EQUAL s’ t’)
by substituting s’ for t’ elsewhere in the formula and deleting
the equality. This procedure sometimes results in conjectures
that can then be proved by simplification. For example, after
the substitution it might become possible to open up a recursive
function under our guidelines. But the motivation behind our
handling of equality is far more heuristic: if a conjecture has
not yielded to simplification and elimination of destructors, we
will probably resort to induction to prove it. If so, it is best to
clean up the conjecture as much as possible. Furthermore, if we
have already applied induction, it is best to use the available
induction hypotheses before resorting to induction again.

To explain our handling of equality we have to talk briefly
about induction. The fundamental induction heuristic is to try
to arrange things so that in an induction step of the form (IM-
PLIES (p t’) (p t)),1 simplification will be able to reduce the
conclusion, (p t), to some expression involving t’, so that the

1Here and elsewhere in this chapter, we have ignored many of the details of
induction, such as the case analysis responsible for making the induction hypothe-
ses legal, so that we can concentrate on giving the reader our intuitions about
the problems rather than the details.
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induction hypothesis can be used. Now suppose the theorem to
be proved is of the form (EQUAL s t) (or merely concludes with
such a literal). Then if the induction heuristic succeeds we will,
after simplification, have a conjecture of the form:

(IMPLIES (EQUAL s’ t’)
(EQUAL s (h t’))).

In particular, t’ will occur in the conclusion because we inducted
in a way to make it do so.

If the implication above survives simplification we will prob-
ably have to prove it by induction. But proving something of
the form (IMPLIES p q) by induction, where p is an equality,
is often difficult. If we analyze the propositional calculus in the
induction step for (IMPLIES p q):

(IMPLIES (IMPLIES p’ q’)
(IMPLIES p q)),

we see that one of the cases is to prove (IMPLIES p q), given
that p’ does not hold. Since p’ is an equality, its negation is not
very strong, and since we have already failed to prove (IMPLIES
p q), we do not have much with which to work.

From a purely heuristic standpoint it is better not to try to
prove (IMPLIES p q) by induction but rather to try to use the
hypothesis, p, and throw it away, before we go into induction
again. Bledsoe noted the importance of “using up” a hypothesis
and throwing it away in the “forcing principle” of [4]. In the res-
olution tradition of automatic theorem-proving, the idea of using
up and throwing away hypotheses has received scant attention.
One reason is that it is never actually necessary to throw away a
clause in order to find a refutation of a set of clauses. However,
when one is using a principle of induction, one has to select a
particular formula upon which to do the induction. We believe
that the “cleaning up” effect of fertilization, the simplifications
performed by rewriting, and the generalizations to be described
are essential to the performance of any theorem-proving system
that handles proof by induction.

11.2 Cross-fertilization

In order to use (EQUAL s’ t’) in:
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(IMPLIES (EQUAL s’ t’)
(EQUAL s (h t’))),

we can substitute s’ for t’ in the other literals of the clause
and delete the hypothesis. But rather than substitute for all
occurrences of t’ in (EQUAL s (h t’)), we prefer to substitute just
for those in (h t’). That is, if we have decided to use (EQUAL s’
t’) by substituting the left-hand side for the right, and one of the
places into which we substitute is itself an equality, (EQUAL s (h
t’)), related to (EQUAL s’ t’) by induction, then we substitute
only into the right-hand side. We call this “cross-fertilization.”

To justify the plausibility of this heuristic, we must again
discuss induction. If (EQUAL s t) is not proved by one induc-
tion, it is often because we managed to get t to simplify to t’
but failed to get s to simplify to s’, usually because s requires
a different induction than t, e.g., induction on a different set of
variables or with different hypotheses. By substituting s’ for t’
on t’s side of the conjecture we can eliminate t from the problem
and at the same time cast the problem entirely in terms of s and
its descendants. In particular, by transforming:

(IMPLIES (EQUAL s’ t’)
(EQUAL s (h t’)))

to:

(EQUAL s (h s’)),

we may be able to do an induction that lets both sides of the
equality step through induction together.

11.3 A Simple Example of Cross-fertilization

Let us now illustrate why we throw away the equality hypothesis
after it has been used and how cross-fertilization often constructs
theorems that go through induction cleanly. While we could cite
complicated proofs in which cross-fertilization plays a role, we
will deal here with a simple theorem, for pedagogical reasons.
Let us prove that PLUS is commutative:

(EQUAL (PLUS X Y) (PLUS Y X)).
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Note that the roles of X and Y are symmetric. Thus there is
nothing to distinguish an induction on X from one on Y. An
induction on X will let (PLUS X Y) step cleanly through the
induction (in the sense that the (PLUS X Y) term in the induc-
tion conclusion will simplify to a term involving its counterpart
in the induction hypothesis). Similarly, an induction on Y would
“favor” (PLUS Y X). Neither induction is well-suited to both
terms. Let us do the induction on Y. Then the induction step
is:

(IMPLIES (AND (NOT (ZEROP Y))
(EQUAL (PLUS X (SUB1 Y))

(PLUS (SUB1 Y) X)))
(EQUAL (PLUS X Y) (PLUS Y X))).

After simplification and the elimination of (SUB1 Y) by replac-
ing Y with (ADD1 Y), we get:

(IMPLIES (EQUAL (PLUS X Y) (PLUS Y X))
(EQUAL (PLUS X (ADD1 Y)) (ADD1 (PLUS Y X)))).

Note that, as expected, the (PLUS Y X) term appears both in
the hypothesis and the conclusion. Thus, we can use the equality
by substituting (PLUS X Y) for (PLUS Y X) in the right-hand
side of the conclusion and, after deleting the equality, get:

(EQUAL (PLUS X (ADD1 Y)) (ADD1 (PLUS X Y))).

(Note that this equation is the “recursive” clause of a definition
of PLUS that decomposes Y instead of X.) We have to prove
this equation by induction, but now the theorem involves only
(PLUS X Y) and its descendants. In particular, the commuted
PLUS expression “favoring” Y has been eliminated (precisely
because we inducted in the way we did and threw away the
equality). Because all the PLUS terms descend from (PLUS X
Y) there is a single, clear-cut induction we can perform to make
them all step through induction, namely, induction on X. If we
now perform an induction in which the induction step is:

(IMPLIES (EQUAL (PLUS X (ADD1 Y))
(ADD1 (PLUS X Y)))

(EQUAL (PLUS (ADD1 X) (ADD1 Y))
(ADD1 (PLUS (ADD1 X) Y)))),
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the conclusion simplifies, first to:

(EQUAL (ADD1 (PLUS X (ADD1 Y)))
(ADD1 (ADD1 (PLUS X Y)))),

and then to:

(EQUAL (PLUS X (ADD1 Y))
(ADD1 (PLUS X Y))),

which is precisely our induction hypothesis.
Had we not performed the cross-fertilization, or had we done

the substitution but not deleted the equality hypothesis, the con-
jecture would still have involved (PLUS Y X) terms and a sub-
sequent induction on X would not have gone through (because
our hypothesis would concern (PLUS Y X) and the conclusion
(PLUS Y (ADD1 X))).

11.4 The Precise Use of Equalities

Here is the precise way we use equalities. Given a clause, we
look for an equality hypothesis, (EQUAL s’ t’) (i.e., a literal of
the clause of the form (NOT (EQUAL s’ t’))), where t’ (or s’)
occurs in another literal of the clause and is not an explicit value
template. Suppose we find such an (EQUAL s’ t’), and that t’
has the property described above. Then we will substitute s’ for
t’ in a way described below.

If we are working on an induction step and there is an equal-
ity literal in the clause that mentions t’ on the right-hand side,
we decide to cross-fertilize (unless s’ is an explicit value).

Then we substitute s’ for t’ in each literal of the clause, except
the (EQUAL s’ t’) hypothesis. If we decided to cross-fertilize
then when we encounter an equality literal we substitute s’ uni-
formly for t’ on the right-hand side. Otherwise we substitute s’
uniformly for t’ throughout the literal. Finally, if we are working
on an induction step and s’ was not an explicit value, we delete
the (EQUAL s’ t’) hypothesis.

Of course, the resulting formula is then poured over the wa-
terfall to be simplified again.

If there are multiple equality hypotheses that can be so used,
we use only the first one we find. The others will be used on
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subsequent passes, after we have simplified the new formula and
eliminated any destructor terms now eligible. By throwing away
the equality hypothesis, we are generalizing the clause and are
thus risking the adoption of a nontheorem as our goal. (For
example, under the hypotheses elsewhere in the formula, the
equality with which we substitute might be false. The input
formula would thus be a theorem, but after eliminating the “rea-
son” it was a theorem, it might not be.) As noted earlier, we
prefer to do the safest things first, and both simplification and
elimination of destructors are safe and can possibly simplify the
formula before we have to resort to another substitution.

11.5 Cross-fertilization In the Reverse Exam-
ple

Let us now return to the (REVERSE (REVERSE X)) example.
Recall that after elimination of the (CAR X) and (CDR X)
expressions we were left with:

*RR5 (IMPLIES (AND (PLISTP B)
(EQUAL (REVERSE (REVERSE B)) B))

(EQUAL (REVERSE (APPEND (REVERSE B)
(CONS A ‘‘NIL’’)))

(CONS A B))).

Note that we can use the hypothesis (EQUAL (REVERSE (RE-
VERSE B)) B) by substituting (REVERSE (REVERSE B)) for
B in the conclusion. However, we will ignore the occurrences of
B in the left-hand side of the conclusion, and will cross-fertilize
for B in the right-hand side. Observe that we can cross-fertilize
only because the elimination of destructors made it manifest
that (CDR X) occurs in X when X is a list (i.e., B occurs in
(CONS A B)). After deleting the equality hypothesis we are left
with:

*RR6 (IMPLIES (PLISTP B)
(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A ‘‘NIL’’)))
(CONS A (REVERSE (REVERSE B))))).

We have thus managed to use our induction hypothesis, and we
have produced a “balanced” equality with REVERSE and its



11.5. CROSS-FERTILIZATION IN THE REVERSE EXAMPLE161

descendants on both sides. In addition, since a subterm of s,
namely the innermost REVERSE expression, did reappear in
s’ because of our induction, we will be able to generalize it as
described in the next chapter.
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Chapter 12

Generalization

12.1 A Simple Generalization Heuristic

In proofs by induction, it is often easier to prove a theorem that
is stronger than the one needed by some particular application.
We have already seen several instances of this. For example, it
arose in the TAUTOLOGYP proofs, where we proved:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X A1))

(VALUE X (APPEND A1 A2)))

rather than the more obvious:

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X ‘‘NIL’’))

(VALUE X A2)).

Another example arose in Chapter 2 when we proved:

(EQUAL (MC.FLATTEN X ANS) (APPEND (FLATTEN X) ANS))

rather than the more obvious:

(EQUAL (MC.FLATTEN X ‘‘NIL’’) (FLATTEN X)).

Of course, the reason that induction on stronger theorems is
easier is that the main tools one has when proving a formula by
induction are instances of the formula itself.
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There has been some work on trying to generate mechani-
cally the kind of generalizations performed in the MC.FLAT-
TEN problem above [40], [2]. However, such major generaliza-
tions require “creative” insight into the problem.1 We do not
attempt to make such generalizations mechanically and leave
such leaps to the user; he can always formulate and prove the
desired theorem as a rewrite rule, so that instances of the the-
orem will be simplified to true and we will never have to guess
the appropriate generalization.

However, if one inspects many inductive proofs, one discerns
a common phenomenon involving generalization. Suppose we
are trying to prove that some recursive function, f, always com-
putes a value satisfying proposition p. That is, we are trying to
prove (p (f x1 . . . xn)). Suppose further that under some condi-
tion we know that (f x1 . . . xn) computes its value by computing
(f x1’ . . . xn’) recursively, and then applying h. Thus, a reason-
able induction step2 to provide is:

(IMPLIES (p (f x1’ ... xn’))
(p (f x1 ... xn))),

for then, when we simplify (f x1 . . . xn) in the conclusion, we
get:

*1 (IMPLIES (p (f x1’ ... xn’))
(p (h (f x1’ ... xn’)))),

where, as planned, we managed to cause (f x1’ . . . xn’) to appear
in both the hypothesis and the conclusion.

Now suppose that we are not able to prove this formula by
the previously presented heuristics. Then we will probably have
to appeal to induction again. We have found that in such a
situation, it is fruitful to try instead to prove the more general:

*2 (IMPLIES (p z) (p (h z))),

where z is a new variable. That is, if we were to prove *2, we
could derive *1 from it by instantiating the z in *2 to be (f x1’

1That is, until someone produces a mechanization of the process, we say the
process requires creativity.

2We will here ignore the finer points of induction, such as the case analysis,
just as we did in the last chapter, and for the same reasons.
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. . . xn’). Another way to look at it is that by replacing (f x1’

. . . xn’) in *1 by the new variable z, we can “guess” *2 as a
possible way of proving *1.

We thus have another heuristic: if in the result of simplify-
ing an induction step we find subterms occurring in two or more
literals, then we assume that those terms stepped through in-
duction cleanly, have introduced their subsidiary functions and
tests, and now merely represent “place-holders” for arbitrary
objects with the properties described by the hypotheses. Thus,
those common subterms can be replaced by new variables.

If we were initially trying to prove an equality then it of-
ten happens that our hypothesis gets “used” (by fertilization)
because one side of the equality comes through the induction
cleanly. However, the other side of both the hypothesis and con-
clusion equalities may have common subterms as above. After
cross-fertilizing, those common subterms are on opposite sides of
the conclusion equality. Thus, we expand our heuristic to apply
to common subterms on opposite sides of an equality literal.

12.2 Restricting Generalizations

The heuristic of generalizing common subterms on either side of
an equality or implication was first implemented in the theorem
prover described in [7]. We found it worked very well in sim-
ple examples. But it suffers from a tendency to produce overly
general statements (i.e., nontheorems). In justifying the idea of
generalizing the common subterm (f x1’ . . . xn’), we said that
perhaps it was a “place holder” for any object with the proper-
ties described by the induction hypotheses and case analysis.

But suppose that (f x1’ . . . xn’) has “intrinsic” properties
that are relevant to the proof but not mentioned. For example,
if (f x1’ . . . xn’) was known to be numeric, then it might be
good to require that the new variable be numeric. Similarly, if
we ever generalize (SORT X), where SORT is a function that
sorts the elements of its list argument into ascending order, it
might be good to require that the new variable be an ordered
list.

We do not know how to recognize mechanically what proper-
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ties of the term being generalized to require of the new variable.
So we permit the user to bring to our attention “generalization”
lemmas that inform us of facts that are good to keep in mind
when generalizing.

Suppose we have previously proved and noted as a general-
ization lemma a theorem such as:

*3 (r (f t1 ... tn)),

where r is a schema. Suppose further that the term to be gen-
eralized, (f x1’ . . . xn’), is an instance of (f t1 . . . tn).

The generalization of *1 above proceeds as follows. We notice
that (f x1’ . . . xn’) is a common subterm and that it occurs in
an instance of *3:

*3’ (r (f x1’ ... xn’)).

Consider the conjecture obtained by adding *3’ as a hypothesis
to *1:

*4 (IMPLIES (AND (r (f x1’ ... xn’))
(p (f x1’ ... xn’)))

(p (h (f x1’ ... xn’)))).

Since *3’ is a theorem, *1 is a theorem if *4 is a theorem. We
then choose to try to prove *4 by trying to prove the more
general conjecture obtained by replacing throughout *4 (f x1’
. . . xn’) with a new variable z:

(IMPLIES (AND (r z) (p z))
(p (h z))).

If we know that the term being generalized always returns an
object of a single shell type (that is, if we can observe that the
type set of the term is a singleton), then we have found it useful
to restrict the new variable to being in that class. For example,
if (f x1’ . . . xn’) is numeric, then it is both sound and generally
useful to add as an additional hypothesis (NUMBERP z). How-
ever, if the type set of (f x1’ . . . xn’) contains more than one
type, the corresponding restriction would be a disjunction (e.g.,
z would be required to satisfy either NUMBERP or LISTP).
We have found, empirically, that such weak constraints usually
contribute little and split the theorem into several parts. In this
case we simply ignore the type set information we have about (f
x1’ . . . xn’).
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12.3 Examples of Generalizations

We will describe the whole generalization procedure precisely
in a moment. But first we look more closely at two example
generalizations that were mentioned earlier. The first was in
the MC.FLATTEN proof in Chapter 2. There, in proving:

(EQUAL (MC.FLATTEN X ANS) (APPEND (FLATTEN X) ANS)),

we inducted on X, simplified, eliminated the destructors CAR
and CDR, performed two cross-fertilizations and were left with:

*5 (EQUAL (APPEND (FLATTEN Z) (APPEND (FLATTEN V) ANS))
(APPEND (APPEND (FLATTEN Z) (FLATTEN V)) ANS)).

Let us now proceed to justify and carry out the generalization
step done automatically in Chapter 2. Note that (FLATTEN Z)
and (FLATTEN V) occur on both sides of the equality. Assum-
ing that FLATTEN has played its role and that the conjecture is
true because of the relationships introduced by expanding func-
tions and using the induction hypotheses, we now replace the
two FLATTEN expressions by Y and A respectively. However,
since we know that FLATTEN always returns a list, we restrict
the two variables to be LISTPs. The result is:

*6 (IMPLIES (AND (LISTP Y)
(LISTP A))

(EQUAL (APPEND Y (APPEND A ANS))
(APPEND (APPEND Y A) ANS))).

This is just a weak version of the associativity of APPEND and
can now be proved by induction on the new variable, Y. In
fact, *5 does not yield to induction (without a generalization
somewhere along the line) because induction on the variables
inside the FLATTEN expressions will simply produce deeper
and deeper nests of APPENDs. It is thus crucial to guess that
FLATTEN has played its role and to eliminate it.

We discussed a second example of generalization in connec-
tion with the elimination of destructors in Chapter 10. When
we generalize destructor terms, we do not bother to look for
common subterms: we know exactly which terms we want to
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replace with variables. However, since we are performing a gen-
eralization, we do take advantage of our type set knowledge and
available generalization lemmas.

For example, if, for any reason, we generalize (REMAINDER
B A) by replacing it with I (as we did in Chapter 10), then we
add the additional restriction (NUMBERP I) because we know
from its type set that REMAINDER always returns a number.
Furthermore, if we know:

(EQUAL (LESSP (REMAINDER X Y) Y) (NOT (ZEROP Y)))

as a generalization lemma, we add the additional restriction:

(EQUAL (LESSP I A) (NOT (ZEROP A))).

Thus, the result of generalizing the REMAINDER expression
in:

(p (REMAINDER B A) A B)

is:

(IMPLIES (AND (NUMBERP I)
(EQUAL (LESSP I A) (NOT (ZEROP A))))

(p I A B)).

This would be split into two conjectures when simplified, and
we would consider the case that A was ZEROP on one branch
and that A was non-ZEROP and I less than A on the other one.

12.4 The Precise Statement of the General-
ization Heuristic

There are two parts to the generalization heuristic, the choice
of terms to generalize and the actual generalization and use of
known facts about the terms. The elimination of destructors
relies only upon the second phase of the generalization heuristic.

We say a term is generalizable unless it is a variable, an ex-
plicit value template, or its function symbol is EQUAL or a
destructor. We first collect all the generalizable terms t such
that either t occurs in two or more literals or there occurs a
literal with atom (EQUAL x y) and t occurs in both x and y.
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After collecting such common terms, we delete from further con-
sideration any term that properly contains another that we are
considering. The remaining terms collected will be generalized
away. By working our way outwards from the minimal com-
mon subterms in single generalization steps we are able to use
our generalization lemmas to catch relations between the new
and old variables that might be lost if we replaced the largest
common subterms in one pass.

We have found it inappropriate to generalize explicit values
(such as 5) or even terms that are explicit value templates be-
cause they contain too much information. We do not generalize
destructor terms; if the destructor elimination heuristic has not
eliminated them, they should probably not be eliminated. Note
that after generalizing the minimal terms, it may be possible to
eliminate destructor terms that could not have been eliminated
earlier.

Having obtained a set of minimal common subterms (or hav-
ing been supplied them by the destructor elimination heuristic)
we then proceed to carry out the actual generalization. For each
term, t, being generalized we search through all known general-
ization lemmas, looking for all lemmas that contain a subterm
of which t is an instance under some substitution s. Whenever
we find such a lemma, we instantiate it with s and add it as a
hypothesis to the formula we are generalizing (i.e., we add the
negation of the instantiated lemma as a literal to the clause be-
ing generalized). In addition, we obtain the type set of t (in the
context of assuming all the literals in the clause false), and if
that set contains only one type, r, we add (r t) as a hypothesis.

When we have so considered each of the terms being general-
ized we will have produced a new, expanded formula equivalent
to the original one. We then generalize this expanded formula
by uniformly substituting distinct new variables (i.e., ones not
occurring in the formula) for each of the terms being general-
ized. This more general formula is then poured over the waterfall
again (or, in the case of a generalization for the elimination of
destructors, given back to that heuristic).

We have found it inappropriate to use a generalization lemma
to restrict the generalization of a term if the generalization of
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the added hypothesis still mentions the function symbol of the
term we were generalizing. Thus, a lemma such as:

(EQUAL (FLATTEN (GOPHER X))
(FLATTEN X)).

might be a good generalization lemma when (GOPHER x) is
generalized to Z (because it effectively adds the restriction that
Z has the same fringe as x). But that lemma is not a good
lemma to use when (FLATTEN x) is generalized to Z. Such
a use of the lemma would add the hypothesis that (EQUAL
(FLATTEN (GOPHER x)) Z), so we would not only fail to
eliminate FLATTEN but would actually complicate matters by
transforming (FLATTEN x) to (FLATTEN (GOPHER x)).

12.5 Generalization In the Reverse Example

We now return to our ongoing proof that when a proper list is
reversed twice the result is the list itself.

Recall that after cross-fertilizing we had:

*RR6 (IMPLIES (PLISTP B)
(EQUAL (REVERSE (APPEND (REVERSE B) (CONS A ‘‘NIL’’)))

(CONS A (REVERSE (REVERSE B))))).

Note that (REVERSE B) occurs on both sides of the equality. It
came through the induction cleanly and was involved in the left-
hand side of our induction hypothesis and the left-hand side of
our simplified induction conclusion. After using the hypothesis
we find it on opposite sides of the equality. We thus generalize it
to Z. Since we have no generalization lemmas about REVERSE
and since (REVERSE B) is not always in a single shell class, we
do not restrict the generalization. We thus obtain:

*RR7 (IMPLIES (PLISTP B)
(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))

(CONS A (REVERSE Z)))).

We can interpret the conclusion of this new conjecture in the
following way. Suppose we have any list Z and we insert A as
its last element. Then reversing the resulting list is equivalent
to reversing Z and adding A as the first element. Note however



12.5. GENERALIZATION IN THE REVERSE EXAMPLE 171

that the hypothesis of *RR7 is not relevant to the truth of the
conjecture.
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Chapter 13

Eliminating Irrelevance

13.1 Two Simple Checks for Irrelevance

Eliminating irrelevant hypotheses in a formula before trying to
prove it by induction is just another way of obtaining a stronger
conjecture to prove. Furthermore, eliminating irrelevant terms
from a clause simplifies the task of finding an appropriate induc-
tion. In general, recognizing that a hypothesis is irrelevant to
the truth of a formula takes a deep understanding of the prob-
lem at hand. However, there are simple cases where it is clear
that a hypothesis is irrelevant.

The most obvious place to look for irrelevance is in hypothe-
ses that are completely disconnected from the rest of the for-
mula. Thus, the first thing we do when looking for irrelevance
is to partition the literals of the clause according to shared vari-
ables, putting two literals in the same partition if they share
variables. Then we try to decide which partitions are probably
falsifiable and we delete any such partition from the clause. If
a partition is falsifiable, then the result of deleting the partition
from the clause is a theorem if and only if the original clause is a
theorem. We have two simple heuristics for deciding that a par-
tition is “probably” falsifiable. But even when these heuristics
fail us (by guessing incorrectly that a partition is falsifiable), we
are assured that if the result of deleting the partition (or indeed
any set) from the clause is a theorem, then the original clause
is a theorem.

The first heuristic tests whether the partition mentions any
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recursive function. If not, then it is composed entirely of EQUAL,
shell recognizers, constructors, bottom objects, etc. But if such
a partition were always true we should have proved this clause
with simplification. Since we did not, we can reasonably assume
the partition can be falsified. We give an example of such a
partition in a moment.

The second heuristic tests whether the partition contains ex-
actly one term and that term has the form (f v1 . . . vn), where f
is a recursive function and the vi are distinct variables. The only
way such a partition can be a theorem is if the function f always
returns true. But to have survived simplification it would have
to appear sometimes to return F or else we would have simpli-
fied the literal to true by type set considerations. While it is
certainly easy to write recursive functions that always return T
but for which we compute the type set {T F}, we have never
had occasion to use them. Thus, we feel justified in assuming we
could find values for the vi that would falsify the literal, since
the vi are completely unconstrained. An analogous treatment
eliminates any singleton partition whose member is a term of
the form (NOT (f v1 . . . vn)).

13.2 The Reason for Eliminating Isolated Hy-
potheses

One might wonder why we bother to advocate any mechani-
cal irrelevance checking, given that our two ideas are so trivial.
Generally, isolated hypotheses do not prevent the correct in-
duction from succeeding, since they survive the induction step
untouched. However, they do obscure the choice of the correct
induction. In particular, irrelevant recursive hypotheses com-
pete with the other terms in the conjecture for our attention
when we are trying to choose the correct induction. Without
recognizing that they are irrelevant, we may decide to induct
“for” them rather than for the important terms.

The elimination of irrelevance is valuable as well in detecting
that we are trying to prove a nontheorem. It is frequently the
case, when our current conjecture is in fact not a theorem, that
we are led to consider demonstrably falsifiable goals.
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For example, suppose we tried to prove (EQUAL (REVERSE
(REVERSE X)) X) without bothering to require that X be a
proper list. The mechanical proof attempt goes as follows:

Give the conjecture the name *1.
We will try to prove it by induction. There is only

one plausible induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X))
(IMPLIES (AND (LISTP X) (p (CDR X)))

(p X))).
The inequality CDR.LESSP establishes that the measure
(COUNT X) decreases according to the well-founded relation
LESSP in the induction step of the scheme. The above
induction scheme leads to two new goals:
Case 1. (IMPLIES (NOT (LISTP X))

(EQUAL (REVERSE (REVERSE X)) X)).

This simplifies, opening up the definition of REVERSE, to
the goal:

(IMPLIES (NOT (LISTP X))
(EQUAL ‘‘NIL’’ X)),

which has two irrelevant terms in it. By eliminating
these terms we get:

F.

Why say more?
****************************************************
** ***
** F A I L E D ! ***
** ***
***************************************************
CPU time (devoted to theorem-proving): .465 seconds

Note that in the base case we ended up having to prove that
if X is not a list, then it is “NIL”. Since this partition contains
no recursive function we should have been able to simplify it
to true were it a theorem. Since we could not simplify it, we
eliminated those two literals, leaving us, in this case, with the
empty clause. In general, one cannot conclude anything about
the input conjecture if our heuristics lead to the empty clause.
In particular, one cannot conclude that the input conjecture
was not a theorem, since we might have generalized it in one
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of many different ways, and succeeded in generalizing it “too
much.” Nevertheless, it is usually worthwhile for the user to
construct a counterexample to the conjecture that led to the
empty clause and see whether that falsifies the input. In the
above example, the user need only identify a nonlist other than
“NIL”.

13.3 Elimination of Irrelevance In the Reverse
Example

The example REVERSE proof we have been conducting illus-
trates how irrelevance can crop up in the proof of a well-stated
theorem. Recall that after generalizing (REVERSE B) to Z we
were left with:

*RR7 (IMPLIES (PLISTP B)
(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))

(CONS A (REVERSE Z)))).

The hypothesis, (PLISTP B), was important at the beginning
of the proof. Indeed, the above attempt at proving the theorem
without the proper list hypothesis led us to a counterexample.
(The reader should recall that our proofs of the first two induc-
tion cases, *RR1 and *RR2, of the correct statement of the the-
orem, *RR, in Chapter 9 were based largely on reasoning about
PLISTP.) However, after the generalization step, (PLISTP B)
is disconnected from the rest of the conjecture.

If *RR7 were true because (PLISTP B) were always false,
then PLISTP would have to return F on every input, since there
are no restrictions on B. Because the type set of (PLISTP B) is
{T F}, we can reasonably suppose (PLISTP B) is sometimes T
and hence is truly irrelevant to *RR7. We produce:

*RR8 (EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))
(CONS A (REVERSE Z))).

Our heuristics have thus led us to a natural lemma about AP-
PEND and REVERSE. We must prove it by induction.



Chapter 14

Induction and the
Analysis of Recursive
Definitions

If the steps described above do not prove the conjecture, we
will have reduced it to a conjunction of formulas, each of which
is as simple as we can make it. Having nothing else left in
our arsenal, we must prove each of these formulas by induc-
tion. Therefore, we choose one of them, formulate an induction
scheme that seems appropriate for it, and then apply the scheme
to the formula to obtain a new set of formulas to prove. We use
the methods we have already discussed (and additional induc-
tions, of course) to prove each of the formulas produced by the
induction scheme.

Thus, the only outstanding question is the major one: how
do we invent an induction scheme appropriate for a formula?

The answer lies in the similarity of recursion and induction.
The reader may have noticed the similarity between our state-
ments of the induction principle and the definition principle.

Very roughly speaking, the induction principle lets us prove
(p x1 . . . xn), where the xi are distinct variables, assuming (p
y1 . . . yn), provided that for some measure m and well-founded
relation r, it is the case that (m y1 . . . yn) is r-smaller than (m
x1 . . . xn), under the assumptions of the case analysis.

Very roughly speaking, the definition principle lets us define

177
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(f x1 . . . xn), where the xi are distinct variables, in terms of (f
y1 . . . yn), provided that for some measure m and well-founded
relation r, it is the case that (m y1 . . . yn) is r-smaller than (m
x1 . . . xn), under the assumptions of the case analysis in the
body of the function.

We exploit this similarity (or, rather, contrived this simi-
larity) to determine a reasonable induction to perform when
confronted with a conjecture involving recursive functions. In
particular, suppose we were trying to prove a conjecture that
contained some call of a recursive function f, and suppose that
we knew that in its recursion, f drove down some measure of
certain of its arguments. Then if the call of f in question con-
tains variables in those argument positions, that call “suggests”
a plausible induction, namely, under the conditions that ensure
that the measure is driven down, assume the instances of the
conjecture obtained by replacing those variables by what they
will be when that call opens up. Such an induction is sound be-
cause we know that the measure of the indicated arguments is
being decreased. Such an induction is heuristically plausible be-
cause it gives us induction assumptions about terms that would
occur in the induction conclusion were we only to open up the
appropriate call.

Thus, to set up an induction for a conjecture we must have a
good understanding of how the functions in it recurse. In partic-
ular, we want to be able to look at a term in the formula and see
immediately the inductions it suggests. In the remainder of this
chapter we discuss how we analyze each recursive function when
it is first introduced to check the requirements of the definition
principle and to note the inductions the function suggests. In
the next chapter we will discuss how we refine these suggested
inductions to form one appropriate for the formula as a whole.

Even considered in isolation from the proof-time induction
analysis, the definition-time analysis of functions is complicated.
Two distinct problems are intertwined in the actual process-
ing: we must establish that the function is well-defined and
we must analyze its recursion to determine all the possible in-
ductions it suggests. We do these two tasks simultaneously.
However, we start out by describing roughly how we prove that
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functions are well-defined, and then we describe the kind of infor-
mation we want to have by the time we actually try formulating
inductions. Once both tasks have been sketched and the im-
portant heuristic components identified, we give a more precise
statement of the actual process.

14.1 Satisfying the Principle of Definition

The definition principle puts several restrictions on the form
of definitions. Most of these are trivial syntactic requirements.
However, the requirement of a well-founded relation and mea-
sure justifying the definition is nontrivial. If (f x1 . . . xn) is
defined to be some term, body, then the following must hold
(according to Chapter 3):

(d) there is a well-founded relation denoted by
a function symbol r, and a function symbol, m,
of n arguments, such that for each occurrence of a
subterm of the form (f y1 ... yn) in body
and the f-free terms t1, ..., tk
governing it, it is a theorem that:
(IMPLIES (AND t1 ... tk)

(r (m y1 ... yn) (m x1 ... xn))).

Note that we must establish that the tests governing each recur-
sive call imply that some measure (fixed for all recursive calls)
of the arguments is getting smaller according to a well-founded
relation (fixed for all recursive calls). But we are not permitted
to use the tests that involve the function symbol f, which has
not yet been admitted into the theory. We describe below how
we find a measure that is decreasing in each recursive call.

14.1.1 Machines

We start by flattening the nested structure of the body into a
table that enumerates the branches through the definition that
lead to recursions, and lists the governing tests and the recursive
calls on each branch. We call this table the “machine” of the
function definition and it is useful both in applying the definition
principle and in formulating the case analysis of an induction.
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To build a machine for a function body we first normalize the
function body (in the spirit of NORMALIZE of Chapter 4).
We then walk through the body collecting the tests governing
the current expression (in the spirit of TAUTOLOGYP). We
stop as soon as the current expression is either not an IF, or
is an IF but a recursive call occurs in the test, or the set of
recursive calls on one branch is a nonempty subset of those on
the other. Each time we stop, we add an entry to the emerging
table if the current expression contains a recursive call. The
entry contains the tests collected and all the recursive calls in
the current expression.

For example, the machine for Peter’s version of Ackermann’s
function [46]:

Definition

(ACK M N)
=

(IF (ZEROP M)
(ADD1 N)
(IF (ZEROP N)

(ACK (SUB1 M) 1)
(ACK (SUB1 M) (ACK M (SUB1 N))))).

is:

case tests recursive calls
(1) (AND (NOT (ZEROP M)) (ACK (SUB1 M) 1)

(ZEROP N))
(2) (AND (NOT (ZEROP M)) (ACK (SUB1 M) (ACK M (SUB1 N)))

(NOT (ZEROP N))) (ACK M (SUB1 N))

For a second example, consider the function that returns T if X
is a subtree of Y and F otherwise:

Definition

(OCCUR X Y)
=

(IF (EQUAL X Y)
T
(IF (LISTP Y)

(IF (OCCUR X (CAR Y))
T
(OCCUR X (CDR Y)))

F)).
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The machine for OCCUR is:

case tests recursive calls
(1) (AND (NOT (EQUAL X Y)) (OCCUR X (CAR Y))

(LISTP Y)) (OCCUR X (CDR Y))

To satisfy restriction (d), given the machine for a definition, we
need a measure and well-founded relation such that for each case
in the machine and for each recursive call in the case, we can
prove that the tests in the case imply that the measure of the
arguments in the recursive call is smaller than the measure of
the formals.

14.1.2 The Form of Induction Lemmas

To select an appropriate measure and well-founded relation, we
rely upon axioms and previously proved theorems labeled by the
user with the hint “induction.” An induction theorem points
out that some operation drives some measure down according
to some well-founded relation. The general form of an induction
lemma is:

(IMPLIES h
(r (m y1 ... yj) (m x1 ... xj))),

where the xi are distinct variables, all the variables in h occur
in the conclusion, r and m are function symbols, and r is known
to be well-founded.1

Note that our definition of an induction lemma requires that
the same explicit measure function, m, be the outermost func-
tion symbol of both arguments to the well-founded relation in
the conclusion. Thus, certain useful rewrite lemmas, such as
one with the conclusion (LESSP (DIFFERENCE I N) I), would
not be allowed to double as induction lemmas. Instead, slightly
reformulated versions would have to be proved for use as induc-
tion lemmas. However, note that if y is a numerically valued
term, then (LESSP y x) implies (LESSP (COUNT y) (COUNT

1In our current implementation, r must be LESSP. The theorem prover con-
structs lexicographic combinations automatically, as will be described. The only
other function we have been tempted to assume to be well-founded is Gentzen’s
[19] well-founded relation on epsilon naught.
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x)), because (COUNT y) is y and (COUNT x) is greater than
or equal to x. Our implementation thus contains the following
feature: if the conclusion of a lemma has the form (LESSP y x),
where y has type set {NUMBERP}, then if the lemma is to be
processed as an induction lemma, the conclusion is treated as
though it were (LESSP (COUNT y) (COUNT x)).

Note that if one of the hypotheses is of the form (NOT
(EQUAL (m y1 . . . yj) (m x1 . . . xj))), the lemma tells us
that the measure is either decreasing or stays fixed. The knowl-
edge that a measure does not increase – even though it may not
decrease – is important when trying to establish that a lexico-
graphic measure is decreasing.

Here are three examples of induction lemmas:

(IMPLIES (NOT (ZEROP X))
(LESSP (COUNT (SUB1 X)) (COUNT X))),

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X))), and

(IMPLIES (LESSP X Y)
(LESSP (DIFFERENCE Y (ADD1 X))

(DIFFERENCE Y X))).

The first two are intrinsic to the axiomatization of the ADD1 and
CONS shells. The third one is the theorem COUNTING.UP.BY.1,
which informs us that the measure DIFFERENCE of X and Y
decreases if X is replaced by (ADD1 X) and Y is held constant,
provided X is less than Y. Other examples of induction theorems
can be found in Appendix A.

The basic idea behind the use of induction theorems is sim-
ple: consider the machine for some function f whose formal pa-
rameters are x1, . . . , xn, and consider a particular recursive call
(f y1 . . . yn) in some case of the machine. We look for an in-
duction lemma with a conclusion that says that some measure
of our yi is smaller than the same measure of our xi. If we find
such a lemma we then try to prove that the tests in the machine
imply the hypothesis of the induction lemma.

Thus, the theorems we try to prove while applying the prin-
ciple of definition are usually quite simple since they involve
showing only that the tests in the machine imply the hypothesis
of the induction lemma, and not the usually more difficult fact
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that the measure is decreasing according to a well-founded re-
lation. Of course, that more difficult fact was established once
and for all when the induction lemma was proved.

14.1.3 A Simple Example

Now let us consider an example of using induction lemmas. Sup-
pose PRED and FN have been previously defined. Consider the
function WHILELOOP:

Definition

(WHILELOOP I MAX X)
=

(IF (LESSP I MAX)
(IF (PRED I X)

T
(WHILELOOP (ADD1 I) MAX (FN X)))

F).

We have contrived this function to have several interesting prop-
erties and will discuss it many times in this and the next chapter.
WHILELOOP is the obvious recursive expression of a simple
loop that counts I up to MAX by 1. If it reaches or exceeds
MAX, it returns F. If ever (PRED I X) holds, it stops and
returns T. Otherwise, WHILELOOP resets X to (FN X) and
iterates.

The machine for WHILELOOP is:

case tests recursive calls
(1) (AND (LESSP I MAX) (WHILELOOP (ADD1 I) MAX (FN X))

(NOT (PRED I X)))

Note that the recursive call changes I to (ADD1 I) and holds
MAX fixed. (It also happens to change X to (FN X), but that
is not important at the moment.) Recall the example induc-
tion lemma COUNTING.UP.BY.1 about DIFFERENCE (now
instantiated with the variables used in WHILELOOP in one of
nine possible ways):

(IMPLIES (LESSP I MAX)
(LESSP (DIFFERENCE MAX (ADD1 I))

(DIFFERENCE MAX I))).
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The conclusion of this lemma informs us that the DIFFERENCE
between MAX and I may be decreasing in WHILELOOP. To
guarantee it, we must prove only that the tests in the machine
for this case imply the hypothesis of the induction lemma. That
is, we must prove:

(IMPLIES (AND (LESSP I MAX)
(NOT (PRED I MAX)))

(LESSP I MAX)).

This is trivial.
Thus, to satisfy requirement (d) of the definition principle for

WHILELOOP, we let the well-founded relation, r, be LESSP,
and we let m be M, where:

(M I MAX X) = (DIFFERENCE MAX I).

Thus, WHILELOOP is accepted under the definition principle
as a well-defined function (and would be accepted by our imple-
mentation if it were cognizant of the induction lemma used).

14.1.4 Lexicographic Measures and Relations

Let us illustrate one further aspect of finding a measure and well-
founded relation that explain a function. Consider Ackermann’s
function as defined above.

Note that the first argument, M, sometimes goes down in
recursion and sometimes stays fixed. The second argument, N,
sometimes goes up (quite rapidly) and sometimes goes down.
The function is well-defined because a lexicographic measure is
going down. That is, in each recursive call, (ACK m n), the pair
〈m,n〉 is lexicographically smaller than the pair 〈M,N〉. To say it
another way, the ordinal omega*m+n is less than omega*M+N.

We can say this in our theory easily since we have ordered
pairs.2 In particular, the measure (CONS (COUNT M) (COUNT
N)) gets LEX-smaller on every recursive call, where LEX is the
lexicographic relation induced by LESSP and LESSP:

Definition

(LEX P1 P2)

2Indeed, it is quite easy to write functions for doing ordinal arithmetic.
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=
(IF (LESSP (CAR P1) (CAR P2))

T
(IF (EQUAL (CAR P1) (CAR P2))

(LESSP (CDR P1) (CDR P2))
F)).

If one knows enough to try lexicographic measures, the justifi-
cation of ACK can be derived from the previously mentioned
induction axiom intrinsic to the ADD1 shell:

(IMPLIES (NOT (ZEROP X))
(LESSP (COUNT (SUB1 X)) (COUNT X))).

It is easy, and useful, to be able to formulate such lexicographic
measures and well-founded relations from arbitrarily many other
measures and well-founded relations.

For example, consider the function GCD:

Definition

(GCD X Y)
=

(IF (ZEROP X)
(FIX Y)
(IF (ZEROP Y)

X
(IF (LESSP X Y)

(GCD X (DIFFERENCE Y X))
(GCD (DIFFERENCE X Y) Y)))).

One explanation of why GCD is well-defined is that the measure
(CONS (COUNT X) (COUNT Y)) decreases according to the
relation LEX above.3

3When we, as users of our program, introduced the definition of GCD, we had
previously proved as an induction lemma that (DIFFERENCE X Y) is smaller
than X when X and Y are non-ZEROP. We proved this so that we could introduce
REMAINDER and QUOTIENT, both of which recurse by subtracting the second
argument from the first. It had not occurred to us that GCD could be explained
lexicographically until the definitional mechanism used the measure and relation
above to explain it.
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14.2 Induction Schemes Suggested By Recur-
sive Functions

We will be more precise later about how we use a function’s
machine and known induction theorems to find a measure and
well-founded relation justifying the function’s definition. We de-
lay that discussion because we want to get more from a recursive
definition than the assurance that it is well-defined. We want to
be able to look at a call of a recursive function and see induc-
tions that are appropriate. So we will now turn our attention to
induction.

To apply the principle of induction to a conjecture we must
invent a case analysis, together with some substitutions, a vari-
able n-tuple, a measure, and a well-founded relation. We must
prove the conjecture under each of the cases. In all but the base
case we may assume instances of the conjecture obtained by
uniformly replacing some of its variables by terms. However, we
must also establish that in each such case the substitutions de-
crease the measure of the variable n-tuple according to the well-
founded relation. Inventing an induction scheme that actually
makes it possible to prove a given conjecture, while satisfying
all the foregoing constraints, is sometimes quite difficult.

But the recursive definitions of functions in the conjecture
“suggest” appropriate inductions. In particular, suppose the
conjecture mentions the call (f x1 . . . xn) of a recursively defined
function, suppose further that when we defined f we found a
measured subset of the function’s arguments, a measure on that
subset, and well-founded relation justifying the definition of f,
and finally suppose that all the xi in those measured positions
are distinct variables. Then the sense in which (f x1 . . . xn)
suggests an induction is as follows. By opening up (f x1 . . . xn)
we could reexpress the conjecture in terms of the recursive calls,
(f y1 . . . yn), in the definition of f. But, we can obtain inductive
hypotheses about (f y1 . . . yn) – at least for those yi in the
measured subset – by using the substitutions that replace the
measured xi by yi and replace other variables arbitrarily. By
using a case analysis similar to the one in the definition of f,
we know that our previously discovered measure on the subset
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decreases under these substitutions. Thus, it is easy to justify
the induction scheme.

14.2.1 Why We Use Measures and Relations

The key to the above induction heuristic is that under certain
conditions recursive definitions allow us to rewrite some function
calls in the induction conclusion to terms involving instances of
those calls – namely the recursive calls in the body of the defini-
tions – and that those instances can also be provided in induc-
tive hypotheses. This reasoning can be expressed in a way in
which no explicit mention is made of measures and well-founded
relations: having accepted a function definition we can induct
according to it (e.g., the “subgoal induction” scheme of Morris
and Wegbreit [42].)

Let us consider a simple example. Suppose we wished to
prove a conjecture of the form (p (WHILELOOP I MAX X)).
One appropriate induction for it is closely analogous to the defi-
nition of WHILELOOP. The induction step provides the induc-
tion hypothesis (p (WHILELOOP (ADD1 I) MAX (FN X))),
under the conditions (LESSP I MAX) and (PRED I X). Two
base cases are necessary, namely those obtained by negating the
conditions defining the induction step. The induction scheme
can be justified by any measure and well-founded relation justi-
fying the definition of WHILELOOP.

More generally, if f is a recursive function, then the term (f A
B C) suggests an induction scheme which, under exactly the case
analysis in the body of f, supplies induction hypotheses obtained
by instantiating A, B, and C exactly as they are instantiated in
the recursive calls in (f A B C). The suggested induction is jus-
tified by the same measure and well-founded relation justifying
the definition of f. Thus, at first sight there is no apparent need
for us to consider measures and well-founded relations explicitly
for induction.

However, we want the terms in the conjecture being proved
to suggest inductions to perform. For example, suppose the
term (f A B term), where term is not a variable, is mentioned
in the conjecture. If f is a well-defined recursive function, but
no measure analysis is available, no legal induction is suggested
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by (f A B term). In particular, we are not free to obtain our
induction hypotheses by instantiating A, B, and term as they
are instantiated by recursive calls in f, because term is not a
variable, and we have no reason to believe that the measure
justifying f decreases under a substitution instantiating only A
and B.

But (WHILELOOP I MAX term) nevertheless suggests an
induction, namely the one in which we have the induction as-
sumption for (ADD1 I) and MAX in the case (LESSP I MAX).
We can look at (WHILELOOP I MAX term) and see an in-
duction because we know that only the first two arguments of
WHILELOOP are critical to the justification of the definition
of WHILELOOP.

Because we want terms in the conjecture to suggest induc-
tions, it is to our advantage to analyze each recursive definition
carefully, so as to discover all the measures and well-founded
relations that explain it.

14.2.2 Measured Subsets

The key to seeing an induction in (WHILELOOP I MAX term)
is knowing that I and MAX, and just those two, are crucial in
the measure justifying the definition. Our definition principle
requires that the measure m justifying a definition of a function
f, with formal parameters x1, . . . , xn, be a function of n argu-
ments. But it is often the case that there exists a measure m’
and a subset s = {x’1, . . . , x’j} of {x1, . . . , xn} such that the
requirements of the definition principle are met when (m x1 . . .
xn) is defined to be (m’ x’1 . . . x’j). If such an m’ and s exist,
we call s a measured subset for f.

Thus, a precise statement of the fact that only I and MAX
are crucial to the measure justifying WHILELOOP is that {I
MAX} is a measured subset of WHILELOOP. The only mea-
sured subset for ACK is {M N}. The fact that we explained ACK
lexicographically, piecing together measures on M and measures
on N, is not relevant here.

The ability to spot when a term suggests an induction is
strengthened if we know all the possible justifications of the
function’s definition.
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Consider WHILELOOP. It is possible, for example, that (FN
X) drives X down if (PRED I X) is false. If that were known,
then {X} would also be a measured subset of WHILELOOP and
we would be able to spot a potentially useful induction in a term
such as (WHILELOOP term1 term2 X).

It is not unusual for a function to have more than one mea-
sured subset. Consider the definition of DIFFERENCE:

Definition

(DIFFERENCE I J)
=

(IF (ZEROP I)
0
(IF (ZEROP J)

I
(DIFFERENCE (SUB1 I) (SUB1 J)))).

Note that there are two explanations of this definition: the
COUNT of the first argument decreases in every call, and the
COUNT of the second argument decreases in every call.

Consequently, both {X} and {Y} are measured subsets of
DIFFERENCE and both (DIFFERENCE X term) and (DIF-
FERENCE term Y) suggest legal inductions.

When we enforce the requirements of the principle of defi-
nition, we consider all the different combinations of arguments
(that is, all the subsets of the formals), measured in all pos-
sible ways by known measures and lexicographic combinations
of known measures. We even consider the possibility that un-
changed arguments are contributing to the justification; for ex-
ample, {I MAX} is a measured subset for WHILELOOP, even
though MAX is unchanged in the recursion. Should we find any
subset, measure, and well-founded relation decreasing in every
recursive call, then we accept the definition under our princi-
ple of definition. To satisfy our need to spot inductions we find
every nontrivial explanation.4

4We do not bother to look for measures on supersets of identified measured
subsets. In addition, we do not consider a lexicographic combination of two
measures if either measure alone is always decreasing.
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14.2.3 Specifying an Induction Schema

It is not enough to know that some given measure of some subset
of a function’s arguments is decreased in recursion. That is
enough to let us spot that an induction is suggested, but not to
tell us what the induction is. We would also like to know, for
each explanation found, the case analysis for the induction and
the inductive instances we can (and supposedly should) assume
for each case.

Recall that when we induct we are free to pick an arbitrary
case analysis (together with a well-founded relation, measure,
and n-tuple of variables). If we can show that a certain instan-
tiation decreases the measure of our n-tuple of variables under
the hypotheses of the case analysis, then we can legally assume
that instance of the conjecture being proved. Thus, a typical
inductive step is an implication in which we have the conditions
defining the case and a set of instances of the conjecture as our
hypotheses, and the conjecture itself as our conclusion.

It should be fairly clear that the case analysis for any in-
duction for a function should be somewhat along the lines of
the machine for the function. To illustrate this, consider Acker-
mann’s function again and recall its machine:

case tests recursive calls
(1) (AND (NOT (ZEROP M)) (ACK (SUB1 M) 1)

(ZEROP N))
(2) (AND (NOT (ZEROP M)) (ACK (SUB1 M) (ACK M (SUB1 N)))

(NOT (ZEROP N))) (ACK M (SUB1 N))

If we were trying to prove a proposition about (ACK M N) we
would clearly want to have two separate induction steps. One,
governed by the tests in case (1), would supply as an inductive
assumption the conjecture with M replaced by (SUB1 M) and
N replaced by 1, because in that case the term (ACK M N)
in the conclusion will open up to (ACK (SUB1 M) 1). The
second inductive step, governed by the tests in case (2), would
supply two inductive assumptions: one in which M is replaced
by (SUB1 M) and N is replaced by (ACK M (SUB1 N)), and one
in which M is replaced by M, and N is replaced by (SUB1 N).
This choice of instances is motivated by the observation that the
(ACK M N) term in the conclusion will open up to involve both
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of the two ACK terms we will obtain in the hypothesis under
these instantiations. The base case of our induction would be
obtained by negating the disjunction of the tests in cases (1)
and (2).

So in general the machine for a function suggests the case
analysis and the induction hypotheses. We now describe the
selection of the case analysis and induction hypotheses more
carefully.

Defining the Cases

How shall we define the cases of the induction argument? As we
noted, we could in principle use the tests in the machine. We
know that if we are free to instantiate all the arguments in any
measured subset, then the associated measure will be decreased
under the case analysis of the machine. This will give us n+1
cases in an induction argument about a machine with n entries.
The extra case is the base case obtained by negating the tests
leading to induction steps.

We have found that using the machine in this way, while
ideal if we are considering only a single term in the conjecture,
leads to trouble if there are interesting interactions between the
various recursive functions involved in the formula being proved.

Irrelevant Tests and Weak Base Cases Let us look at another
example. Consider the definition of LESSP:

Definition

(LESSP X Y)
=

(IF (ZEROP Y)
F
(IF (ZEROP X)

T
(LESSP (SUB1 X) (SUB1 Y)))).

The machine for LESSP is:

case tests recursive calls
(1) (AND (NOT (ZEROP Y)) (LESSP (SUB1 X) (SUB1 Y))

(NOT (ZEROP X)))
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{X} and {Y} are both measured subsets of LESSP.
Consider the term (LESSP term I), where term is a nonvari-

able. This term suggests an induction on I, in which we have one
induction step, providing one inductive hypothesis, namely that
obtained by replacing I by (SUB1 I). But what exactly should be
the conditions governing the step? Note that two tests govern
the recursion, (NOT (ZEROP I)) and (NOT (ZEROP term)).
The question is, do we want these two tests to define our induc-
tion step as well?

While the second test is important in making LESSP com-
pute the desired value, it is completely irrelevant to the recur-
sion on I. Consider the consequences of using both tests to define
our induction step. We would be obliged to prove the weak base
case in which I was assumed to be non-ZEROP but term was
assumed to be ZEROP. While this may be a natural base case
for (LESSP term I), it may not be a natural base case for other
expressions in the conjecture. For example, suppose (PLUS I J)
were also involved in the conjecture. Then, in the case in which
I is assumed non-ZEROP, we have to use recursion to determine
the value of (PLUS I J) and thus would naturally want the case
to be an induction step, not a base case.

For example, consider proving the theorem:

(NOT (LESSP (PLUS I J) I)).

If we do not treat the second test in the machine for LESSP as
irrelevant, the (LESSP term I) subterm suggests an induction in
which the induction step is governed by (NOT (ZEROP I)) and
(NOT (ZEROP (PLUS I J))). Thus, we are obliged to prove the
base case:

(IMPLIES (AND (NOT (ZEROP I))
(ZEROP (PLUS I J)))

(NOT (LESSP (PLUS I J) I))),

which reduces to:

(IMPLIES (ZEROP (PLUS I J)) (ZEROP I)).

The proof of the above formula requires expanding the definition
of PLUS, which we would do by performing a second induction
on I.
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On the other hand, if we recognize that the second test in
the machine for LESSP is irrelevant here, the (LESSP term I)
subterm suggests an induction in which the induction step is
governed by (NOT (ZEROP I)), giving rise to the “natural”
base case (ZEROP I). Both the induction step and the base
case of the suggested induction simplify to true.

Recognizing certain tests to be irrelevant has another im-
portant effect on the analysis of appropriate inductions. Note
that in (NOT (LESSP (PLUS I J) I)) there are two suggested
inductions, the one suggested by (LESSP term I) and the one
suggested by (PLUS I J). If we recognize the second test in the
machine for LESSP to be irrelevant to an induction on the sec-
ond argument, then the induction suggested by (LESSP term I)
is precisely the induction suggested by (PLUS I J). If, on the
other hand, we use the irrelevant test to define the induction
step, the (LESSP term I) induction is different from the (PLUS
I J) induction and we must choose between them.

Eliminating irrelevant tests from induction schemes thus has
two advantageous effects: we eliminate weak base cases and we
can arrange for different terms to suggest identical inductions.
The latter effect is important because it permits us to focus
our attention on a smaller number of candidate inductions, each
“satisfying” a larger number of terms in the conjecture.

In the foregoing example, it is easy to spot that the test
(NOT (ZEROP X)) is irrelevant to the measured subset {Y}.
But in general, the situation is more subtle. For example, con-
sider the function MEMBER:

Definition

(MEMBER X L)
=

(IF (LISTP L)
(IF (EQUAL X (CAR L))

T
(MEMBER X (CDR L)))

F).

MEMBER returns T if X is an element of the list Y, and F
otherwise. The machine for the function is:

cases tests recursive calls



194CHAPTER 14. INDUCTION AND THE ANALYSIS OF RECURSIVE DEFINITIONS

(1) (AND (MEMBER X (CDR Y))
(LISTP Y)
(NOT(EQUAL X (CAR Y))))

Note that the second test, while important in making MEM-
BER compute the desired value, is completely irrelevant to the
justification of the recursion. Recognizing the irrelevancy of the
second test in MEMBER permits us to spot that (MEMBER A
X), (APPEND X Y), and (REVERSE X) all suggest identical
inductions.

Weeding Out Irrelevant Tests So how do we weed out the
irrelevant tests in a function definition? The answer is fairly
simple: we consider the induction lemmas that explain recursive
calls, and we use the hypotheses of the lemmas, rather than the
tests in the machine, to determine the cases.

That is, if a machine tests t1, . . . , and tj and then recurses
with (f y1 . . . yn) and we know the induction lemma:

(IMPLIES h
(r (m y1 ... yn) (m x1 ... xn)))

and can establish:

(IMPLIES (AND t1 ... tj) h),

then we know m goes down in that recursive call. Regardless of
what terms actually govern the recursion, h is sufficient to guar-
antee that m decreases. In the case analysis for the induction,
we will use h rather than the ti, as the test for this case of the
induction.

An Example of Weeding Out Irrelevant Tests For example,
in processing MEMBER at definition-time, we try {Y} as a pos-
sible measured subset. We see that in the only recursion, Y is
being changed to (CDR Y). In our list of known induction lem-
mas we find the following lemma added by our implementation
of the shell principle:

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X))).
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Instantiating the lemma by matching the (CDR X) in its con-
clusion with the (CDR Y) in the recursive call, we learn that
the COUNT of Y decreases if the tests in the machine imply the
instantiated hypothesis of the lemma, (LISTP Y). We thus try
to prove the trivial implication:

(IMPLIES (AND (LISTP Y)
(NOT (EQUAL X (CAR Y))))

(LISTP Y)).

Since this succeeds (and there is only one recursive call), we have
positively identified {Y} as a measured subset. For the purposes
of induction according to this measured subset, we associate
with {Y} a revised version of the machine for MEMBER:

case tests recursive calls
(1) (LISTP Y) (MEMBER X (CDR Y))

where the test is that from the induction lemma, not the function
body.

Note that this use of the hypotheses of induction lemmas is
most effective when the user states induction lemmas with the
cleanest hypotheses available.

Selecting the Induction Hypotheses

The second part of specifying an induction scheme is to decide,
for each case in the revised machine for a measured subset, what
the legal and supposedly appropriate induction instances are.

From the point of view of any given term (f x1 . . . xn) in
a conjecture to be proved by induction, we know exactly which
instances we would like in a given case of the analysis: those
instances (f y1 . . . yn) that arise when the recursive definition of
f is expanded under that case. If some subset of the xi consists
of distinct variables, and that same subset is measured, then we
know that instantiating those xi in accordance with the recur-
sion is sound. But what of the other xi? Clearly, if xi is not in
the measured subset, then we can ignore it if we wish (from the
soundness point of view), but (from the heuristic point of view)
we should do our best to get induction hypotheses in which the
terms occupying xi’s position are those that arise when (f x1 . . .
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xn) is expanded. The induction principle allows us to substitute
arbitrarily for variables not in the measured subset.

Thus, in the ideal case, when all the xi are distinct variables,
we will substitute as directed by the recursion regardless of which
measure we use to justify the induction. At definition time we
cannot anticipate which argument positions might be occupied
by nonvariables and which by variables, so we just note the
“ideal” hypotheses in which we substitute for all the positions.
We can represent a hypothesis as a substitution scheme on the
formals of the function – a substitution that, for each recursive
call, maps each formal to the corresponding term in the recursive
call. At induction time we substitute the actual values of the
formals into the substitution scheme to obtain the substitution
used to produce an induction hypothesis. At that time we must
throw out any substitution pair that would have us substitute
for a nonvariable. Of course, not any pair can be thrown out if
the resulting induction is to be sound. In the next chapter, we
specify which pairs may be deleted.

14.3 The Details of the Definition-time Anal-
ysis

We now summarize what we observe about a function’s defini-
tion when it is introduced.

We first compute the machine for the function. Then, we
consider all possible subsets of the formal parameters. For each
subset of cardinality j we produce the j-tuples containing exactly
the variables of the subset but in all possible permutations. For
each such variable j-tuple we look at every known j-ary mea-
sure and well-founded relation in an induction lemma and note,
for every recursive call in the machine, whether the measure
goes down or does not increase on the j-tuple. When we find
an induction lemma whose conclusion suggests that a measure
decreases or is at least nonincreasing, we use our simplification
heuristics to try to prove that the tests in the machine governing
that recursion imply the hypothesis of the lemma.

In searching for an appropriate induction lemma, we elabo-
rate the set of user supplied lemmas by exploiting the fact that
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LESSP is transitive. This is useful when the recursion involves
nests of function symbols. For example, consider the definition
of HALF:

Definition

(HALF I)
=

(IF (ZEROP I)
0
(IF (ZEROP (SUB1 I))

0
(ADD1 (HALF (SUB1 (SUB1 I)))))).

Note that in the recursive call, I is replaced by (SUB1 (SUB1
I)). We can use the following induction lemma to establish that
a measure of the variable 1-tuple 〈I〉 is decreasing:

Theorem SUB1.LESSP:

(IMPLIES (NOT (ZEROP X))
(LESSP (COUNT (SUB1 X)) (COUNT X))).

We use the lemma as follows. We match (SUB1 (SUB1 I)) with
the (SUB1 X) in the conclusion of the lemma. Instantiating the
lemma with the resulting substitution we get:

(IMPLIES (NOT (ZEROP (SUB1 I)))
(LESSP (COUNT (SUB1 (SUB1 I))) (COUNT (SUB1 I)))).

Had the right-hand side of the instantiated conclusion been
(COUNT I) (i.e., the measure applied to our variable 1-tuple),
we would be done. Since it is (COUNT (SUB1 I)) instead, we
recursively try to establish that (COUNT (SUB1 I)) is no bigger
than (COUNT I) according to the same measure and LESSP.
Thus, we again appeal to SUB1.LESSP, matching (SUB1 I) with
(SUB1 X), and obtain:

(IMPLIES (NOT (ZEROP I))
(LESSP (COUNT (SUB1 I)) (COUNT I))).

This time the right-hand side is (COUNT I), so, provided the hy-
potheses hold, we have a transitivity argument that (COUNT
(SUB1 (SUB1 I))) is smaller than than (COUNT I). To com-
plete the argument we must show that the tests in the machine
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governing the recursion imply the conjunction of the tests we
have accumulated: (NOT (ZEROP (SUB1 I))) and (NOT (ZE-
ROP I)). That is, (COUNT (SUB1 (SUB1 I))) is smaller than
(COUNT I) if I is a number, not 0, and not 1.

In some cases we might find more than one way to establish
that (SUB1 I) is no bigger than I. For example, we might know
the induction lemma:

(IMPLIES (NOT (EQUAL (COUNT (SUB1 X)) (COUNT X)))
(LESSP (COUNT (SUB1 X)) (COUNT X))).

Recall that such a lemma means that (COUNT (SUB1 X)) is
less than or equal to (COUNT X). Thus, if our implementa-
tion were aware of the above lemma, HALF would be an ac-
ceptable definition even if it only tested (ZEROP I). That is,
the above lemma allows the implementation to deduce that
(COUNT (SUB1 (SUB1 I))) is smaller than (COUNT I) if I
is a number and not 0.

The foregoing procedure for unravelling nests of function
symbols such as (SUB1 (SUB1 I)) is not limited to induction
lemmas about COUNT and LESSP. The procedure may be gen-
eralized and applied to any measure and any well-founded rela-
tion that is known to be transitive. In fact, any well-founded
relation may be extended to a transitive well-founded relation
by taking its transitive closure.

Any time we find that a measure goes down or is nonincreas-
ing on a particular call, we remember the variable j-tuple, mea-
sure, well-founded relation, recursive call, and the hypotheses of
the induction lemma(s) used.

Having observed the behavior of every known measure and
well-founded relation on every variable j-tuple and recursive call,
we then try to find a way to piece this information together to
find a lexicographic relation on m-tuples of the variable j-tuples.
We proceed to find all possible lexicographic combinations jus-
tifying the definition. Of course, we do not construct trivial
combinations in which, say, the first component by itself is al-
ways decreasing.

We now illustrate how we piece measures together lexico-
graphically. Suppose we have found that some measure m1 on
the variable j-tuple 〈x1,. . . ,xj〉 gets r1-smaller on some recur-
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sive calls and is merely nonincreasing on others. Also, suppose
that on these other recursive calls we have found that another
measure, m2 , on the variable k-tuple 〈y1,. . . ,yk〉 gets r2-smaller.
Then we construct a measure that produces pairs of the form
(CONS (m1 x1 . . . xj) (m2 y1 . . . yk)) and we form the lexico-
graphic well-founded relation induced by r1 and r2. Either r1 or
r2 may itself be lexicographic in nature.

If we ever find a measure and relation that is always de-
creasing, we can easily use the induction lemma hypotheses to
reconstruct a revised version of the machine with the lemma hy-
potheses, rather than the tests from the function body, defining
the cases. We conjoin all the hypotheses involved in explaining
all the recursions in a given case and use that conjunction as
the tests for the case. In addition, we convert each recursive
call in each case into a substitution by pairing each formal with
the term occupying the corresponding argument position in the
recursive call.

When we have finished, we will have found all the measured
subsets we could identify. For each measured subset we will have
noted the measure and well-founded relation associated with it,
and the revised machine. We call this information associated
with a measured subset an induction template because it de-
scribes one of the inductions suggested by the function.

As an example of an induction template, let us consider the
function WHILELOOP: it has a measured subset {I MAX}, the
measure is (DIFFERENCE MAX I), and the measure decreases
according to the well-founded relation LESSP. The case analysis
contains just one case, namely that to prove (p I MAX X) one
may inductively assume (p (ADD1 I) MAX (FN X)) under the
condition that (LESSP I MAX). This induction step is encoded
as the substitution that replaces I by (ADD1 I), MAX by MAX,
and X by (FN X). Note that the definition of the case does not
mention (PRED I X). In general, a case may have more than one
such substitution (e.g., FLATTEN, ACK, and NORMALIZE),
there may be more than one case (e.g., ACK and NORMAL-
IZE), and there may be more than one induction template (e.g.,
LESSP and DIFFERENCE).
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14.4 Recursion In the Reverse Example

Recall that we are in the process of proving the theorem:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X))

X)).

There are three recursive functions involved in the proof of this
theorem, PLISTP, REVERSE, and APPEND (which, recall, is
a “subroutine” of REVERSE).

Given the single induction lemma:

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X))),

we make the following straightforward observations about those
three functions.

(PLISTP X) has one measured subset, {X}, which is mea-
sured with COUNT and is getting LESSP-smaller. The appro-
priate case analysis contains one case, namely that to prove (p
X) one may inductively assume (p (CDR X)), under the condi-
tion (LISTP X).

(REVERSE X) has exactly the same analysis as PLISTP.
(APPEND X Y) also has exactly the same analysis as PLISTP,

except we note that to prove (p X Y) one should assume (p (CDR
X) Y) under the condition (LISTP X). In particular, we note
that in this, the only induction case, APPEND holds its second
argument, Y, fixed while changing X to (CDR X). Although Y
is not essential to the measure (it is not in the measured sub-
set), our inductions for APPEND should try to keep the second
argument fixed.



Chapter 15

Formulating an Induction
Scheme for a Conjecture

We now return to the problem of setting up an induction for a
particular formula. The basic idea is to look at the terms in the
formula and to note the inductions suggested by each of them.
Then, after expanding each scheme to account for as many terms
as possible, we pick the “best” according to various heuristics.

15.1 Collecting the Induction Candidates

Suppose that the term (f t1 . . . tn) occurs in the formula and we
know an induction template for the recursive function f. Then
there are two obvious questions: does the template apply (e.g.,
are enough of the ti terms distinct variables to permit a sound
induction) and what is the induction suggested?

15.1.1 Deciding That a Template Applies

If the ti occupying the argument positions measured by the in-
duction template we have in mind are all distinct variables, then
we can use the template to construct a sound induction scheme.
And in general, if any of the measured ti is not a variable, or is
the same variable as another measured ti, we cannot. However,
there is an important exception to the rule. If tj is a nonvariable
term in a measured position, and if the jth argument of f is never

201
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changed in any of the substitutions in the cases (i.e., in any of
the recursive calls of f), then we can get induction hypotheses
that force the measure down by not changing any of the vari-
ables occurring in tj. (The second argument of WHILELOOP
is an example of a tj in a measured position not changed in any
substitution; the second argument of APPEND is not.)

We now make this precise. Let the changeables be those
ti that occur in measured positions that are also sometimes
changed in the recursion. Let the unchangeables be the vari-
ables occurring in those ti occupying measured positions that
never change in the recursion. A template applies to a term if
the changeables are all distinct variables and none of them is
among the unchangeables.

For example, the template of WHILELOOP applies to (WHILELOOP
X Y (H Z)) because X is the only changeable (and is a variable)
and Y is the only unchangeable (and is different from X). The
template does not apply to (WHILELOOP (G I) MAX X), be-
cause (G I) is a changeable that is not a variable. The template
does not apply to (WHILELOOP I (G I) X), because I is both
a changeable and an unchangeable. We justify the definition of
“applies” after explaining how it is used.

15.1.2 Obtaining the Induction Scheme Suggested

Given a template that applies to a term, we can produce an in-
duction scheme. An induction scheme is a case analysis together
with a set of substitutions giving the induction hypotheses for
each case, exactly analogous to the revised machine in the tem-
plate. The only problem is that the template is expressed in
terms of the formals of the function. We must instantiate it
with the actual arguments of the term in the formula.

For example, the template for WHILELOOP (which was de-
fined using the formals I, MAX, and X) tells us that under the
condition (LESSP I MAX) we should assume the formula with I
replaced by (ADD1 I), MAX replaced by MAX, and X replaced
by (FN X). Consider the term (WHILELOOP K (PLUS X Y)
V). K is the only changeable and X and Y are both unchange-
ables. Thus, the template applies. The induction suggested by
(WHILELOOP K (PLUS X Y) V) is to assume the formula with
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K replaced by (ADD1 K), X and Y unchanged, and V replaced
by (FN V), under the condition (LESSP K (PLUS X Y)). This
is an appropriate induction because when (WHILELOOP K
(PLUS X Y) V), in the induction conclusion, is opened up under
the case (LESSP K (PLUS X Y)), the resulting WHILELOOP
expression is identical to that provided in the induction hypoth-
esis. But note that in instantiating the substitution scheme
we had to throw out the pair that would have instructed us
to replace (PLUS X Y) by (PLUS X Y). In general, when we
instantiate the substitution schemes in the template with the ac-
tual arguments, we must then go through the substitutions and
delete certain illegal substitution pairs. There are three kinds of
pairs that must be deleted (and can be deleted without affecting
the soundness of the resulting induction scheme, provided the
induction template indeed applies to the term in question).

As noted above, we must throw out any pair that would have
us substitute for a nonvariable.

The second kind of pair we must throw out is any that re-
quires that we substitute for an unchangeable. For example,
in (WHILELOOP K (G X) X), we know we must keep X un-
changed because it occurs in the second argument. However, it
also occurs in the third argument, and the substitution scheme
in the template would have us replace X by (FN X). This would
violate the need to keep X fixed. Hence we must throw that pair
out.

The third criterion for deleting a pair applies to an ambigu-
ous “substitution,” one that would have us substitute twice for
the same variable. For example, the term (WHILELOOP I
MAX I) would suggest we substitute (ADD1 I) for I (because it
occurs in the first argument) and (FN I) for I (because it occurs
in the last argument). If we find such duplicate pairs we must
keep the one that substitutes for a measured variable (if either
does). If neither variable is measured, we can choose arbitrarily
which to delete. (Given that the template applies, we know that
both are not measured since we have already determined that
no two changeables are identical.)

Thus, we obtain the induction scheme, if any, suggested by
a template and a term, in two steps. We first decide whether
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the template applies. If so, we then instantiate the case analysis
and substitution schemes in the template and delete any illegal
pairs from the resulting “substitutions.” Both steps are trivial.

We now give some example induction schemes suggested by
certain terms. The term (WHILELOOP K (PLUS X Y) K)
suggests the scheme in which, under the condition (LESSP K
(PLUS X Y)), we provide an inductive assumption for K re-
placed by (ADD1 K), and X and Y unchanged.

The term (LESSP I (G I J)) suggests the induction scheme
in which, under the condition (NOT (ZEROP I)), we provide an
inductive assumption for I replaced by (SUB1 I).

Finally, (LESSP I J) suggests two schemes since there are
two templates that apply. The first provides an inductive as-
sumption for I replaced by (SUB1 I) and J replaced by (SUB1
J), under the condition (NOT (ZEROP I)). The second is the
symmetric one for J.

15.1.3 Proof That the Inductions Suggested Are Sound

We claim that if given a template and a term (f t1 . . . tk) to
which the template applies, the above process produces a case
analysis and some substitutions satisfying the requirements of
the induction principle.

Recall that we must exhibit some conditions qi, and some
substitutions si,j, together with a well-founded relation r, vari-
able n-tuple x1, . . . , xn, and measure m such that, for each i
and j:

*goal (IMPLIES qi

(r (m x1 ... xn)/si,j (m x1 ... xn))).

Let s be the substitution mapping the formals of f to the corre-
sponding ti. Let v1, . . . , va be the formals of f in the measured
subset of the template. Suppose the condition defining the ith

case in the template is qi’. Then the qi we use in the induction
principle is qi’/s, as described. The si,j are the substitutions ob-
tained by instantiating the substitution schemes of the template
with s and deleting illegal pairs, as described.

The proof that the si,j are indeed substitutions (as opposed
to arbitrary sets of pairs) follows trivially from the definition of
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“applies” and the first and third deletion criteria. The hard part
still remains: what r, x1, . . . , xn, and m do we use?

The well-founded relation, r, is that of the induction tem-
plate. The xi are the union of the changeables and the un-
changeables defined above (in any order). Observe that the xi

include every variable mentioned in any term in a measured po-
sition of (f t1 . . . tk).

We now construct a measure function, m, satisfying *goal.
Let m’ be the measure function associated with the induction
template. Consider the ith case and the i,jth recursive call in the
template (i.e., the jth call in the ith case). By construction, m’
applied to the terms y1, . . . , ya occupying the measured positions
in the i,jth recursive call is r-smaller than m’ applied to the
measured subset itself:

(IMPLIES qi’
(r (m’ y1 ... ya) (m’ v1 ... va))).

Thus, the above theorem holds if we instantiate it with s:

*thm (IMPLIES qi’/s
(r (m’ y1 ... ya)/s

(m’ v1 ... va)/s)).

We define m, the required measure function, with the equation:

(m x1 ... xn)
=

(m’ v1 ... va)/s.

That such a nonrecursive definition is well-formed (i.e., that
the body mentions no variable except the xi) follows from the
definition of the xi and that the vi are the measured subset.

We now show that *goal holds under the foregoing defini-
tions. Note that the hypothesis, qi’/s of *thm, is, by definition,
qi, and that the right-hand side of the conclusion, (m’ v1 . . .
va)/s, is equal to (m x1 . . . xn) by the definition of m. Hence,
*goal is equivalent to *thm if (m’ y1 . . . ya)/s is equal to (m
x1 . . . xn)/si,j, or, equivalently, if (m’ y1/s . . . ya/s) is (m’
(v1/s)/si,j . . . (va/s)/si,j). In fact, it is the case that for each c
from 1 to a, yc/s is (vc/s)/si,j. The reasoning is as follows: yc/s
is the term in the cth measured position of the i,jth recursive
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call introduced by expanding (f t1 . . . tn). But (vc/s) is the
ti in the cth measured position. Let us call it tc. Either tc is
one of the changeables or else it is a term all whose variables
are unchangeables. If it is a changeable, si,j maps it to yc/s
by construction of the induction template substitution schemes
and the instantiation and pair-deletion process. If tc is a term
all whose variables are unchangeables, then si,j will not effect it,
by the second pair-deletion criterion. Thus, tc/si,j is tc. But by
definition of an unchangeable, tc is yc/s. Q.E.D.

Thus, the simple definition of “applies” and the instantiation
and deletion process produce sound induction schemes.

15.2 The Heuristic Manipulation of Induc-
tion Schemes

Once we have noted each induction scheme (i.e., case analy-
sis and substitutions) suggested by any term in the formula,
we begin the mainly heuristic phase of manipulating induction
schemes and choosing the best one we can formulate. We have
discovered many heuristics for obtaining new schemes from old
ones and for choosing among the various candidate inductions.

To facilitate the discussion of these heuristics, we associate
with each scheme

The term for which it was produced,

The set of all variables that are substituted for (whether
measured or unmeasured), henceforth called the chang-
ing variables,

The set consisting of all the unchangeables (as de-
fined previously) and all the variables occurring in
arguments to the term that are changed by no substi-
tution (that is, the variables that must stay fixed for
the induction to be sound plus those we are keeping
fixed because the function merely “wants” them that
way), henceforth called the unchanging variables, and

A score that reflects our estimation of how good a
match this induction scheme is for the term for which
it accounts.
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Initially, the score is the rational quotient of the number of for-
mals for which we substituted, divided by the number of formals
of the function symbol of the term that suggested the induction
template. Thus, initially, the score reflects how many of the ar-
guments of the function we expect to “pick up” by our induction
hypotheses when the function opens up.

15.2.1 Subsumption of Induction Schemes

Our first step in cleaning up the set of possible induction schemes
is to throw away any “subsumed” by another.

Suppose that some scheme s1 has only the single case that
says “under the assumption (LISTP X) assume the conjecture
with X replaced with (CDR X).” Further, suppose that scheme
s2 has a richer case structure, but one of its cases is “under
the assumption (LISTP X) and (LISTP (CDR X)) assume the
conjecture with X replaced with (CDR (CDR X)).” Then from
a heuristic point of view, s2 “subsumes” s1 because the s2 case
above will essentially give the term by which s1 was suggested
permission to recurse twice, once to (CDR X) and then again to
(CDR (CDR X)). We throw out the s1 induction in favor of the
s2 induction.

In order for s2 to subsume s1 we require three things. First,
the changing variables of s1 must be a subset of those of s2.
Second, the unchanging variables of s1 must be a subset of those
of s2. Finally we require that every case of s1 be subsumed by a
case of s2, in the sense that the tests of the s1 case are a subset
of those of the s2 case, and that for every substitution in the
s1 case there be a substitution in the s2 case such that for each
component in the s1 substitution, there is a component in the
s2 substitution with the same variable and a term that mentions
the term of the s1 component. Further, no s2 case is permitted
to subsume two s1 cases, and no s2 substitution is permitted to
subsume two s1 substitutions.

When we throw out s1 because s2 subsumes it, we add s1’s
score to that of s2, and we consider that s2 accounts for all the
terms for which it used to account plus all those for which s1

was accounting.
Note that if two induction schemes are identical, then one
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subsumes the other. Hence, if several terms in the formula sug-
gest the same induction, as we saw happen with (PLISTP X)
and (REVERSE X), we will have eliminated duplicate sugges-
tions after the subsumption check. We will have noted also that
the suggested induction accounts for several terms.

As an example of an induction scheme being subsumed by
a nonidentical one, consider the theorem that (HALF I) is less
than or equal to I:

(NOT (LESSP I (HALF I))).

The LESSP-expression suggests inducting on I, assuming the
theorem for (SUB1 I) under the case (NOT (ZEROP I)). The
HALF-expression suggests induction on I, assuming the theo-
rem for (SUB1 (SUB1 I)) under the case (NOT (ZEROP I))
and (NOT (ZEROP (SUB1 I))). The induction for LESSP is
subsumed by the induction for HALF.

At the conclusion of this chapter we present several thor-
oughly described example inductions involving subsumption and
our other heuristics.

15.2.2 Merging of Induction Schemes

To see the need for the next heuristic, let us look at an example.
Suppose we are trying to prove the transitivity of LESSP:

(IMPLIES (AND (LESSP X Y)
(LESSP Y Z))

(LESSP X Z)).

Since LESSP changes both of its arguments, and a measure of
either is sufficient to justify the definition, we start out with
six suggested schemes. They are (grouping them by two’s in
correspondence with the LESSP terms above):

Under the condition (NOT (ZEROP X)), assume the
conjecture with X replaced with (SUB1 X) and Y with (SUB1 Y).
Under the condition (NOT (ZEROP Y)), assume the
conjecture with X replaced with (SUB1 X) and Y with (SUB1 Y).
Under the condition (NOT (ZEROP Y)), assume the
conjecture with Y replaced with (SUB1 Y) and Z with (SUB1 Z).
Under the condition (NOT (ZEROP Z)), assume the
conjecture with Y replaced with (SUB1 Y) and Z with (SUB1 Z).
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Under the condition (NOT (ZEROP X)), assume the
conjecture with X replaced with (SUB1 X) and Z with (SUB1 Z).
Under the condition (NOT (ZEROP Z)), assume the
conjecture with X replaced with (SUB1 X) and Z with (SUB1 Z).

Suppose we were to induct according to any one of these – for
example, the first. Then our hypothesis would be obtained by
replacing X and Y by (SUB1 X) and (SUB1 Y) respectively.
But consider the term (LESSP X Z) in the conclusion. Note
that its counterpart in the induction hypothesis (i.e., the term
obtained by instantiating it as above) is (LESSP (SUB1 X) Z).
If we open up the (LESSP X Z) in the conclusion we will obtain
(LESSP (SUB1 X) (SUB1 Z)), which is not in the hypothesis
because in the hypothesis we did not replace Z by (SUB1 Z).
But if we do not open it up, and leave it (LESSP X Z), it is not
in the hypothesis because in the hypothesis we did replace X by
(SUB1 X).

Clearly, if the changing variables of two schemes overlap, then
doing either induction by itself will throw the terms associated
with the other induction “out of sync” by replacing some but
not all the variables they need to reoccur. That is the heuristic
motivation of “merging.”

We merge scheme s1 into s2 provided their changing vari-
ables have a nonempty intersection, the unchanging variables of
each has an empty intersection with the changing variables of
the other, and we can merge each case of s1 into a case of s2 in
the following sense: for every substitution in the s1 case we can
find a substitution in the s2 case such that the two substitutions
substitute for some common variable, the two substitutions sub-
stitute identically on all common variables, and there is at least
one common variable, v, such that the term replacing it is not
v itself. Further, no two s1 cases may merge into the same s2

case, and no two s1 substitutions may merge into the same s2

substitution.
The result of such a merge is like s2, except that for each

case in s2 that absorbed an s1 case we add the tests from the
s1 case to those of the s2 case, and we extend each substitution
in the s2 case by adding any new pairs from an s1 substitution
with which it overlapped (if any). In addition, we merge each
s1 case into as many other s2 cases as we can. We add the
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changing variables of s1 to the changing variables of s2, and we
add the unchanging variables of s1 to the unchanging variables
of s2. The new scheme’s score is the sum of the scores of s1 and
s2, and the new scheme accounts for all the terms of the two
older schemes. We throw out s1 and retain the modified s2.

To see how merging works, we return to the example of the
transitivity of LESSP. The six schemes noted above merge into
one:

Under the conditions (NOT (ZEROP X)), (NOT (ZEROP Y)),
and (NOT (ZEROP Z)), assume the conjecture with
X replaced with (SUB1 X), Y with (SUB1 Y), and Z with (SUB1 Z).

If we let (p X Y Z) be the statement of the transitivity of LESSP,
then the above induction scheme produces three base cases, one
each for X, Y, or Z being ZEROP. The induction step is:

(IMPLIES (AND (NOT (ZEROP X))
(NOT (ZEROP Y))
(NOT (ZEROP Z))
(p (SUB1 X) (SUB1 Y) (SUB1 Z)))

(p X Y Z)).

Note that if the LESSP expressions in the conclusion, (p X Y Z),
are expanded under the conditions given, the result is precisely
the induction hypothesis.

The result of merging is sound for the same reasons that s2

was sound. For example, if we merged the last five LESSP induc-
tion schemes above into the first scheme, then the new scheme is
sound because the first induction was sound. In particular, we
still replace X with (SUB1 X) under the hypothesis that (NOT
(ZEROP X)) is true, so that the same measure and well-founded
relation explain the new induction scheme.

In general, merging adds additional tests to the induction
cases and instantiates some variables not involved in the justi-
fication. The additional tests in the induction cases will cause
additional base cases to be generated (when we negate the con-
ditions of the induction steps to obtain the base cases), but that
is a heuristic problem, not a logical one.
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We feel it is reasonable to add the extra tests (for example,
the tests on (NOT (ZEROP Y)) and (NOT (ZEROP Z)) above)
to the induction steps since those steps introduce instances (in-
volving (SUB1 Y) and (SUB1 Z) in our example) that generally
do not make sense without such tests.

15.2.3 Flawed Induction Schemes

Once we have done all the possible subsumptions and merges we
analyze the schemes to decide whether some of the recursions in
the conjecture are getting in the way of others. Let us consider
the associativity of APPEND:

(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C))).

Recall that (APPEND X Y) recursively changes X and leaves
Y fixed. We thus observe three suggested induction schemes,
namely one for each of the terms above in which APPEND has
a variable in its first argument. Two of the suggested inductions
merge and we must thus consider the two alternative schemes:

Under the condition (LISTP A), assume the
conjecture with A replaced with (CDR A) and
B and C unchanged.
Under the condition (LISTP B), assume the
conjecture with B replaced with (CDR B) and
C unchanged.

Now consider what would happen if we inducted according to
the second scheme. The induction step would be:

(IMPLIES (AND (LISTP B)
(EQUAL (APPEND (APPEND A (CDR B)) C)

(APPEND A (APPEND (CDR B) C))))
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C)))).

The term (APPEND B C) in the conclusion would open up to
involve (APPEND (CDR B) C), as planned. However, the term
(APPEND A B) in the conclusion, whether we open it or not,
will not look like its counter-part in the hypothesis because there
we replaced B with (CDR B) in an argument of APPEND that
does not change.
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On the other hand, if we induct according to the first scheme,
then all the terms mentioning A in the conclusion will recurse
once to give rise to the terms mentioning A in the hypothe-
sis (since A is never used by any term other than the ones the
scheme accounts for), and furthermore, by holding all the other
variables fixed, the induction on A guarantees that terms men-
tioning only those variables will reappear in the hypothesis sim-
ply because they will not change. Thus, the first scheme is
virtually perfect while the second is worthless. In this case we
say that the first scheme is “unflawed.”

We consider any scheme, s1, flawed if there is another scheme,
s2, such that some changing or unchanging variable of s2 is an
“induction” variable of s1. We say that v is an induction vari-
able of s1 provided there is a term t for which s1 accounts and
a template temp for the function symbol of t such that v is a
changeable with respect to t and temp.

The example just given illustrates why no induction variable
of s1 should be an unchanging variable of s2. We consider s1

flawed if one of its induction variables is a changing variable of s2

because the two schemes must disagree on some variables since
they did not merge. We do not care whether s1’s unchanging
variables overlap other schemes since s1 may account for the
terms suggesting those schemes by not touching those variables.

If some scheme is unflawed, we throw out all flawed schemes.
If all schemes are flawed, we simply throw out none and proceed
(but usually with some trepidation).1

15.2.4 Tie Breaking Rules

It is surprising how often, in well-stated theorems, only one sug-
gested induction scheme survives the foregoing heuristics. The
most common exception arises when the conjecture is symmet-
ric in several variables, in which case it usually does not matter
which induction is chosen. However, if after all the above we are
still left with more than one candidate scheme, we consider the

1We have seen a few examples where the merging heuristic flaws the “right”
induction scheme, by introducing into it a variable over which there is competi-
tion. As users we tend to rephrase the theorem to avoid the problem. See the
footnote about ID in Chapter 19.
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one with the highest score as being the most likely to succeed
(if there is exactly one with the highest score).

If at this point two or more schemes are tied with the highest
score, we have one useful tie-breaking rule. It is most likely that
the terms we induct “for” will occur in both the hypothesis and
the conclusion after simplification. Therefore, these terms are
most likely to be eliminated by fertilization and generalization.
Consequently, by inducting on the “nastiest” functions in the
conjecture we may well eliminate them now and have something
better to work on next time. We use a simple measure of “nas-
tiness”: a function is nasty if it is not primitive-recursive (in
that its arguments are either held fixed or decremented by shell
accessors).

Thus, to break ties we choose the scheme that is credited with
the largest number terms that are not primitive-recursive. If we
still have a tie, we choose arbitrarily. It is interesting to note
that in proving the several hundred theorems in Appendix A,
we choose arbitrarily only in symmetric cases.

15.2.5 Superimposing the Machine

Finally, having chosen a scheme, we perform one last operation
on it. If the scheme is credited with exactly one term, then it
just represents the induction for that term. Consequently, we
can ensure that the term in the induction conclusion opens up
to precisely the terms in the induction hypothesis (at least on
the measured subset) by superimposing on the case structure of
the scheme the case structure of the machine for that function.
Since the two case structures have exactly the same number
of cases (we originally created the case analysis for the scheme
by replacing the tests in the case analysis of the machine), this
amounts to going over the scheme’s cases and adding in the tests
from the corresponding cases of the instantiated machine.

If, on the other hand, we have merged other schemes into the
winner, then the case structure of any particular machine prob-
ably will not account for all the terms credited to the scheme.
(Recall the discussion of Irrelevant Tests and Weak Base Cases
in Chapter 14.) If we have merged, we simply check that each
of the cases of the scheme is different (in the sense that each set
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of tests is different), and if we find any two that are identical
we add the substitutions of one case into those of the other and
throw out the first case. This is sound since the new case has
the same tests, and all the induction hypotheses drive the same
measure down under those tests. It is heuristically necessary
since, if we were to leave the two identical cases, with two differ-
ent induction hypotheses, then when the two conclusions opened
up there would be nothing to force them down the branch of the
machine handled by their respective hypothesis (since the tests
are equivalent). Thus, we cover our bets by providing one in-
duction step with all the relevant hypotheses.

15.2.6 Producing the Induction Formula

Having finally obtained the xi, qi, and si,j from the selected
induction scheme for the clause in question, we apply the induc-
tion principle to the term corresponding to the disjunction of its
literals, producing k+1 terms. We then convert those terms into
a propositionally equivalent set of IF-free clauses after expand-
ing all calls of AND, OR, NOT, and IMPLIES. The resulting
set of clauses is then poured over the waterfall.

15.3 Examples of Induction

We now consider three example inductions. There are many
other induction examples elsewhere in this book.

The first example comes from the proof that a fast string
searching algorithm is correct. The ideas behind the algorithm
and the proofs are discussed in Chapter 18. The intuitive state-
ment of one of the main lemmas is that if PAT is a nonempty
character sequence, if I is a legal character position in another
sequence, STR, and if the right end of the leftmost occurrence of
PAT in STR is beyond position I, then it is also beyond position
(PLUS I (DELTA1 (NTHCHAR I STR) PAT)). Stated formally
this is:

(IMPLIES (AND (LISTP PAT)
(LESSP I (LENGTH STR))
(LESSP I
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(PLUS (LENGTH PAT) (STRPOS PAT STR))))
(LESSP (PLUS I (DELTA1 (NTHCHAR I STR) PAT))

(PLUS (LENGTH PAT) (STRPOS PAT STR)))).

This simplifies, by opening up the nonrecursive functions, to:

(IMPLIES
(AND (LISTP PAT)

(LESSP I (LENGTH STR))
(LESSP I

(PLUS (LENGTH PAT) (STRPOS PAT STR))))
(LESSP (PLUS I

(STRPOS (CONS (CAR (NTH STR I)) ‘‘NIL’’)
(REVERSE PAT)))

(PLUS (LENGTH PAT) (STRPOS PAT STR)))).

In order to understand how we set up an induction for this
formula, it is not necessary to understand what these functions
do, only how they do it. Their definitions are in Appendix A.
However, below we give a brief sketch of the recursive structure
of the functions:

(LESSP X Y) Decrements X and Y with SUB1, under
non-ZEROP tests.

(LENGTH X) Decrements X with CDR under a
(LISTP X) test.

(PLUS X Y) Decrements X with SUB1 and leaves Y
unchanged, under a non-ZEROP test
on X.

(STRPOS X Y) Decrements Y with CDR and leaves
X unchanged, under (among
other things) a (LISTP Y) test.

(REVERSE X) Decrements X with CDR under a
(LISTP X) test.

(NTH X Y) Decrements X with CDR and Y with
SUB1, under a non-ZEROP test on Y.

When presented with the above simplified formula, our induc-
tion heuristics lead to the following analysis (the following is the
output generated by the implementation):

We will appeal to induction. The recursive terms in
the conjecture suggest ten inductions. They merge into two
likely candidate inductions. However, only one is unflawed.
We will induct according to the following scheme:
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(AND (IMPLIES (NOT (LISTP STR))
(p I STR PAT))

(IMPLIES (NOT (NUMBERP I))
(p I STR PAT))

(IMPLIES (EQUAL I 0) (p I STR PAT))
(IMPLIES (AND (LISTP STR)

(NUMBERP I)
(NOT (EQUAL I 0))
(p (SUB1 I) (CDR STR) PAT))

(p I STR PAT))).
The inequality SUB1.LESSP establishes that the measure
(COUNT I) decreases according to the well-founded relation
LESSP in the induction step of the scheme. Note, however,
the inductive instance chosen for STR. The above
induction scheme produces six new conjectures.

The ten plausible inductions should be evident. All of them in-
volve instantiating either STR with (CDR STR), I with (SUB1
I), or PAT with (CDR PAT). But the I and STR inductions
are linked by the (NTH STR I) term and they all merge into
one scheme. The three schemes involving PAT are all identical
and merge. Thus, we are left with two schemes: induction on I
and STR together, or on PAT by itself. But we can see that the
PAT induction is flawed because the (STRPOS PAT STR) terms
mention PAT in an unchanging argument position. Hence, the
heuristics have left us with only one induction: simultaneous in-
duction on I (decomposed by SUB1s) and STR (decomposed by
CDRs). We thus have three base cases, one for STR being non-
LISTP, one for I being nonnumeric, and one for I being 0. The
single induction step supposes STR is a list and I is a positive
integer, and inductively assumes the theorem for (SUB1 I) and
(CDR STR). It should be noted that no function in the theorem
actually recurses in exactly this way (in particular, NTH, the
function that linked the I and STR inductions, does not bother
to test STR before applying CDR because NTH happens to be
controlled entirely by its numeric argument).

This reduction in the number of plausible inductions, from
ten to two to one in this case, is the rule rather than the ex-
ception. Out of about 400 inductions involved in our standard
library of proofs, we have found that about 90possible schemes is
narrowed to one by subsumption, merging, and the elimination
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of flawed schemes.
About half the time the remaining 10variables and there is

no “right” induction. In the remaining 5of the cases, our tie
breaking rules apply. To illustrate these (as well as the con-
tributions of our other heuristics), we consider two proofs from
Chapter 4.

To illustrate how scores occasionally enter, consider the the-
orem TAUTOLOGYP.IS.SOUND. The opening “move” in this
proof is as follows:

Theorem. TAUTOLOGYP.IS.SOUND:
(IMPLIES (AND (NORMALIZED.IF.EXPRP X)

(TAUTOLOGYP X A1))
(VALUE X (APPEND A1 A2)))

Give the conjecture the name *1.
Let us appeal to the induction principle. The

recursive terms in the conjecture suggest four inductions.
They merge into three likely candidate inductions, none of
which is unflawed. However, one is more likely than the
others. We will induct according to the following scheme:

(AND (IMPLIES (NOT (IF.EXPRP X))
(p X A1 A2))

(IMPLIES (AND (IF.EXPRP X)
(p (RIGHT.BRANCH X)

(CONS (CONS (TEST X) F) A1)
A2)

(p (LEFT.BRANCH X)
(CONS (CONS (TEST X) T) A1)
A2)

(p (RIGHT.BRANCH X) A1 A2)
(p (LEFT.BRANCH X) A1 A2))

(p X A1 A2))).
The inequalities LEFT.BRANCH.LESSP and RIGHT.BRANCH.LESSP
establish that the measure (COUNT X) decreases according
to the well-founded relation LESSP in the induction step
of the scheme. Note, however, the inductive instances
chosen for A1. The above induction scheme generates the
following 26 new conjectures.

The four initial schemes were those suggested by NORMAL-
IZED.IF.EXPRP, TAUTOLOGYP, VALUE, and APPEND. The
first is subsumed by the second because NORMALIZED.IF.EXPRP
and TAUTOLOGYP both recurse on the LEFT.BRANCH and
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RIGHT.BRANCH of IF-expressions and nowhere else. (In de-
scribing its proofs, our theorem-proving program does not dis-
tinguish subsumption from merging.) The VALUE induction is
different because it recurses on the TEST of IF-expressions as
well. Of course, the APPEND expression is altogether different,
since it recurses down the CDRs of its first argument. After
the subsumption we are left with three possibilities and all are
flawed. The two possible induction schemes on X are flawed
by one another, and the scheme on A1 is flawed by the TAU-
TOLOGYP induction. But since we have two “votes” in favor
of the TAUTOLOGYP induction while we have only one in fa-
vor of each of the other two, we go with that induction. (Note
that had the votes been tied we would have chosen this induction
anyway, because it accounts for the TAUTOLOGYP-expression,
and TAUTOLOGYP is the only nonprimitive-recursive function
in the conjecture.) Since the induction scheme accounts for two
terms, we do not superimpose the machine for TAUTOLOGYP
but since the revised machine for TAUTOLOGYP has several
different cases, all governed by the same test, (IF.EXPRP X),
we “cover our bets” by grouping them all together in a single
case with four different induction hypotheses.

It happens that as often as not, scores are tied (because there
are just two obvious inductions that “perfectly” satisfy their
terms but do not merge). This is where our final tie breaking
rule enters.

Consider the statement that NORMALIZE preserves the VALUE
of its argument:

Theorem. NORMALIZE.IS.SOUND:
(EQUAL (VALUE (NORMALIZE X) A)

(VALUE X A))
Give the conjecture the name *1.
Perhaps we can prove it by induction. The recursive

terms in the conjecture suggest two inductions, neither of
which is unflawed, and both of which appear equally likely.
So we will choose the one that will probably lead to
eliminating the nastiest expression. We will induct
according to the following scheme:

(AND
(IMPLIES (NOT (IF.EXPRP X)) (p X A))
(IMPLIES
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(AND (IF.EXPRP X)
(IF.EXPRP (TEST X))
(p (CONS.IF (TEST (TEST X))

(CONS.IF (LEFT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X)))

A))
(p X A))

(IMPLIES (AND (IF.EXPRP X)
(NOT (IF.EXPRP (TEST X)))
(p (RIGHT.BRANCH X) A)
(p (LEFT.BRANCH X) A))

(p X A))).
The inequalities IF.COMPLEXITY.GOES.DOWN1,
IF.COMPLEXITY.GOES.DOWN2, IF.COMPLEXITY.STAYS.EVEN and
IF.DEPTH.GOES.DOWN establish that the measure:

(CONS (IF.COMPLEXITY X) (IF.DEPTH X))
decreases according to the well-founded lexicographic relation
induced by LESSP and LESSP in each induction step of the
scheme. The above induction scheme generates three new
conjectures:

Here we have only two choices: induction on X as suggested
by NORMALIZE or induction on X as suggested by VALUE.
They do not merge and each flaws the other. We thus choose to
eliminate NORMALIZE because it is not primitive-recursive.

15.4 The Entire Reverse Example

Recall the example theorem that has been used to tie together
all the foregoing proof techniques:

Theorem REVERSE.REVERSE:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X)) X)).

We reproduce below the theorem prover’s output in response to
the four user-commands to define APPEND, REVERSE, and
PLISTP and to prove the above theorem. In addition to recall-
ing the definition-time analysis of the recursive functions and
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the previous steps in the proof, the reader should note the in-
duction used on the original theorem, the induction used on the
subgoal generated (formula *1.1 below), and the proof of each
of the formulas produced by the second induction.

Definition

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

The lemma CDR.LESSP informs us that (COUNT X) goes
down according to the well-founded relation LESSP in each
recursive call. Hence, APPEND is accepted under the
definition principle. Observe that:

(OR (LISTP (APPEND X Y))
(EQUAL (APPEND X Y) Y))

is a theorem.
CPU time (devoted to theorem-proving): .281 seconds

Definition

(REVERSE X)
=

(IF (LISTP X)
(APPEND (REVERSE (CDR X))

(CONS (CAR X) ‘‘NIL’’))
‘‘NIL’’)

The lemma CDR.LESSP can be used to show that (COUNT X)
goes down according to the well-founded relation LESSP in
each recursive call. Hence, REVERSE is accepted under the
definition principle. Observe that:

(OR (LITATOM (REVERSE X))
(LISTP (REVERSE X)))

is a theorem.
CPU time (devoted to theorem-proving): .34 seconds

Definition

(PLISTP X)
=

(IF (LISTP X)
(PLISTP (CDR X))
(EQUAL X ‘‘NIL’’))

The lemma CDR.LESSP informs us that (COUNT X) goes
down according to the well-founded relation LESSP in each
recursive call. Hence, PLISTP is accepted under the
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definition principle. From the definition we can conclude
that:

(OR (EQUAL F (PLISTP X))
(EQUAL T (PLISTP X)))

is a theorem.
CPU time (devoted to theorem-proving): .317 seconds

Theorem REVERSE.REVERSE:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X)) X))

Name the conjecture *1.
Perhaps we can prove it by induction. There are two

plausible inductions. However, they merge into one likely
candidate induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X))
(IMPLIES (AND (LISTP X) (p (CDR X)))

(p X))).
The inequality CDR.LESSP establishes that the measure
(COUNT X) decreases according to the well-founded relation
LESSP in the induction step of the scheme. The above
induction scheme leads to the following three new
conjectures:
Case 1. (IMPLIES (AND (NOT (LISTP X)) (PLISTP X))

(EQUAL (REVERSE (REVERSE X)) X)),
which we simplify, expanding the definitions of PLISTP
and REVERSE, to:

(TRUE).
Case 2. (IMPLIES (AND (LISTP X)

(NOT (PLISTP (CDR X)))
(PLISTP X))

(EQUAL (REVERSE (REVERSE X)) X)),
which we simplify, unfolding PLISTP, to:

(TRUE).
Case 3. (IMPLIES (AND (LISTP X)

(EQUAL (REVERSE (REVERSE (CDR X)))
(CDR X))

(PLISTP X))
(EQUAL (REVERSE (REVERSE X)) X)),

which we simplify, expanding PLISTP and REVERSE, to:
(IMPLIES

(AND (LISTP X)
(EQUAL (REVERSE (REVERSE (CDR X)))

(CDR X))
(PLISTP (CDR X)))
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(EQUAL (REVERSE (APPEND (REVERSE (CDR X))
(CONS (CAR X) ‘‘NIL’’)))

X)).
Appealing to the lemma CAR/CDR.ELIM, we now replace X by
(CONS A B) to eliminate (CDR X) and (CAR X). This
generates:

(IMPLIES
(AND (LISTP (CONS A B))

(EQUAL (REVERSE (REVERSE B)) B)
(PLISTP B))

(EQUAL
(REVERSE (APPEND (REVERSE B) (CONS A ‘‘NIL’’)))
(CONS A B))),

which further simplifies, obviously, to the conjecture:
(IMPLIES
(AND (EQUAL (REVERSE (REVERSE B)) B)

(PLISTP B))
(EQUAL

(REVERSE (APPEND (REVERSE B) (CONS A ‘‘NIL’’)))
(CONS A B))).

We now use the above equality hypothesis by
cross-fertilizing (REVERSE (REVERSE B)) for B and
throwing away the equality. This produces:

(IMPLIES
(PLISTP B)
(EQUAL

(REVERSE (APPEND (REVERSE B) (CONS A ‘‘NIL’’)))
(CONS A (REVERSE (REVERSE B))))),

which we generalize by replacing (REVERSE B) by Z. The
result is the conjecture:

(IMPLIES (PLISTP B)
(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))

(CONS A (REVERSE Z)))),
which has an irrelevant term in it. By eliminating this
term we get:

(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))
(CONS A (REVERSE Z))),

which we will finally name *1.1.
Let us appeal to the induction principle. There are

two plausible inductions. However, they merge into one
likely candidate induction. We will induct according to
the following scheme:

(AND (IMPLIES (NOT (LISTP Z)) (p Z A))
(IMPLIES (AND (LISTP Z) (p (CDR Z) A))

(p Z A))).
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The inequality CDR.LESSP establishes that the measure
(COUNT Z) decreases according to the well-founded
relation LESSP in the induction step of the scheme. The
above induction scheme produces the following two new
goals:
Case 1. (IMPLIES

(NOT (LISTP Z))
(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))

(CONS A (REVERSE Z)))),
which simplifies, applying the lemmas CAR.CONS and
CDR.CONS, and expanding the definitions of APPEND and
REVERSE, to:

(TRUE).
Case 2. (IMPLIES

(AND
(LISTP Z)
(EQUAL

(REVERSE (APPEND (CDR Z) (CONS A ‘‘NIL’’)))
(CONS A (REVERSE (CDR Z)))))

(EQUAL (REVERSE (APPEND Z (CONS A ‘‘NIL’’)))
(CONS A (REVERSE Z)))),

which simplifies, using the lemmas CAR.CONS and
CDR.CONS, and expanding the functions APPEND and
REVERSE, to:

(IMPLIES
(AND
(LISTP Z)
(EQUAL

(REVERSE (APPEND (CDR Z) (CONS A ‘‘NIL’’)))
(CONS A (REVERSE (CDR Z)))))

(EQUAL
(APPEND

(REVERSE (APPEND (CDR Z) (CONS A ‘‘NIL’’)))
(CONS (CAR Z) ‘‘NIL’’))

(CONS A
(APPEND (REVERSE (CDR Z))

(CONS (CAR Z) ‘‘NIL’’))))).
Appealing to the lemma CAR/CDR.ELIM, we now replace Z
by (CONS B X) to eliminate (CDR Z) and (CAR Z).
This generates:

(IMPLIES
(AND (LISTP (CONS B X))

(EQUAL (REVERSE (APPEND X (CONS A ‘‘NIL’’)))
(CONS A (REVERSE X))))

(EQUAL
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(APPEND (REVERSE (APPEND X (CONS A ‘‘NIL’’)))
(CONS B ‘‘NIL’’))

(CONS A
(APPEND (REVERSE X)

(CONS B ‘‘NIL’’))))),
which we further simplify, trivially, to:

(IMPLIES
(EQUAL (REVERSE (APPEND X (CONS A ‘‘NIL’’)))

(CONS A (REVERSE X)))
(EQUAL

(APPEND (REVERSE (APPEND X (CONS A ‘‘NIL’’)))
(CONS B ‘‘NIL’’))

(CONS A
(APPEND (REVERSE X)

(CONS B ‘‘NIL’’))))).
We use the above equality hypothesis by
cross-fertilizing (CONS A (REVERSE X)) for:

(REVERSE (APPEND X (CONS A ‘‘NIL’’)))
and throwing away the equality. This generates:

(EQUAL (APPEND (CONS A (REVERSE X))
(CONS B ‘‘NIL’’))

(CONS A
(APPEND (REVERSE X)

(CONS B ‘‘NIL’’)))).
However this simplifies further, applying the lemmas
CDR.CONS and CAR.CONS, and unfolding the definition of
APPEND, to:

(TRUE).
That finishes the proof of *1.1, which, consequently,

also finishes the proof of *1. Q.E.D.
CPU time (devoted to theorem-proving): 5.037 seconds



Chapter 16

Illustrations of our
Techniques Via
Elementary Number
Theory

In this chapter we illustrate the foregoing proof techniques on
several theorems in elementary number theory. Assuming only
the axioms, lemmas, and definitions in Chapter 3, our theorem
prover establishes a sequence of definitions and theorems leading
to the basic theorem: If Y is nonzero and X is a number, then
X = R+Q*Y, where R is the remainder of X by Y and Q is the
quotient of X by Y.

The following points are worth noting.

Although we explicitly request the theorem prover to
prove a few simple arithmetic theorems, many other
such propositions are raised as subgoals by our heuris-
tics and proved inductively. The reader should note
carefully each of the subgoals proved by induction.

The induction lemma RECURSION.BY.DIFFERENCE
is proved in order to admit the definitions of RE-
MAINDER and QUOTIENT.

The remainder of this chapter was produced by our auto-
matic theorem prover in response to the user-commands sup-
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plying function definitions and statements of theorems to prove.

16.1 Plus.right.id

Theorem PLUS.RIGHT.ID (rewrite):

(EQUAL (PLUS X 0) (FIX X))
This simplifies, unfolding the functions FIX and PLUS, to the
conjecture:

(IMPLIES (NUMBERP X)
(EQUAL (PLUS X 0) X)),

which we will name *1.
Let us appeal to the induction principle. There is only one

plausible induction. We will induct according to the following
scheme:

(AND (IMPLIES (EQUAL X 0) (p X))
(IMPLIES (NOT (NUMBERP X)) (p X))
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(p (SUB1 X)))

(p X))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
the following three new conjectures:
Case 1. (IMPLIES (AND (EQUAL X 0) (NUMBERP X))

(EQUAL (PLUS X 0) X)).
This simplifies, expanding PLUS, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL X 0))

(NOT (NUMBERP (SUB1 X)))
(NUMBERP X))

(EQUAL (PLUS X 0) X)).
Of course, this simplifies, clearly, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL X 0))

(EQUAL (PLUS (SUB1 X) 0) (SUB1 X))
(NUMBERP X))

(EQUAL (PLUS X 0) X)),
which we simplify, opening up the function PLUS, to:

(IMPLIES (AND (NOT (EQUAL X 0))
(EQUAL (PLUS (SUB1 X) 0) (SUB1 X))
(NUMBERP X))

(EQUAL (ADD1 (PLUS (SUB1 X) 0)) X)).
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Appealing to the lemma SUB1.ELIM, we now replace X by (ADD1 Z) to
eliminate (SUB1 X). We rely the type restriction lemma noted when
SUB1 was introduced to restrict the new variable. We must thus
prove:

(IMPLIES (AND (NUMBERP Z)
(NOT (EQUAL (ADD1 Z) 0))
(EQUAL (PLUS Z 0) Z)
(NUMBERP (ADD1 Z)))

(EQUAL (ADD1 (PLUS Z 0)) (ADD1 Z))).
This further simplifies, rewriting with ADD1.EQUAL, to:

(TRUE).
That finishes the proof of *1. Q.E.D.

CPU time (devoted to theorem-proving): 1.425 seconds

16.2 Commutativity2.of.plus

Theorem COMMUTATIVITY2.OF.PLUS (rewrite):

(EQUAL (PLUS X (PLUS Y Z))
(PLUS Y (PLUS X Z)))

Call the conjecture *1.
Perhaps we can prove it by induction. There are four plausible

inductions. They merge into two likely candidate inductions, both of
which are unflawed, and both of which appear equally likely. So we
will choose arbitrarily. We will induct according to the following
scheme:

(AND (IMPLIES (NOT (NUMBERP Y)) (p X Y Z))
(IMPLIES (EQUAL Y 0) (p X Y Z))
(IMPLIES (AND (NUMBERP Y)

(NOT (EQUAL Y 0))
(p X (SUB1 Y) Z))

(p X Y Z))).
The inequality SUB1.LESSP establishes that the measure (COUNT Y)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
the following three new conjectures:
Case 1. (IMPLIES (NOT (NUMBERP Y))

(EQUAL (PLUS X (PLUS Y Z))
(PLUS Y (PLUS X Z)))),

which simplifies, applying PLUS.RIGHT.ID, and opening up PLUS, to:
(IMPLIES (AND (NOT (NUMBERP Y))

(NOT (NUMBERP Z))
(NUMBERP X))

(EQUAL X (PLUS X Z))).
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Eliminate the irrelevant term. This produces:
(IMPLIES (AND (NOT (NUMBERP Z)) (NUMBERP X))

(EQUAL X (PLUS X Z))),
which we will name *1.1.

Case 2. (IMPLIES (EQUAL Y 0)
(EQUAL (PLUS X (PLUS Y Z))

(PLUS Y (PLUS X Z)))),
which we simplify, applying the lemma PLUS.RIGHT.ID, and opening up
PLUS, to the conjecture:

(IMPLIES (AND (NOT (NUMBERP Z)) (NUMBERP X))
(EQUAL X (PLUS X Z))).

Name the above subgoal *1.2.
Case 3. (IMPLIES (AND (NUMBERP Y)

(NOT (EQUAL Y 0))
(EQUAL (PLUS X (PLUS (SUB1 Y) Z))

(PLUS (SUB1 Y) (PLUS X Z))))
(EQUAL (PLUS X (PLUS Y Z))

(PLUS Y (PLUS X Z)))),
which simplifies, expanding the function PLUS, to the new
conjecture:

(IMPLIES (AND (NUMBERP Y)
(NOT (EQUAL Y 0))
(EQUAL (PLUS X (PLUS (SUB1 Y) Z))

(PLUS (SUB1 Y) (PLUS X Z))))
(EQUAL (PLUS X (ADD1 (PLUS (SUB1 Y) Z)))

(ADD1 (PLUS (SUB1 Y) (PLUS X Z))))).
Appealing to the lemma SUB1.ELIM, we now replace Y by (ADD1 V) to
eliminate (SUB1 Y). We use the type restriction lemma noted when
SUB1 was introduced to constrain the new variable. We thus obtain:

(IMPLIES (AND (NUMBERP V)
(NUMBERP (ADD1 V))
(NOT (EQUAL (ADD1 V) 0))
(EQUAL (PLUS X (PLUS V Z))

(PLUS V (PLUS X Z))))
(EQUAL (PLUS X (ADD1 (PLUS V Z)))

(ADD1 (PLUS V (PLUS X Z))))).
Of course, this simplifies further, trivially, to:

(IMPLIES (AND (NUMBERP V)
(EQUAL (PLUS X (PLUS V Z))

(PLUS V (PLUS X Z))))
(EQUAL (PLUS X (ADD1 (PLUS V Z)))

(ADD1 (PLUS V (PLUS X Z))))).
We use the above equality hypothesis by cross-fertilizing
(PLUS X (PLUS V Z)) for (PLUS V (PLUS X Z)) and throwing away the
equality. This generates the new conjecture:
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(IMPLIES (NUMBERP V)
(EQUAL (PLUS X (ADD1 (PLUS V Z)))

(ADD1 (PLUS X (PLUS V Z))))),
which we generalize by replacing (PLUS V Z) by Y. We restrict
the new variable by appealing to the type restriction lemma noted
when PLUS was introduced. This generates:

(IMPLIES (AND (NUMBERP Y) (NUMBERP V))
(EQUAL (PLUS X (ADD1 Y))

(ADD1 (PLUS X Y)))).
Eliminate the irrelevant term. We would thus like to prove:

(IMPLIES (NUMBERP Y)
(EQUAL (PLUS X (ADD1 Y))

(ADD1 (PLUS X Y)))).
Finally name the above subgoal *1.3.

Let us appeal to the induction principle. There are two
plausible inductions. However, they merge into one likely
candidate induction. We will induct according to the following
scheme:

(AND (IMPLIES (NOT (NUMBERP X)) (p X Y))
(IMPLIES (EQUAL X 0) (p X Y))
(IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(p (SUB1 X) Y))

(p X Y))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
three new formulas:
Case 1. (IMPLIES (AND (NOT (NUMBERP X)) (NUMBERP Y))

(EQUAL (PLUS X (ADD1 Y))
(ADD1 (PLUS X Y)))),

which we simplify, unfolding PLUS, to:
(TRUE).

Case 2. (IMPLIES (AND (EQUAL X 0) (NUMBERP Y))
(EQUAL (PLUS X (ADD1 Y))

(ADD1 (PLUS X Y)))).
This simplifies, expanding the definition of PLUS, to:

(TRUE).
Case 3. (IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(EQUAL (PLUS (SUB1 X) (ADD1 Y))

(ADD1 (PLUS (SUB1 X) Y)))
(NUMBERP Y))

(EQUAL (PLUS X (ADD1 Y))
(ADD1 (PLUS X Y)))),
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which simplifies, appealing to the lemma ADD1.EQUAL, and
unfolding PLUS, to:

(TRUE).
That finishes the proof of *1.3.
So let us turn our attention to:
(IMPLIES (AND (NOT (NUMBERP Z)) (NUMBERP X))

(EQUAL X (PLUS X Z))),
which is formula *1.2 above. But this conjecture is subsumed by
formula *1.1 above.

So we now return to:
(IMPLIES (AND (NOT (NUMBERP Z)) (NUMBERP X))

(EQUAL X (PLUS X Z))),
named *1.1 above. Perhaps we can prove it by induction. There is
only one plausible induction. We will induct according to the
following scheme:

(AND (IMPLIES (EQUAL X 0) (p X Z))
(IMPLIES (NOT (NUMBERP X)) (p X Z))
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(p (SUB1 X) Z))

(p X Z))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme produces
the following three new conjectures:
Case 1. (IMPLIES (AND (EQUAL X 0)

(NOT (NUMBERP Z))
(NUMBERP X))

(EQUAL X (PLUS X Z))).
This simplifies, unfolding the definition of PLUS, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL X 0))

(NOT (NUMBERP (SUB1 X)))
(NOT (NUMBERP Z))
(NUMBERP X))

(EQUAL X (PLUS X Z))),
which we simplify, trivially, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL X 0))

(EQUAL (SUB1 X) (PLUS (SUB1 X) Z))
(NOT (NUMBERP Z))
(NUMBERP X))

(EQUAL X (PLUS X Z))),
which we simplify, unfolding the function PLUS, to:

(IMPLIES (AND (NOT (EQUAL X 0))
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(EQUAL (SUB1 X) (PLUS (SUB1 X) Z))
(NOT (NUMBERP Z))
(NUMBERP X))

(EQUAL X (ADD1 (PLUS (SUB1 X) Z)))).
Applying the lemma SUB1.ELIM, replace X by (ADD1 V) to eliminate
(SUB1 X). We rely the type restriction lemma noted when SUB1 was
introduced to constrain the new variable. This generates:

(IMPLIES (AND (NUMBERP V)
(NOT (EQUAL (ADD1 V) 0))
(EQUAL V (PLUS V Z))
(NOT (NUMBERP Z))
(NUMBERP (ADD1 V)))

(EQUAL (ADD1 V) (ADD1 (PLUS V Z)))),
which we further simplify, using the lemma ADD1.EQUAL, to:

(TRUE).
That finishes the proof of *1.1, which finishes the proof of *1.

Q.E.D.
CPU time (devoted to theorem-proving): 5.861 seconds

16.3 Commutativity.of.plus

Theorem COMMUTATIVITY.OF.PLUS (rewrite):

(EQUAL (PLUS X Y) (PLUS Y X))
Call the conjecture *1.
Let us appeal to the induction principle. Two inductions are

suggested by terms in the conjecture, neither of which is unflawed,
and both of which appear equally likely. So we will choose
arbitrarily. We will induct according to the following scheme:

(AND (IMPLIES (EQUAL X 0) (p X Y))
(IMPLIES (NOT (NUMBERP X)) (p X Y))
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(p (SUB1 X) Y))

(p X Y))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
three new formulas:
Case 1. (IMPLIES (EQUAL X 0)

(EQUAL (PLUS X Y) (PLUS Y X))).
This simplifies, appealing to the lemma PLUS.RIGHT.ID, and opening
up the definition of PLUS, to:

(TRUE).
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Case 2. (IMPLIES (NOT (NUMBERP X))
(EQUAL (PLUS X Y) (PLUS Y X))).

This simplifies, unfolding the function PLUS, to:
(IMPLIES (AND (NOT (NUMBERP X)) (NUMBERP Y))

(EQUAL Y (PLUS Y X))).
Call the above conjecture *1.1.

Case 3. (IMPLIES (AND (NOT (EQUAL X 0))
(NUMBERP X)
(EQUAL (PLUS (SUB1 X) Y)

(PLUS Y (SUB1 X))))
(EQUAL (PLUS X Y) (PLUS Y X))),

which we simplify, expanding the function PLUS, to:
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(EQUAL (PLUS (SUB1 X) Y)

(PLUS Y (SUB1 X))))
(EQUAL (ADD1 (PLUS (SUB1 X) Y))

(PLUS Y X))).
Appealing to the lemma SUB1.ELIM, we now replace X by (ADD1 Z) to
eliminate (SUB1 X). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. We thus
obtain:

(IMPLIES (AND (NUMBERP Z)
(NOT (EQUAL (ADD1 Z) 0))
(NUMBERP (ADD1 Z))
(EQUAL (PLUS Z Y) (PLUS Y Z)))

(EQUAL (ADD1 (PLUS Z Y))
(PLUS Y (ADD1 Z)))).

Of course, this simplifies further, clearly, to:
(IMPLIES (AND (NUMBERP Z)

(EQUAL (PLUS Z Y) (PLUS Y Z)))
(EQUAL (ADD1 (PLUS Z Y))

(PLUS Y (ADD1 Z)))).
We use the above equality hypothesis by cross-fertilizing
(PLUS Y Z) for (PLUS Z Y) and throwing away the equality. We
would thus like to prove:

(IMPLIES (NUMBERP Z)
(EQUAL (ADD1 (PLUS Y Z))

(PLUS Y (ADD1 Z)))),
which we will name *1.2.

We will try to prove it by induction. Two inductions are
suggested by terms in the conjecture. However, they merge into one
likely candidate induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (NUMBERP Y)) (p Y Z))
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(IMPLIES (EQUAL Y 0) (p Y Z))
(IMPLIES (AND (NUMBERP Y)

(NOT (EQUAL Y 0))
(p (SUB1 Y) Z))

(p Y Z))).
The inequality SUB1.LESSP establishes that the measure (COUNT Y)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme generates
three new conjectures:
Case 1. (IMPLIES (AND (NOT (NUMBERP Y)) (NUMBERP Z))

(EQUAL (ADD1 (PLUS Y Z))
(PLUS Y (ADD1 Z)))),

which we simplify, expanding the definition of PLUS, to:
(TRUE).

Case 2. (IMPLIES (AND (EQUAL Y 0) (NUMBERP Z))
(EQUAL (ADD1 (PLUS Y Z))

(PLUS Y (ADD1 Z)))).
This simplifies, expanding the definition of PLUS, to:

(TRUE).
Case 3. (IMPLIES (AND (NUMBERP Y)

(NOT (EQUAL Y 0))
(EQUAL (ADD1 (PLUS (SUB1 Y) Z))

(PLUS (SUB1 Y) (ADD1 Z)))
(NUMBERP Z))

(EQUAL (ADD1 (PLUS Y Z))
(PLUS Y (ADD1 Z)))).

This simplifies, using the lemma ADD1.EQUAL, and opening up the
function PLUS, to:

(TRUE).
That finishes the proof of *1.2.
So next consider:
(IMPLIES (AND (NOT (NUMBERP X)) (NUMBERP Y))

(EQUAL Y (PLUS Y X))),
which we named *1.1 above. Let us appeal to the induction principle.
There is only one suggested induction. We will induct according to
the following scheme:

(AND (IMPLIES (EQUAL Y 0) (p Y X))
(IMPLIES (NOT (NUMBERP Y)) (p Y X))
(IMPLIES (AND (NOT (EQUAL Y 0))

(NUMBERP Y)
(p (SUB1 Y) X))

(p Y X))).
The inequality SUB1.LESSP establishes that the measure (COUNT Y)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme produces
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three new goals:
Case 1. (IMPLIES (AND (EQUAL Y 0)

(NOT (NUMBERP X))
(NUMBERP Y))

(EQUAL Y (PLUS Y X))).
This simplifies, unfolding the definition of PLUS, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL Y 0))

(NOT (NUMBERP (SUB1 Y)))
(NOT (NUMBERP X))
(NUMBERP Y))

(EQUAL Y (PLUS Y X))).
Of course, this simplifies, clearly, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL Y 0))

(EQUAL (SUB1 Y) (PLUS (SUB1 Y) X))
(NOT (NUMBERP X))
(NUMBERP Y))

(EQUAL Y (PLUS Y X))),
which we simplify, expanding the function PLUS, to the new
conjecture:

(IMPLIES (AND (NOT (EQUAL Y 0))
(EQUAL (SUB1 Y) (PLUS (SUB1 Y) X))
(NOT (NUMBERP X))
(NUMBERP Y))

(EQUAL Y (ADD1 (PLUS (SUB1 Y) X)))).
Appealing to the lemma SUB1.ELIM, replace Y by (ADD1 Z) to
eliminate (SUB1 Y). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. This
produces:

(IMPLIES (AND (NUMBERP Z)
(NOT (EQUAL (ADD1 Z) 0))
(EQUAL Z (PLUS Z X))
(NOT (NUMBERP X))
(NUMBERP (ADD1 Z)))

(EQUAL (ADD1 Z) (ADD1 (PLUS Z X)))).
However this simplifies further, applying the lemma ADD1.EQUAL, to:

(TRUE).
That finishes the proof of *1.1, which finishes the proof of *1.

Q.E.D.
CPU time (devoted to theorem-proving): 4.002 seconds
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16.4 Associativity.of.plus

Theorem ASSOCIATIVITY.OF.PLUS (rewrite):

(EQUAL (PLUS (PLUS X Y) Z)
(PLUS X (PLUS Y Z)))

This formula simplifies, appealing to the lemmas
COMMUTATIVITY.OF.PLUS and COMMUTATIVITY2.OF.PLUS, to:

(TRUE).
Q.E.D.
CPU time (devoted to theorem-proving): .229 seconds

16.5 Times

Definition

(TIMES I J)
=

(IF (ZEROP I)
0
(PLUS J (TIMES (SUB1 I) J)))

The lemma SUB1.LESSP establishes that (COUNT I) goes down
according to the well-founded relation LESSP in each recursive call.
Hence, TIMES is accepted under the principle of definition. Note
that (NUMBERP (TIMES I J)) is a theorem.
CPU time (devoted to theorem-proving): .611 seconds

16.6 Times.zero

Theorem TIMES.ZERO (rewrite):

(EQUAL (TIMES X 0) 0)
Name the conjecture *1.
Let us appeal to the induction principle. There is only one

suggested induction. We will induct according to the following
scheme:

(AND (IMPLIES (EQUAL X 0) (p X))
(IMPLIES (NOT (NUMBERP X)) (p X))
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(p (SUB1 X)))

(p X))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
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induction step of the scheme. The above induction scheme produces
three new conjectures:
Case 1. (IMPLIES (EQUAL X 0)

(EQUAL (TIMES X 0) 0)),
which we simplify, expanding the definition of TIMES, to:

(TRUE).
Case 2. (IMPLIES (NOT (NUMBERP X))

(EQUAL (TIMES X 0) 0)).
This simplifies, expanding the definition of TIMES, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(EQUAL (TIMES (SUB1 X) 0) 0))

(EQUAL (TIMES X 0) 0)).
This simplifies, unfolding PLUS and TIMES, to:

(TRUE).
That finishes the proof of *1. Q.E.D.

CPU time (devoted to theorem-proving): .543 seconds

16.7 Times.add1

Theorem TIMES.ADD1 (rewrite):

(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)

(PLUS X (TIMES X Y))
(FIX X)))

This formula simplifies, using the lemma SUB1.TYPE.RESTRICTION, and
unfolding the definitions of FIX and TIMES, to two new conjectures:
Case 1. (IMPLIES (NUMBERP Y)

(EQUAL (TIMES X (ADD1 Y))
(PLUS X (TIMES X Y)))),

which we will name *1.
Case 2. (IMPLIES (AND (NOT (NUMBERP Y)) (NUMBERP X))

(EQUAL (TIMES X 1) X)).
Eliminate the irrelevant term. The result is the new formula:

(IMPLIES (NUMBERP X)
(EQUAL (TIMES X 1) X)),

which we would usually push and work on later by induction. But
since we have already pushed one goal split off of the original
input we will disregard all that we have previously done, give the
name *1 to the original input, and work on it.

So now let’s consider:
(EQUAL (TIMES X (ADD1 Y))
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(IF (NUMBERP Y)
(PLUS X (TIMES X Y))
(FIX X))).

We named this *1. We will appeal to induction. Three inductions are
suggested by terms in the conjecture. However, they merge into one
likely candidate induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (NUMBERP X)) (p X Y))
(IMPLIES (EQUAL X 0) (p X Y))
(IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(p (SUB1 X) Y))

(p X Y))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme leads to
the following three new conjectures:
Case 1. (IMPLIES (NOT (NUMBERP X))

(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)

(PLUS X (TIMES X Y))
(FIX X)))).

This simplifies, applying PLUS.RIGHT.ID, and unfolding the
definitions of TIMES and FIX, to:

(TRUE).
Case 2. (IMPLIES (EQUAL X 0)

(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)

(PLUS X (TIMES X Y))
(FIX X)))),

which simplifies, expanding the definitions of TIMES, PLUS and FIX,
to:

(TRUE).
Case 3. (IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(EQUAL (TIMES (SUB1 X) (ADD1 Y))

(IF (NUMBERP Y)
(PLUS (SUB1 X) (TIMES (SUB1 X) Y))
(FIX (SUB1 X)))))

(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)

(PLUS X (TIMES X Y))
(FIX X)))),

which simplifies, applying SUB1.ADD1 and SUB1.TYPE.RESTRICTION, and
opening up the definitions of FIX, PLUS and TIMES, to the following
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two new goals:
Case 1. (IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(NUMBERP Y)
(EQUAL (TIMES (SUB1 X) (ADD1 Y))

(PLUS (SUB1 X) (TIMES (SUB1 X) Y))))
(EQUAL (ADD1 (PLUS Y (TIMES (SUB1 X) (ADD1 Y))))

(PLUS X
(PLUS Y (TIMES (SUB1 X) Y))))).

But this simplifies again, applying ADD1.EQUAL, and opening up
PLUS, to:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0))
(NUMBERP Y)
(EQUAL (TIMES (SUB1 X) (ADD1 Y))

(PLUS (SUB1 X) (TIMES (SUB1 X) Y))))
(EQUAL (PLUS Y (TIMES (SUB1 X) (ADD1 Y)))

(PLUS (SUB1 X)
(PLUS Y (TIMES (SUB1 X) Y))))).

But this again simplifies, applying the lemma
COMMUTATIVITY2.OF.PLUS, to:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0))
(NUMBERP Y)
(EQUAL (TIMES (SUB1 X) (ADD1 Y))

(PLUS (SUB1 X) (TIMES (SUB1 X) Y))))
(EQUAL (PLUS Y (TIMES (SUB1 X) (ADD1 Y)))

(PLUS Y
(PLUS (SUB1 X) (TIMES (SUB1 X) Y))))).

Applying the lemma SUB1.ELIM, replace X by (ADD1 Z) to
eliminate (SUB1 X). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. This
produces:

(IMPLIES (AND (NUMBERP Z)
(NUMBERP (ADD1 Z))
(NOT (EQUAL (ADD1 Z) 0))
(NUMBERP Y)
(EQUAL (TIMES Z (ADD1 Y))

(PLUS Z (TIMES Z Y))))
(EQUAL (PLUS Y (TIMES Z (ADD1 Y)))

(PLUS Y (PLUS Z (TIMES Z Y))))).
This simplifies further, clearly, to the goal:

(IMPLIES (AND (NUMBERP Z)
(NUMBERP Y)
(EQUAL (TIMES Z (ADD1 Y))
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(PLUS Z (TIMES Z Y))))
(EQUAL (PLUS Y (TIMES Z (ADD1 Y)))

(PLUS Y (PLUS Z (TIMES Z Y))))).
We now use the above equality hypothesis by cross-fertilizing
(TIMES Z (ADD1 Y)) for (PLUS Z (TIMES Z Y)) and throwing away
the equality. We must thus prove:

(IMPLIES (AND (NUMBERP Z) (NUMBERP Y))
(EQUAL (PLUS Y (TIMES Z (ADD1 Y)))

(PLUS Y (TIMES Z (ADD1 Y))))).
Of course, this finally simplifies, obviously, to:

(TRUE).
Case 2. (IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(NOT (NUMBERP Y))
(EQUAL (TIMES (SUB1 X) 1) (SUB1 X)))

(EQUAL (TIMES X 1) X)).
This simplifies again, rewriting with SUB1.ADD1, and unfolding
the functions PLUS and TIMES, to:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0))
(NOT (NUMBERP Y))
(EQUAL (TIMES (SUB1 X) 1) (SUB1 X)))

(EQUAL (ADD1 (TIMES (SUB1 X) 1)) X)).
Appealing to the lemma SUB1.ELIM, replace X by (ADD1 Z) to
eliminate (SUB1 X). We rely the type restriction lemma noted
when SUB1 was introduced to constrain the new variable. We thus
obtain:

(IMPLIES (AND (NUMBERP Z)
(NUMBERP (ADD1 Z))
(NOT (EQUAL (ADD1 Z) 0))
(NOT (NUMBERP Y))
(EQUAL (TIMES Z 1) Z))

(EQUAL (ADD1 (TIMES Z 1)) (ADD1 Z))),
which we further simplify, using the lemma ADD1.EQUAL, to:

(TRUE).
That finishes the proof of *1. Q.E.D.

CPU time (devoted to theorem-proving): 7.086 seconds

16.8 Associativity.of.times

Theorem ASSOCIATIVITY.OF.TIMES (rewrite):

(EQUAL (TIMES (TIMES X Y) Z)
(TIMES X (TIMES Y Z)))
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Name the conjecture *1.
Let us appeal to the induction principle. The recursive terms

in the conjecture suggest three inductions. They merge into two
likely candidate inductions. However, only one is unflawed. We will
induct according to the following scheme:

(AND (IMPLIES (NOT (NUMBERP X)) (p X Y Z))
(IMPLIES (EQUAL X 0) (p X Y Z))
(IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(p (SUB1 X) Y Z))

(p X Y Z))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme produces
the following three new conjectures:
Case 1. (IMPLIES (NOT (NUMBERP X))

(EQUAL (TIMES (TIMES X Y) Z)
(TIMES X (TIMES Y Z)))),

which simplifies, expanding the definition of TIMES, to:
(TRUE).

Case 2. (IMPLIES (EQUAL X 0)
(EQUAL (TIMES (TIMES X Y) Z)

(TIMES X (TIMES Y Z)))),
which simplifies, opening up TIMES, to:

(TRUE).
Case 3. (IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(EQUAL (TIMES (TIMES (SUB1 X) Y) Z)

(TIMES (SUB1 X) (TIMES Y Z))))
(EQUAL (TIMES (TIMES X Y) Z)

(TIMES X (TIMES Y Z)))).
This simplifies, expanding TIMES, to:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL X 0))
(EQUAL (TIMES (TIMES (SUB1 X) Y) Z)

(TIMES (SUB1 X) (TIMES Y Z))))
(EQUAL (TIMES (PLUS Y (TIMES (SUB1 X) Y)) Z)

(PLUS (TIMES Y Z)
(TIMES (SUB1 X) (TIMES Y Z))))).

Applying the lemma SUB1.ELIM, replace X by (ADD1 V) to eliminate
(SUB1 X). We use the type restriction lemma noted when SUB1 was
introduced to constrain the new variable. The result is:

(IMPLIES (AND (NUMBERP V)
(NUMBERP (ADD1 V))
(NOT (EQUAL (ADD1 V) 0))
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(EQUAL (TIMES (TIMES V Y) Z)
(TIMES V (TIMES Y Z))))

(EQUAL (TIMES (PLUS Y (TIMES V Y)) Z)
(PLUS (TIMES Y Z)

(TIMES V (TIMES Y Z))))).
Of course, this simplifies further, trivially, to:

(IMPLIES (AND (NUMBERP V)
(EQUAL (TIMES (TIMES V Y) Z)

(TIMES V (TIMES Y Z))))
(EQUAL (TIMES (PLUS Y (TIMES V Y)) Z)

(PLUS (TIMES Y Z)
(TIMES V (TIMES Y Z))))).

We use the above equality hypothesis by cross-fertilizing
(TIMES (TIMES V Y) Z) for (TIMES V (TIMES Y Z)) and throwing away
the equality. We would thus like to prove the conjecture:

(IMPLIES (NUMBERP V)
(EQUAL (TIMES (PLUS Y (TIMES V Y)) Z)

(PLUS (TIMES Y Z)
(TIMES (TIMES V Y) Z)))),

which we generalize by replacing (TIMES V Y) by A. We restrict
the new variable by recalling the type restriction lemma noted when
TIMES was introduced. We would thus like to prove the new goal:

(IMPLIES (AND (NUMBERP A) (NUMBERP V))
(EQUAL (TIMES (PLUS Y A) Z)

(PLUS (TIMES Y Z) (TIMES A Z)))).
However this simplifies further, using the lemma
COMMUTATIVITY.OF.PLUS, to the conjecture:

(IMPLIES (AND (NUMBERP A) (NUMBERP V))
(EQUAL (TIMES (PLUS A Y) Z)

(PLUS (TIMES A Z) (TIMES Y Z)))),
which has an irrelevant term in it. By eliminating this term we
get:

(IMPLIES (NUMBERP A)
(EQUAL (TIMES (PLUS A Y) Z)

(PLUS (TIMES A Z) (TIMES Y Z)))),
which we will finally name *1.1.

Let us appeal to the induction principle. There are three
plausible inductions. They merge into two likely candidate
inductions. However, only one is unflawed. We will induct
according to the following scheme:

(AND (IMPLIES (NOT (NUMBERP A)) (p A Y Z))
(IMPLIES (EQUAL A 0) (p A Y Z))
(IMPLIES (AND (NUMBERP A)

(NOT (EQUAL A 0))
(p (SUB1 A) Y Z))
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(p A Y Z))).
The inequality SUB1.LESSP establishes that the measure (COUNT A)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme produces
the following three new conjectures:
Case 1. (IMPLIES (AND (EQUAL A 0) (NUMBERP A))

(EQUAL (TIMES (PLUS A Y) Z)
(PLUS (TIMES A Z) (TIMES Y Z)))).

This simplifies, expanding the functions PLUS and TIMES, to:
(TRUE).

Case 2. (IMPLIES (AND (NOT (EQUAL A 0))
(NOT (NUMBERP (SUB1 A)))
(NUMBERP A))

(EQUAL (TIMES (PLUS A Y) Z)
(PLUS (TIMES A Z) (TIMES Y Z)))),

which we simplify, obviously, to:
(TRUE).

Case 3. (IMPLIES (AND (NOT (EQUAL A 0))
(EQUAL (TIMES (PLUS (SUB1 A) Y) Z)

(PLUS (TIMES (SUB1 A) Z) (TIMES Y Z)))
(NUMBERP A))

(EQUAL (TIMES (PLUS A Y) Z)
(PLUS (TIMES A Z) (TIMES Y Z)))),

which we simplify, rewriting with COMMUTATIVITY.OF.PLUS,
SUB1.ADD1 and ASSOCIATIV-

ITY.OF.PLUS, and unfolding the functions
PLUS and TIMES, to:

(IMPLIES (AND (NOT (EQUAL A 0))
(EQUAL (TIMES (PLUS Y (SUB1 A)) Z)

(PLUS (TIMES Y Z) (TIMES (SUB1 A) Z)))
(NUMBERP A))

(EQUAL (PLUS Z (TIMES (PLUS (SUB1 A) Y) Z))
(PLUS Z

(PLUS (TIMES Y Z)
(TIMES (SUB1 A) Z))))),

which we again simplify, rewriting with COMMUTATIV-
ITY.OF.PLUS, to:

(IMPLIES (AND (NOT (EQUAL A 0))
(EQUAL (TIMES (PLUS Y (SUB1 A)) Z)

(PLUS (TIMES Y Z) (TIMES (SUB1 A) Z)))
(NUMBERP A))

(EQUAL (PLUS Z (TIMES (PLUS Y (SUB1 A)) Z))
(PLUS Z

(PLUS (TIMES Y Z)
(TIMES (SUB1 A) Z))))).
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Applying the lemma SUB1.ELIM, we now replace A by (ADD1 X) to
eliminate (SUB1 A). We rely the type restriction lemma noted
when SUB1 was introduced to constrain the new variable. We thus
obtain:

(IMPLIES (AND (NUMBERP X)
(NOT (EQUAL (ADD1 X) 0))
(EQUAL (TIMES (PLUS Y X) Z)

(PLUS (TIMES Y Z) (TIMES X Z)))
(NUMBERP (ADD1 X)))

(EQUAL (PLUS Z (TIMES (PLUS Y X) Z))
(PLUS Z

(PLUS (TIMES Y Z) (TIMES X Z))))).
This further simplifies, applying COMMUTATIV-

ITY.OF.PLUS, to:
(IMPLIES (AND (NUMBERP X)

(EQUAL (TIMES (PLUS X Y) Z)
(PLUS (TIMES X Z) (TIMES Y Z))))

(EQUAL (PLUS Z (TIMES (PLUS X Y) Z))
(PLUS Z

(PLUS (TIMES X Z) (TIMES Y Z))))).
We use the above equality hypothesis by cross-fertilizing:

(PLUS (TIMES X Z) (TIMES Y Z))
for (TIMES (PLUS X Y) Z) and throwing away the equality. We
thus obtain:

(IMPLIES (NUMBERP X)
(EQUAL (PLUS Z

(PLUS (TIMES X Z) (TIMES Y Z)))
(PLUS Z

(PLUS (TIMES X Z) (TIMES Y Z))))),
which we further simplify, clearly, to:

(TRUE).
That finishes the proof of *1.1, which, consequently, finishes

the proof of *1. Q.E.D.
CPU time (devoted to theorem-proving): 10.277 seconds

16.9 Difference

Definition

(DIFFERENCE I J)
=

(IF (ZEROP I)
0
(IF (ZEROP J)



244CHAPTER 16. ILLUSTRATIONS OF OUR TECHNIQUES VIA ELEMENTARY NUMBER THEORY

I
(DIFFERENCE (SUB1 I) (SUB1 J))))

The lemma SUB1.LESSP can be used to show that (COUNT I)
decreases according to the well-founded relation LESSP in each
recursive call. Hence, DIFFERENCE is accepted under the
definition principle. The definition of DIFFERENCE can be
justified in another way. The lemma SUB1.LESSP informs us that
(COUNT J) decreases according to the well-founded relation
LESSP in each recursive call. Note that:

(NUMBERP (DIFFERENCE I J))
is a theorem.
CPU time (devoted to theorem-proving): 1.594 seconds

16.10 Recursion.by.difference

Theorem RECURSION.BY.DIFFERENCE (induction):

(IMPLIES (AND (NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I))
Name the conjecture *1.
Perhaps we can prove it by induction. Three inductions are

suggested by terms in the conjecture. However, they merge into one
likely candidate induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (NUMBERP N)) (p I N))
(IMPLIES (EQUAL N 0) (p I N))
(IMPLIES (NOT (NUMBERP I)) (p I N))
(IMPLIES (EQUAL I 0) (p I N))
(IMPLIES (AND (NUMBERP N)

(NOT (EQUAL N 0))
(NUMBERP I)
(NOT (EQUAL I 0))
(p (SUB1 I) (SUB1 N)))

(p I N))).
The inequality SUB1.LESSP establishes that the measure (COUNT I)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. Note, however, the inductive instance
chosen for N. The above induction scheme generates five new
conjectures:
Case 1. (IMPLIES (AND (NOT (NUMBERP (SUB1 I)))

(NUMBERP I)
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(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I)).
This simplifies, clearly, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (NUMBERP (SUB1 N)))

(NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I)),
which simplifies, clearly, to:

(TRUE).
Case 3. (IMPLIES (AND (EQUAL (SUB1 I) 0)

(NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I)).
Applying the lemma SUB1.ELIM, replace I by (ADD1 X) to eliminate
(SUB1 I). We rely the type restriction lemma noted when SUB1 was
introduced to constrain the new variable. The result is:

(IMPLIES (AND (NUMBERP X)
(EQUAL X 0)
(NUMBERP (ADD1 X))
(NUMBERP N)
(NOT (EQUAL (ADD1 X) 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE (ADD1 X) N)
(ADD1 X))),

which simplifies, appealing to the lemma SUB1.ADD1, and expanding
the definitions of DIFFERENCE and LESSP, to:

(TRUE).
Case 4. (IMPLIES (AND (EQUAL (SUB1 N) 0)

(NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I)).
Applying the lemma SUB1.ELIM, we now replace N by (ADD1 X) to
eliminate (SUB1 N). We rely the type restriction lemma noted when
SUB1 was introduced to restrict the new variable. We would thus
like to prove:

(IMPLIES (AND (NUMBERP X)
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(EQUAL X 0)
(NUMBERP I)
(NUMBERP (ADD1 X))
(NOT (EQUAL I 0))
(NOT (EQUAL (ADD1 X) 0)))

(LESSP (DIFFERENCE I (ADD1 X)) I)),
which simplifies, applying SUB1.ADD1, and opening up the
definitions of DIFFERENCE and LESSP, to the new goal:

(IMPLIES (AND (NUMBERP I)
(NOT (EQUAL I 0))
(NOT (EQUAL (SUB1 I) 0)))

(LESSP (SUB1 I) I)).
Applying the lemma SUB1.ELIM, we now replace I by (ADD1 X) to
eliminate (SUB1 I). We rely the type restriction lemma noted when
SUB1 was introduced to restrict the new variable. We thus obtain:

(IMPLIES (AND (NUMBERP X)
(NUMBERP (ADD1 X))
(NOT (EQUAL (ADD1 X) 0))
(NOT (EQUAL X 0)))

(LESSP X (ADD1 X))),
which further simplifies, applying SUB1.ADD1, and expanding LESSP,
to:

(IMPLIES (AND (NUMBERP X) (NOT (EQUAL X 0)))
(LESSP (SUB1 X) X)).

Give the above formula the name *1.1.
Case 5. (IMPLIES (AND (LESSP (DIFFERENCE (SUB1 I) (SUB1 N))

(SUB1 I))
(NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I)).
This simplifies, expanding the definition of DIFFERENCE, to:

(IMPLIES (AND (LESSP (DIFFERENCE (SUB1 I) (SUB1 N))
(SUB1 I))

(NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE (SUB1 I) (SUB1 N))
I)).

Appealing to the lemma SUB1.ELIM, we now replace I by (ADD1 X) to
eliminate (SUB1 I). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. This
produces the new formula:
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(IMPLIES (AND (NUMBERP X)
(LESSP (DIFFERENCE X (SUB1 N)) X)
(NUMBERP (ADD1 X))
(NUMBERP N)
(NOT (EQUAL (ADD1 X) 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE X (SUB1 N))
(ADD1 X))),

which further simplifies, applying the lemma SUB1.ADD1, and opening
up the definition of LESSP, to the conjecture:

(IMPLIES (AND (NUMBERP X)
(LESSP (DIFFERENCE X (SUB1 N)) X)
(NUMBERP N)
(NOT (EQUAL N 0))
(NOT (EQUAL (DIFFERENCE X (SUB1 N)) 0)))

(LESSP (SUB1 (DIFFERENCE X (SUB1 N)))
X)).

Appealing to the lemma SUB1.ELIM, we now replace N by (ADD1 Z) to
eliminate (SUB1 N). We use the type restriction lemma noted when
SUB1 was introduced to restrict the new variable. This generates:

(IMPLIES (AND (NUMBERP Z)
(NUMBERP X)
(LESSP (DIFFERENCE X Z) X)
(NUMBERP (ADD1 Z))
(NOT (EQUAL (ADD1 Z) 0))
(NOT (EQUAL (DIFFERENCE X Z) 0)))

(LESSP (SUB1 (DIFFERENCE X Z)) X)),
which further simplifies, trivially, to:

(IMPLIES (AND (NUMBERP Z)
(NUMBERP X)
(LESSP (DIFFERENCE X Z) X)
(NOT (EQUAL (DIFFERENCE X Z) 0)))

(LESSP (SUB1 (DIFFERENCE X Z)) X)).
We will try to prove the above conjecture by generalizing it,
replacing (DIFFERENCE X Z) by Y. We restrict the new variable by
appealing to the type restriction lemma noted when DIFFERENCE was
introduced. The result is:

(IMPLIES (AND (NUMBERP Y)
(NUMBERP Z)
(NUMBERP X)
(LESSP Y X)
(NOT (EQUAL Y 0)))

(LESSP (SUB1 Y) X)).
Appealing to the lemma SUB1.ELIM, we now replace Y by (ADD1 V) to
eliminate (SUB1 Y). We employ the type restriction lemma noted
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when SUB1 was introduced to restrict the new variable. We would
thus like to prove the goal:

(IMPLIES (AND (NUMBERP V)
(NUMBERP (ADD1 V))
(NUMBERP Z)
(NUMBERP X)
(LESSP (ADD1 V) X)
(NOT (EQUAL (ADD1 V) 0)))

(LESSP V X)),
which we further simplify, using the lemma SUB1.ADD1, and opening
up the definition of LESSP, to:

(IMPLIES (AND (NUMBERP V)
(NUMBERP Z)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
Eliminate the irrelevant term. This generates:

(IMPLIES (AND (NUMBERP V)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
Finally give the above formula the name *1.2.

We will appeal to induction. Three inductions are suggested
by terms in the conjecture. However, they merge into one likely
candidate induction. We will induct according to the following
scheme:

(AND (IMPLIES (NOT (NUMBERP X)) (p V X))
(IMPLIES (EQUAL X 0) (p V X))
(IMPLIES (NOT (NUMBERP V)) (p V X))
(IMPLIES (EQUAL V 0) (p V X))
(IMPLIES (AND (NUMBERP X)

(NOT (EQUAL X 0))
(NUMBERP V)
(NOT (EQUAL V 0))
(p (SUB1 V) (SUB1 X)))

(p V X))).
The inequality SUB1.LESSP establishes that the measure (COUNT V)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. Note, however, the inductive
instance chosen for X. The above induction scheme generates six
new conjectures:
Case 1. (IMPLIES (AND (EQUAL V 0)

(NUMBERP V)



16.10. RECURSION.BY.DIFFERENCE 249

(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)),
which we simplify, expanding the definition of LESSP, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL V 0))

(NOT (NUMBERP (SUB1 V)))
(NUMBERP V)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
This simplifies, trivially, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL V 0))

(NOT (NUMBERP (SUB1 X)))
(NUMBERP V)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
Of course, this simplifies, trivially, to:

(TRUE).
Case 4. (IMPLIES (AND (NOT (EQUAL V 0))

(EQUAL (SUB1 X) 0)
(NUMBERP V)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
This simplifies, expanding LESSP, to:

(TRUE).
Case 5. (IMPLIES (AND (NOT (EQUAL V 0))

(NOT (LESSP (SUB1 V) (SUB1 (SUB1 X))))
(NUMBERP V)
(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)),
which simplifies, opening up LESSP, to:

(TRUE).
Case 6. (IMPLIES (AND (NOT (EQUAL V 0))

(LESSP (SUB1 V) (SUB1 X))
(NUMBERP V)
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(NUMBERP X)
(NOT (EQUAL X 0))
(LESSP V (SUB1 X)))

(LESSP V X)).
This simplifies, expanding LESSP, to:

(TRUE).
That finishes the proof of *1.2.
So let us turn our attention to:
(IMPLIES (AND (NUMBERP X) (NOT (EQUAL X 0)))

(LESSP (SUB1 X) X)),
which we named *1.1 above. Perhaps we can prove it by induction.
There is only one plausible induction. We will induct according to
the following scheme:

(AND (IMPLIES (EQUAL X 0) (p X))
(IMPLIES (NOT (NUMBERP X)) (p X))
(IMPLIES (EQUAL (SUB1 X) 0) (p X))
(IMPLIES (NOT (NUMBERP (SUB1 X)))

(p X))
(IMPLIES (AND (NOT (EQUAL X 0))

(NUMBERP X)
(NOT (EQUAL (SUB1 X) 0))
(NUMBERP (SUB1 X))
(p (SUB1 X)))

(p X))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. The above induction scheme leads to
three new goals:
Case 1. (IMPLIES (AND (NOT (NUMBERP (SUB1 X)))

(NUMBERP X)
(NOT (EQUAL X 0)))

(LESSP (SUB1 X) X)).
This simplifies, trivially, to:

(TRUE).
Case 2. (IMPLIES (AND (EQUAL (SUB1 X) 0)

(NUMBERP X)
(NOT (EQUAL X 0)))

(LESSP (SUB1 X) X)).
This simplifies, expanding the definition of LESSP, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (EQUAL (SUB1 X) 0))

(NUMBERP (SUB1 X))
(LESSP (SUB1 (SUB1 X)) (SUB1 X))
(NUMBERP X)
(NOT (EQUAL X 0)))
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(LESSP (SUB1 X) X)),
which simplifies, opening up the definition of LESSP, to:

(TRUE).
That finishes the proof of *1.1, which, consequently, also

finishes the proof of *1. Q.E.D.
CPU time (devoted to theorem-proving): 10.241 seconds

16.11 Remainder

Definition

(REMAINDER I J)
=

(IF (ZEROP J)
(FIX I)
(IF (LESSP I J)

(FIX I)
(REMAINDER (DIFFERENCE I J) J)))

The lemma RECURSION.BY.DIFFER-
ENCE, together with the definition
of LESSP, establish that (COUNT I) goes down according to the
well-founded relation LESSP in each recursive call. Hence,
REMAINDER is accepted under the definition principle. Observe that
(NUMBERP (REMAINDER I J)) is a theorem.
CPU time (devoted to theorem-proving): 1.446 seconds

16.12 Quotient

Definition

(QUOTIENT I J)
=

(IF (ZEROP J)
0
(IF (LESSP I J)

0
(ADD1 (QUOTIENT (DIFFERENCE I J) J))))

The lemma RECURSION.BY.DIFFER-
ENCE, together with the definition
of LESSP, inform us that (COUNT I) goes down according to the
well-founded relation LESSP in each recursive call. Hence, QUOTIENT
is accepted under the principle of definition. Observe that
(NUMBERP (QUOTIENT I J)) is a theorem.
CPU time (devoted to theorem-proving): 1.381 seconds
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16.13 Remainder.quotient.elim

Theorem REMAINDER.QUOTIENT.ELIM (rewrite):

(IMPLIES (AND (NOT (ZEROP Y)) (NUMBERP X))
(EQUAL (PLUS (REMAINDER X Y)

(TIMES Y (QUOTIENT X Y)))
X))

This formula simplifies, expanding the definitions of ZEROP, NOT, AND
and IMPLIES, to:

(IMPLIES (AND (NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X))

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

X)).
Call the above conjecture *1.

Perhaps we can prove it by induction. There are three plausible
inductions. They merge into two likely candidate inductions.
However, only one is unflawed. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (NUMBERP X)) (p X Y))
(IMPLIES (NOT (NUMBERP Y)) (p X Y))
(IMPLIES (EQUAL X 0) (p X Y))
(IMPLIES (EQUAL Y 0) (p X Y))
(IMPLIES (AND (NUMBERP X)

(NUMBERP Y)
(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(p (DIFFERENCE X Y) Y))

(p X Y))).
The inequality RECURSION.BY.DIFFER-
ENCE establishes that the measure
(COUNT X) decreases according to the well-founded relation LESSP in
the induction step of the scheme. The above induction scheme
generates the following three new goals:
Case 1. (IMPLIES (AND (EQUAL X 0)

(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X))

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

X)),
which simplifies, applying the lemma TIMES.ZERO, and expanding the
definitions of LESSP, REMAINDER, QUOTIENT and PLUS, to:
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(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL X 0))

(NOT (NUMBERP (DIFFERENCE X Y)))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X))

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

X)),
which we simplify, trivially, to:

(TRUE).
Case 3. (IMPLIES

(AND (NOT (EQUAL X 0))
(EQUAL (PLUS (REMAINDER (DIFFERENCE X Y) Y)

(TIMES Y
(QUOTIENT (DIFFERENCE X Y) Y)))

(DIFFERENCE X Y))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X))

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

X)).
This simplifies, applying the lemmas TIMES.ZERO, PLUS.RIGHT.ID,
TIMES.ADD1 and COMMUTATIVITY2.OF.PLUS, and expanding the
definitions of REMAINDER and QUOTIENT, to:

(IMPLIES
(AND (NOT (EQUAL X 0))

(EQUAL (PLUS (REMAINDER (DIFFERENCE X Y) Y)
(TIMES Y

(QUOTIENT (DIFFERENCE X Y) Y)))
(DIFFERENCE X Y))

(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y
(PLUS (REMAINDER (DIFFERENCE X Y) Y)

(TIMES Y
(QUOTIENT (DIFFERENCE X Y) Y))))

X)).
We use the above equality hypothesis by cross-fertilizing
(DIFFERENCE X Y) for:

(PLUS (REMAINDER (DIFFERENCE X Y) Y)
(TIMES Y



254CHAPTER 16. ILLUSTRATIONS OF OUR TECHNIQUES VIA ELEMENTARY NUMBER THEORY

(QUOTIENT (DIFFERENCE X Y) Y)))
and throwing away the equality. This produces:

(IMPLIES (AND (NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)),
which we will name *1.1.

Let us appeal to the induction principle. Five inductions are
suggested by terms in the conjecture. However, they merge into one
likely candidate induction. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (NUMBERP Y)) (p Y X))
(IMPLIES (EQUAL Y 0) (p Y X))
(IMPLIES (NOT (NUMBERP X)) (p Y X))
(IMPLIES (EQUAL X 0) (p Y X))
(IMPLIES (AND (NUMBERP Y)

(NOT (EQUAL Y 0))
(NUMBERP X)
(NOT (EQUAL X 0))
(p (SUB1 Y) (SUB1 X)))

(p Y X))).
The inequality SUB1.LESSP establishes that the measure (COUNT X)
decreases according to the well-founded relation LESSP in the
induction step of the scheme. Note, however, the inductive
instance chosen for Y. The above induction scheme generates six
new goals:
Case 1. (IMPLIES (AND (EQUAL (SUB1 X) 0)

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)).
Applying the lemma SUB1.ELIM, we now replace X by (ADD1 Z) to
eliminate (SUB1 X). We use the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. The
result is:

(IMPLIES (AND (NUMBERP Z)
(EQUAL Z 0)
(NOT (EQUAL (ADD1 Z) 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP (ADD1 Z))



16.13. REMAINDER.QUOTIENT.ELIM 255

(NOT (LESSP (ADD1 Z) Y)))
(EQUAL (PLUS Y (DIFFERENCE (ADD1 Z) Y))

(ADD1 Z))).
But this simplifies, appealing to the lemmas SUB1.ADD1 and
PLUS.RIGHT.ID, and unfolding the definitions of LESSP and
DIFFERENCE, to:

(IMPLIES (AND (NOT (EQUAL Y 0))
(NUMBERP Y)
(EQUAL (SUB1 Y) 0))

(EQUAL Y 1)).
Applying the lemma SUB1.ELIM, we now replace Y by (ADD1 Z) to
eliminate (SUB1 Y). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. We would
thus like to prove:

(IMPLIES (AND (NUMBERP Z)
(NOT (EQUAL (ADD1 Z) 0))
(NUMBERP (ADD1 Z))
(EQUAL Z 0))

(EQUAL (ADD1 Z) 1)).
This further simplifies, obviously, to:

(TRUE).
Case 2. (IMPLIES (AND (EQUAL (SUB1 Y) 0)

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)).
This simplifies, unfolding the definition of PLUS, to the new
conjecture:

(IMPLIES (AND (EQUAL (SUB1 Y) 0)
(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (ADD1 (PLUS (SUB1 Y) (DIFFERENCE X Y)))
X)),

which we again simplify, opening up PLUS, to:
(IMPLIES (AND (EQUAL (SUB1 Y) 0)

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))
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(EQUAL (ADD1 (DIFFERENCE X Y)) X)).
Appealing to the lemma SUB1.ELIM, replace Y by (ADD1 Z) to
eliminate (SUB1 Y). We rely the type restriction lemma noted
when SUB1 was introduced to constrain the new variable. The
result is:

(IMPLIES (AND (NUMBERP Z)
(EQUAL Z 0)
(NOT (EQUAL X 0))
(NOT (EQUAL (ADD1 Z) 0))
(NUMBERP (ADD1 Z))
(NUMBERP X)
(NOT (LESSP X (ADD1 Z))))

(EQUAL (ADD1 (DIFFERENCE X (ADD1 Z)))
X)).

This simplifies further, using the lemmas SUB1.ADD1 and ADD1.SUB1,
and expanding the definitions of LESSP, DIFFERENCE, NOT and AND,
to:

(IMPLIES (AND (NOT (EQUAL X 0))
(NUMBERP X)
(EQUAL (SUB1 X) 0))

(EQUAL 1 X)).
Applying the lemma SUB1.ELIM, replace X by (ADD1 Z) to
eliminate (SUB1 X). We employ the type restriction lemma noted
when SUB1 was introduced to restrict the new variable. This
produces:

(IMPLIES (AND (NUMBERP Z)
(NOT (EQUAL (ADD1 Z) 0))
(NUMBERP (ADD1 Z))
(EQUAL Z 0))

(EQUAL 1 (ADD1 Z))).
Of course, this further simplifies, obviously, to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (NUMBERP (SUB1 Y)))

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)),
which simplifies, obviously, to:

(TRUE).
Case 4. (IMPLIES (AND (NOT (NUMBERP (SUB1 X)))

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
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(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)).
Of course, this simplifies, obviously, to:

(TRUE).
Case 5. (IMPLIES (AND (LESSP (SUB1 X) (SUB1 Y))

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)),
which we simplify, unfolding the function LESSP, to:

(TRUE).
Case 6. (IMPLIES (AND (EQUAL (PLUS (SUB1 Y)

(DIFFERENCE (SUB1 X) (SUB1 Y)))
(SUB1 X))

(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP X Y)))

(EQUAL (PLUS Y (DIFFERENCE X Y)) X)).
This simplifies, expanding the definitions of LESSP, DIFFERENCE
and PLUS, to:

(IMPLIES (AND (EQUAL (PLUS (SUB1 Y)
(DIFFERENCE (SUB1 X) (SUB1 Y)))

(SUB1 X))
(NOT (EQUAL X 0))
(NOT (EQUAL Y 0))
(NUMBERP Y)
(NUMBERP X)
(NOT (LESSP (SUB1 X) (SUB1 Y))))

(EQUAL (ADD1 (PLUS (SUB1 Y)
(DIFFERENCE (SUB1 X) (SUB1 Y))))

X)).
Applying the lemma SUB1.ELIM, we now replace Y by (ADD1 Z) to
eliminate (SUB1 Y). We use the type restriction lemma noted
when SUB1 was introduced to constrain the new variable. This
generates:

(IMPLIES (AND (NUMBERP Z)
(EQUAL (PLUS Z (DIFFERENCE (SUB1 X) Z))

(SUB1 X))
(NOT (EQUAL X 0))
(NOT (EQUAL (ADD1 Z) 0))
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(NUMBERP (ADD1 Z))
(NUMBERP X)
(NOT (LESSP (SUB1 X) Z)))

(EQUAL (ADD1 (PLUS Z (DIFFERENCE (SUB1 X) Z)))
X)).

Of course, this simplifies further, trivially, to:
(IMPLIES (AND (NUMBERP Z)

(EQUAL (PLUS Z (DIFFERENCE (SUB1 X) Z))
(SUB1 X))

(NOT (EQUAL X 0))
(NUMBERP X)
(NOT (LESSP (SUB1 X) Z)))

(EQUAL (ADD1 (PLUS Z (DIFFERENCE (SUB1 X) Z)))
X)).

Appealing to the lemma SUB1.ELIM, we now replace X by (ADD1 V)
to eliminate (SUB1 X). We rely the type restriction lemma noted
when SUB1 was introduced to constrain the new variable. This
produces:

(IMPLIES (AND (NUMBERP V)
(NUMBERP Z)
(EQUAL (PLUS Z (DIFFERENCE V Z)) V)
(NOT (EQUAL (ADD1 V) 0))
(NUMBERP (ADD1 V))
(NOT (LESSP V Z)))

(EQUAL (ADD1 (PLUS Z (DIFFERENCE V Z)))
(ADD1 V))).

However this simplifies further, applying the lemma ADD1.EQUAL,
to:

(TRUE).
That finishes the proof of *1.1, which, in turn, also finishes

the proof of *1. Q.E.D.
CPU time (devoted to theorem-proving): 12.334 seconds



Chapter 17

The Correctness of a
Simple Optimizing
Expression Compiler

In this and the next two chapters, we construct in our theory
the proofs of three interesting theorems: the correctness of an
expression compiler, the correctness of a fast string searching
algorithm, and the Fundamental Theorem of Arithmetic. The
proofs we discuss are those discovered by our theorem-proving
program.

The examples are presented in the same format as the TAU-
TOLOGY.CHECKER example in Chapter 4. We first present
an informal explanation of the problem at hand. Then we
present the formal development of the problem and describe the
mechanical proofs.

Recall the discussion in Chapter 4, where we presented the
roles of the buyer, implementor, mathematician user, and the-
orem prover. In particular, recall that the mathematician user
presents to the theorem prover a series of function definitions
and conjectures. The theorem prover is responsible for verify-
ing that each definition meets the requirements of our definition
principle and for constructing a proof of each conjecture (possi-
bly relying on previously proved conjectures). While the math-
ematician user is of inestimable value in proposing definitions
and conjectures that structure the problem, the burden of proof

259
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rests entirely on the theorem prover.

In this chapter we apply the theory and proof techniques to
establish the correctness of an algorithm for converting expres-
sions such as:

(PLUS (QUOTIENT X 2) (TIMES X (TIMES Y Z)))

into a sequence of instructions, such as might be executed by a
digital computer to compute the value of the expression in an
environment in which X, Y, and Z have numeric values. The
algorithm is a very simple example of an important class of al-
gorithms known as “compilers.” A compiler is just a translator
from a “high-level” programming language to a “machine” lan-
guage. In comparison to most compilers, our example is a toy.1

In particular, we are dealing with only a part of the compiler
problem: the compilation of expressions. We do not address
the compilation of conditionals, assignments, jumps, and other
control primitives.

We will here exploit the observation by McCarthy [32] that
any program can be translated into a general recursive function
with the same input/output behavior. Because programs can
obtain information other than that “passed” explicitly to them
in the form of arguments (e.g., they can refer to “global vari-
ables” or arbitrary memory locations), and because they can
pass on information in ways other than by simply returning
an answer (e.g., by modifying global variables or memory lo-
cations), it is necessary to understand “input/output” in a gen-
eral sense. In general, the recursive function in question must
map from the machine state at the beginning of the program’s
execution to the machine state at the end.

We will ultimately exhibit a recursive function that “is” the
compiler and another one that “is” the machine upon which we
expect to “run” the compiled code, and we shall prove that the
state of this machine is correctly transformed by running the
compiled code.

1It is useful to keep in mind other toys: dime-store gyroscopes, kites, building
blocks, crayons, frictionless planes, ideal gases.
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17.1 Informal Development

In this section we illustrate the basic idea of an “expression
compiler” by describing how one might use a certain pocket
calculator to evaluate arithmetic expressions.

Suppose we have an expression such as:

(X÷2)+(X*(Y*Z))
composed entirely of variables, natural numbers, and numeri-
cally valued function symbols of two arguments. Further, sup-
pose that we want to evaluate the expression for given values of
the variables, using a rudimentary hand-held calculator of the
following description:

Your new Model 0.0 is illustrated in Figure 1.

Integers may be entered into the display by pressing
the digit buttons. The display may be set to 0 by
depressing the CLEAR button. The contents of the
display may be stored in any of the registers U, V, W,
X, Y, and Z by first pressing STORE and then press-
ing the register key. The Model 0.0 has a stack. If any
of the the operation buttons (+, -, *, ÷, EXP, REM,
GCD, ACK) is pressed, the top two occupants of the
stack are removed from the stack, the indicated oper-
ation is performed on them, and the result is pushed
on the stack. If a register button is pressed and then
the PUSHV button is pressed, the contents of the
register is pushed on the stack. If the PUSHI button
is pressed, the contents of the display is pushed.

The Model 0.0 is also programmable. If the EN-
TER button is pressed, then until the END button
is pressed, the intervening digit, operation, register,
and stack keystrokes are executed as described above
and furthermore the keystrokes are remembered in a
program memory. Pressing the START button causes
the most recently remembered sequence of keystrokes
to be re-executed.

How do we use the Model 0.0 to compute the value of our ex-
pression,
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Figure 17.1: The Model 0.0
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(X÷2)+(X*(Y*Z)),

assuming that we have already loaded the Model 0.0’s registers
with the appropriate values of the variables?

We first compute the value of X÷2 and push it on the stack.
We then compute X*(Y*X) and push that on the stack on top
of our previous result. Then we press the + key, which causes
the Model 0.0 to pop two things off the stack, add them, and
put the result back on the stack. Thus, we use a sequence of
Model 0.0 instructions like this:

. \

. |

. | (compute and push the value of X÷2)

. |

. /

. \

. |

. | (compute and push the value of X*(Y*Z))

. |

. /
+ (press the + key)

But to compute the value of X÷2 we proceed as follows. We
first press the X and PUSHV buttons to push the value of X on
the stack. Next, we put 2 into the display and press the PUSHI
button to push 2 on the stack. Finally, we press the ÷ button
to remove the top two numbers from the stack, compute their
quotient, and push the result.

By performing the analogous decomposition of X*(Y*Z), we
arrive at the following sequence of keystrokes for causing the
Model 0.0 to compute the value of the given expression:

X
PUSHV
2
PUSHI
÷
X
PUSHV
Y
PUSHV
Z
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PUSHV
*
*
+

The above sequence of instructions is a Model 0.0 “program”
for computing the value of the expression. The process of trans-
lating the expression into such a sequence is called “compiling”
the expression.

We are interested in defining an algorithm that will correctly
compile any such expression. That is, we want an algorithm
that when applied to an expression in our “high-level” language
of expressions produces a sequence of instructions whose exe-
cution causes our calculator to compute and push the value of
the expression (as defined in the usual mathematical sense with
respect to the assignment reflecting the state of the calculator’s
registers). We do not care how much of the stack the calculator
uses during its computation. However, we do not want the com-
putation to disturb the entries present on the stack when the
computation begins (we might have several important subtotals
saved there).

If the calculator is very slow or if we wish to evaluate the ex-
pression repeatedly under different assignments to the variables,
it might be useful to optimize the expression before compiling
it. Optimization is allowed by the specification sketched, so long
as the calculator ends up pushing the correct final value.

The compiler we will describe implements a very simple op-
timization scheme called “constant folding.” The basic idea is
that if asked to compile a subexpression with constant argu-
ments, we compute and “compile in” the value of that subex-
pression. Thus, given:

(2*3)+X,

we generate the following Model 0.0 code:

6
PUSHI
X
PUSHV
+
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rather than force the Model 0.0 to do the arithmetic with:

2
PUSHI
3
PUSHI
*
X
PUSHV
+

17.2 Formal Specification of the Problem

To specify an expression compiler formally, we must define the
“high-level” language of expressions and we must define the be-
havior of our calculator. The calculator that we formalize is
actually a generalization of the Model 0.0. In our formaliza-
tion, we do not limit the calculator to have a finite stack, finite
precision, a finite number of operations, or a finite number of
registers.

17.2.1 The High-level Language

We need to specify how we shall represent expressions and how
we define the value of an expression. These are fairly straight-
forward problems and we will dispense with them quickly since
we discussed similar problems in the TAUTOLOGY.CHECKER
example, Chapter 4.

Representing Expressions

We are interested in tree structured expressions composed of in-
tegers, variables, and applications of numerically valued dyadic
function symbols. An example expression is (PLUS (QUO-
TIENT X 2) (TIMES X (TIMES Y Z))). In the tautology checker
example, we employed a special shell to represent terms. For va-
riety, we here employ the list representation mentioned in Chap-
ter 3.

We define the recursive function FORMP (see Appendix A)
to return T if its argument is a form suitable for compiling, and
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F otherwise. We will consider all non-LISTP (i.e., “atomic”)
objects to be forms. Those that satisfy NUMBERP will stand
for numbers and the remaining atomic objects will represent
variables. We will consider a LISTP object a form if and only
if it has the structure (CONS fn (CONS x (CONS y tail))),
where fn is atomic, and x and y are (recursively) forms. We
think of such a list as representing the term (fn x y). We do
not care what tail is because it will be ignored by the value
assignment function. Thus, if x is a LISTP object and also a
form, then (CAR x) is the function symbol, (CADR x) is the
form representing the first argument, and (CADDR x) is the
form representing the second.

By assuming that a form is tree structured, we are gloss-
ing over the important problem of parsing, i.e. converting a
sequence of symbols into a tree structure. In [20], Gloess de-
scribes a proof by our theorem prover of the correctness of a
simple expression parser for a language with infix operations.

The Value of Forms

The value of a form is defined by the function EVAL (of two
arguments, the form and an “environment,” envrn, specifying
the values of the variables). The value of a number is itself.
The value of a variable, x, is defined to be (GETVALUE x en-
vrn). The value of a form representing (fn u v) is defined to be
(APPLY fn u’ v’), where u’ and v’ are the recursively obtained
values of u and v in envrn. The formal definition of EVAL is
exhibited in Appendix A.

The two functions GETVALUE and APPLY are undefined.
GETVALUE is undefined because we do not care what the

structure of an “environment” is, so long as every variable has
some value “in” it. If the reader would care to think of GET-
VALUE as the function ASSIGNMENT in Chapter 4 and “en-
vironments” as association lists, that is acceptable.2

As for APPLY, it supposedly takes an arbitrary function
symbol and two arguments and returns the result of applying the

2In the tautology example, we specified the structure of assignments because
we wanted to be able to write functions for constructing assignments with specific
properties.
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function “denoted” by that symbol to those arguments. But we
do not really care what the function “denoted” by any particular
symbol is (so long as it is numerically valued).

To ensure that the function symbols denote numeric func-
tions, we add the axiom:

Axiom NUMBERP.APPLY:

(NUMBERP (APPLY FN X Y)),

which is consistent since APPLY is undefined (and until now
unmentioned in the theory).

If we wanted to ensure that the function symbol “PLUS”
appearing in a FORMP was to stand for the recursive function
we call PLUS, we could add the axiom:

(EQUAL (APPLY ‘‘PLUS’’ X Y) (PLUS X Y)),

or define APPLY to recognize some fixed set of function symbols
(including “PLUS”) and call the numeric function we had in
mind. However, for the present purposes we do not need to
specify the functions denoted by our symbols.

17.2.2 The Low-level Language

We now specify our calculator. The calculator is an idealized
version of the Model 0.0. The development of the specification
is broken up into two parts, the representation of data within
the calculator and the specification of the machine’s “fetch and
execute” cycle (i.e., how it interprets sequences of instructions).

Representing Data

The Named Registers We represent the state of the regis-
ters as an “environment.” The meaning of the “contents of the
register named x in the environment envrn” is (GETVALUE x
envrn).

Push-down Stacks To represent the state of the push-down
stack, we use the objects in a new shell class:
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Shell Definition.
Add the shell PUSH of two arguments
with recognizer STACKP,
accessors TOP and POP,
default values 0 and 0, and
well-founded relation TOP.POPP.

The stack resulting from pushing x onto pds will be (PUSH x
pds). The top-most element of pds is (TOP pds), which is 0
if pds is not the result of a PUSH. The stack resulting from
“popping” the top-most element from pds is (POP pds). If
called on a nonstack, POP returns 0. We could have introduced
an “empty stack” and required that the second argument to
PUSH always be a stack; however we did not (simply because
there is no need for any additional constraints on our stacks).3

The Instruction Set Since the PUSHV button on the Model
0.0 is always used in combination with a register button, we
treat the two keystrokes as one instruction. We use (CONS
“PUSHV” (CONS reg “NIL”)) as the instruction to push the
value of register reg.

Similarly, we use (CONS “PUSHI” (CONS n “NIL”)) as the
instruction to push n.

We use atomic (i.e., NLISTP) objects (e.g., “PLUS” and
“TIMES”) as the instructions corresponding to the Model 0.0’s
operation buttons. An atom, fn, instructs the calculator to pop
x and y off the stack and push (APPLY fn x y).

Programs A program is a list of instructions.

The Fetch-and-execute Cycle

We will describe the behavior of our calculator with a recursive
function that maps from an initial state of the machine to a
final state. Formally, the state of the calculator at any moment
is a triple consisting of the location in the program from which
the next instruction will be fetched (usually called the “program

3We could have used lists to represent stacks. CONS would be PUSH, LISTP
would be STACKP, and CAR and CDR would be TOP and POP. We used the
shell mechanism for variety.
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counter” or “pc”), the current state of the push-down stack, and
the current settings of all the named registers.

The recursive function EXEC, describing the calculator, thus
takes three arguments:

PC the current list of instructions, the first of which
is the ‘‘next’’ to be executed,

PDS the state of the push-down stack,
ENVRN the state of the named registers.

The function returns the state of the push-down stack at the
conclusion of the sequence of instructions. In the final state, the
PC will always be the end of the initial list of instructions, and
the environment will be the original one since no programmable
instruction affects the registers.4 Thus, returning only the final
push-down stack is sufficient.

We want EXEC to iterate down the list of instructions, in-
terpreting each instruction on the way. Each instruction causes
some modification to PDS. When the instruction is a (PUSHI
x), EXEC should reset PDS to (PUSH x PDS). When it is a
(PUSHV x) instruction, EXEC should reset PDS to (PUSH
(GETVALUE x ENVRN) PDS). When the instruction is atomic
(i.e., an operation button), fn, EXEC should (a) pop the stack
once obtaining some value x (i.e., (TOP PDS)), (b) pop the
stack again, obtaining some value y (i.e., (TOP (POP PDS))),
(c) apply the indicated function, obtaining some value v (i.e.,
(APPLY fn y x) – note that the first argument to the function
is the one that was deepest on the stack), and (d) push v on the
stack (i.e., set PDS to (PUSH v (POP (POP PDS)))).

The way EXEC “iterates” down the PC is to recurse, each
time replacing PC by (CDR PC), PDS by the stack produced
by interpreting (CAR PC) as above and leaving ENVRN un-
changed. When PC is no longer a list, EXEC returns PDS.

The formal definition of EXEC is thus:

Definition

(EXEC PC PDS ENVRN)

4The registers of our calculator may be set arbitrarily by the user, but they
must be set before a program is activated.
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=
(IF (NLISTP PC)

PDS
(IF (LISTP (CAR PC))

(IF (EQUAL (CAR (CAR PC)) ‘‘PUSHI’’)
(EXEC (CDR PC)

(PUSH (CAR (CDR (CAR PC))) PDS)
ENVRN)

(EXEC (CDR PC)
(PUSH (GETVALUE (CAR (CDR (CAR PC)))

ENVRN)
PDS)

ENVRN))
(EXEC (CDR PC)

(PUSH (APPLY (CAR PC)
(TOP (POP PDS))
(TOP PDS))

(POP (POP PDS)))
ENVRN))).

Let us step back from the problem of evaluating expressions to
consider the problem of designing a calculator to meet these
specifications. The designer is free to represent data in the ma-
chine any way he sees fit. For example, if the hardware fac-
tory is having trouble producing blue 1-tuples, the designer may
choose to implement our NUMBERPs as sequences of binary
digits. The designer would then wire the “PLUS” key to a bi-
nary addition algorithm rather than Peano’s recursive function.
If he desired to prove that his design met these specifications, he
would have to establish the correctness of his algorithms with
respect to his representation. For example, he would have to
prove that when given the binary representation of two Peano
numbers his addition algorithm yields the binary representa-
tion of their Peano sum. The reader is referred to the theorem
CORRECTNESS.OF.BIG.PLUS in Appendix A, which states
the above result formally for an algorithm that adds numbers
represented as sequences of digits in an arbitrary base (binary
addition being a special case of the more general digit-by-digit
algorithm with carry).

Readers interested in a method for designing machines and
implementing them on other machines are referred to Robinson
and Levitt’s [51].
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17.2.3 The Formal Statement of Correctness

Suppose that COMPILE is a function of one argument, namely a
form to be compiled. Then, to be correct, COMPILE must have
the following property. If X is a FORMP, then the push-down
stack resulting from executing the output of (COMPILE X) on
our calculator, with some initial push-down stack PDS and some
environment ENVRN, is the push-down stack obtained by push-
ing (EVAL X ENVRN) on PDS. That is, when the compilation
and execution have concluded, the calculator and COMPILE
are completely out of the picture: the mathematical value of
the expression has been PUSHed on the original stack.

Stated formally this is:

Theorem CORRECTNESS.OF.OPTIMIZING.COMPILER:

(IMPLIES (FORMP X)
(EQUAL (EXEC (COMPILE X) PDS ENVRN)

(PUSH (EVAL X ENVRN) PDS))).

Let us return for a moment to the fact that APPLY and GET-
VALUE are undefined (but used by EVAL and EXEC). The job
of the compiler is to cause EXEC to compute the same thing
EVAL does, regardless of the semantics of GETVALUE and the
numeric APPLY.

17.3 Formal Definition of the Compiler

Now that we know exactly what the semantics of forms are,
and we know exactly how the calculator behaves on a sequence
of instructions, we consider the problem of compiling forms for
the calculator. As noted in our informal development of the
problem, we wish to do “constant folding” optimization of the
expression. Thus, we break our compiler into two “passes.” The
first pass, performed by the function OPTIMIZE, takes the ex-
pression to be compiled and returns a possibly simpler form with
the same value under all assignments. OPTIMIZE replaces con-
stant subexpressions with their values. The second pass of the
compiler, CODEGEN, generates the compiled code for the op-
timized form. We compose the two to obtain our compiler.
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17.3.1 The Optimization Pass

The function OPTIMIZE, of one argument, optimizes a form by
replacing any subexpression, (fn u v), where u and v are specific
numeric constants, by the result of applying fn to u and v. The
precise (but informal) definition of (OPTIMIZE X) is as follows:

If X does not represent a function call, return X.
Otherwise, suppose X represents (fn u v).
Let u’ be (OPTIMIZE u) and let v’ be (OPTIMIZE v).
If (NUMBERP u’) and (NUMBERP v’),

then return (APPLY fn u’ v’).
Otherwise,

return (CONS fn (CONS u’ (CONS v’ ‘‘NIL’’)))
(i.e., return a representation of the
term (fn u’ v’)).

The formal definition of OPTIMIZE is in Appendix A.

17.3.2 The Code Generation Pass

Given the ability to optimize an expression as above, we now
turn our attention to generating correct code for forms in general
(i.e., we ignore the fact that we know the code generator will be
called on optimized forms).

Our objective is to generate code for a form, x, that will cause
the calculator to push the value of x on the stack. Let us suppose
we are compiling x by hand, writing down the instructions we
generate on a note pad. Clearly, if x is a variable, we write
down (PUSHV x). If x is a number, we write down (PUSHI x).
Finally, if x represents (fn u v), we recursively write down the
instructions for pushing the value of u on the stack, then write
down the instructions for pushing the value of v, and finally
write down the single atomic instruction fn. When the calculator
executes the code for u, it may push and pop many times, but
it never pops the initial stack. When the code for u has been
executed, the net effect will be to push the value of u on the
initial stack. Then the calculator will begin to execute the code
for v with the value of u safely pushed. The v computation may
push and pop many times but eventually it will push the value
of v immediately on top of the value for u. Thus, by the time
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the calculator sees the atomic instruction, fn, the two argument
values will be the top-most entries on the stack.

To formalize the code generation pass, we must decide how to
represent our “note pad” above. We use a global collection site,
maintained as a list of instructions, and initialized to “NIL”. To
“write down” an instruction on the “note pad,” we CONS it
onto the front of the site. The final value of the site will thus be
in the reverse of the order in which the instructions should be
executed (e.g., the top-most function symbol in the expression
will be the first element of the final list, but should be the last
instruction executed). Thus, the list should be reversed before
being used as a program.

Since this algorithm side-effects a global variable (the collec-
tion site), its functional representation is as a function of two
arguments: the form being compiled, FORM, and the global col-
lection site, INS. The function returns the value of the collection
site.5 The formal definition is:

Definition

(CODEGEN FORM INS)
=

(IF (NUMBERP FORM)
(CONS (CONS ‘‘PUSHI’’ FORM ‘‘NIL’’)

INS)
(IF (LISTP (CDDR FORM))

(CONS (CAR FORM)
(CODEGEN (CADDR FORM)

(CODEGEN (CADR FORM) INS)))
(CONS (CONS ‘‘PUSHV’’ FORM ‘‘NIL’’)

INS))).

If FORM is a FORMP, then the test (LISTP (CDDR FORM))
is a cheap way to ask whether FORM has the structure (CONS
fn (CONS u (CONS v tail))), where fn is atomic and u and v are
forms. Note that we compile the first argument of function calls
first (in the innermost recursive call) using the input value of
the collection site. Then we compile the second argument, using
the collection site resulting from the first recursive call. Finally,
we CONS the function symbol onto the front and return the
resulting collection site.

5Note the similarity to the function MC.FLATTEN of Chapter 2.
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17.3.3 Compile

The compiler is the composition of OPTIMIZE and CODEGEN.
We must remember to initialize the collection site to “NIL” be-
fore starting the code generation pass, and we must remember
to reverse the final list of instructions.

The formal definition of the compiler is:

Definition

(COMPILE FORM)
=

(REVERSE (CODEGEN (OPTIMIZE FORM) ‘‘NIL’’)).

17.4 The Mechanical Proof of Correctness

In this section, we describe the proof of the correctness of the op-
timizing compiler. The presentation is divided into three parts.
We first decompose the main theorem into three lemmas to be
proved. Then we prove the main theorem from those lemmas.
Finally we present the proofs of the lemmas.

17.4.1 Decomposition of the Main Goal

The proof of the correctness of our optimizing compiler can be
naturally decomposed into two parts: show that the optimizer
is correct and show that the code generator is correct.

The correctness of the optimizer requires two clauses to state: if
given a form, OPTIMIZE returns a form, and if given a form,
OPTIMIZE returns something with the same value.

These two lemmas are stated formally as:

Theorem FORMP.OPTIMIZE:

(IMPLIES (FORMP X)
(FORMP (OPTIMIZE X)))

Theorem CORRECTNESS.OF.OPTIMIZE:

(IMPLIES (FORMP X)
(EQUAL (EVAL (OPTIMIZE X) ENVRN)

(EVAL X ENVRN))).
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To state the correctness of CODEGEN, we must explain the
use of the global “collection site” and recall that the output
of CODEGEN will be reversed. Exactly what is the state into
which our calculator should be driven if given the program pro-
duced by (REVERSE (CODEGEN X INS)) with some initial
PDS and ENVRN? Since CODEGEN is supposed to concatenate
the reverse of the code for X onto INS, and since that concatena-
tion is reversed before running it, the code in (REVERSE INS)
will be executed before the code for X is encountered. When
the code for X is encountered, the push-down stack will be that
produced by executing the instructions in (REVERSE INS) on
PDS and ENVRN. The code for X is supposed to push the value
of X on that push-down stack. Thus, the statement of the cor-
rectness of CODEGEN is:

Theorem CORRECTNESS.OF.CODEGEN:

(IMPLIES (FORMP X)
(EQUAL (EXEC (REVERSE (CODEGEN X INS))

PDS ENVRN)
(PUSH (EVAL X ENVRN)

(EXEC (REVERSE INS)
PDS ENVRN)))).

17.4.2 Proof of the Main Goal

For the moment, let us suppose we have proved these three lem-
mas. Now let us consider the theorem prover’s proof of the main
result:

Theorem CORRECTNESS.OF.OPTIMIZING.COMPILER:

(IMPLIES (FORMP X)
(EQUAL (EXEC (COMPILE X) PDS ENVRN)

(PUSH (EVAL X ENVRN) PDS))).

The proof from our three lemmas is immediate (i.e., involves
only simplification):

Consider the left-hand side of the conclusion of the main
goal:

(EXEC (COMPILE X) PDS ENVRN).

Since COMPILE is nonrecursive, we expand it to get:
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(EXEC (REVERSE (CODEGEN (OPTIMIZE X) ‘‘NIL’’)) PDS ENVRN).

We then rewrite this using CORRECTNESS.OF.CODEGEN af-
ter establishing the hypothesis (FORMP (OPTIMIZE X)) by
backwards chaining through FORMP.OPTIMIZE and appeal-
ing to the (FORMP X) hypothesis in our main goal. The result
is:

(PUSH (EVAL (OPTIMIZE X) ENVRN)
(EXEC (REVERSE ‘‘NIL’’) PDS ENVRN)).

However, this can be further simplified. We may rewrite the
term (EVAL (OPTIMIZE X) ENVRN) to (EVAL X ENVRN)
by CORRECTNESS.OF.OPTIMIZE, appealing again to the as-
sumption (FORMP X) to relieve the hypothesis of the rewrite
rule. In addition, (REVERSE “NIL”) computes to “NIL”, and
the resulting (EXEC “NIL” PDS ENVRN) then computes to
PDS. The result of simplifying the left-hand side of the conclu-
sion of our main goal is thus:

(PUSH (EVAL X ENVRN) PDS),

which is the right-hand side of the conclusion. Thus, the main
goal has been proved.

17.4.3 Proofs of the Lemmas

Let us now discuss the proofs of the three lemmas used.
The first two lemmas, FORMP.OPTIMIZE and CORRECT-

NESS.OF.OPTIMIZE, are proved by straightforward induction
on the structure of forms, as unanimously suggested by all ap-
plicable induction templates. The various cases produced by
the inductions are proved by simplification (using list axioms
and function definitions), elimination of CARs and CDRs, and
equality substitution.

The proof of CORRECTNESS.OF.CODEGEN is more inter-
esting. In developing the statement of the correctness of CODE-
GEN, we used an important fact about our calculator: if called
upon to execute the concatenation of two programs, X and Y,
the state of the push-down stack when Y is encountered is that
produced by executing X. This fact is important to the proof of
the correctness of CODEGEN. Stated formally, the lemma is:
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Theorem SEQUENTIAL.EXECUTION:

(EQUAL (EXEC (APPEND X Y) PDS ENVRN)
(EXEC Y

(EXEC X PDS ENVRN)
ENVRN)).

SEQUENTIAL.EXECUTION can be proved by induction on X,
as suggested by the result of merging the inductions from (AP-
PEND X Y) and (EXEC X PDS ENVRN). Note that there is
a suggested induction on Y; however, it is flawed by the (AP-
PEND X Y) term. The proof of SEQUENTIAL.EXECUTION
appeals only to axioms and definitions.

Once SEQUENTIAL.EXECUTION is proved, the CORRECT-
NESS.OF.CODEGEN can be proved by induction on the struc-
ture of the form X. Note that an induction on INS is suggested
by the (REVERSE INS) term, but that induction is flawed.

Below is the theorem prover’s proof of the correctness of
CODEGEN. We have included only the induction analysis, the
proof of the first base case, and the proof of the induction step.
We have extensively annotated the theorem prover’s own output
with remarks in brackets ([* . . . *]).

Theorem CORRECTNESS.OF.CODEGEN:

(IMPLIES
(FORMP X)
(EQUAL (EXEC (REVERSE (CODEGEN X INS))

PDS ENVRN)
(PUSH (EVAL X ENVRN)

(EXEC (REVERSE INS) PDS ENVRN))))

Name the conjecture *1.
We will appeal to induction. There are four plausible

inductions. They merge into two likely candidate
inductions. However, only one is unflawed. We will induct
according to the following scheme:

(AND (IMPLIES (NOT (LISTP X))
(p X INS PDS ENVRN))

(IMPLIES (NOT (LISTP (CDR X)))
(p X INS PDS ENVRN))

(IMPLIES (NOT (LISTP (CDR (CDR X))))
(p X INS PDS ENVRN))

(IMPLIES (AND (LISTP X)
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(LISTP (CDR X))
(LISTP (CDR (CDR X)))
(p (CAR (CDR (CDR X)))

(CODEGEN (CAR (CDR X)) INS)
PDS ENVRN)

(p (CAR (CDR X)) INS PDS ENVRN))
(p X INS PDS ENVRN))).

The inequalities CAR.LESSP and CDR.LESSP establish that the
measure (COUNT X) decreases according to the well-founded
relation LESSP in the induction step of the scheme. Note,
however, the inductive instances chosen for INS. The
above induction scheme produces the following seven new
goals:
Case 1. (IMPLIES

(AND (NOT (LISTP X)) (FORMP X))
(EQUAL (EXEC (REVERSE (CODEGEN X INS))

PDS ENVRN)
(PUSH (EVAL X ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))),
which simplifies, applying CDR.NLISTP, CAR.CONS, CDR.CONS
and SEQUENTIAL.EXECUTION, and opening up the definitions
of FORMP, CODEGEN, EVAL, REVERSE and EXEC, to:

(TRUE).

[* Case 1 is the most interesting base case. We now sketch the
series of simplifications that reduce it to (TRUE).

Consider the left-hand side of the conclusion:

(EXEC (REVERSE (CODEGEN X INS)) PDS ENVRN).

Since X is not a list, it represents a variable or a number. The
CODEGEN term in the left-hand side of the conclusion thus
opens up to:

(IF (NUMBERP X)
(CONS (CONS ‘‘PUSHI’’ (CONS X ‘‘NIL’’))

INS)
(CONS (CONS ‘‘PUSHV’’ (CONS X ‘‘NIL’’))

INS)).

The introduction of the above IF-expression splits the theorem
into two cases. In one case, the REVERSE expression in the
left-hand side of the conclusion has (CONS push INS) as its ar-
gument, where push is a (PUSHI X) instruction and X is known
to be numeric. In the other case, the REVERSE expression has
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(CONS push INS) as its argument, where push is a (PUSHV X)
instruction and X is known to be not a number.

In both cases, the REVERSE expression (which occupies the
first argument of the EXEC-expression in the left-hand side of
the conclusion) opens up to:

(APPEND (REVERSE INS) (CONS push ‘‘NIL’’)),

allowing the SEQUENTIAL.EXECUTION lemma to rewrite the
resulting EXEC-expression to:

(EXEC (CONS push ‘‘NIL’’)
(EXEC (REVERSE INS) PDS ENVRN)
ENVRN).

The outermost EXEC-expression above then opens up, and in-
deed computes, to either:

(PUSH X (EXEC (REVERSE INS) PDS ENVRN)),

or to

(PUSH (GETVALUE X ENVRN) (EXEC (REVERSE INS) PDS ENVRN))

depending on whether we are in the numeric or nonnumeric case.
That completes the simplification of the left-hand side of the
conclusion.

Now consider the right-hand side of the conclusion. The term
(EVAL X ENVRN) opens up to:

(IF (NUMBERP X)
X
(GETVALUE X ENVRN)).

Thus, the right-hand side of the conclusion becomes:

(PUSH (IF (NUMBERP X)
X
(GETVALUE X ENVRN))

(EXEC (REVERSE INS) PDS ENVRN)).

When the IF is distributed out, two cases are produced, depend-
ing on whether X is numeric:

(PUSH X (EXEC (REVERSE INS) PDS ENVRN))
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and

(PUSH (GETVALUE X ENVRN) (EXEC (REVERSE INS) PDS ENVRN)).

That completes the simplification of the right-hand side of the
conclusion.

Now consider the concluding equality itself. In the case where
X is a number, the left and right sides simplified to the same
term, namely (PUSH X (EXEC (REVERSE INS) PDS EN-
VRN)). In the other case, when X is not a number, both sides
simplified to the same term, namely (PUSH (GETVALUE X
ENVRN) (EXEC (REVERSE INS) PDS ENVRN)). So Case 1
above has been proved.

The proofs of Cases 2 through 6 are similar and are thus not
exhibited here. We resume the system’s proof on Case 7, the
induction step. *]

.

.

.
Case 7. (IMPLIES

(AND
(LISTP X)
(LISTP (CDR X))
(LISTP (CDR (CDR X)))
(EQUAL
(EXEC

(REVERSE (CODEGEN (CAR (CDR (CDR X)))
(CODEGEN (CAR (CDR X)) INS)))

PDS ENVRN)
(PUSH (EVAL (CAR (CDR (CDR X))) ENVRN)

(EXEC (REVERSE (CODEGEN (CAR (CDR X)) INS))
PDS ENVRN)))

(EQUAL (EXEC (REVERSE (CODEGEN (CAR (CDR X)) INS))
PDS ENVRN)

(PUSH (EVAL (CAR (CDR X)) ENVRN)
(EXEC (REVERSE INS) PDS ENVRN)))

(FORMP X))
(EQUAL (EXEC (REVERSE (CODEGEN X INS))

PDS ENVRN)
(PUSH (EVAL X ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))),
which we simplify, applying CAR.CONS, CDR.CONS,



17.4. THE MECHANICAL PROOF OF CORRECTNESS 281

SEQUENTIAL.EXECUTION and PUSH.EQUAL, and expanding the
definitions of FORMP, CODEGEN, REVERSE, EXEC and EVAL, to
two new formulas:

[* The conditions governing Case 7 imply that X represents a
function call. Let us suppose it represents the function call (v
d z), where v is an atomic symbol and d and z are forms (we
have used the letters that the system will introduce in a moment
when it eliminates the CARs and CDRs).

We have two induction hypotheses. The first is about the
code produced for z after d has been compiled. The second is
about the code produced for d. In particular, the first hypothesis
tells us that the execution of the code for z pushes the value of z
on the stack that is produced by the execution of the code for d.
The second hypothesis tells us that the execution of the code for
d pushes the value of d on the stack produced by the execution
of whatever instructions were on INS to start with.

Now let us look at the left-hand side of the conclusion:

(EXEC (REVERSE (CODEGEN X INS))
PDS ENVRN).

The CODEGEN term opens up to:

(CONS v (CODEGEN z (CODEGEN d INS))).

Thus the REVERSE term opens up to:

(APPEND (REVERSE (CODEGEN z (CODEGEN d INS)))
(CONS v ‘‘NIL’’)).

This allows the SEQUENTIAL.EXECUTION lemma to rewrite
the resulting EXEC term to:

(EXEC (CONS v ‘‘NIL’’) pds ENVRN),

where we have used pds to denote the term

(EXEC (REVERSE (CODEGEN z (CODEGEN d INS))) PDS ENVRN).

(EXEC (CONS v “NIL”) pds ENVRN) computes to:

(PUSH (APPLY v (TOP (POP pds)) (TOP pds))
(POP (POP pds))).
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There is nothing more we can do to the left-hand side of the
conclusion.

However, on the right-hand side of the conclusion, the (EVAL
X ENVRN) term opens up to (APPLY v (EVAL d ENVRN)
(EVAL z ENVRN)), reducing the right-hand side to:

(PUSH (APPLY v (EVAL d ENVRN) (EVAL z ENVRN))
(EXEC (REVERSE INS) PDS ENVRN)).

Since now the left- and right-hand sides of the conclusion are
PUSH-expressions, we can apply one of the axioms added by
the shell principle when PUSH was defined:

Axiom PUSH.EQUAL:

(EQUAL (EQUAL (PUSH X1 X2) (PUSH Y1 Y2))
(AND (EQUAL X1 Y1)

(EQUAL X2 Y2))),

to split the conjecture into two parts. In the first (called Case
1 below), we must prove that the two APPLY expressions pro-
duced by the left- and right-hand sides are equal, and in the
second (called Case 2), we must prove that the stacks upon
which they are pushed are equal.

The proofs are similar, both involving appeals to the induc-
tion hypotheses. We follow the proof of the equivalence of the
APPLY expressions. *]

Case 1. (IMPLIES
(AND
(LISTP X)
(LISTP (CDR X))
(LISTP (CDR (CDR X)))
(EQUAL
(EXEC
(REVERSE

(CODEGEN (CAR (CDR (CDR X)))
(CODEGEN (CAR (CDR X)) INS)))

PDS ENVRN)
(PUSH

(EVAL (CAR (CDR (CDR X))) ENVRN)
(EXEC (REVERSE (CODEGEN (CAR (CDR X)) INS))

PDS ENVRN)))
(EQUAL

(EXEC (REVERSE (CODEGEN (CAR (CDR X)) INS))
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PDS ENVRN)
(PUSH (EVAL (CAR (CDR X)) ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))
(NOT (LISTP (CAR X)))
(FORMP (CAR (CDR X)))
(FORMP (CAR (CDR (CDR X)))))

(EQUAL
(APPLY
(CAR X)
(TOP
(POP
(EXEC
(REVERSE

(CODEGEN (CAR (CDR (CDR X)))
(CODEGEN (CAR (CDR X)) INS)))

PDS ENVRN)))
(TOP
(EXEC
(REVERSE

(CODEGEN (CAR (CDR (CDR X)))
(CODEGEN (CAR (CDR X)) INS)))

PDS ENVRN)))
(APPLY (CAR X)

(EVAL (CAR (CDR X)) ENVRN)
(EVAL (CAR (CDR (CDR X))) ENVRN)))).

Applying the lemma CAR/CDR.ELIM, we now replace X by
(CONS V Z) to eliminate (CDR X) and (CAR X), Z by
(CONS D W) to eliminate (CDR Z) and (CAR Z) and W by
(CONS Z C) to eliminate (CAR W) and (CDR W). This
produces the new conjecture:

(IMPLIES
(AND
(LISTP (CONS V (CONS D (CONS Z C))))
(LISTP (CONS D (CONS Z C)))
(LISTP (CONS Z C))
(EQUAL

(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))
PDS ENVRN)

(PUSH (EVAL Z ENVRN)
(EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN)))
(EQUAL (EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN)
(PUSH (EVAL D ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))
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(NOT (LISTP V))
(FORMP D)
(FORMP Z))

(EQUAL
(APPLY V
(TOP
(POP

(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))
PDS ENVRN)))

(TOP
(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))

PDS ENVRN)))
(APPLY V

(EVAL D ENVRN)
(EVAL Z ENVRN)))),

which further simplifies, clearly, to:
(IMPLIES
(AND
(EQUAL

(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))
PDS ENVRN)

(PUSH (EVAL Z ENVRN)
(EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN)))
(EQUAL (EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN)
(PUSH (EVAL D ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))
(NOT (LISTP V))
(FORMP D)
(FORMP Z))

(EQUAL
(APPLY V
(TOP
(POP

(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))
PDS ENVRN)))

(TOP
(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))

PDS ENVRN)))
(APPLY V

(EVAL D ENVRN)
(EVAL Z ENVRN)))).

[* Note that the first equality hypothesis tells us that the stack
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we called pds above (i.e., the result of executing INS followed by
the code for D followed by the code for Z) is (PUSH (EVAL Z
ENVRN) pds’), where pds’ is the stack resulting from executing
INS followed by the code for D. The hypothesis can be used by
cross-fertilization because pds occurs in the conclusion. *]

We use the first equality hypothesis by
cross-fertilizing:

(PUSH (EVAL Z ENVRN)
(EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN))
for:

(EXEC (REVERSE (CODEGEN Z (CODEGEN D INS)))
PDS ENVRN)

and throwing away the equality. This generates:
(IMPLIES
(AND

(EQUAL (EXEC (REVERSE (CODEGEN D INS))
PDS ENVRN)

(PUSH (EVAL D ENVRN)
(EXEC (REVERSE INS) PDS ENVRN)))

(NOT (LISTP V))
(FORMP D)
(FORMP Z))

(EQUAL
(APPLY V
(TOP (POP (PUSH (EVAL Z ENVRN)

(EXEC (REVERSE (CODEGEN D INS))
PDS ENVRN))))

(TOP (PUSH (EVAL Z ENVRN)
(EXEC (REVERSE (CODEGEN D INS))

PDS ENVRN))))
(APPLY V

(EVAL D ENVRN)
(EVAL Z ENVRN)))).

[* Having substituted an explicit PUSH-expression for pds we
can now use the axioms about (TOP (PUSH x y)) and (POP
(PUSH x y)) to clean up the conjecture. *]

This further simplifies, applying POP.PUSH and TOP.PUSH,
to:

(IMPLIES
(AND

(EQUAL (EXEC (REVERSE (CODEGEN D INS))
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PDS ENVRN)
(PUSH (EVAL D ENVRN)

(EXEC (REVERSE INS) PDS ENVRN)))
(NOT (LISTP V))
(FORMP D)
(FORMP Z))

(EQUAL
(APPLY V

(TOP (EXEC (REVERSE (CODEGEN D INS))
PDS ENVRN))

(EVAL Z ENVRN))
(APPLY V

(EVAL D ENVRN)
(EVAL Z ENVRN)))).

[* We now use the second induction hypothesis. It tells us that
pds’ (i.e., the result of executing INS followed by the code for
D) is (PUSH (EVAL D ENVRN) pds”), where pds” is the re-
sult of executing INS. We use it by cross-fertilizing the PUSH-
expression for pds’. *]

We use the above equality hypothesis by
cross-fertilizing:

(PUSH (EVAL D ENVRN)
(EXEC (REVERSE INS) PDS ENVRN))

for (EXEC (REVERSE (CODEGEN D INS)) PDS ENVRN) and
throwing away the equality. We would thus like to
prove:

(IMPLIES
(AND (NOT (LISTP V))

(FORMP D)
(FORMP Z))

(EQUAL
(APPLY V

(TOP (PUSH (EVAL D ENVRN)
(EXEC (REVERSE INS) PDS ENVRN)))

(EVAL Z ENVRN))
(APPLY V

(EVAL D ENVRN)
(EVAL Z ENVRN)))),

[* Having substituted an explicit PUSH-expression for pds’, we
can use the TOP.PUSH axiom to reduce (TOP pds’) to (EVAL
D ENVRN). Note that after performing the rewrite, both sides
of the concluding equality are identical. *]
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which finally simplifies, using the lemma TOP.PUSH, to:
(TRUE).

Case 2.
.
.
.

[* Recall that the above is one of two cases split off the induction
step. The second case is the analogous theorem about the stacks
upon which the two APPLY-expressions are pushed. Its proof
is exactly analogous to the one above and is thus not exhibited
here. *]

.

.

.
That finishes the proof of *1. Q.E.D.

CPU time (devoted to theorem-proving): 40.03 seconds

As described, the above proof may seem complicated. But it
should be noted that it was carried out entirely automatically.

Having proved all the lemmas in the decomposition of the
main goal, and having proved the main goal from our lemmas,
we have completed the proof of the correctness of our optimizing
expression compiler.

17.5 Notes

In this section, we describe three bugs our theorem prover un-
covered in earlier versions of our optimizing expression compiler,
and we present a brief history of the expression-compiler prob-
lem.

17.5.1 Bugs Uncovered By the Theorem Prover

In our original efforts to formalize this problem, we made three
mistakes that did not come to light until the theorem prover
failed to prove the relevant lemmas and essentially exhibited
counterexamples.

The reader might wonder where in the proofs the axiom:

(NUMBERP (APPLY FN X Y))
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was used. The answer is that it is crucial in the proof of the cor-
rectness of OPTIMIZE. Recall that if the optimizer encounters a
form representing (fn x y), where x and y are specific constants,
then it replaces it by (APPLY fn x y). Consider what would
happen if (APPLY “FN” 3 4) were “Z”. Then the representa-
tion of the expression (FN 3 4) would be “optimized” to the
representation of the expression Z. But these two expressions
do not have the same value in all environments. In particular,
the first expression has the value “Z”, and the second expression
has whatever value the variable Z is assigned in the environment.
This problem does not arise if APPLY is known to be numeric
since the value of a number is itself. We did not realize we had
confined ourselves to numerically valued functions until the sys-
tem, in trying to prove CORRECTNESS.OF.OPTIMIZE, with-
out the numeric APPLY axiom, produced the goal:

(IMPLIES (NOT (LISTP Z))
(EQUAL Z (GETVALUE Z ENVRN))).

The second bug concerned the instruction set of the calculator
and the legal function symbols in expressions. When we first
formalized the problem, we did not require that the function
symbols of expressions be atomic. We thought it did not matter
what they were. However, consider the behavior of CODEGEN
when the form being compiled represents ((PUSHI 7) X Y). The
compiled code is:

(PUSHV X)
(PUSHV Y)
(PUSHI 7)

This code pushes three things on the stack and halts. But the
value of the representation of the expression ((PUSHI 7) X Y),
defined by EVAL, is the result of applying the representation of
(PUSHI 7) (whatever that is) to the values of the two arguments.
Thus, in FORMP, we had to specify that function symbols were
atomic; that fact was actually used several times in the foregoing
proof of the correctness of CODEGEN, although we brushed
over it in our description of the proof.

The third bug was in our definition of the calculator. Recall
that when it encounters an atomic function symbol it pops x
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off the stack, then it pops y off the stack, and then it pushes
(APPLY fn y x). In our original definition of the machine, we
forgot that the first argument to fn would naturally have been
pushed first (and thus be the second thing popped off). Thus,
we specified that the machine push (APPLY fn x y). Our error
showed up when we tried to prove the correctness of CODEGEN.
If we reconstruct the proof of CODEGEN (described above) with
the faulty version of EXEC (or CODEGEN, depending on your
point of view), the goal that finally reduced to (TRUE) above
would be:

(IMPLIES (AND (NOT (LISTP V))
(FORMP D)
(FORMP Z))

(EQUAL (APPLY V (EVAL Z ENVRN) (EVAL D ENVRN))
(APPLY V (EVAL D ENVRN) (EVAL Z ENVRN)))).

We could then generalize the two EVAL expressions and then
eliminate the two FORMP hypotheses as irrelevant. The result-
ing goal would be:

(IMPLIES (NOT (LISTP V))
(EQUAL (APPLY V X Y) (APPLY V Y X))).

Since this contains no recursive functions, we would have elim-
inated it as irrelevant (i.e., falsifiable) and quit. Note that we
thus reduced the correctness of CODEGEN to proving that all
functions are commutative!

One final note about these bugs. Our interactive system
allows functions to be evaluated so that after they are defined
the user can test them. We tested our three different (and faulty)
versions of the compiler and calculator on a variety of forms and
failed to expose any bugs because we limited our tests to well-
formed expressions involving only PLUS and TIMES (both of
which are numeric and commutative).

17.5.2 The History of the Problem

To the best of our knowledge, our mechanical theorem prover
was the first to undertake the proof of the correctness of an
optimizing expression compiler. However, the problem of the
correctness of a function similar to our CODEGEN was first
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raised by McCarthy and Painter [36] in 1967. They proved, by
hand, the correctness of an expression compiler for an idealized
machine that contained addressable registers rather than a push-
down stack like our calculator. Milner and Weyhrauch [37], in
1972, mechanically proof-checked a version of the McCarthy-
Painter correctness proof with a considerable amount of user
interaction. Cartwright [14], in 1977, produced a mechanical
proof requiring somewhat less user assistance than the Milner-
Weyhrauch proof. Aubin [2], in 1976, produced a mechanical
proof exactly analogous to our proof of the correctness of CODE-
GEN, requiring no user help other than a single lemma similar
to our SEQUENTIAL.EXECUTION lemma.



Chapter 18

The Correctness of a Fast
String Searching
Algorithm

Both the tautology checker and the compiler examples dealt with
recursive algorithms for handling tree-structured data. We here
apply the theory and proof techniques to establish the correct-
ness of an iterative program processing linear, indexed arrays.
In particular, we prove the correctness of a program for finding
the first occurrence of one character string in another. String
searching algorithms can be easily written; the problem becomes
more difficult and more interesting, however, if one considers
implementing an efficient algorithm. We prove the correctness
of one of the fastest known ways to solve the string searching
problem.

In further contrast to the compiler example, where we used
the functional approach to program semantics, we here attach
meaning to our program in another way. The method we use
is called the “inductive assertion” method (see Floyd [18] and
also Naur [44], Hoare [24], and Manna and Pnueli [30]). We will
explain the method when we use it. In fact, the primary intent
of this chapter is to demonstrate, with a realistic example, that a
theory based on recursive functions (rather than quantification)
may be profitably used to specify programs by the inductive
assertion method.

291



292CHAPTER 18. THE CORRECTNESS OF A FAST STRING SEARCHING ALGORITHM

The structure of this chapter is as follows. We first describe
the string searching problem informally and derive and explain
a very efficient string searching algorithm. Then we formally
specify the string searching problem and, using the inductive
assertion method, derive the formulas (called “verification con-
ditions”) that we must prove to establish the algorithm correct.
Then we sketch the proofs of these verification conditions. We
conclude with some remarks addressing commonly held miscon-
ceptions about the inductive assertion method.

18.1 Informal Development

Throughout this chapter we are concerned with sequences of
characters, usually called “character strings.” We are interested
only in strings of finite length, containing characters from some
finite alphabet. We enumerate the characters in a string from
the left, starting at 0. Thus, the left-most character has “po-
sition” (or “index”) 0, the second from the left has position 1,
etc.

18.1.1 The Naive String Searching Algorithm

Suppose we have two strings, PAT and STR, and we want to
find out whether PAT is a substring of STR. That is, we want
to know whether there is a position, i, in STR such that if the
0th character of PAT is placed on top of the ith character of
STR, each of the characters of PAT matches the corresponding
character of STR. If PAT does so occur in STR, we would like
to determine the smallest i at which such a match occurs, and
otherwise we would like to indicate that no match occurs.

For example, given the two strings:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

the appropriate answer is 25:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑
(position 25)
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There is an obvious way to compute the smallest such i. Con-
sider each of the successive values of i, starting at 0, and ask
whether each of the successive characters of PAT (starting at 0)
is equal to the corresponding character of STR (starting at the
current i). If a match is found, then we stop and i is the position
of the left-most match. But if the end of STR is encountered,
then since we tried all possible positions, no match occurs.

We will eventually define a recursive function, STRPOS, of
two arguments, that embodies this naive algorithm. We will take
STRPOS as the definition of what it means to find the position
of the left-most occurrence of PAT in STR. It is convenient to
define STRPOS to return the length of STR (an “illegal” posi-
tion in STR since we begin indexing at 0) to indicate that PAT
does not occur in STR. (This is useful in our specification of the
problem because we can pretend that PAT occurs just beyond
the end of STR.)

18.1.2 An Example of a Faster Method

“String searching” is fairly common in everyday computing. For
example, string searching is crucial to the on-line preparation of
text (e.g., editing programs stored in text files, preparing letters
and memos on “word processors,” and inputting and correcting
text for large scale computer typesetting applications). Thus, it
is advantageous to use an efficient algorithm.

A standard way to measure the efficiency of an algorithm is
to count the number of machine instructions required to execute
it on the average. For a string searching algorithm, this number
is usually proportional to the number of times a character from
STR is fetched before a match is found or STR is exhausted at
position i. The naive algorithm, the one embodied by STRPOS,
suffers from the fact that it looks at each of the first i characters
of STR at least once.1

1In the worse case, the naive algorithm is “quadratic” in that it looks at
k*i characters, where k is the length of the pattern and i is the location of
the winning match. Consider the case where PAT is ’AAAB’ and STR is
’AAAAA. . . AAAAAB’. Knuth, Morris, and Pratt [27] developed a “linear” al-
gorithm that always makes order i+k comparisons. However, the worst-case be-
havior of the simple algorithm rarely occurs in real string searching applications.
On the average, the simple algorithm is practically linear.
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At first sight, it is not obvious that one can do better than
to look at each of the first i characters.2 To see how it can be
done, let us look again at the example:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

Rather than focus our attention on the beginning of STR, con-
sider the character of STR aligned with the right-most character
of PAT, namely the ‘Ã’ indicated by the arrow below:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑
Since ‘Ã’ is not equal to the last character of PAT, we know we
do not have a match at the current juxtaposition of PAT and
STR. More than that, since ‘Ã’ does not even occur in PAT,
we know that we can slide PAT to the right by its length and
not miss a match. If sliding PAT by less than its length would
produce a match, then the ‘Ã’ at which we are pointing would
be involved in the match. In particular, ‘Ã’ would have to be
equal to (i.e., be) some character in PAT. So we can slide PAT
down by its length, to put it just past the position of the arrow
above. Then we move the arrow down STR so that it is once
again under the right-most character of PAT:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑
Now let us repeat the process. Consider the character indicated
by the arrow. It matches the right-most character of PAT. Thus
we may have a match. To check this, we move the arrow to the
left by 1:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑
The character ’D’ does not occur in PAT. Thus we can slide
PAT down by its length again (from the current position of the
arrow):

2In fact, Rivest [48] has shown that for each string searching algorithm there
exist PAT and STR for which that algorithm inspects at least i characters.
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PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑

Once again we shift our attention to the end of PAT and find
that the corresponding character of STR, ’I’, does not occur in
PAT. So we slide PAT down again by its length:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑

This time we fetch an ’X’. It does not match the last character
of PAT, so we are not at a match. But ’X’ does occur in PAT,
so we may not slide PAT down by its length. However, the
right-most occurrence of ’X’ in PAT is five characters from the
right-hand end of PAT. Thus, if we were to slide PAT down by
just one, or two, or any number less than five, we would not
find a match: if a match were to occur at such a juxtaposition,
then the ’X’ at which we were pointing would be involved in
the match and would have to be equal to a character in PAT
(namely an ’X’) to the right of the right-most ’X’ in PAT! So we
may slide PAT down by five (so as to align the current position
of the arrow with the right-most ’X’ in PAT) without risking a
miss. Then we move the arrow so that it once again points to
the end of PAT:

PAT: EXAMPLE
STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.

↑

Finally, we see that the indicated character of STR is equal
to the corresponding one of PAT. By looking for a mismatch
backwards, as before, we find that all the characters of PAT are
similarly matched. Thus, we have found the left-most occurrence
of PAT in STR.

Here are the characters we fetched from STR, up to the time
we had made the final alignment and were about to confirm the
match:

STR: LETÃUSÃCONSIDERÃAÃSIMPLEÃEXAMPLE.
↑ ↑ ↑ ↑ ↑
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Of course, we had to spend seven more comparisons confirming
the final match. But in skimming past the first 25 characters of
STR, we only had to look at five of them.3

18.1.3 Preprocessing the Pattern

One might wonder why the measure of the number of characters
fetched from STR is relevant here, given that every time we
fetched one we had to ask whether and where it occurred in
PAT. However, because the alphabet is finite, we can, for a
given PAT, precompute the answers to all those questions.

The algorithm requires that whenever we fetch a character,
C, from STR that does not match the corresponding character
of PAT, we be able to determine how far down we can slide the
pattern without missing a match.

If we are standing under the right end of PAT when we fetch
C, then we want to know how many characters there are between
the right end of PAT and the right-most occurrence of C in PAT.
We know we may slide PAT that far forward, so as to align the
C we just discovered in STR with the right-most C in PAT. If
C does not occur in PAT at all, then we may slide PAT forward
by its length (i.e., we can pretend C occurs at “position” -1).
This number, called the “delta1” for C and PAT in [9], can
be obtained by scanning PAT from right to left, counting the
number of characters seen before encountering C (or running off
the beginning of PAT).

3The algorithm just illustrated has quadratic worst-case behavior. However,
on the average it looks at fewer than i characters of STR before finding a match
at i, and its behavior improves as patterns get longer (because it may slide the
pattern further each move), and deteriorates as the alphabet gets smaller (because
the chances are increased that the character just fetched from STR occurs close
to the end of PAT). The algorithm can be implemented so that if searching
for English patterns of length five or more, through English text, fewer than i
machine instructions are executed on the average before the pattern is found at
position i. The algorithm is actually a simplification of the Boyer-Moore fast
string searching algorithm [9], which treats the finite set of terminal substrings
of PAT in a way analogous to the way we just treated the characters of the
alphabet. The Boyer-Moore fast string searching algorithm is, on the average,
much faster than the simplified version on small alphabets (e.g., binary ones) but
only marginally faster on large alphabets (e.g., English text). The worst-case
behavior of the Boyer-Moore algorithm is linear, as proved by Knuth in [27].
Guibas and Odlyzko in [23] also prove (and improve upon) the linearity result.
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For example, if PAT were the string ’EXAMPLE’, then the
following table contains all the information we need (over the
alphabet ’A’ through ’Z’ and ‘Ã’):

C delta1 for C and ’EXAMPLE’
A 4
B 7
C 7
D 7
E 0
F 7

.

.

.
K 7
L 1
M 3
N 7
O 7
P 2
Q 7

.

.

.
W 7
X 5
Y 7
Z 7

7

It is possible to set up this table in order (k + the alphabet size)
instructions where k is the length of PAT.4

We will not discuss the preprocessing further. Instead, we
assume we have a function, DELTA1, that takes C and PAT
and returns the table entry as defined above.

4The table can be set up by filling it with the number k (as though no character
occurs in PAT), and then sweeping through PAT once from left to right filling
in the correct value for each occurrence of each character. Thus, in the example
above, the ’E’ entry first has a 7 in it (i.e., the length of PAT), then 6 (as a result
of seeing the first ’E’), and then finally 0 (as a result of seeing the last ’E’).
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18.1.4 How to Do a Fast String Search

We now tell the reader how to carry out a fast string search,
assuming the reader knows how to compute DELTA1 as above.

The directions involve several variable names. We imagine
that when the reader is following these directions to carry out
an actual search, he has in mind an environment that associates
some specific mathematical value (such as an integer or string)
to each of the variables mentioned. Every time he encounters an
expression during the course of following these instructions, he
is to evaluate the expression with respect to the current environ-
ment. We sometimes direct the reader to “Let var be expr.” By
this we mean for the reader to construct the new environment
in which all the variables except var have the same values they
had in the old environment. The value of var under the new
environment is to be the value of expr under the old environ-
ment. We expect the reader to use this new environment in the
evaluation of all subsequently encountered expressions (until we
instruct him to change the environment again).

We assume that (LENGTH STR) is the number of characters
in STR, and that (NTHCHAR I STR) is the I th character of
STR.

We occasionally make “claims” regarding what we believe to
be true every time the reader arrives at an indicated step in the
process. These claims can be ignored while using the description
as a means of finding a pattern in a string. Suppose we wish to
find the left-most occurrence of PAT* in STR* if one exists.

1. The initial environment should associate with the
variable PAT the string PAT* and with the variable STR
the string STR*. Our object is to produce a ‘‘final answer’’
equal to the one produced by the naive algorithm:
(STRPOS PAT* STR*).

2. We are interested only in the values of the variables
PAT and STR, and the following additional variables:
I, J, PATLEN, STRLEN, NEXTI, and C. We are indifferent
to the initial values of the additional variables.

3. Let PATLEN be (LENGTH PAT).
4. If (EQUAL PATLEN 0) is true, then do the following

(and otherwise continue at line 5):
Claim 1: You will never arrive at this point while
following these directions unless 0 is equal to
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(STRPOS PAT* STR*).
Therefore you should stop and consider 0 the
final answer.

5. Let STRLEN be (LENGTH STR).
6. Let I be (SUB1 PATLEN). The value of I will always

be the position in STR of the ‘‘↑’’ we have drawn while
illustrating the algorithm at work. It now points to the
character of STR directly under the right-most
character of PAT (with PAT left-aligned with the
beginning of STR).

7. Claim 2: Every time you come past this point there
are at least as many characters to the left of I
in STR as there are characters to the left of the
right-most in PAT (so we may compare them pairwise).
Furthermore, either I marks the right-hand end of
the winning match of PAT in STR, or else the right-hand
end of the winning match is somewhere to the right of
I (or else there is no winning match).
In any case, we have not yet passed the winning match
but might be standing at its right-hand end.
However, it is in general possible that I is already
beyond the end of STR. Therefore we must check that
I is indeed a legal index into STR before we start
investigating whether I marks the end of a match.

8. If (GREATEREQP I STRLEN) is true (i.e., I≥STRLEN),
then do the following (and otherwise continue at line 9):

Claim 3: You will never get here while following
these directions unless STRLEN is (STRPOS PAT* STR*).
Therefore you should stop and consider STRLEN the
final answer.

9. Let J be (SUB1 PATLEN).
10. Let NEXTI be (ADD1 I). We are about to start backing

up, comparing characters from PAT with characters from
STR. I (the ‘‘↑’’) will mark the position in STR from
which we will fetch characters, and J will mark the
corresponding position in PAT. We may later need to
know the position currently to the left of I, so we
have saved it in NEXTI.

11. Claim 4: Every time you come past this point, we claim
that everything we say in Claim 2 is true (except that
(SUB1 NEXTI) should be used in place of I); furthermore
J is the same distance to the left of PATLEN as
I is to the left of NEXTI, NEXTI is no bigger than
STRLEN, J is less than or equal to I, and it is the
case that the terminal substring of PAT starting at
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position (ADD1 J) matches the terminal substring of
STR starting at position (ADD1 I).
The last part of this claim is vacuously true initially,
but as we back up establishing that the characters from
PAT are equal to their counterparts in STR it is more
interesting.

12. Let C be (NTHCHAR I STR).
13. If (EQUAL C (NTHCHAR J PAT)) is true, then do the

following (and otherwise continue at line 18):
14. If (EQUAL J 0) is true, then do the following

(and otherwise continue at line 15):
Claim 5: You will never get here while following
these directions unless I is (STRPOS PAT* STR*).
Therefore, you should stop and consider I the
final answer.

15. Let I be (SUB1 I). Note that this backs up the
‘‘↑’’ by 1.

16. Let J be (SUB1 J).
17. Go to line 11 and continue.
18. Let I be the maximum of the two integers (PLUS I

(DELTA1 C PAT)) and NEXTI. This step slides the pattern
down. At first sight one is tempted to slide the pattern
down by incrementing I with (DELTA1 C PAT), for that
quantity can be regarded as the sum of (a) the distance we
must slide the pattern to align the current ‘‘↑’’ with the
right-most C in PAT, plus (b) the distance we must move the
‘‘↑’’ to put it at the end of the new location of PAT.
This reasoning is entirely accurate but it ignores the fact
that the right-most occurrence of C might have already been
passed:
PAT: EXAMPLE
STR: ... ITÃISÃELEMENTARY
I: ↑**
NEXTI: ↑
In the example above, we have matched the two characters
marked with *’s and have backed up to the I indicated.
But since the right-most ’E’ in PAT has already been
passed, incrementing I by (DELTA1 ’E’ PAT) = 0 would
slide PAT backwards. Instead, we choose to slide
PAT forward by one, namely to the position marked by
NEXTI.

19. Go to line 7 and continue.

This concludes the informal presentation of the algorithm. Most
programmers could now go away and implement it. However,
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we are interested in proving it correct.

18.2 Formal Specification of the Problem

In this section, we specify the string searching problem formally
by defining STRPOS. In the next section, we use the inductive
assertion method to specify the fast string searching algorithm
and derive its “verification conditions.”

18.2.1 Strings

From the mathematical point of view, what is a string? It is
a sequence of objects (that we will think of as characters in
this application). Consequently, from the mathematical point of
view we can regard a string as a list. The only two operations on
strings required by our string searching algorithm are LENGTH
and NTHCHAR. These are recursively defined in Appendix A.
For example, the 0th character of X is (CAR X) and the i + 1st

character of X is the ith character of (CDR X).
A program semanticist may object that our definition of the

mathematical object “string” with CONS, CAR, and CDR is
naive because it dictates an implementation of strings less ef-
ficient than the usual one using indexed byte operations. This
objection is as unfounded as the analogous objection to defining
the mathematical object “integer” with ADD1 and SUB1. An
engineer or systems programmer is as free to implement strings
efficiently as he is to implement integers using twos-complement
arithmetic.

18.2.2 The String Matching Problem

We wish to define the notion of whether PAT occurs as a sub-
string of STR, and if so, what is the position in STR of the
left-most such occurrence.

We first define the function MATCH that determines whether
PAT is equal to an initial piece of STR. This is the case precisely
if PAT is empty or if both PAT and STR are nonempty and (a)
their first characters are identical and (b) (CDR PAT) is (recur-
sively) an initial piece of (CDR STR).
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Definition

(MATCH PAT STR)
=

(IF (LISTP PAT)
(IF (LISTP STR)

(IF (EQUAL (CAR PAT) (CAR STR))
(MATCH (CDR PAT) (CDR STR))
F)

F)
T).

Now we define STRPOS. It is to tell us how many characters in
STR must be “stepped over” before finding a terminal substring
of STR that has PAT as an initial piece (or STR is exhausted):

Definition

(STRPOS PAT STR)
=

(IF (MATCH PAT STR)
0
(IF (LISTP STR)

(ADD1 (STRPOS PAT (CDR STR)))
0)).

18.3 Developing the Verification Conditions
for the Algorithm

We want to prove that the fast string searching algorithm, ex-
hibited above, always computes (STRPOS PAT* STR*). This
requires that we formally define DELTA1 and that we somehow
formalize what it means for the algorithm to compute (STRPOS
PAT* STR*).

The first task is trivial. As for the second, note that if our
claims are correct, specifically Claims 1, 3, and 5, the algorithm
is correct: it never returns an answer except when the answer
is (claimed) equal to (STRPOS PAT* STR*). Therefore, we
could prove the algorithm correct by proving our claims. This
raises two problems: (1) our claims have not been written down
formally, and (2) they involve the values of the variables in the
environment current at the time the claims are encountered.
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18.3.1 The Formal Definition of Delta1

Recall that (DELTA1 C PAT) is to return the number of char-
acters to the right of the right-most C in PAT. The number can
be obtained by scanning PAT from right to left, counting the
number of characters stepped over before the first C is encoun-
tered (or the beginning of the pattern is reached). This is just
a STRPOS string search for the singleton string containing C,
over the reverse of the pattern.

We thus use the following definition of DELTA1:

Definition DELTA1:

(DELTA1 C PAT)
=

(STRPOS (CONS C ‘‘NIL’’) (REVERSE PAT)).

Since (STRPOS PAT STR) is the length of STR if PAT does
not occur, this definition of DELTA1 returns the length of the
pattern if C does not occur in it.

18.3.2 Formalizing the Claims

We here formalize each of the five claims. We reproduce (the
relevant part of) each claim before expressing it formally. All
the functions mentioned are defined in Appendix A.

Claim 1

Claim 1 is that “0 is equal to (STRPOS PAT* STR*).” Thus,
the formal statement of Claim 1 is:

*Claim 1.
(EQUAL 0 (STRPOS PAT* STR*)).

Claim 2

Claim 2 is irrelevant to the correctness of the algorithm; we care
only about the truth of the “exit” Claims 1, 3, and 5. However,
we formalize Claim 2 because it will be involved in the proofs of
the other claims. For example, we will prove Claim 3 by proving
that if Claim 2 is true, then, when we reach Claim 3, it is true.
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Claim 2 is that “there are at least as many characters to
the left of I in STR as there are characters to the left of the
right-most in PAT” and that “I marks the right-hand end of the
winning match of PAT in STR, or else the right-hand end of the
winning match is somewhere to the right of I (or else there is no
winning match).”

The first part of this can be formally phrased (LESSEQP
(SUB1 PATLEN) I). The second can be expressed as (LESSP I
(PLUS PATLEN (STRPOS PAT STR))). The PLUS expression
is the position, in STR, of the character just to the right of the
right-hand end of the first occurrence of PAT in STR. The claim
is that I is strictly less than that position. If PAT does not occur
in STR, then (STRPOS PAT STR) is the length of STR and the
statement still handles our claim.

Claim 2, as currently stated, is inadequate to prove Claim
3. Among other things, we have not said that PAT is (still)
PAT*, that PATLEN is (LENGTH PAT), and that PATLEN is
nonzero. Thus, we actually strengthen Claim 2 to the following:

*Claim 2.
(AND (EQUAL PAT PAT*)

(EQUAL STR STR*)
(EQUAL PATLEN (LENGTH PAT))
(LISTP PAT)
(EQUAL STRLEN (LENGTH STR))
(NUMBERP I)
(LESSEQP (SUB1 PATLEN) I)
(LESSP I (PLUS PATLEN (STRPOS PAT STR)))).

We make *Claim 2 the body of the definition of the function
TOP.ASSERT, to make future discussion more succinct.

As noted, *Claim 2 is irrelevant to the correctness of the al-
gorithm, so the reader should not be bothered by its complicated
nature (except insofar as it affects the difficulty of proof).

Claim 3

Our third claim is that “STRLEN is (STRPOS PAT* STR*).”
The formal statement of this is:

*Claim 3.
(EQUAL STRLEN (STRPOS PAT* STR*)).
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Claim 4

Like Claim 2, Claim 4 is irrelevant to the correctness of the
algorithm, but it is important in establishing the other claims.

Claim 4 is that “Claim 2 is true (except that (SUB1 NEXTI)
should be used in place of I); furthermore, J is the same distance
to the left of PATLEN as I is to the left of NEXTI, NEXTI is
no bigger than STRLEN, J is less than or equal to I, and it is
the case that the terminal substring of PAT starting at position
(ADD1 J) matches the terminal substring of STR starting at
position (ADD1 I).”

To formalize the relationship between J, PATLEN, I, and
NEXTI, we claim that NEXTI is equal to PATLEN plus the dif-
ference between I and J. To formalize the relationship between
the terminal substrings of PAT and STR, we use the function
NTH (which underlies the definition of NTHCHAR) to define
the terminal substring starting at a given position, and our pre-
viously defined MATCH to characterize when one string matches
the initial part of another.

For the same reasons that we had to strengthen Claim 2, we
have to strengthen Claim 4. Its formal statement is:

*Claim 4
(AND (TOP.ASSERT PAT STR (SUB1 NEXTI) PATLEN STRLEN PAT* STR*)

(NUMBERP I)
(NUMBERP J)
(NUMBERP NEXTI)
(LESSP J PATLEN)
(LESSP I STRLEN)
(EQUAL NEXTI (PLUS PATLEN (DIFFERENCE I J)))
(LESSEQP NEXTI STRLEN)
(LESSEQP J I)
(MATCH (NTH PAT (ADD1 J))

(NTH STR (ADD1 I)))).

We make *Claim 4 the body of the definition of the function
LOOP.ASSERT.

Claim 5

Our final claim is that “I is (STRPOS PAT* STR*).”
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*Claim 5.
(EQUAL I (STRPOS PAT* STR*)).

18.3.3 Applying the Inductive Assertion Method

Now that the claims have been formalized, we must eliminate
their implicit reliance upon the flow of control through the pro-
cedure. It is at this point that we employ Floyd’s inductive
assertion method.

A Sketch of the Inductive Assertion Method

To explain how we eliminate the “dynamic” nature of the claims,
it is useful to have a copy of the algorithm with the formal
claims in place of the informal ones. Since the description of
the algorithm given above is so long, we abbreviate it here. We
have numbered the steps the same way we did earlier.
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1. Procedure FSTRPOS(PAT,STR);
2. Variables I,J,PATLEN,STRLEN,NEXTI,C;
3. PATLEN 〈- LENGTH(PAT);
4. If PATLEN=0

then
[Claim 1: (EQUAL 0 (STRPOS PAT* STR*))]
return 0;
close;

5. STRLEN 〈- LENGTH(STR);
6. I 〈- PATLEN-1;
7. top: [Claim 2: (TOP.ASSERT PAT STR I PATLEN

STRLEN PAT* STR*)]
8. If I ≥ STRLEN

then
[Claim 3: (EQUAL STRLEN (STRPOS PAT* STR*))]
return STRLEN;
close;

9. J 〈- PATLEN-1;
10. NEXTI 〈- I+1;
11. loop: [Claim 4: (LOOP.ASSERT PAT STR I J PATLEN

STRLEN NEXTI PAT* STR*)]
12. C 〈- STR(I);
13. If C=PAT(J)

then
14. If J=0

then
[Claim 5: (EQUAL I (STRPOS PAT* STR*))]
return I;
close;

15. I 〈- I-1;
16. J 〈- J-1;
17. goto loop;

close;
18. I 〈- MAX(I+DELTA1(C,PAT),NEXTI);
19. goto top;

end;

We desire to prove that each claim is true every time it is en-
countered while using the above procedure to search for PAT*
in STR*.

The inductive assertion method may be applied to a pro-
gram, provided the program has been annotated with a suffi-
cient number of claims so that every entrance and exit has a
claim and so that in traversing any loop at least one claim is
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encountered. If a sufficient number of claims has been supplied,
then we can prove that the program is correct by considering
the finite number of paths that begin and end at a claim (and
have no interior claims). If for each such path the claim at the
beginning of the path (together with the tests along the path)
implies the claim at the end of the path (under the environment
produced by the “Let” statements along the path), then, by in-
duction on the number of steps in the computation, every claim
is true every time it is encountered. Thus the exit claims, in
particular, are true whenever the program exits.5

We have provided a sufficient number of claims to apply the
method to FSTRPOS.

The Paths Through Fstrpos

The relevant paths through FSTRPOS are:

Path 1 From the entrance to *Claim 1, performing the assign-
ment on line 3 and assuming the test on line 4 to be true. (Since
we did not explicitly annotate the entrance to FSTRPOS with a
claim, we assume the entrance claim is T.)

Path 2 From the entrance to *Claim 2, performing the assign-
ment on line 3, assuming the test on line 4 to be false, and
performing the assignments on lines 5 and 6.

Path 3 From *Claim 2 to *Claim 3, assuming the test on line
8 to be true.

Path 4 From *Claim 2 to *Claim 4, assuming the test on line
8 to be false and performing the assignments on lines 9 and 10.

Path 5 From *Claim 4 to *Claim 5, performing the assignment
on line 12 and assuming the tests on lines 13 and 14 to be true.

5Note, however, that we have only proved partial correctness: if the program
exits, it exits with the correct answer. The inductive assertion method we have
described can be easily adapted to include proofs of termination: one needs to
check that some well-founded relation is decreasing on each of the finite paths.
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Path 6 From *Claim 4 to *Claim 4, performing the assignment
on line 12, assuming the test on line 13 to be true, assuming the
test on line 14 to be false, and performing the assignments on
lines 15 and 16.

Path 7 From *Claim 4 to *Claim 2, performing the assignment
on line 12, assuming the test on line 13 to be false, and perform-
ing the assignment on line 18.

Generating the Verification Conditions

For each of these seven paths, we must prove its “verification
condition”; that is, we must prove that if the starting claim is
true and the tests along the path are true, then the final claim is
true (in the environment produced by the assignment statements
along the path).

Below we present the generation of two of the seven verifica-
tion conditions.6

The Generation of Fstrpos.vc1 Consider the first path. Start-
ing with an environment in which PAT is PAT* and STR is
STR*, we are to perform the assignment on line 3, assume that
the test at line 4 is true, and then prove *Claim 1 under the
environment thus produced.

The statement at line 3 is:

3. PATLEN 〈- LENGTH(PAT);

This means: change the environment so that PAT and STR
still have their old values, but PATLEN has the value that
(LENGTH PAT) has in the current environment. Thus, in our
new environment, PAT is PAT*, STR is STR*, and PATLEN is
(LENGTH PAT*).

Next we hit the test at line 4 and are to assume it true:

4. If PATLEN=0
then ...

6To produce formal verification conditions, one must have a formal semantics
for his programming language. We do not present such a semantics here, but we
have precisely formalized such a semantics in [10]. We generated the verifications
here using an implementation of that semantics.
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This means that we should assume the current value of (EQUAL
PATLEN 0) to be true. That is, we should assume (EQUAL
(LENGTH PAT*) 0).

Finally, we hit *Claim 1:

[Claim 1: (EQUAL 0 (STRPOS PAT* STR*))]

which we must prove given the assumption above.
The resulting verification condition for Path 1 is:

Theorem FSTRPOS.VC1:

(IMPLIES (EQUAL (LENGTH PAT*) 0)
(EQUAL 0 (STRPOS PAT* STR*))).

The Generation of Fstrpos.vc7 Let us look at a more inter-
esting path, namely path 7. Starting at *Claim 4, we are to
perform the assignment on line 12, fail the test at line 13, per-
form the assignment on line 18, and prove *Claim 2 under the
resulting environment.

Assume that we have an initial environment in which the
program variable I has the value I, the program variable J has
the value J, etc. Assume *Claim 4 is true in that environment:

(LOOP.ASSERT PAT STR I J PATLEN STRLEN NEXTI PAT* STR*).

At line 12:

12. C 〈- STR(I);

C receives the value (NTHCHAR I STR).
Next we encounter the test at line 13 and are to assume it

false:

13. If C=PAT(J)
then ...

This means we assume that the current value of (EQUAL C
(NTHCHAR J PAT)) is false:

*TEST.
(NOT (EQUAL (NTHCHAR I STR) (NTHCHAR J PAT))).

Finally we hit line 18:
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18. I 〈- MAX(I+DELTA1(C,PAT),NEXTI);

and change the environment to:

*ENVRN.
variable value

after line 18
PAT PAT
STR STR
I (IF (LESSP (PLUS I

(DELTA1 (NTHCHAR I STR)
PAT))

NEXTI)
NEXTI
(PLUS I (DELTA1 (NTHCHAR I STR) PAT)))7

J J
PATLEN PATLEN
STRLEN STRLEN
NEXTI NEXTI
C (NTHCHAR I STR)

After line 18 we encounter the “goto top” and return to *Claim
2, which we must prove:

7. top: [Claim 2: (TOP.ASSERT PAT STR I PATLEN
STRLEN PAT* STR*)]

after instantiating it with the environment *ENVRN and as-
suming *Claim 4 and *TEST.

That is, the verification condition for path 7 is:

Theorem FSTRPOS.VC7:

(IMPLIES (AND (LOOP.ASSERT PAT STR I J PATLEN
STRLEN NEXTI PAT* STR*)

(NOT (EQUAL (NTHCHAR I STR)
(NTHCHAR J PAT))))

(TOP.ASSERT
PAT
STR
(IF (LESSP (PLUS I (DELTA1 (NTHCHAR I STR) PAT))

NEXTI)

7Our mechanical verification condition generator is driven off the compiled
code for our high-level language. Our compiler compiles (MAX x y) “open” in
the sense that it is treated as though it were (IF (LESSP y x) x y). Hence the IF
in this value where a MAX was expected.
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NEXTI
(PLUS I (DELTA1 (NTHCHAR I STR) PAT)))

PATLEN
STRLEN
PAT*
STR*)).

This formula requires us to prove that if the assertion in the
inner loop is true and we find a mismatch on some character at
position I in STR, then the assertion at the outer loop holds for
the value of I obtained by skipping ahead by DELTA1 (or to
NEXTI, as appropriate).

The Remaining Verification Conditions The five remaining
verification conditions are similarly generated and are listed in
Appendix A under the names FSTRPOS.VCi, for i from 2 to 6.

It requires induction to prove that FSTRPOS.VC1 through
FSTRPOS.VC7 are sufficient to establish that all our claims are
true every time they are encountered. In particular, one must
induct on the number of steps in the computation [18]. This
induction is crucial in order to unwind the iteration inherent
in a procedure described the way FSTRPOS is described. It is
from this use of induction that the “inductive assertion” method
gets its name.

But now we must prove FSTRPOS.VC1 through FSTRPOS.VC7.
They involve the natural numbers (which are inductively de-
fined), sequences (which are inductively defined), and functions
such as NTH, MATCH, and STRPOS (which are recursively de-
fined). To prove them, we also need induction. This second use
of induction is crucial because of the nature of the mathematical
objects with which programs deal.

18.4 The Mechanical Proofs of the Verifica-
tion Conditions

The theorem prover has proved the seven verification conditions
for FSTRPOS. We will not go into the proofs in detail since this
chapter was intended to demonstrate, by realistic example, that
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our theory is applicable to the specification of programs by the
inductive assertion method.

We sketch briefly the proof of each of the verification con-
ditions. Our sketches will concern themselves mainly with the
string processing lemmas that have to be proved in order to set
up the proofs of the verification conditions. A fair amount of
arithmetic is generally involved. Since the proof of the correct-
ness of FSTRPOS is actually conducted after the theorem prover
has proved the unique prime factorization theorem (and remem-
bered all the theorems along the way), it knows a good deal of
arithmetic by the time it starts proving FSTRPOS.VC1. How-
ever, we had it prove several additional theorems about arith-
metic, almost all of them involving LESSP, because of its rather
poor handling of transitivity. All of the lemmas mentioned be-
low are in Appendix A.

18.4.1 Proofs of Fstrpos.vc1 and Fstrpos.vc2

FSTRPOS.VC1 and FSTRPOS.VC2 can be reduced to true by
simplification alone (in the presence of all the previously proved
arithmetic theorems).

18.4.2 Proof of Fstrpos.vc3

FSTRPOS.VC3 is the verification condition that establishes that
if the algorithm exits because I is eventually pushed beyond
the end of STR, then (STRPOS PAT* STR*) is STRLEN.
This has to be proved assuming *Claim 2. But *Claim 2 pro-
vides the hypothesis that (LESSP I (PLUS PATLEN (STR-
POS PAT STR))). If I is greater than or equal to STRLEN,
then by transitivity of LESSP, we can conclude that (PLUS
PATLEN (STRPOS PAT STR)) is greater than STRLEN. The
proof can then be completed if we have previously proved that
when (STRPOS PAT STR) is not equal to (LENGTH STR), it is
at least (LENGTH PAT) shy of (LENGTH STR). This lemma,
called STRPOS.BOUNDARY.CONDITION, must be proved by
induction on the length of STR, and requires the inductively
proved theorem that if PAT MATCHes STR then the length of
STR is at least that of PAT.
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18.4.3 Proof of Fstrpos.vc4

FSTRPOS.VC4, the verification condition for the path from
*Claim 2 to *Claim 4, requires nothing more than arithmetic.

18.4.4 Proof of Fstrpos.vc5

FSTRPOS.VC5 is more interesting. This verification condition
corresponds to the winning exit from the procedure. In partic-
ular, assuming that *Claim 4 holds and that the I th character
of STR is equal to the J th character of PAT, and that J is 0, we
must establish that I is equal to (STRPOS PAT* STR*). *Claim
4 informs us that we have a MATCH established between the
terminal substrings of PAT and STR, and the conditions on the
path establish that the first character of PAT is equal to the I th

character of STR. Thus, we certainly have a MATCH at position
I in STR. However, this does not immediately imply that (STR-
POS PAT* STR*) is I because there might be an earlier match.
But *Claim 4 tells us that *Claim 2 holds, and *Claim 2 tells us
that there is no match to our left. Thus, we can complete the
proof if we have proved:

Theorem STRPOS.EQUAL:

(IMPLIES (AND (LESSP I (LENGTH STR))
(NOT (LESSP (STRPOS PAT STR) I))
(NUMBERP I)
(MATCH PAT (NTH STR I)))

(EQUAL (STRPOS PAT STR) I).

This lemma says that if I is a legal index into STR and (STRPOS
PAT STR) is greater than or equal to I, and PAT matches the
I th terminal substring of STR, then (STRPOS PAT STR) is I.
This is one of the obvious properties of the intuitive definition
of the “position of the left-most match” and must be proved by
induction (on I and STR) from the definition of STRPOS.

18.4.5 Proof of Fstrpos.vc6

FSTRPOS.VC6 is the verification condition for the path from
*Claim 4 back to *Claim 4. On that path, we find that the I th

character of STR is the J th character of PAT but that J is not
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0. It is straightforward to confirm that *Claim 4 still holds after
the match has been extended by one character in the backwards
direction.

18.4.6 Proof of Fstrpos.vc7

FSTRPOS.VC7 is the most interesting verification condition; it
is the only one involving DELTA1. It requires us to prove that
if *Claim 4 holds and we find a mismatch at position I, then we
can increment I by (DELTA1 C PAT) (or set it to NEXTI) and
still prove *Claim 2. Of course, the interesting part of *Claim
2 is that we have not missed a match. The proof rests mainly
on two lemmas, both of which require induction to prove, and
both of which themselves rest on inductively proved lemmas.

The first is called EQ.CHARS.AT.STRPOS. It assures us
that if the I th character of STR is not equal to the J th charac-
ter of PAT, under certain obvious restrictions on I and J, then
(STRPOS PAT STR) is not the difference between I and J. In
particular, this lemma tells us that if the inner loop finds a mis-
match of two corresponding characters anywhere in the region
of interest, then we are not currently in a match. Therefore, we
can move I down by at least one.

The second lemma is called DELTA1.LEMMA. It states that
if I is a legal index into STR, and the right-hand end of the win-
ning match of PAT in STR is at I or to the right, then one does
not miss a match by incrementing I by (DELTA1 (NTHCHAR
I STR) PAT). Proving this lemma requires substantial reason-
ing about STRPOS and MATCH, in addition to many lemmas
about list processing and arithmetic. For example, one key fact
is DELTA1.LESSP.IFF.MEMBER, which states that (DELTA1
CHAR PAT) is strictly less than the length of PAT if and only
if CHAR is a MEMBER of PAT (a crucial fact if incrementing
I by DELTA1 is not going to skip over a possible alignment).8

The induction argument to prove DELTA1.LEMMA was ex-

8We were pleased to see that many “toy” theorems the theorem prover has
proved for years actually get used in this nontoy problem. For example, proving
DELTA1.LESSP.IFF.MEMBER requires using the lemmas that the length of
(REVERSE X) is the length of X, and that CHAR is a MEMBER of (REVERSE
X) if and only if it is a MEMBER of X.
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hibited at the conclusion of the discussion on induction, Chap-
ter 15. It was the example in which the field of ten candidate
inductions was narrowed to one by merging and the considera-
tion of flaws.

18.4.7 What Have We Proved?

We have thus completed sketching the proofs of the verification
conditions. What exactly have we proved about the program
FSTRPOS?

Appealing to the induction argument behind the Floyd method,
we have proved that each of our claims is true every time it is
encountered during the execution of the procedure. In partic-
ular, the “exit” claims establish that whenever the procedure
returns an answer, it is equal to that computed by STRPOS.

But one should always ask of a proof: “Upon what axioms or
assumptions does the proof rest?” That is, if someone is going
to “buy” the correctness of FSTRPOS, what must he accept?
The answer is that he must accept:

1. Our axioms of Peano arithmetic, lists, and literal atoms
as provided by the shell addition scheme (literal atoms are
involved only because of the use of “NIL”).

2. The definition of STRPOS (and thus of MATCH) as being
the meaning of “left-most match.”

3. The correctness of the verification condition generator with
respect to the programming language used in FSTRPOS.

4. The soundness of our theorem prover.9

One might ask: “But what of all the definitions? How do I know
that PLUS is right? That LESSP is right? That NTH and
NTHCHAR and MEMBER and REVERSE and DELTA1 are

9This is not an assumption to be taken lightly, given the complexity of the
system. However, it is an assumption that could be relieved for all time and for
all future proofs by careful scrutiny of the theorem prover by the mathematics
community. While such an endeavor is clearly not cost effective for our current
theorem prover (because of its rudimentary skills), it would be a cheap price to
pay for the reliable service of a truly powerful mechanical theorem prover.
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all right?” The answer is that they are all defined, and because
they are defined and are not involved in the statement of the
theorem (namely that FSTRPOS(PAT*,STR*) returns (STR-
POS PAT* STR*)), they are eliminable. It is our opinion that
this is the most important reason why people should define con-
cepts whenever possible (with a mechanically checked definition
principle when the logic is mechanized) rather than merely add
arbitrary axioms. For example, had DELTA1 been constrained
to have certain properties by the addition of nondefinitional ax-
ioms, then the “buyer” of the correctness of FSTRPOS would
have had to understand and believe in those axioms.

18.5 Notes

We here comment on the difficulty of the proofs and on the use
of recursive functions with the inductive assertion specification
method.

18.5.1 Intuitive Simplicity Versus Formal Difficulty

The string searching algorithm is easier to explain than it is to
prove formally correct. The algorithm is based on some obvious
visual intuitions about strings, but the formalization of those
intuitions involves ugly arithmetic expressions.

However, this is not a condemnation of formal reasoning but
a recommendation of it. The program implementing those visual
intuitions about string does not rely upon those intuitions at all,
but rather upon their translation into arithmetic operations. In
particular, it is very easy to make “+1” and boundary errors in
defining or using DELTA1. Furthermore, the string searching
algorithm, even when mistakes of this sort are present, often
produces the correct answer in many test cases because, except
in very close proximity to the winning match, one can afford to
skip ahead by too much.

In order to run our verification condition generator on the
FSTRPOS procedure, we had to code the procedure in our
“high-level” programming language. We did this by working
from the published version of the algorithm [9]. We nevertheless
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made several translation mistakes that did not show up until we
tried to prove the resulting verification conditions mechanically.

We learned one interesting fact about our algorithm from the
theorem prover. Until we tried proving FSTRPOS correct, we
held the mistaken belief that the MAX expression involved in
the incrementing of I was necessary for the termination of the
algorithm but not for its correctness. That is, we believed that if
one accidentally moved the pattern backwards it would not hurt
anything except that the algorithm might not terminate. Upon
reflection (or careful scrutiny by a theorem prover), this can be
seen to be wrong. Consider what happens if in moving the pat-
tern backwards its left-hand end is moved off the left-hand end
of the string. Then it is possible to find a match out there by
fetching “illegal” characters from the string. Many readers may
object that a well-designed, high-level language would expose
this bug as soon as it arose (because of the attempt to index
illegally into the string). However, well-designed, high-level lan-
guages are almost never used to code algorithms of this sort
because the overhead involved in ensuring legal access to strings
offsets the advantage of using the algorithm in the first place.

18.5.2 Common Misconceptions About the Inductive
Assertion Method

We comment here on three misconceptions about the inductive
assertion method. We have found these misconceptions rather
widespread in the program verification community and feel that
they should be addressed, even though the subject is technically
beyond the scope of this book.

One common misconception is that the use of the inductive
assertion method requires a “program specification language”
providing the usual unbounded universal and existential quan-
tifiers. Our intent has been to show that this is unnecessary
and that the inductive assertion method is a way of attaching
meaning to programs that is independent of what mathemat-
ical language one uses to express the specifications. We feel
that the bounded quantification provided by recursive functions
is not only sufficient for almost all specification needs, but of-
ten results in cleaner, better structured specifications, and aids
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mechanical generation of proofs.
Another common misconception is that the inductive asser-

tion method eliminates the need for induction. The foregoing
proof sketches illustrate that induction may be useful in the
proofs of the verification conditions themselves. It happens, in
the FSTRPOS example, that the correctness can be stated so
that the verification conditions involve little more than linear
arithmetic and quantification. Thus, it is possible, using, say,
Presburger’s decision procedure [47] and a little reasoning about
function symbols, to prove the FSTRPOS verification conditions
without induction. Of course, given the right lemmas, it is pos-
sible to prove anything without induction. The point is that
whether induction is involved in the proofs of the verification
conditions depends upon how much the theorem prover knows or
assumes about the particular mathematical operations involved,
and not upon whether induction was used to attach meaning to
the program.

A third misconception is that the inductive assertion method
somehow magically “modernizes” mathematics so that it can
deal with side-effects such as destructive assignment to arrays.
In fact, the method provides a very pretty, easy way of eliminat-
ing the dynamic nature of a program by reducing its correctness
to the correctness of finite paths, each of which can be viewed
statically. For example, many programming languages permit
one to write:

STR(I) 〈- 0;

When executed, this destructively deposits a 0 in the memory
location containing the I th element of STR. Let us assume that 0
was not already in that location. From the computational point
of view, STR is the same object it was before, but now has a dif-
ferent I th element. However, the inductive assertion method tells
us that the correct way to view the situation, mathematically,
is that before the assignment, STR denotes one (mathematical)
sequence; after the assignment, it denotes another (mathemati-
cal) sequence. For a path containing such an assignment, the in-
ductive assertion method would produce a verification condition
(i.e., a mathematical conjecture) concerning two mathematical
sequences, not a dynamically changing object.
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These remarks are not meant to detract from the induction
assertion method. The method is a very natural way to assign
meaning to certain kinds of programs. However, it should be
recognized for what it is: a straightforward and well-defined
way of mapping assertions about a program into logical formulas
amenable to mathematical proof.



Chapter 19

The Unique Prime
Factorization Theorem

In this chapter, we discuss our system’s proof of the unique prime
factorization theorem, also known as the Fundamental Theorem
of Arithmetic. This theorem is certainly the deepest and hard-
est theorem yet proved by our theorem prover. The principal
difficulty behind the proof is that Euclid’s greatest common di-
visor function (GCD) plays an important role, even though it
is not involved in the statement of the theorem. A beautiful
but surprising fact (that multiplication distributes over GCD)
is used; the more obvious fact that the GCD of two numbers di-
vides both of them is also used. No other theorem yet proved by
the theorem prover employs as a lemma a surprising fact about
a function not involved in the statement of the theorem.

19.1 The Context

To prove the unique prime factorization theorem, we start at the
very beginning with the axioms of Peano arithmetic. We also
need the axioms of lists and literal atoms (because we will even-
tually need to deal with lists of numbers). We then introduce,
with the definition principle, the usual elementary functions on
the natural numbers:

PLUS – the sum of its two arguments.

TIMES – the product of its two arguments.

321
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DIFFERENCE – the first argument minus the second
argument unless the first is less than the second, in
which case the answer is 0.

QUOTIENT – the integer quotient of the first argu-
ment when divided by the second argument. If the
divisor is 0, then the answer is 0.

REMAINDER – the remainder after dividing the first
argument by the second. If the divisor is 0, then the
answer is the first argument.

DIVIDES – the predicate whether the remainder of
the second argument divided by the first argument is
0.

GCD – the greatest common divisor of the two argu-
ments (0 if both are 0).

For all these functions, the convention is observed always to
treat any argument that is not a number as if it were 0.

We also have the theorem prover prove the usual elementary
facts about these functions, such as that PLUS is associative
and commutative and that TIMES distributes over PLUS.

We eventually reach less elementary theorems such as:

Theorem REMAINDER.QUOTIENT.ELIM:

(IMPLIES (AND (NOT (ZEROP Y))
(NUMBERP X))

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

X)),
Theorem RECURSION.BY.QUOTIENT:

(IMPLIES (AND (NUMBERP I)
(NOT (EQUAL I 0))
(NUMBERP J)
(NOT (EQUAL J 0))
(NOT (EQUAL J 1)))

(LESSP (QUOTIENT I J) I)),
Theorem DISTRIBUTIVITY.OF.TIMES.OVER.GCD:

(EQUAL (GCD (TIMES X Z) (TIMES Y Z))
(TIMES Z (GCD X Y))),

Theorem GCD.DIVIDES.BOTH:
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(AND (EQUAL (REMAINDER X (GCD X Y))
0)

(EQUAL (REMAINDER Y (GCD X Y))
0)).

In Appendix A, we present the complete sequence of definitions
and theorems leading to the unique prime factorization theorem.
In this chapter, we do not further discuss those definitions and
theorems preceding the definition of PRIME. However, we rec-
ommend those elementary theorems to any student of the foun-
dations of mathematics and to anybody interested in mechan-
ical theorem-proving. All the heuristics necessary to prove the
unique prime factorization theorem were discovered and mecha-
nized while proving those simpler theorems. In Chapter 16, we
presented proofs of some of those theorems.

Throughout the rest of this chapter, we will assume the
reader is familiar with the theorems preceding the definition
of PRIME in Appendix A. It is worth noting that the theo-
rem prover knows those theorems because it has proved them
all from Peano’s axioms (which it knows because it has been
told to assume them).

19.2 Formal Development of the Unique Prime
Factorization Theorem

One may well ask how the uniqueness of prime factorizations
may even be stated within our theory. McCarthy [34], for ex-
ample, thought that the statement of the theorem was beyond
the scope of his theory, which is very similar to ours. In our
statement of the theorem, we use lists of numbers to represent
factorizations of numbers, and we use explicit functions to over-
come our lack of existential quantification. Our statement of
the theorem has two parts. The first part states that an explic-
itly given function produces a prime factorization of any given
nonzero integer. The second part states that any two lists of
prime numbers whose “products” are the same are in fact per-
mutations of one another.

We now precisely define the necessary concepts and formally
state these two parts of our version of the unique factorization
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theorem.

19.2.1 Definition of the Concepts

The Definition of Prime

First, let us consider the definition of the concept of prime num-
ber. The usual definition is: X is prime provided it is an integer
greater than 1 and its only divisors are itself and 1. This defini-
tion, strictly speaking, involves the consideration of all integers
as possible divisors of X. We cannot use our principle of defini-
tion to introduce a concept that requires considering an infinite
number of questions. Fortunately, we need consider only the
finite number of integers less than X, since every divisor of a
positive number X is less than or equal to X.1 Therefore, we can
write a definition of prime within our theory.

We need the auxiliary function PRIME1 that returns T if and
only if X has no divisors less than or equal to Y (and greater
than 1):

Definition

(PRIME1 X Y)
=

(IF (ZEROP Y)
F
(IF (EQUAL Y 1)

T
(AND (NOT (DIVIDES Y X))

(PRIME1 X (SUB1 Y))))).

We then define PRIME as:

Definition

(PRIME X)
=

(AND (NOT (ZEROP X))
(NOT (EQUAL X 1))
(PRIME1 X (SUB1 X))).

1In particular, the theorem ASIS(IMPLIES (AND (NOT (ZEROP X)) (DI-
VIDES Y X)) (LESSEQP Y X))ENDASIS can be proved by simplification alone,
given the definitions of the functions and the rudimentary facts about LESSP.
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That is, PRIME checks that its argument is not 0, not 1, and
has no divisor less than itself and greater than 1.

Readers unhappy about this constructive definition of prime
number may be comforted to learn that in order to prove the
unique prime factorization theorem, we will have to prove as
lemmas the essential content of the ordinary definition of prime.
These lemmas and their proofs are discussed in section 19.3.

Prime.list

We now introduce the other concepts needed in the statement of
the theorem. The statement of the unique factorization theorem
requires three new concepts: PRIME.LIST, TIMES.LIST, and
PERM.

PRIME.LIST checks that every member of its argument is a
prime. TIMES.LIST computes the product of the members of
its argument.

Definition

(PRIME.LIST L)
=

(IF (NLISTP L)
T
(AND (PRIME (CAR L))

(PRIME.LIST (CDR L)))),
Definition

(TIMES.LIST L)
=

(IF (NLISTP L)
1
(TIMES (CAR L)

(TIMES.LIST (CDR L)))).

The function PERM computes whether its first argument, A, is
a permutation of its second argument, B. If A is not a list (that
is, A is empty), PERM requires that B not be a list; but if A
is a list, then PERM requires that (CAR A) be a member of
B and that (CDR A) be a permutation of the result of deleting
(CAR A) from B. The definitions of DELETE and PERM are:

Definition



326CHAPTER 19. THE UNIQUE PRIME FACTORIZATION THEOREM

(DELETE X L)
=

(IF (NLISTP L)
L
(IF (EQUAL X (CAR L))

(CDR L)
(CONS (CAR L)

(DELETE X (CDR L))))),

Definition

(PERM A B)
=

(IF (NLISTP A)
(NLISTP B)
(AND (MEMBER (CAR A) B)

(PERM (CDR A)
(DELETE (CAR A) B)))).

19.2.2 The Statement of the Theorem

We are now able to state the two parts of our formulation of the
unique factorization theorem. The first part states that there
exists a prime factorization of any positive integer. We han-
dle the existential quantification by exhibiting a recursive func-
tion, PRIME.FACTORS, that computes such a factorization. In
particular, we prove that (PRIME.FACTORS X), when X is a
nonzero integer, is a list of primes whose product is X:

Theorem PRIME.FACTORIZATION.EXISTENCE:

(IMPLIES (NOT (ZEROP X))
(AND (EQUAL (TIMES.LIST (PRIME.FACTORS X))

X)
(PRIME.LIST (PRIME.FACTORS X)))).

The definition of PRIME.FACTORS has not yet been exhibited
because its definition is irrelevant: if the above theorem is true,
then regardless of the definition of PRIME.FACTORS, every
positive integer has at least one prime decomposition. We have
to define PRIME.FACTORS to prove the theorem, but we can
define it any way we please.

The second part of the unique prime factorization theorem
states the uniqueness of the decomposition. We will prove that
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if two lists of primes have the same product, then the lists are
permutations of one another:

Theorem PRIME.FACTORIZATION.UNIQUENESS:

(IMPLIES (AND (PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)).

19.3 The Mechanical Proofs

Now that we have formally expressed the unique prime factor-
ization theorem in our theory, we proceed to discuss proofs. In
Appendix A, we present in complete detail the sequence of lem-
mas that the system is asked to prove on the way to the proof of
PRIME.FACTORIZATION.UNIQUENESS and PRIME.FAC-
TORIZATION.EXISTENCE. In the following discussion of the
proofs, we do not discuss certain of these lemmas. Most of those
we omit are proved only because they state obvious facts not
“obvious” to the theorem prover until they have been explicitly
proved.

We describe the proofs much as they are described in number
theory textbooks. We leave as exercises for the reader (or the
theorem prover), the details.

19.3.1 Elementary Facts About Primes

We first turn to the problem of proving the simplest facts about
prime numbers, facts virtually equivalent to the ordinary defi-
nition of prime. The reason we have our theorem prover prove
these lemmas is that unless they are proved explicitly, the theo-
rem prover will never consider trying to prove that some number
is prime by asking whether it has a factor. That is, the quan-
tification implicit in the definition of prime is not apparent to
the theorem prover.
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Primes Have No Divisors

There are two main parts to the ordinary definition of prime.
The first tells us that if a number X has a divisor that is not 1
and not X, then X is not a prime. This part of the definition of
prime is expressed in the lemma:

Theorem PRIME.BASIC:

(IMPLIES (AND (NOT (EQUAL Z 1))
(NOT (EQUAL Z X))
(DIVIDES Z X))

(NOT (PRIME1 X (SUB1 X)))).

The proof of this lemma involves a subsidiary lemma,

Theorem PRIME1.BASIC:

(IMPLIES (AND (NOT (EQUAL Z 1))
(NOT (EQUAL Z (ADD1 X)))
(EQUAL (REMAINDER (ADD1 X) Z)

0))
(NOT (PRIME1 (ADD1 X) (PLUS Z L)))).

PRIME1.BASIC is actually more general than PRIME.BASIC
because the conclusion of PRIME.BASIC, the formula (PRIME1
X (SUB1 X)), suffers from having X occur in both arguments.
This double occurrence of X effectively prohibits PRIME.BASIC’s
being proved by induction. PRIME1.BASIC is more general be-
cause the two arguments to PRIME1 in the conclusion have no
variables in common. It can be proved in one induction.

Nonprimes Do Have Divisors

The second part of the ordinary definition of PRIME tells us
that if a number X is not a prime and not 0 or 1, then it has a
divisor that is neither 1 nor X. To express the existence of such a
factor we define the function GREATEST.FACTOR and prove
that it has the appropriate properties.

Greatest.factor We want a function that returns a factor of
X, less than X and greater than 1, if X is a nonprime greater
than 1. We can define this function any way we wish (provided
it is acceptable to our definition principle). We have chosen
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to compute the greatest factor of X in exactly the way that
PRIME1 discovers whether X is prime. Namely, starting at Y
(which, in our use of the function will usually be (SUB1 X)), we
count down, looking for a number that divides X:

Definition

(GREATEST.FACTOR X Y)
=

(IF (OR (ZEROP Y) (EQUAL Y 1))
X
(IF (DIVIDES Y X)

Y
(GREATEST.FACTOR X (SUB1 Y)))).

Intuitively, if PRIME1 returns F it is because it ran down to
and discovered the GREATEST.FACTOR.

The Properties of Greatest.factor We prove that if X is a
nonprime number (and not 0 or 1), then the GREATEST.FAC-
TOR of X divides X, is less than X, and is not 0, 1, or a non-
number.

These last three properties are captured by the theorems
GREATEST.FACTOR.0, GREATEST.FACTOR.1, and NUMBERP.GREAT-
EST.FACTOR. These theorems state the (trivial) conditions un-
der which GREATEST.FACTOR is 0, 1, or not a number. Each
is proved easily in one induction.

We are left with the two main properties of GREATEST.FAC-
TOR. The lemma GREATEST.FACTOR.DIVIDES establishes
that nonprimes greater than 1 have at least one divisor, namely,
that computed by GREATEST.FACTOR:

Theorem GREATEST.FACTOR.DIVIDES:

(IMPLIES (AND (LESSP Y (ID X))
(NOT (PRIME1 X Y))
(NOT (ZEROP X))
(NOT (EQUAL X 1))
(NOT (ZEROP Y)))

(EQUAL (REMAINDER X
(GREATEST.FACTOR X Y))

0)).
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Note that this lemma is stated more generally than one might
at first have thought necessary. Instead of proving a theo-
rem about (PRIME X) and (GREATEST.FACTOR X (SUB1
X)), we prove a theorem about (PRIME1 X Y) and (GREAT-
EST.FACTOR X Y). The only reason for this generality is that
one cannot prove the less general theorem by induction directly.
However, the more general theorem is easily proved by the the-
orem prover in one induction.2

While the above theorem establishes that the GREATEST.FAC-
TOR of X is indeed a factor of X (under the right hypothe-
ses), it does not assure us that it is not X itself. The theo-
rem GREATEST.FACTOR.LESSP establishes that in fact the
GREATEST.FACTOR returns something less than X (and thus
not equal to X):

Theorem GREATEST.FACTOR.LESSP:

(IMPLIES (AND (LESSP Y (ID X))
(NOT (PRIME1 X Y))
(NOT (ZEROP X))
(NOT (EQUAL X 1))
(NOT (ZEROP Y)))

(LESSP (GREATEST.FACTOR X Y) X)).

The generality of GREATEST.FACTOR.LESSP was desired for
precisely the same reasons that we stated GREATEST.FAC-
TOR.DIVIDES as generally as we did.

This concludes our description of the rather elaborate ground-
work that must be laid in the form of explicit lemmas, so that
the theorem prover is aware of the facts implicit in the ordinary
definition of prime. We now proceed to the more interesting
theorems concerning the existence and uniqueness of the prime
factorization.

2The use of the function ID (which is just the identity function on numbers)
was necessary to the mechanical proofs because otherwise the induction heuristic
merges the suggested inductions on Y and X, flawing the “right” induction on Y.
This problem was mentioned in the discussion of induction, Chapter 15. The use
of ID illustrates a subtle way in which the user can influence the theorem prover’s
behavior.
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19.3.2 The Existence of a Prime Factorization

The proof of the existence of a prime factorization of every num-
ber greater than 0 is simple in comparison to the (coming) proof
of the uniqueness of such a factorization. Recall that our objec-
tive is to prove:

Theorem PRIME.FACTORIZATION.EXISTENCE:

(IMPLIES (NOT (ZEROP X))
(AND (EQUAL (TIMES.LIST (PRIME.FACTORS X))

X)
(PRIME.LIST (PRIME.FACTORS X)))).

The key to making a proof of this theorem difficult or easy lies
in the definition of the function PRIME.FACTORS. Recall that
we are happy, for the purposes of the unique prime factoriza-
tion theorem, with any function whatsoever for computing an
appropriate factorization.

Our description of the proof of PRIME.FACTORIZATION.EXISTENCE
is divided into three parts. The first presents the definition of
PRIME.FACTORS that we choose to use. The second describes
the proof that PRIME.FACTORS returns a list of primes. The
third describes the proof that the product over that list is the
desired integer.

The Definition of Prime.factors

How can we compute a prime decomposition of a nonzero integer
X? We first find the greatest factor of X less than X. Then we
recursively compute a prime decomposition of that factor and a
prime decomposition of the result of dividing X by that factor.
Finally, we return the concatenation of the two decompositions.

Definition

(PRIME.FACTORS X)
=

(IF
(OR (ZEROP X)

(EQUAL (SUB1 X) 0))
‘‘NIL’’
(IF
(PRIME1 X (SUB1 X))
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(CONS X ‘‘NIL’’)
(APPEND

(PRIME.FACTORS (GREATEST.FACTOR X (SUB1 X)))
(PRIME.FACTORS (QUOTIENT X

(GREATEST.FACTOR X
(SUB1 X))))))).

We chose to define PRIME.FACTORS the way we have be-
cause it makes one half of the proof of PRIME.FACTORIZA-
TION.EXISTENCE trivial and the other half easy.

The trivial half of the proof is that PRIME.FACTORS al-
ways returns a list of PRIMES. The easy half is showing that the
product of (PRIME.FACTORS X) is X. Both these halves are
proved by induction. The induction used is the one analogous to
the recursion involved in the definition of PRIME.FACTORS.
Hence, it is doubly important that we first look at the justifica-
tion of the definition of PRIME.FACTORS.

The theorem prover decides that the definition PRIME.FAC-
TORS is acceptable by determining that the COUNT of the ar-
gument decreases on each recursive call. There are two calls. In
the first, X is replaced by a GREATEST.FACTOR expression,
and in the second, X is replaced by the QUOTIENT of X by
that greatest factor.

The proof that X is getting smaller in the first call relies on
GREATEST.FACTOR.LESSP, mentioned earlier.3 The proof
that X is getting smaller in the second call relies on RECUR-
SION.BY.QUOTIENT, noted in section 19.1.

Prime.factors Returns a List of Primes

The proof that PRIME.FACTORS returns a list of primes re-
quires the easy lemma:

Theorem PRIME.LIST.APPEND:

(EQUAL (PRIME.LIST (APPEND X Y))
(AND (PRIME.LIST X)

(PRIME.LIST Y))).

3Actually, the definitional facility must be provided with a trivial variant of it
called GREATEST.FACTOR.LESSP.IND, proved as an induction lemma, that
makes explicit use of COUNT since GREATEST.FACTOR is not always numeric.
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Once this theorem is known, a simple induction proves that the
output of PRIME.FACTORS is always a list of primes. “NIL”
is a list of primes, (CONS X “NIL”) is a list of primes if X is
a prime, and (by induction) the recursive calls of PRIME.FAC-
TORS return lists of primes, so their concatenation is a list of
primes, by PRIME.LIST.APPEND.

Prime.factors Factors Its Argument

All that remains to establish the existence of a prime factoriza-
tion of any nonzero number X is the proof that (TIMES.LIST
(PRIME.FACTORS X)) is X. This theorem is proved by one in-
duction (according to the way that PRIME.FACTORS recurses)
after proving the two lemmas:

Theorem QUOTIENT.TIMES1:

(IMPLIES (AND (NUMBERP Y)
(NUMBERP X)
(NOT (EQUAL X 0))
(DIVIDES X Y))

(EQUAL (TIMES X (QUOTIENT Y X))
Y))

and

Theorem TIMES.LIST.APPEND:

(EQUAL (TIMES.LIST (APPEND X Y))
(TIMES (TIMES.LIST X)

(TIMES.LIST Y)))

and observing that the lemma GREATEST.FACTOR.DIVIDES
helps to relieve the hypotheses of QUOTIENT.TIMES1.

19.3.3 The Uniqueness of a Prime Factorization

We now move on to the more difficult proof that the prime
decomposition of a number is unique, up to permutation. We
first prove a key theorem about primes, after which we carry off
the final proof.
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A Key Theorem About Primes

The key fact about primes necessary in our proof of the unique
prime factorization theorem is the theorem that states that if p
is a prime and p divides the product of a and b, then p divides
a or p divides b. All the lemmas mentioned in the other parts
of this chapter are, comparatively speaking, routine. However,
this lemma is decidedly not routine because its proof employs
the GCD function in a surprising way.

We formulate this key lemma thus:

Theorem PRIME.KEY:

(IMPLIES (AND (NUMBERP Z)
(PRIME X)
(NOT (DIVIDES X Z))
(NOT (DIVIDES X B)))

(NOT (EQUAL (TIMES X K)
(TIMES B Z)))).

To prove PRIME.KEY, we first need to prove the two lemmas:

Theorem HACK1:

(IMPLIES (AND (NOT (DIVIDES X A))
(EQUAL A

(GCD (TIMES X A) (TIMES B A))))
(NOT (EQUAL (TIMES K X)

(TIMES B A)))),

Theorem PRIME.GCD:

(IMPLIES (AND (NOT (DIVIDES X B))
(PRIME1 X (SUB1 X)))

(EQUAL (EQUAL (GCD B X) 1) T)).

Once these two lemmas have been proved, the proof of PRIME.KEY
is as follows. We first rewrite the conclusion of PRIME.KEY to
(EQUAL (TIMES K X) (TIMES B Z)) and try to use HACK1
to establish the conclusion of PRIME.KEY. To use HACK1, we
must establish the two hypotheses: (NOT (DIVIDES X Z)) and
(EQUAL Z (GCD (TIMES Z X) (TIMES Z B))). We have the
first of these hypotheses among the hypotheses of PRIME.KEY.
To establish the equality, we first rewrite it using the DISTRI-
BUTIVITY.OF.TIMES.OVER.GCD to (EQUAL Z (TIMES Z
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(GCD X B))). A simple arithmetic lemma (called TIMES.IDENTITY)
tells us that to establish such an equality we need to check that
(EQUAL (GCD X B) 1). But this is a direct consequence of
PRIME.GCD and the hypotheses in PRIME.KEY. Q.E.D.

Now let us prove the two lemmas we used, HACK1 and
PRIME.GCD.

First, we prove HACK1. The proof is most easily seen by
reformulating HACK1 in the contrapositive:

(IMPLIES (AND (EQUAL (TIMES K X) (TIMES B A))
(EQUAL A (GCD (TIMES X A) (TIMES B A))))

(DIVIDES X A)).

Since (TIMES K X) is (TIMES B A) by hypothesis, we obtain,
by substituting into the other hypothesis, that A is equal to
(GCD (TIMES X A) (TIMES K X)). By the commutativity of
TIMES and the DISTRIBUTIVITY.OF.TIMES.OVER.GCD,
we obtain that A is equal to (TIMES X (GCD A K)), which
implies that X divides A.

Finally, we turn to the proof of the second lemma we used,
PRIME.GCD; since (GCD X B) divides X (because of the lemma
GCD.DIVIDES.BOTH) and since X is a PRIME by hypothesis,
then (GCD X B) must be X or 1. If (GCD X B) were X, then X
would divide B (since (GCD X B) divides both), but this con-
tradicts the hypotheses that (NOT (DIVIDES X B)). So (GCD
X B) must be 1.

The Unique Factorization

Now that we have established the lemma PRIME.KEY, it is
routine work to obtain the uniqueness of the prime factorization.

First we establish the lemma that tells us that if the product
of a list of primes is divisible by a prime, then the prime is a
member of the list:

Theorem PRIME.LIST.TIMES.LIST:

(IMPLIES (AND (PRIME C)
(PRIME.LIST L2)
(NOT (MEMBER C L2)))

(NOT (EQUAL (REMAINDER (TIMES.LIST L2) C)
0))).
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It is here that we make use of our key theorem about primes,
PRIME.KEY. The proof of PRIME.LIST.TIMES.LIST is by in-
duction on the length of the list L2. If C divides (TIMES.LIST
L2), then by PRIME.KEY, C divides (CAR L2) or C divides
(TIMES.LIST (CDR L2)). If C divides (CAR L2), then (since
L2 is a list of primes), C is (CAR L2). If C divides (TIMES.LIST
(CDR L2)), then by the inductive hypothesis, C is a member of
the (CDR L2).

Given PRIME.LIST.TIMES.LIST, the unique factorization
theorem:

Theorem PRIME.FACTORIZATION.UNIQUENESS:

(IMPLIES (AND (PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2))

can be proved by inducting according to the way that PERM
recurses. That is, in the inductive step, we assume an instance
of the theorem in which L1 is replaced by (CDR L1) and L2
is replaced by (DELETE (CAR L1) L2). If L1 and L2 are
both nonempty lists of primes and (TIMES.LIST L1) is equal
to (TIMES.LIST L2), then we wish to establish that L1 is a
permutation of L2. But (CAR L1) divides (TIMES.LIST L2).
By PRIME.LIST.TIMES.LIST, (CAR L1) must be a member
of L2. Thus we need establish only that (CDR L1) is a per-
mutation of (DELETE (CAR L1) L2). To do so, we try to use
our induction hypothesis. Clearly, (CDR L1) is a list of primes.
Further, (DELETE (CAR L1) L2) is a list of primes, by the
easily proved lemma:

Theorem PRIME.LIST.DELETE:

(IMPLIES (PRIME.LIST L2)
(PRIME.LIST (DELETE X L2))).

Finally, (TIMES.LIST (CDR L1)) is equal to (TIMES.LIST
(DELETE (CAR L1) L2)) by the lemma:

Theorem TIMES.LIST.DELETE:

(IMPLIES (AND (NOT (ZEROP C))
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(MEMBER C L))
(EQUAL (TIMES.LIST (DELETE C L))

(QUOTIENT (TIMES.LIST L) C))).

Therefore, we can use the inductive hypothesis to conclude that
(CDR L2) is a permutation of (DELETE (CAR L1) L2). Q.E.D.

We conclude by presenting the output of the theorem prover
for PRIME.FACTORIZATION.UNIQUENESS. In the output,
the lemma PRIME.LIST.TIMES.LIST is not actually mentioned,
but a mild reformulation of it called PRIME.MEMBER is. Note
that the proof generates an inductively proved subgoal, namely,
that if the product over a list of primes is 1, then the list is
empty. Prime factorizations would not be unique if 1 were a
prime.

Theorem PRIME.FACTORIZATION.UNIQUENESS:

(IMPLIES (AND (PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2))

Name the above subgoal *1.
Let us appeal to the induction principle. The

recursive terms in the conjecture suggest five inductions.
They merge into two likely candidate inductions. However,
only one is unflawed. We will induct according to the
following scheme:

(AND (IMPLIES (NOT (LISTP L1)) (p L1 L2))
(IMPLIES (AND (LISTP L1)

(p (CDR L1) (DELETE (CAR L1) L2)))
(p L1 L2))).

The inequality CDR.LESSP establishes that the measure
(COUNT L1) decreases according to the well-founded relation
LESSP in the induction step of the scheme. Note, however,
the inductive instance chosen for L2. The above induction
scheme leads to five new goals:
Case 1. (IMPLIES (AND (NOT (LISTP L1))

(PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)),

which simplifies, opening up the functions PRIME.LIST,
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TIMES.LIST and PERM, to:
(IMPLIES (AND (NOT (LISTP L1))

(PRIME.LIST L2)
(EQUAL 1 (TIMES.LIST L2)))

(NOT (LISTP L2))),
which has an irrelevant term in it. By eliminating this
term we get:

(IMPLIES (AND (PRIME.LIST L2)
(EQUAL 1 (TIMES.LIST L2)))

(NOT (LISTP L2))).
Name the above subgoal *1.1.

Case 2. (IMPLIES (AND (LISTP L1)
(NOT (PRIME.LIST (CDR L1)))
(PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)),

which we simplify, opening up PRIME.LIST, to:
(TRUE).

Case 3. (IMPLIES
(AND (LISTP L1)

(NOT (PRIME.LIST (DELETE (CAR L1) L2)))
(PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)),

which we simplify, using the lemma PRIME.LIST.DELETE, to:
(TRUE).

Case 4. (IMPLIES
(AND

(LISTP L1)
(NOT (EQUAL (TIMES.LIST (CDR L1))

(TIMES.LIST (DELETE (CAR L1) L2))))
(PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)),

which we simplify, appealing to the lemma PRIME.MEMBER,
and expanding the definitions of PRIME.LIST, TIMES.LIST
and PERM, to the formula:

(IMPLIES
(AND
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(LISTP L1)
(NOT (EQUAL (TIMES.LIST (CDR L1))

(TIMES.LIST (DELETE (CAR L1) L2))))
(NOT (EQUAL (CAR L1) 0))
(NUMBERP (CAR L1))
(NOT (EQUAL (CAR L1) 1))
(PRIME1 (CAR L1) (SUB1 (CAR L1)))
(PRIME.LIST (CDR L1))
(PRIME.LIST L2)
(EQUAL (TIMES (CAR L1) (TIMES.LIST (CDR L1)))

(TIMES.LIST L2)))
(PERM (CDR L1) (DELETE (CAR L1) L2))),

which again simplifies, applying the lemmas
TIMES.LIST.DELETE, PRIME.MEMBER and DIVIDES.IMPLIES.TIMES,
to:

(TRUE).
Case 5. (IMPLIES (AND (LISTP L1)

(PERM (CDR L1) (DELETE (CAR L1) L2))
(PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2)).

This simplifies, appealing to the lemma PRIME.MEMBER, and
expanding PRIME.LIST, TIMES.LIST and PERM, to:

(TRUE).
So we now return to:
(IMPLIES (AND (PRIME.LIST L2)

(EQUAL 1 (TIMES.LIST L2)))
(NOT (LISTP L2))),

which we named *1.1 above. Let us appeal to the induction
principle. Two inductions are suggested by terms in the
conjecture. However, they merge into one likely candidate
induction. We will induct according to the following
scheme:

(AND (IMPLIES (NOT (LISTP L2)) (p L2))
(IMPLIES (AND (LISTP L2) (p (CDR L2)))

(p L2))).
The inequality CDR.LESSP establishes that the measure
(COUNT L2) decreases according to the well-founded relation
LESSP in the induction step of the scheme. The above
induction scheme generates the following three new formulas:
Case 1. (IMPLIES (AND (NOT (PRIME.LIST (CDR L2)))

(PRIME.LIST L2)
(EQUAL 1 (TIMES.LIST L2)))
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(NOT (LISTP L2))),
which simplifies, opening up the function PRIME.LIST, to:

(TRUE).
Case 2. (IMPLIES (AND (NOT (EQUAL 1 (TIMES.LIST (CDR L2))))

(PRIME.LIST L2)
(EQUAL 1 (TIMES.LIST L2)))

(NOT (LISTP L2))).
This simplifies, applying TIMES.EQUAL.1, and opening up
the definitions of PRIME.LIST and TIMES.LIST, to:

(IMPLIES (AND (NOT (EQUAL 1 (TIMES.LIST (CDR L2))))
(NOT (EQUAL (CAR L2) 0))
(NUMBERP (CAR L2))
(NOT (EQUAL (CAR L2) 1))
(PRIME1 (CAR L2) (SUB1 (CAR L2)))
(PRIME.LIST (CDR L2))
(NOT (EQUAL 0 (TIMES.LIST (CDR L2))))
(EQUAL 0 (SUB1 (CAR L2)))
(EQUAL 0

(SUB1 (TIMES.LIST (CDR L2)))))
(NOT (LISTP L2))),

which again simplifies, opening up the function PRIME1,
to:

(TRUE).
Case 3. (IMPLIES (AND (NOT (LISTP (CDR L2)))

(PRIME.LIST L2)
(EQUAL 1 (TIMES.LIST L2)))

(NOT (LISTP L2))),
which we simplify, applying the lemmas TIMES.EQUAL.1 and
SUB1.ADD1, and opening up the definitions of PRIME.LIST
and TIMES.LIST, to:

(IMPLIES (AND (NOT (LISTP (CDR L2)))
(NOT (EQUAL (CAR L2) 0))
(NUMBERP (CAR L2))
(NOT (EQUAL (CAR L2) 1))
(PRIME1 (CAR L2) (SUB1 (CAR L2)))
(EQUAL 0 (SUB1 (CAR L2))))

(NOT (LISTP L2))),
which again simplifies, expanding the function PRIME1, to:

(TRUE).
That finishes the proof of *1.1, which, consequently,

finishes the proof of *1. Q.E.D.
CPU time (devoted to theorem-proving): 94.717 seconds



Appendix A

Definitions Accepted and
Theorems Proved By our
System

Here is a complete list (as of May, 1978), in the order processed
by the system, of all our standard definitions and theorems.
Whenever we add a new proof technique or change an old one,
we make sure that the “improved” theorem prover can still prove
all these theorems. The current list contains 286 theorems and
110 definitions. After each theorem or axiom we list the user-
supplied “types” (i.e., rewrite, elimination, generalization, and
induction). A theorem with no types is proved but not made
available for future use.

When the system begins processing the sequence, it knows
only the axioms, definitions, lemmas, and principles described
in Chapter 3.

1. Definition

(NLISTP X)
=

(NOT (LISTP X))
2. Definition

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

341
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3. Definition

(REVERSE X)
=

(IF (LISTP X)
(APPEND (REVERSE (CDR X))

(CONS (CAR X) ‘‘NIL’’))
‘‘NIL’’)

4. Definition

(TIMES I J)
=

(IF (ZEROP I)
0
(PLUS J (TIMES (SUB1 I) J)))

5. Theorem ASSOCIATIVITY.OF.APPEND (rewrite):

(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)))

6. Definition

(PLISTP X)
=

(IF (LISTP X)
(PLISTP (CDR X))
(EQUAL X ‘‘NIL’’))

7. Theorem APPEND.RIGHT.ID (rewrite):

(IMPLIES (PLISTP X)
(EQUAL (APPEND X ‘‘NIL’’) X))

8. Theorem PLISTP.REVERSE (generalize and rewrite):

(PLISTP (REVERSE X))
9. Theorem APPEND.REVERSE (rewrite):

(EQUAL (REVERSE (APPEND A B))
(APPEND (REVERSE B) (REVERSE A)))

10. Theorem PLUS.RIGHT.ID (rewrite):

(EQUAL (PLUS X 0) (FIX X))
11. Theorem PLUS.ADD1 (rewrite):

(EQUAL (PLUS X (ADD1 Y))
(IF (NUMBERP Y)

(ADD1 (PLUS X Y))
(ADD1 X)))

12. Theorem COMMUTATIVITY2.OF.PLUS (rewrite):

(EQUAL (PLUS X (PLUS Y Z))
(PLUS Y (PLUS X Z)))



343

13. Theorem COMMUTATIVITY.OF.PLUS (rewrite):

(EQUAL (PLUS X Y) (PLUS Y X))
14. Theorem ASSOCIATIVITY.OF.PLUS (rewrite):

(EQUAL (PLUS (PLUS X Y) Z)
(PLUS X (PLUS Y Z)))

15. Theorem TIMES.ZERO (rewrite):

(EQUAL (TIMES X 0) 0)
16. Theorem DISTRIBUTIVITY.OF.TIMES.OVER.PLUS (rewrite):

(EQUAL (TIMES X (PLUS Y Z))
(PLUS (TIMES X Y) (TIMES X Z)))

17. Theorem TIMES.ADD1 (rewrite):

(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)

(PLUS X (TIMES X Y))
(FIX X)))

18. Theorem COMMUTATIVITY.OF.TIMES (rewrite):

(EQUAL (TIMES X Y) (TIMES Y X))
19. Theorem COMMUTATIVITY2.OF.TIMES (rewrite):

(EQUAL (TIMES X (TIMES Y Z))
(TIMES Y (TIMES X Z)))

20. Theorem ASSOCIATIVITY.OF.TIMES (rewrite):

(EQUAL (TIMES (TIMES X Y) Z)
(TIMES X (TIMES Y Z)))

21. Theorem EQUAL.TIMES.0 (rewrite):

(EQUAL (EQUAL (TIMES X Y) 0)
(OR (ZEROP X) (ZEROP Y)))

22. Shell Definition.
Add the shell PUSH of two arguments with
recognizer STACKP,
accessors TOP and POP,
default values 0 and 0, and
well-founded relation TOP.POPP.

23. Undefined Function.
(APPLY FN X Y)

24. Undefined Function.
(GETVALUE VAR ENVRN)

25. Axiom NUMBERP.APPLY (rewrite):

(NUMBERP (APPLY FN X Y))
26. Definition
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(FORMP X)
=

(IF (LISTP X)
(IF (LISTP (CAR X))

F
(IF (LISTP (CDR X))

(IF (LISTP (CDR (CDR X)))
(IF (FORMP (CAR (CDR X)))

(FORMP (CAR (CDR (CDR X))))
F)

F)
F))

T)
27. Definition

(EVAL FORM ENVRN)
=

(IF (NUMBERP FORM)
FORM
(IF (LISTP (CDDR FORM))

(APPLY (CAR FORM)
(EVAL (CADR FORM) ENVRN)
(EVAL (CADDR FORM) ENVRN))

(GETVALUE FORM ENVRN)))
28. Definition

(OPTIMIZE FORM)
=

(IF (LISTP (CDDR FORM))
(IF (NUMBERP (OPTIMIZE (CADR FORM)))

(IF (NUMBERP (OPTIMIZE (CADDR FORM)))
(APPLY (CAR FORM)

(OPTIMIZE (CADR FORM))
(OPTIMIZE (CADDR FORM)))

(CONS (CAR FORM)
(OPTIMIZE (CADR FORM))
(OPTIMIZE (CADDR FORM))
‘‘NIL’’))

(CONS (CAR FORM)
(OPTIMIZE (CADR FORM))
(OPTIMIZE (CADDR FORM))
‘‘NIL’’))

FORM)
29. Definition

(CODEGEN FORM INS)
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=
(IF (NUMBERP FORM)

(CONS (CONS ‘‘PUSHI’’ FORM ‘‘NIL’’) INS)
(IF (LISTP (CDDR FORM))

(CONS (CAR FORM)
(CODEGEN (CADDR FORM)

(CODEGEN (CADR FORM) INS)))
(CONS (CONS ‘‘PUSHV’’ FORM ‘‘NIL’’) INS)))

30. Definition

(COMPILE FORM)
=

(REVERSE (CODEGEN (OPTIMIZE FORM) ‘‘NIL’’))
31. Theorem FORMP.OPTIMIZE (rewrite):

(IMPLIES (FORMP X)
(FORMP (OPTIMIZE X)))

32. Theorem CORRECTNESS.OF.OPTIMIZE (rewrite):

(IMPLIES (FORMP X)
(EQUAL (EVAL (OPTIMIZE X) ENVRN)

(EVAL X ENVRN)))
33. Definition

(EXEC PC PDS ENVRN)
=

(IF
(NLISTP PC)
PDS
(IF
(LISTP (CAR PC))
(IF

(EQUAL (CAR (CAR PC)) ‘‘PUSHI’’)
(EXEC (CDR PC)

(PUSH (CAR (CDR (CAR PC))) PDS)
ENVRN)

(EXEC (CDR PC)
(PUSH (GETVALUE (CAR (CDR (CAR PC))) ENVRN)

PDS)
ENVRN))

(EXEC (CDR PC)
(PUSH (APPLY (CAR PC)

(TOP (POP PDS))
(TOP PDS))

(POP (POP PDS)))
ENVRN)))

34. Theorem SEQUENTIAL.EXECUTION (rewrite):
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(EQUAL (EXEC (APPEND X Y) PDS ENVRN)
(EXEC Y (EXEC X PDS ENVRN) ENVRN))

35. Theorem CORRECTNESS.OF.CODEGEN (rewrite):

(IMPLIES
(FORMP X)
(EQUAL (EXEC (REVERSE (CODEGEN X INS))

PDS ENVRN)
(PUSH (EVAL X ENVRN)

(EXEC (REVERSE INS) PDS ENVRN))))
36. Theorem CORRECTNESS.OF.OPTIMIZING.COMPILER:

(IMPLIES (FORMP X)
(EQUAL (EXEC (COMPILE X) PDS ENVRN)

(PUSH (EVAL X ENVRN) PDS)))
37. Theorem SUB1.LESSP1 (rewrite):

(IMPLIES (AND (NUMBERP X) (NOT (EQUAL X 0)))
(LESSP (SUB1 X) X))

38. Theorem TRANSITIVITY.OF.LESSP (rewrite):

(IMPLIES (AND (NOT (LESSP X Z)) (LESSP Y Z))
(NOT (LESSP X Y)))

39. Theorem TRANSITIVITY.OF.LESSP2 (rewrite):

(IMPLIES (AND (NOT (LESSP X Z)) (LESSP X Y))
(NOT (LESSP Y Z)))

40. Theorem TRANSITIVITY.OF.LESSP3 (rewrite):

(IMPLIES (AND (LESSP Y Z) (LESSP X Y))
(LESSP X Z))

41. Theorem TRANSITIVITY.OF.NOT.LESSP (rewrite):

(IMPLIES (AND (LESSP X Z) (NOT (LESSP Y Z)))
(LESSP X Y))

42. Theorem TRANSITIVITY.OF.NOT.LESSP2 (rewrite):

(IMPLIES (AND (LESSP X Z) (NOT (LESSP X Y)))
(LESSP Y Z))

43. Theorem TRANSITIVITY.OF.NOT.LESSP3 (rewrite):

(IMPLIES (AND (NOT (LESSP Y Z))
(NOT (LESSP X Y)))

(NOT (LESSP X Z)))
44. Theorem LESSP.NOT.REFLEXIVE (rewrite):

(NOT (LESSP X X))
45. Definition

(EQP X Y)
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=
(EQUAL (FIX X) (FIX Y))

46. Theorem LESSP.EQUAL (rewrite):

(IMPLIES (AND (NOT (EQP X Y))
(NOT (LESSP Y X)))

(LESSP X Y))
47. Theorem REVERSE.REVERSE (rewrite):

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X)) X))

48. Definition

(FLATTEN X)
=

(IF (LISTP X)
(APPEND (FLATTEN (CAR X))

(FLATTEN (CDR X)))
(CONS X ‘‘NIL’’))

49. Definition

(MC.FLATTEN X Y)
=

(IF (LISTP X)
(MC.FLATTEN (CAR X)

(MC.FLATTEN (CDR X) Y))
(CONS X Y))

50. Theorem FLATTEN.MC.FLATTEN (rewrite):

(EQUAL (MC.FLATTEN X Y)
(APPEND (FLATTEN X) Y))

51. Definition

(MEMBER X L)
=

(IF (LISTP L)
(IF (EQUAL X (CAR L))

T
(MEMBER X (CDR L)))

F)
52. Theorem MEMBER.APPEND (rewrite):

(IMPLIES (MEMBER A B)
(MEMBER A (APPEND B C)))

53. Theorem MEMBER.APPEND2 (rewrite):

(IMPLIES (MEMBER A C)
(MEMBER A (APPEND B C)))

54. Theorem MEMBER.REVERSE (rewrite):
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(EQUAL (MEMBER X (REVERSE Y))
(MEMBER X Y))

55. Definition

(LENGTH X)
=

(IF (LISTP X)
(ADD1 (LENGTH (CDR X)))
0)

56. Theorem LENGTH.REVERSE (rewrite):

(EQUAL (LENGTH (REVERSE X))
(LENGTH X))

57. Definition

(INTERSECT X Y)
=

(IF (LISTP X)
(IF (MEMBER (CAR X) Y)

(CONS (CAR X) (INTERSECT (CDR X) Y))
(INTERSECT (CDR X) Y))

‘‘NIL’’)
58. Theorem MEMBER-INTERSECT:

(IMPLIES (AND (MEMBER A B) (MEMBER A C))
(MEMBER A (INTERSECT B C)))

59. Definition

(UNION X Y)
=

(IF (LISTP X)
(IF (MEMBER (CAR X) Y)

(UNION (CDR X) Y)
(CONS (CAR X) (UNION (CDR X) Y)))

Y)
60. Theorem MEMBER.UNION:

(IMPLIES (OR (MEMBER A B) (MEMBER A C))
(MEMBER A (UNION B C)))

61. Definition

(SUBSETP X Y)
=

(IF (LISTP X)
(IF (MEMBER (CAR X) Y)

(SUBSETP (CDR X) Y)
F)

T)
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62. Theorem SUBSETP.UNION:

(IMPLIES (SUBSETP A B)
(EQUAL (UNION A B) B))

63. Theorem SUBSETP.INTERSECT:

(IMPLIES (AND (PLISTP A) (SUBSETP A B))
(EQUAL (INTERSECT A B) A))

64. Definition

(NTH X N)
=

(IF (ZEROP N)
X
(NTH (CDR X) (SUB1 N)))

65. Theorem NTH.MEMBER:

(IMPLIES (LISTP (NTH X N))
(MEMBER (CAR (NTH X N)) X))

66. Definition

(GREATERP X Y)
=

(LESSP Y X)
67. Definition

(LESSEQP X Y)
=

(NOT (LESSP Y X))
68. Definition

(GREATEREQP X Y)
=

(NOT (LESSP X Y))
69. Theorem TRANSITIVITY.OF.GREATERP:

(IMPLIES (AND (GREATERP X Y) (GREATERP Y Z))
(GREATERP X Z))

70. Theorem TRANSITIVITY.OF.LESSEQP:

(IMPLIES (AND (LESSEQP X Y) (LESSEQP Y Z))
(LESSEQP X Z))

71. Theorem TRICHOTOMY.OF.LESSP:

(OR (LESSP X Y)
(OR (EQP X Y) (LESSP Y X)))

72. Definition

(ORDERED L)
=



350APPENDIX A. DEFINITIONS ACCEPTED AND THEOREMS PROVED BY OUR SYSTEM

(IF (LISTP L)
(IF (LISTP (CDR L))

(IF (LESSP (CAR (CDR L)) (CAR L))
F
(ORDERED (CDR L)))

T)
T)

73. Definition

(ADDTOLIST X L)
=

(IF (LISTP L)
(IF (LESSP X (CAR L))

(CONS X L)
(CONS (CAR L) (ADDTOLIST X (CDR L))))

(CONS X ‘‘NIL’’))
74. Definition

(SORT L)
=

(IF (LISTP L)
(ADDTOLIST (CAR L) (SORT (CDR L)))
‘‘NIL’’)

75. Theorem LESSEQP.PLUS (rewrite):

(NOT (LESSP (PLUS X Y) X))
76. Theorem LESSEQP.PLUS2 (rewrite):

(NOT (LESSP (PLUS X Y) Y))
77. Theorem COMMUTATIVITY.OF.APPEND.WRT.LENGTH:

(EQUAL (LENGTH (APPEND A B))
(LENGTH (APPEND B A)))

78. Definition

(LAST L)
=

(IF (LISTP L)
(IF (LISTP (CDR L)) (LAST (CDR L)) L)
L)

79. Definition

(ASSOC X Y)
=

(IF (LISTP Y)
(IF (EQUAL X (CAR (CAR Y)))

(CAR Y)
(ASSOC X (CDR Y)))
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‘‘NIL’’)
80. Definition

(PAIRLIST X Y)
=

(IF (LISTP X)
(IF (LISTP Y)

(CONS (CONS (CAR X) (CAR Y))
(PAIRLIST (CDR X) (CDR Y)))

‘‘NIL’’)
‘‘NIL’’)

81. Theorem ASSOC.PAIRLIST (rewrite):

(IMPLIES (AND (NOT (LESSP (LENGTH C) (LENGTH B)))
(MEMBER A B))

(LISTP (ASSOC A (PAIRLIST B C))))
82. Definition

(MAPCAR X FN)
=

(IF (LISTP X)
(CONS (APPLY FN (CAR X) ‘‘NIL’’)

(MAPCAR (CDR X) FN))
‘‘NIL’’)

83. Theorem MAPCAR.APPEND:

(EQUAL (MAPCAR (APPEND A B) FN)
(APPEND (MAPCAR A FN) (MAPCAR B FN)))

84. Theorem LENGTH.MAPCAR:

(EQUAL (LENGTH (MAPCAR A FN))
(LENGTH A))

85. Theorem REVERSE.MAPCAR:

(EQUAL (REVERSE (MAPCAR A FN))
(MAPCAR (REVERSE A) FN))

86. Definition

(LIT X Y FN)
=

(IF (LISTP X)
(APPLY FN (CAR X) (LIT (CDR X) Y FN))
Y)

87. Theorem LIT.APPEND (rewrite):

(EQUAL (LIT (APPEND A B) C FN)
(LIT A (LIT B C FN) FN))

88. Definition
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(BOOLEAN X)
=

(OR (EQUAL X T) (EQUAL X F))
89. Definition

(IFF X Y)
=

(AND (IMPLIES X Y) (IMPLIES Y X))
90. Theorem IFF.EQUAL.EQUAL:

(IMPLIES (AND (BOOLEAN P) (BOOLEAN Q))
(EQUAL (IFF P Q) (EQUAL P Q)))

91. Theorem NTH.NIL (rewrite):

(EQUAL (NTH ‘‘NIL’’ I) ‘‘NIL’’)
92. Theorem NTH.APPEND1:

(EQUAL (NTH A (PLUS I J))
(NTH (NTH A I) J))

93. Theorem COMMUTATIVITY.OF.EQUAL:

(EQUAL (EQUAL A B) (EQUAL B A))
94. Theorem TRANSITIVITY.OF.EQUAL:

(IMPLIES (AND (EQUAL A B) (EQUAL B C))
(EQUAL A C))

95. Theorem ASSOCIATIVITY.OF.EQUAL:

(IMPLIES (AND (BOOLEAN A)
(AND (BOOLEAN B) (BOOLEAN C)))

(EQUAL (EQUAL (EQUAL A B) C)
(EQUAL A (EQUAL B C))))

96. Definition

(ODD X)
=

(IF (ZEROP X)
F
(IF (ZEROP (SUB1 X))

T
(ODD (SUB1 (SUB1 X)))))

97. Definition

(EVEN1 X)
=

(IF (ZEROP X) T (ODD (SUB1 X)))
98. Definition

(EVEN2 X)
=
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(IF (ZEROP X)
T
(IF (ZEROP (SUB1 X))

F
(EVEN2 (SUB1 (SUB1 X)))))

99. Definition

(DOUBLE I)
=

(IF (ZEROP I)
0
(ADD1 (ADD1 (DOUBLE (SUB1 I)))))

100. Theorem EVEN1.DOUBLE:

(EVEN1 (DOUBLE I))
101. Definition

(HALF I)
=

(IF (ZEROP I)
0
(IF (ZEROP (SUB1 I))

0
(ADD1 (HALF (SUB1 (SUB1 I))))))

102. Theorem HALF.DOUBLE:

(IMPLIES (NUMBERP I)
(EQUAL (HALF (DOUBLE I)) I))

103. Theorem DOUBLE.HALF:

(IMPLIES (AND (NUMBERP I) (EVEN1 I))
(EQUAL (DOUBLE (HALF I)) I))

104. Theorem DOUBLE.TIMES.2:

(EQUAL (DOUBLE I) (TIMES 2 I))
105. Theorem SUBSETP.CONS (rewrite):

(IMPLIES (SUBSETP X Y)
(SUBSETP X (CONS Z Y)))

106. Theorem LAST.APPEND (rewrite):

(EQUAL (LAST (APPEND A B))
(IF (LISTP B)

(LAST B)
(IF (LISTP A)

(CONS (CAR (LAST A)) B)
B)))

107. Theorem LAST.REVERSE:
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(IMPLIES (LISTP A)
(EQUAL (LAST (REVERSE A))

(CONS (CAR A) ‘‘NIL’’)))
108. Definition

(EXP I J)
=

(IF (ZEROP J)
1
(TIMES I (EXP I (SUB1 J))))

109. Theorem EXP.PLUS (rewrite):

(EQUAL (EXP I (PLUS J K))
(TIMES (EXP I J) (EXP I K)))

110. Theorem EXP.TIMES (rewrite):

(EQUAL (EXP I (TIMES J K))
(EXP (EXP I J) K))

111. Theorem EVEN1.EVEN2:

(EQUAL (EVEN1 X) (EVEN2 X))
112. Theorem GREATERP.CONS:

(GREATERP (LENGTH (CONS A B))
(LENGTH B))

113. Theorem DUPLICITY.OF.LESSEQP:

(OR (LESSEQP A B) (LESSEQP B A))
114. Theorem LESSEQP.NTH:

(LESSEQP (LENGTH (NTH L I))
(LENGTH L))

115. Theorem MEMBER.SORT:

(EQUAL (MEMBER A (SORT B))
(MEMBER A B))

116. Theorem LENGTH.SORT:

(EQUAL (LENGTH (SORT A)) (LENGTH A))
117. Definition

(COUNT.LIST A L)
=

(IF (LISTP L)
(IF (EQUAL A (CAR L))

(ADD1 (COUNT.LIST A (CDR L)))
(COUNT.LIST A (CDR L)))

0)
118. Theorem COUNT.LIST.SORT:
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(EQUAL (COUNT.LIST A (SORT L))
(COUNT.LIST A L))

119. Theorem ORDERED.APPEND:

(IMPLIES (ORDERED (APPEND A B))
(ORDERED A))

120. Theorem LESSEQP.HALF:

(LESSEQP (HALF I) I)
121. Definition

(COPY A)
=

(IF (LISTP A)
(CONS (COPY (CAR A)) (COPY (CDR A)))
A)

122. Theorem EQUAL.COPY:

(EQUAL (COPY A) A)
123. Definition

(EQUALP X Y)
=

(IF (LISTP X)
(IF (LISTP Y)

(IF (EQUALP (CAR X) (CAR Y))
(EQUALP (CDR X) (CDR Y))
F)

F)
(EQUAL X Y))

124. Definition

(NUMBER.LISTP L)
=

(IF (LISTP L)
(IF (NUMBERP (CAR L))

(NUMBER.LISTP (CDR L))
F)

(EQUAL L ‘‘NIL’’))
125. Theorem ORDERED.SORT (rewrite):

(ORDERED (SORT X))
126. Theorem SORT.OF.ORDERED.NUMBER.LIST (rewrite):

(IMPLIES (AND (ORDERED X) (NUMBER.LISTP X))
(EQUAL (SORT X) X))

127. Definition

(XOR P Q)
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=
(IF Q (IF P F T) (EQUAL P T))

128. Theorem SORT.ORDERED (rewrite):

(IMPLIES (NUMBER.LISTP L)
(EQUAL (EQUAL (SORT L) L)

(ORDERED L)))
129. Definition

(SUBST X Y Z)
=

(IF (EQUAL Y Z)
X
(IF (LISTP Z)

(CONS (SUBST X Y (CAR Z))
(SUBST X Y (CDR Z)))

Z))
130. Theorem SUBST.A.A:

(EQUAL (SUBST A A B) B)
131. Definition

(OCCUR X Y)
=

(IF (EQUAL X Y)
T
(IF (LISTP Y)

(IF (OCCUR X (CAR Y))
T
(OCCUR X (CDR Y)))

F))
132. Theorem MEMBER.OCCUR:

(IMPLIES (MEMBER A B) (OCCUR A B))
133. Theorem OCCUR.SUBST:

(IMPLIES (NOT (OCCUR A B))
(EQUAL (SUBST C A B) B))

134. Theorem COMMUTATIVITY.OF.EQUALP:

(EQUAL (EQUALP A B) (EQUALP B A))
135. Theorem TRANSITIVITY.OF.EQUALP:

(IMPLIES (AND (EQUALP A B) (EQUALP B C))
(EQUALP A C))

136. Theorem EQUAL.EQUALP (rewrite):

(EQUAL (EQUALP A B) (EQUAL A B))
137. Definition
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(SWAPTREE X)
=

(IF (LISTP X)
(CONS (SWAPTREE (CDR X))

(SWAPTREE (CAR X)))
X)

138. Theorem SWAPTREE.SWAPTREE (rewrite):

(EQUAL (SWAPTREE (SWAPTREE X)) X)
139. Theorem FLATTEN.SWAPTREE (rewrite):

(EQUAL (FLATTEN (SWAPTREE A))
(REVERSE (FLATTEN A)))

140. Definition

(TIPCOUNT X)
=

(IF (LISTP X)
(PLUS (TIPCOUNT (CAR X))

(TIPCOUNT (CDR X)))
1)

141. Theorem LENGTH.TIPCOUNT:

(EQUAL (LENGTH (FLATTEN A))
(TIPCOUNT A))

142. Definition

(COUNTPS-LOOP L PRED ANS)
=

(IF (LISTP L)
(IF (APPLY PRED (CAR L) ‘‘NIL’’)

(COUNTPS-LOOP (CDR L) PRED (ADD1 ANS))
(COUNTPS-LOOP (CDR L) PRED ANS))

ANS)
143. Definition

(COUNTPS- L PRED)
=

(COUNTPS-LOOP L PRED 0)
144. Definition

(COUNTPS L PRED)
=

(IF (LISTP L)
(IF (APPLY PRED (CAR L) ‘‘NIL’’)

(ADD1 (COUNTPS (CDR L) PRED))
(COUNTPS (CDR L) PRED))

0)
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145. Theorem COUNTPS-COUNTPS (rewrite):

(IMPLIES (NUMBERP N)
(EQUAL (COUNTPS-LOOP L PRED N)

(PLUS N (COUNTPS L PRED))))
146. Definition

(FACT I)
=

(IF (ZEROP I)
1
(TIMES I (FACT (SUB1 I))))

147. Definition

(FACT-LOOP I ANS)
=

(IF (ZEROP I)
ANS
(FACT-LOOP (SUB1 I) (TIMES I ANS)))

148. Definition

(FACT- I)
=

(FACT-LOOP I 1)
149. Theorem FACT-LOOP.FACT (rewrite):

(IMPLIES (NUMBERP I)
(EQUAL (FACT-LOOP J I)

(TIMES I (FACT J))))
150. Theorem FACT-FACT:

(EQUAL (FACT- I) (FACT I))
151. Definition

(REVERSE-LOOP X ANS)
=

(IF (LISTP X)
(REVERSE-LOOP (CDR X)

(CONS (CAR X) ANS))
ANS)

152. Definition

(REVERSE- X)
=

(REVERSE-LOOP X ‘‘NIL’’)
153. Theorem REVERSE-LOOP.APPEND.REVERSE (rewrite):

(EQUAL (REVERSE-LOOP X Y)
(APPEND (REVERSE X) Y))
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154. Theorem REVERSE-REVERSE (rewrite):

(EQUAL (REVERSE-LOOP X ‘‘NIL’’)
(REVERSE X))

155. Theorem REVERSE-APPEND:

(EQUAL (REVERSE- (APPEND A B))
(APPEND (REVERSE- B) (REVERSE- A)))

156. Theorem REVERSE-REVERSE-:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE- (REVERSE- X)) X))

157. Definition

(PLUS- I J)
=

(IF (ZEROP I)
J
(PLUS- (SUB1 I) (ADD1 J)))

158. Theorem PLUS-PLUS:

(IMPLIES (NUMBERP J)
(EQUAL (PLUS- I J) (PLUS I J)))

159. Definition

(UNION- X Y)
=

(IF (LISTP X)
(IF (MEMBER (CAR X) Y)

(UNION- (CDR X) Y)
(UNION- (CDR X) (CONS (CAR X) Y)))

Y)
160. Definition

(SORT-LP X Y)
=

(IF (LISTP X)
(SORT-LP (CDR X)

(ADDTOLIST (CAR X) Y))
Y)

161. Definition

(SORT- X)
=

(SORT-LP X ‘‘NIL’’)
162. Theorem MEMBER.UNION-:

(IMPLIES (MEMBER A C)
(MEMBER A (UNION- B C)))
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163. Theorem ORDERED.ADDTOLIST (rewrite):

(IMPLIES (ORDERED Y)
(ORDERED (ADDTOLIST X Y)))

164. Theorem ORDERED.SORT-LP (rewrite):

(IMPLIES (ORDERED Y)
(ORDERED (SORT-LP X Y)))

165. Theorem COUNT.SORT-LP (rewrite):

(EQUAL (COUNT.LIST Z (SORT-LP X Y))
(PLUS (COUNT.LIST Z X)

(COUNT.LIST Z Y)))
166. Theorem APPEND.CANCELLATION (rewrite):

(EQUAL (EQUAL (APPEND A B) (APPEND A C))
(EQUAL B C))

167. Definition

(DIFFERENCE I J)
=

(IF (ZEROP I)
0
(IF (ZEROP J)

I
(DIFFERENCE (SUB1 I) (SUB1 J))))

168. Theorem COUNTING.UP.BY.1 (induction):

(IMPLIES (LESSP X Y)
(LESSP (DIFFERENCE Y (ADD1 X))

(DIFFERENCE Y X)))
169. Theorem COUNTING.DOWN.BY.N+1 (rewrite):

(EQUAL (LESSP (DIFFERENCE I N) I)
(AND (NOT (ZEROP I)) (NOT (ZEROP N))))

170. Theorem RECURSION.BY.DIFFERENCE (induction):

(IMPLIES (AND (NUMBERP I)
(NUMBERP N)
(NOT (EQUAL I 0))
(NOT (EQUAL N 0)))

(LESSP (DIFFERENCE I N) I))
171. Definition

(QUOTIENT I J)
=

(IF (ZEROP J)
0
(IF (LESSP I J)
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0
(ADD1 (QUOTIENT (DIFFERENCE I J) J))))

172. Definition

(REMAINDER I J)
=

(IF (ZEROP J)
(FIX I)
(IF (LESSP I J)

(FIX I)
(REMAINDER (DIFFERENCE I J) J)))

173. Definition

(POWER.EVAL L BASE)
=

(IF (LISTP L)
(PLUS (CAR L)

(TIMES BASE
(POWER.EVAL (CDR L) BASE)))

0)
174. Definition

(BIG.PLUS1 L I BASE)
=

(IF
(LISTP L)
(IF (ZEROP I)

L
(CONS (REMAINDER (PLUS (CAR L) I) BASE)

(BIG.PLUS1 (CDR L)
(QUOTIENT (PLUS (CAR L) I) BASE)
BASE)))

(CONS I ‘‘NIL’’))
175. Theorem REMAINDER.QUOTIENT (rewrite):

(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))

(FIX X))
176. Theorem POWER.EVAL.BIG.PLUS1 (rewrite):

(EQUAL (POWER.EVAL (BIG.PLUS1 L I BASE) BASE)
(PLUS (POWER.EVAL L BASE) I))

177. Definition

(BIG.PLUS X Y I BASE)
=

(IF
(LISTP X)
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(IF
(LISTP Y)
(CONS
(REMAINDER (PLUS I (PLUS (CAR X) (CAR Y)))

BASE)
(BIG.PLUS (CDR X)

(CDR Y)
(QUOTIENT (PLUS I (PLUS (CAR X) (CAR Y)))

BASE)
BASE))

(BIG.PLUS1 X I BASE))
(BIG.PLUS1 Y I BASE))

178. Theorem POWER.EVAL.BIG.PLUS (rewrite):

(EQUAL (POWER.EVAL (BIG.PLUS X Y I BASE)
BASE)

(PLUS I
(PLUS (POWER.EVAL X BASE)

(POWER.EVAL Y BASE))))
179. Theorem LESSP.DIFFERENCE1 (rewrite):

(NOT (LESSP X (DIFFERENCE X Y)))
180. Theorem REMAINDER.WRT.1 (rewrite):

(EQUAL (REMAINDER Y 1) 0)
181. Theorem REMAINDER.WRT.12 (rewrite):

(IMPLIES (NOT (NUMBERP X))
(EQUAL (REMAINDER Y X) (FIX Y)))

182. Theorem LESSP.REMAINDER2 (rewrite and generalize):

(EQUAL (LESSP (REMAINDER X Y) Y)
(NOT (ZEROP Y)))

183. Theorem LESSP.DIFFERENCE (rewrite):

(IMPLIES (NOT (LESSP Y X))
(EQUAL (DIFFERENCE X Y) 0))

184. Theorem REMAINDER.X.X (rewrite):

(EQUAL (REMAINDER X X) 0)
185. Theorem REMAINDER.QUOTIENT.ELIM (elimination):

(IMPLIES (AND (NOT (ZEROP Y)) (NUMBERP X))
(EQUAL (PLUS (REMAINDER X Y)

(TIMES Y (QUOTIENT X Y)))
X))

186. Theorem PLUS.EQUAL.0 (rewrite):

(EQUAL (EQUAL (PLUS X Y) 0)
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(AND (ZEROP X) (ZEROP Y)))
187. Theorem PLUS.CANCELATION1 (rewrite):

(EQUAL (EQUAL (PLUS X Y) X)
(AND (NUMBERP X) (ZEROP Y)))

188. Theorem LESSP.PLUS.TIMES (rewrite):

(IMPLIES (AND (NOT (ZEROP Z)) (NOT (ZEROP J)))
(LESSP X (PLUS Z (TIMES J X))))

189. Theorem LESSP.QUOTIENT1 (rewrite):

(EQUAL (LESSP (QUOTIENT I J) I)
(AND (NOT (ZEROP I))

(OR (ZEROP J) (NOT (EQUAL J 1)))))
190. Theorem LESSP.REMAINDER1 (rewrite):

(EQUAL (LESSP (REMAINDER X Y) X)
(AND (NOT (ZEROP Y))

(NOT (ZEROP X))
(NOT (LESSP X Y))))

191. Theorem RECURSION.BY.QUOTIENT (induction):

(IMPLIES (AND (NUMBERP I)
(NOT (EQUAL I 0))
(NUMBERP J)
(NOT (EQUAL J 0))
(NOT (EQUAL J 1)))

(LESSP (QUOTIENT I J) I))
192. Definition

(POWER.REP I BASE)
=

(IF
(ZEROP I)
‘‘NIL’’
(IF (ZEROP BASE)

(CONS I ‘‘NIL’’)
(IF (EQUAL BASE 1)

(CONS I ‘‘NIL’’)
(CONS (REMAINDER I BASE)

(POWER.REP (QUOTIENT I BASE) BASE)))))
193. Theorem POWER.EVAL.POWER.REP (rewrite):

(EQUAL (POWER.EVAL (POWER.REP I BASE) BASE)
(FIX I))

194. Theorem CORRECTNESS.OF.BIG.PLUS (rewrite):

(EQUAL (POWER.EVAL (BIG.PLUS (POWER.REP I BASE)
(POWER.REP J BASE)
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0 BASE)
BASE)

(PLUS I J))
195. Definition

(SGCD X Y I)
=

(IF (ZEROP I)
0
(IF (ZEROP (REMAINDER X I))

(IF (ZEROP (REMAINDER Y I))
I
(SGCD X Y (SUB1 I)))

(SGCD X Y (SUB1 I))))
196. Definition

(GCD X Y)
=

(IF (ZEROP X)
(FIX Y)
(IF (ZEROP Y)

X
(IF (LESSP X Y)

(GCD X (DIFFERENCE Y X))
(GCD (DIFFERENCE X Y) Y))))

197. Theorem LESSP.NOT.COMMUTATIVE (rewrite):

(IMPLIES (LESSP Y X)
(NOT (LESSP X Y)))

198. Theorem COMMUTATIVITY.OF.GCD (rewrite):

(EQUAL (GCD X Y) (GCD Y X))
199. Theorem SGCD.X.0.X (rewrite):

(EQUAL (SGCD X 0 X) (FIX X))
200. Theorem SGCD.X.X.X (rewrite):

(EQUAL (SGCD X X X) (FIX X))
201. Theorem COMMUTATIVITY.OF.SGCD (rewrite):

(EQUAL (SGCD X Y Z) (SGCD Y X Z))
202. Theorem RECURSION.BY.REMAINDER (induction):

(IMPLIES (AND (NUMBERP Y)
(NOT (EQUAL Y 0))
(LESSP Y X))

(LESSP (REMAINDER X Y) X))
203. Definition
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(NTHCHAR N STR)
=

(CAR (NTH STR N))
204. Theorem ELEMENT.APPEND:

(EQUAL (NTH A I)
(NTH (APPEND C A)

(PLUS I (LENGTH C))))
205. Theorem NTH.APPEND (rewrite):

(EQUAL (NTH (APPEND A B) I)
(APPEND (NTH A I)

(NTH B (DIFFERENCE I (LENGTH A)))))
206. Theorem PLUS.NEQUAL.X (rewrite):

(NOT (EQUAL (ADD1 (PLUS X Y)) X))
207. Theorem NEQUAL.PLUS.ADD1 (rewrite):

(NOT (EQUAL (ADD1 (PLUS Y X)) X))
208. Theorem DIFFERENCE.PLUS (rewrite):

(EQUAL (DIFFERENCE (PLUS X Y) X)
(FIX Y))

209. Theorem PLUS.DIFFERENCE3 (rewrite):

(EQUAL (DIFFERENCE (PLUS X Y) (PLUS X Z))
(DIFFERENCE Y Z))

210. Theorem TIMES.DIFFERENCE (rewrite):

(EQUAL (DIFFERENCE (TIMES C X) (TIMES W X))
(TIMES X (DIFFERENCE C W)))

211. Definition

(DIVIDES X Y)
=

(ZEROP (REMAINDER Y X))
212. Theorem DIVIDES.TIMES (rewrite):

(EQUAL (REMAINDER (TIMES X Z) Z) 0)
213. Theorem DIFFERENCE.PLUS2 (rewrite):

(EQUAL (DIFFERENCE (PLUS B (PLUS A C)) A)
(PLUS B C))

214. Theorem EQUAL.DIFFERENCE (rewrite):

(EQUAL (EQUAL X (DIFFERENCE Y K))
(IF (LESSP K Y)

(IF (NUMBERP X)
(IF (NUMBERP Y)

(EQUAL Y (PLUS X K))
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(EQUAL X 0))
F)

(EQUAL X 0)))
215. Theorem DIFFERENCE.ADD1.CANCELLATION (rewrite):

(EQUAL (DIFFERENCE (ADD1 (PLUS Y Z)) Z)
(ADD1 Y))

216. Theorem REMAINDER.ADD1 (rewrite):

(IMPLIES (AND (NOT (ZEROP Y))
(NOT (EQUAL Y 1)))

(NOT (EQUAL (REMAINDER (ADD1 (TIMES X Y)) Y)
0)))

217. Theorem DIVIDES.PLUS.REWRITE1 (rewrite):

(IMPLIES (AND (EQUAL (REMAINDER X Z) 0)
(EQUAL (REMAINDER Y Z) 0))

(EQUAL (REMAINDER (PLUS X Y) Z) 0))
218. Theorem DIVIDES.PLUS.REWRITE2 (rewrite):

(IMPLIES (AND (EQUAL (REMAINDER X Z) 0)
(NOT (EQUAL (REMAINDER Y Z) 0)))

(NOT (EQUAL (REMAINDER (PLUS X Y) Z) 0)))
219. Theorem DIVIDES.PLUS.REWRITE (rewrite):

(IMPLIES (EQUAL (REMAINDER X Z) 0)
(EQUAL (EQUAL (REMAINDER (PLUS X Y) Z) 0)

(EQUAL (REMAINDER Y Z) 0)))
220. Theorem DIVIDES.PLUS.REWRITE.COMMUTED (rewrite):

(IMPLIES (EQUAL (REMAINDER X Z) 0)
(EQUAL (EQUAL (REMAINDER (PLUS Y X) Z) 0)

(EQUAL (REMAINDER Y Z) 0)))
221. Theorem LESSP.DIFFERENCE2 (rewrite):

(EQUAL (EQUAL (DIFFERENCE X Y) 0)
(NOT (LESSP Y X)))

222. Theorem DIFFERENCE.ELIM (elimination):

(IMPLIES (AND (NUMBERP Y) (LESSEQP X Y))
(EQUAL (PLUS X (DIFFERENCE Y X)) Y))

223. Theorem LESSP.PLUS.CANCELLATION (rewrite):

(EQUAL (LESSP (PLUS X Y) (PLUS X Z))
(LESSP Y Z))

224. Theorem LESSP.PLUS.CANCELATION2 (rewrite):

(EQUAL (LESSP (PLUS X Y) (PLUS Z X))
(LESSP Y Z))

225. Theorem EUCLID (rewrite):
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(IMPLIES (EQUAL (REMAINDER X Z) 0)
(EQUAL (EQUAL (REMAINDER (DIFFERENCE Y X) Z)

0)
(IF (LESSP X Y)

(EQUAL (REMAINDER Y Z) 0)
T)))

226. Theorem LESSP.TIMES.CANCELLATION (rewrite):

(EQUAL (LESSP (TIMES X Z) (TIMES Y Z))
(AND (NOT (ZEROP Z)) (LESSP X Y)))

227. Theorem DISTRIBUTIVITY.OF.TIMES.OVER.GCD (rewrite):

(EQUAL (GCD (TIMES X Z) (TIMES Y Z))
(TIMES Z (GCD X Y)))

228. Theorem GCD.DIVIDES.BOTH (rewrite):

(AND (EQUAL (REMAINDER X (GCD X Y)) 0)
(EQUAL (REMAINDER Y (GCD X Y)) 0))

229. Theorem GCD.IS.THE.GREATEST:

(IMPLIES (AND (NOT (ZEROP X))
(NOT (ZEROP Y))
(DIVIDES Z X)
(DIVIDES Z Y))

(LESSEQP Z (GCD X Y)))
230. Shell Definition.

Add the shell CONS.IF of three arguments with
recognizer IF.EXPRP,
accessors TEST, LEFT.BRANCH, and RIGHT.BRANCH,
default values ‘‘NIL’’, ‘‘NIL’’, and ‘‘NIL’’, and
well-founded relation TEST.LEFT.BRANCH.RIGHT.BRANCHP.

231. Definition

(ASSIGNMENT VAR ALIST)
=

(IF (EQUAL VAR T)
T
(IF (EQUAL VAR F)

F
(IF (NLISTP ALIST)

F
(IF (EQUAL VAR (CAAR ALIST))

(CDAR ALIST)
(ASSIGNMENT VAR (CDR ALIST))))))

232. Definition

(VALUE X ALIST)
=
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(IF (IF.EXPRP X)
(IF (VALUE (TEST X) ALIST)

(VALUE (LEFT.BRANCH X) ALIST)
(VALUE (RIGHT.BRANCH X) ALIST))

(ASSIGNMENT X ALIST))
233. Definition

(IF.DEPTH X)
=

(IF (IF.EXPRP X)
(ADD1 (IF.DEPTH (TEST X)))
0)

234. Theorem IF.DEPTH.GOES.DOWN (induction):

(IMPLIES
(AND (IF.EXPRP X) (IF.EXPRP (TEST X)))
(LESSP (IF.DEPTH (CONS.IF (TEST (TEST X)) Y Z))

(IF.DEPTH X)))
235. Definition

(IF.COMPLEXITY X)
=

(IF (IF.EXPRP X)
(TIMES (IF.COMPLEXITY (TEST X))

(PLUS (IF.COMPLEXITY (LEFT.BRANCH X))
(IF.COMPLEXITY (RIGHT.BRANCH X))))

1)
236. Theorem IF.COMPLEXITY.NOT.0 (rewrite):

(NOT (EQUAL (IF.COMPLEXITY X) 0))
237. Theorem LESSP.D.V (rewrite):

(IMPLIES (AND (NOT (ZEROP D))
(NOT (ZEROP V))
(NOT (ZEROP Z)))

(LESSP V
(PLUS (TIMES D V) (TIMES D Z))))

238. Theorem IF.COMPLEXITY.GOES.DOWN1 (induction):

(IMPLIES (IF.EXPRP X)
(LESSP (IF.COMPLEXITY (LEFT.BRANCH X))

(IF.COMPLEXITY X)))
239. Theorem IF.COMPLEXITY.GOES.DOWN2 (induction):

(IMPLIES (IF.EXPRP X)
(LESSP (IF.COMPLEXITY (RIGHT.BRANCH X))

(IF.COMPLEXITY X)))
240. Theorem IF.COMPLEXITY.STAYS.EVEN (induction):
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(IMPLIES
(AND (IF.EXPRP X) (IF.EXPRP (TEST X)))
(EQUAL
(IF.COMPLEXITY

(CONS.IF (TEST (TEST X))
(CONS.IF (LEFT.BRANCH (TEST X))

(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))))

(IF.COMPLEXITY X)))
241. Definition

(NORMALIZE X)
=

(IF
(IF.EXPRP X)
(IF
(IF.EXPRP (TEST X))
(NORMALIZE (CONS.IF (TEST (TEST X))

(CONS.IF (LEFT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))

(CONS.IF (RIGHT.BRANCH (TEST X))
(LEFT.BRANCH X)
(RIGHT.BRANCH X))))

(CONS.IF (TEST X)
(NORMALIZE (LEFT.BRANCH X))
(NORMALIZE (RIGHT.BRANCH X))))

X)
242. Definition

(NORMALIZED.IF.EXPRP X)
=

(IF (IF.EXPRP X)
(AND (NOT (IF.EXPRP (TEST X)))

(NORMALIZED.IF.EXPRP (LEFT.BRANCH X))
(NORMALIZED.IF.EXPRP (RIGHT.BRANCH X)))

T)
243. Definition

(ASSIGNEDP VAR ALIST)
=

(IF (EQUAL VAR T)
T
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(IF (EQUAL VAR F)
T
(IF (NLISTP ALIST)

F
(IF (EQUAL VAR (CAAR ALIST))

T
(ASSIGNEDP VAR (CDR ALIST))))))

244. Definition

(ASSUME.TRUE VAR ALIST)
=

(CONS (CONS VAR T) ALIST)
245. Definition

(ASSUME.FALSE VAR ALIST)
=

(CONS (CONS VAR F) ALIST)
246. Definition

(TAUTOLOGYP X ALIST)
=

(IF
(IF.EXPRP X)
(IF (ASSIGNEDP (TEST X) ALIST)

(IF (ASSIGNMENT (TEST X) ALIST)
(TAUTOLOGYP (LEFT.BRANCH X) ALIST)
(TAUTOLOGYP (RIGHT.BRANCH X) ALIST))

(AND (TAUTOLOGYP (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(TAUTOLOGYP (RIGHT.BRANCH X)
(AS-

SUME.FALSE (TEST X) ALIST))))
(ASSIGNMENT X ALIST))

247. Theorem ASSIGNMENT.APPEND (rewrite):

(EQUAL (ASSIGNMENT X (APPEND A B))
(IF (ASSIGNEDP X A)

(ASSIGNMENT X A)
(ASSIGNMENT X B)))

248. Theorem VALUE.CAN.IGNORE.REDUNDANT.ASSIGN-

MENTS (rewrite):
(AND

(IMPLIES (AND (IFF VAL (ASSIGNMENT VAR A))
(VALUE X A))

(VALUE X (CONS (CONS VAR VAL) A)))
(IMPLIES (AND (IFF VAL (ASSIGNMENT VAR A))
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(NOT (VALUE X A)))
(NOT (VALUE X (CONS (CONS VAR VAL) A)))))

249. Theorem VALUE.SHORT.CUT (rewrite):

(IMPLIES (AND (IF.EXPRP X)
(NORMALIZED.IF.EXPRP X))

(EQUAL (VALUE (TEST X) A)
(ASSIGNMENT (TEST X) A)))

250. Theorem ASSIGNMENT.IMPLIES.ASSIGNEDP (rewrite):

(IMPLIES (ASSIGNMENT X A)
(ASSIGNEDP X A))

251. Theorem TAUTOLOGYP.IS.SOUND (rewrite):

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(TAUTOLOGYP X A1))

(VALUE X (APPEND A1 A2)))
252. Definition

(TAUTOLOGY.CHECKER X)
=

(TAUTOLOGYP (NORMALIZE X) ‘‘NIL’’)
253. Definition

(FALSIFY1 X ALIST)
=

(IF (IF.EXPRP X)
(IF (ASSIGNEDP (TEST X) ALIST)

(IF (ASSIGNMENT (TEST X) ALIST)
(FALSIFY1 (LEFT.BRANCH X) ALIST)
(FALSIFY1 (RIGHT.BRANCH X) ALIST))

(IF (FALSIFY1 (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(FALSIFY1 (LEFT.BRANCH X)
(ASSUME.TRUE (TEST X) ALIST))

(FALSIFY1 (RIGHT.BRANCH X)
(AS-

SUME.FALSE (TEST X) ALIST))))
(IF (ASSIGNEDP X ALIST)

(IF (ASSIGNMENT X ALIST) F ALIST)
(CONS (CONS X F) ALIST)))

254. Definition

(FALSIFY X)
=

(FALSIFY1 (NORMALIZE X) ‘‘NIL’’)
255. Theorem FALSIFY1.EXTENDS.MODELS (rewrite):
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(IMPLIES (ASSIGNEDP X A)
(EQUAL (ASSIGNMENT X (FALSIFY1 Y A))

(IF (FALSIFY1 Y A)
(ASSIGNMENT X A)
(EQUAL X T))))

256. Theorem FALSIFY1.FALSIFIES (rewrite):

(IMPLIES (AND (NORMALIZED.IF.EXPRP X)
(FALSIFY1 X A))

(EQUAL (VALUE X (FALSIFY1 X A)) F))
257. Theorem TAUTOLOGYP.FAILS.MEANS.FALSI-

FY1.WINS (rewrite):
(IMPLIES (AND (NORMALIZED.IF.EXPRP X)

(NOT (TAUTOLOGYP X A))
A)

(FALSIFY1 X A))
258. Theorem NORMALIZE.IS.SOUND (rewrite):

(EQUAL (VALUE (NORMALIZE X) A)
(VALUE X A))

259. Theorem NORMALIZE.NORMALIZES (rewrite):

(NORMALIZED.IF.EXPRP (NORMALIZE X))
260. Theorem TAUTOLOGY.CHECK-

ER.COMPLETENESS.BRIDGE (rewrite):
(IMPLIES (AND (EQUAL (VALUE Y (FALSIFY1 X A))

(VALUE X (FALSIFY1 X A)))
(FALSIFY1 X A)
(NORMALIZED.IF.EXPRP X))

(EQUAL (VALUE Y (FALSIFY1 X A)) F))
261. Theorem TAUTOLOGY.CHECKER.IS.COMPLETE:

(IMPLIES (NOT (TAUTOLOGY.CHECKER X))
(EQUAL (VALUE X (FALSIFY X)) F))

262. Theorem TAUTOLOGY.CHECK-

ER.SOUNDNESS.BRIDGE (rewrite):
(IMPLIES (AND (TAUTOLOGYP Y A1)

(NORMALIZED.IF.EXPRP Y)
(EQUAL (VALUE X A2)

(VALUE Y (APPEND A1 A2))))
(VALUE X A2))

263. Theorem TAUTOLOGY.CHECKER.IS.SOUND:

(IMPLIES (TAUTOLOGY.CHECKER X)
(VALUE X A))

264. Theorem FLATTEN.SINGLETON (rewrite):
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(EQUAL (EQUAL (FLATTEN X) (CONS Y ‘‘NIL’’))
(AND (NLISTP X) (EQUAL X Y)))

265. Definition

(LEFTCOUNT X)
=

(IF (NLISTP X)
0
(ADD1 (LEFTCOUNT (CAR X))))

266. Theorem LEFTCOUNT.GOES.DOWN (induction):

(IMPLIES
(AND (LISTP X) (LISTP (CAR X)))
(LESSP (LEFTCOUNT (CONS (CAAR X)

(CONS (CDAR X) (CDR X))))
(LEFTCOUNT X)))

267. Definition

(GOPHER X)
=

(IF (OR (NLISTP X) (NLISTP (CAR X)))
X
(GOPHER (CONS (CAAR X)

(CONS (CDAR X) (CDR X)))))
268. Theorem GOPHER.PRESERVES.COUNT (induction):

(EQUAL (COUNT (GOPHER X)) (COUNT X))
269. Definition

(SAMEFRINGE X Y)
=

(IF (OR (NLISTP X) (NLISTP Y))
(EQUAL X Y)
(AND (EQUAL (CAR (GOPHER X))

(CAR (GOPHER Y)))
(SAMEFRINGE (CDR (GOPHER X))

(CDR (GOPHER Y)))))
270. Theorem LISTP.GOPHER (rewrite):

(EQUAL (LISTP (GOPHER X)) (LISTP X))
271. Theorem GOPHER.RETURNS.LEFTMOST.ATOM (rewrite):

(EQUAL (CAR (GOPHER X))
(IF (LISTP X)

(CAR (FLATTEN X))
‘‘NIL’’))

272. Theorem GOPHER.RETURNS.CORRECT.STATE (rewrite):

(EQUAL (FLATTEN (CDR (GOPHER X)))
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(IF (LISTP X)
(CDR (FLATTEN X))
(CONS ‘‘NIL’’ ‘‘NIL’’)))

273. Theorem CORRECTNESS.OF.SAMEFRINGE (rewrite):

(EQUAL (SAMEFRINGE X Y)
(EQUAL (FLATTEN X) (FLATTEN Y)))

274. Definition

(PRIME1 X Y)
=

(IF (ZEROP Y)
F
(IF (EQUAL Y 1)

T
(AND (NOT (DIVIDES Y X))

(PRIME1 X (SUB1 Y)))))
275. Definition

(PRIME X)
=

(AND (NOT (ZEROP X))
(NOT (EQUAL X 1))
(PRIME1 X (SUB1 X)))

276. Definition

(GREATEST.FACTOR X Y)
=

(IF (OR (ZEROP Y) (EQUAL Y 1))
X
(IF (DIVIDES Y X)

Y
(GREATEST.FACTOR X (SUB1 Y))))

277. Definition

(ID X)
=

(IF (ZEROP X) X (ADD1 (ID (SUB1 X))))
278. Theorem LESSP.ID2 (rewrite):

(IMPLIES (NOT (LESSP X Y))
(NOT (LESSP X (ID Y))))

279. Theorem GREATEST.FACTOR.LESSP (rewrite):

(IMPLIES (AND (LESSP Y (ID X))
(NOT (PRIME1 X Y))
(NOT (ZEROP X))
(NOT (EQUAL X 1))
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(NOT (ZEROP Y)))
(LESSP (GREATEST.FACTOR X Y) X))

280. Theorem GREATEST.FACTOR.DIVIDES (rewrite):

(IMPLIES (AND (LESSP Y (ID X))
(NOT (PRIME1 X Y))
(NOT (ZEROP X))
(NOT (EQUAL X 1))
(NOT (ZEROP Y)))

(EQUAL (REMAINDER X (GREATEST.FACTOR X Y))
0))

281. Theorem LESSP.ID3 (rewrite):

(IMPLIES (LESSP X Y) (LESSP X (ID Y)))
282. Theorem GREATEST.FACTOR.LESSP.IND (induction):

(IMPLIES (AND (LESSP Y X)
(NOT (PRIME1 X Y))
(NOT (ZEROP X))
(NOT (EQUAL X 1))
(NOT (ZEROP Y)))

(LESSP (COUNT (GREATEST.FACTOR X Y))
(COUNT X)))

283. Theorem GREATEST.FACTOR.0 (rewrite):

(EQUAL (EQUAL (GREATEST.FACTOR X Y) 0)
(AND (OR (ZEROP Y) (EQUAL Y 1))

(EQUAL X 0)))
284. Theorem GREATEST.FACTOR.1 (rewrite):

(EQUAL (EQUAL (GREATEST.FACTOR X Y) 1)
(EQUAL X 1))

285. Theorem NUMBERP.GREATEST.FACTOR (rewrite):

(EQUAL (NUMBERP (GREATEST.FACTOR X Y))
(NOT (AND (OR (ZEROP Y) (EQUAL Y 1))

(NOT (NUMBERP X)))))
286. Definition

(PRIME.FACTORS X)
=

(IF
(OR (ZEROP X) (EQUAL (SUB1 X) 0))
‘‘NIL’’
(IF
(PRIME1 X (SUB1 X))
(CONS X ‘‘NIL’’)
(APPEND
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(PRIME.FACTORS (GREATEST.FACTOR X (SUB1 X)))
(PRIME.FACTORS

(QUOTIENT X
(GREATEST.FAC-

TOR X (SUB1 X)))))))
287. Definition

(PRIME.LIST L)
=

(IF (NLISTP L)
T
(AND (PRIME (CAR L))

(PRIME.LIST (CDR L))))
288. Definition

(TIMES.LIST L)
=

(IF (NLISTP L)
1
(TIMES (CAR L) (TIMES.LIST (CDR L))))

289. Theorem TIMES.LIST.APPEND (rewrite):

(EQUAL (TIMES.LIST (APPEND X Y))
(TIMES (TIMES.LIST X) (TIMES.LIST Y)))

290. Theorem PRIME.LIST.APPEND (rewrite):

(EQUAL (PRIME.LIST (APPEND X Y))
(AND (PRIME.LIST X) (PRIME.LIST Y)))

291. Theorem PRIME.LIST.PRIME.FACTORS (rewrite):

(PRIME.LIST (PRIME.FACTORS X))
292. Theorem QUOTIENT.TIMES1 (rewrite):

(IMPLIES (AND (NUMBERP Y)
(NUMBERP X)
(NOT (EQUAL X 0))
(DIVIDES X Y))

(EQUAL (TIMES X (QUOTIENT Y X)) Y))
293. Theorem QUOTIENT.LESSP (rewrite):

(IMPLIES (AND (NOT (ZEROP X)) (LESSP X Y))
(NOT (EQUAL (QUOTIENT Y X) 0)))

294. Theorem ID.ADD1 (rewrite):

(EQUAL (ID (ADD1 X)) (ADD1 (ID X)))
295. Theorem LESSP.ADD1.ID (rewrite):

(LESSP X (ADD1 (ID X)))
296. Theorem ENOUGH.FACTORS (rewrite):
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(IMPLIES (NOT (ZEROP X))
(EQUAL (TIMES.LIST (PRIME.FACTORS X))

X))
297. Theorem PRIME.FACTORIZATION.EXISTENCE:

(IMPLIES (NOT (ZEROP X))
(AND (EQUAL (TIMES.LIST (PRIME.FACTORS X))

X)
(PRIME.LIST (PRIME.FACTORS X))))

298. Theorem PRIME.KRUTCH (rewrite):

(IMPLIES (AND (LESSP X Z)
(NOT (EQUAL Z (ADD1 X))))

(NOT (LESSP Z (ADD1 X))))
299. Theorem PRIME.BRIDGE (rewrite):

(IMPLIES
(AND (EQUAL (REMAINDER (ADD1 X) Z) 0)

(NOT (EQUAL Z (ADD1 X)))
(NOT (PRIME1 (ADD1 X)

(PLUS (DIFFERENCE X Z) Z))))
(NOT (PRIME1 (ADD1 X) X)))

300. Theorem PRIME1.BASIC (rewrite):

(IMPLIES (AND (NOT (EQUAL Z 1))
(NOT (EQUAL Z (ADD1 X)))
(EQUAL (REMAINDER (ADD1 X) Z) 0))

(NOT (PRIME1 (ADD1 X) (PLUS Z L))))
301. Theorem PRIME.BASIC (rewrite):

(IMPLIES (AND (NOT (EQUAL Z 1))
(NOT (EQUAL Z X))
(DIVIDES Z X))

(NOT (PRIME1 X (SUB1 X))))
302. Theorem REMAINDER.GCD (rewrite):

(IMPLIES (EQUAL (GCD B X) Y)
(EQUAL (REMAINDER B Y) 0))

303. Theorem REMAINDER.GCD.1 (rewrite):

(IMPLIES (NOT (EQUAL (REMAINDER B X) 0))
(NOT (EQUAL (GCD B X) X)))

304. Theorem DIVIDES.TIMES1 (rewrite):

(IMPLIES (EQUAL A (TIMES Z Y))
(EQUAL (REMAINDER A Z) 0))

305. Theorem TIMES.IDENTITY (rewrite):

(IMPLIES (EQUAL Y 1)



378APPENDIX A. DEFINITIONS ACCEPTED AND THEOREMS PROVED BY OUR SYSTEM

(EQUAL (EQUAL X (TIMES X Y))
(NUMBERP X)))

306. Theorem KLUDGE.BRIDGE (rewrite):

(IMPLIES (EQUAL Y (TIMES K X))
(EQUAL (GCD Y (TIMES A X))

(TIMES X (GCD A K))))
307. Theorem HACK1 (rewrite):

(IMPLIES (AND (NOT (DIVIDES X A))
(EQUAL A

(GCD (TIMES X A) (TIMES B A))))
(NOT (EQUAL (TIMES K X) (TIMES B A))))

308. Theorem PRIME.GCD (rewrite):

(IMPLIES (AND (NOT (DIVIDES X B))
(PRIME1 X (SUB1 X)))

(EQUAL (EQUAL (GCD B X) 1) T))
309. Theorem PRIME.KEY (rewrite):

(IMPLIES (AND (NUMBERP Z)
(PRIME X)
(NOT (DIVIDES X Z))
(NOT (DIVIDES X B)))

(NOT (EQUAL (TIMES X K) (TIMES B Z))))
310. Theorem QUOTIENT.DIVIDES (rewrite):

(IMPLIES
(AND (NUMBERP Y)

(NOT (EQUAL (TIMES X (QUOTIENT Y X)) Y)))
(NOT (EQUAL (REMAINDER Y X) 0)))

311. Theorem LITTLE.STEP (rewrite):

(IMPLIES (AND (PRIME X)
(NOT (EQUAL Y 1))
(NOT (EQUAL X Y)))

(NOT (EQUAL (REMAINDER X Y) 0)))
312. Definition

(DELETE X L)
=

(IF (NLISTP L)
L
(IF (EQUAL X (CAR L))

(CDR L)
(CONS (CAR L) (DELETE X (CDR L)))))

313. Definition

(PERM A B)
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=
(IF (NLISTP A)

(NLISTP B)
(AND (MEMBER (CAR A) B)

(PERM (CDR A) (DELETE (CAR A) B))))
314. Theorem REMAINDER.TIMES (rewrite):

(EQUAL (REMAINDER (TIMES Y X) Y) 0)
315. Theorem PRIME.LIST.DELETE (rewrite):

(IMPLIES (PRIME.LIST L2)
(PRIME.LIST (DELETE X L2)))

316. Theorem DIVIDES.TIMES.LIST (rewrite):

(IMPLIES (AND (NOT (ZEROP C)) (MEMBER C L))
(EQUAL (REMAINDER (TIMES.LIST L) C)

0))
317. Theorem QUOTIENT.TIMES (rewrite):

(EQUAL (QUOTIENT (TIMES Y X) Y)
(IF (ZEROP Y) 0 (FIX X)))

318. Theorem DISTRIBUTIVITY.OF.DIVIDES (rewrite):

(IMPLIES (AND (NOT (ZEROP A)) (DIVIDES A W))
(EQUAL (TIMES C (QUOTIENT W A))

(QUOTIENT (TIMES C W) A)))
319. Theorem TIMES.LIST.DELETE (rewrite):

(IMPLIES (AND (NOT (ZEROP C)) (MEMBER C L))
(EQUAL (TIMES.LIST (DELETE C L))

(QUOTIENT (TIMES.LIST L) C)))
320. Theorem PRIME.LIST.TIMES.LIST (rewrite):

(IMPLIES (AND (PRIME C)
(PRIME.LIST L2)
(NOT (MEMBER C L2)))

(NOT (EQUAL (REMAINDER (TIMES.LIST L2) C)
0)))

321. Theorem IF.TIMES.THEN.DIVIDES (rewrite):

(IMPLIES (AND (NOT (ZEROP C))
(NOT (DIVIDES C X)))

(NOT (EQUAL (TIMES C Y) X)))
322. Theorem PRIME.MEMBER (rewrite):

(IMPLIES (AND (PRIME C)
(PRIME.LIST L2)
(EQUAL (TIMES C (TIMES.LIST L1))

(TIMES.LIST L2)))
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(MEMBER C L2))
323. Theorem DIVIDES.IMPLIES.TIMES (rewrite):

(IMPLIES (AND (NOT (ZEROP A))
(NUMBERP C)
(EQUAL (TIMES A C) B))

(EQUAL (EQUAL C (QUOTIENT B A)) T))
324. Theorem TIMES.EQUAL.1 (rewrite):

(EQUAL (EQUAL (TIMES A B) 1)
(AND (NOT (EQUAL A 0))

(NOT (EQUAL B 0))
(NUMBERP A)
(NUMBERP B)
(EQUAL (SUB1 A) 0)
(EQUAL (SUB1 B) 0)))

325. Theorem PRIME.FACTORIZATION.UNIQUENESS:

(IMPLIES (AND (PRIME.LIST L1)
(PRIME.LIST L2)
(EQUAL (TIMES.LIST L1)

(TIMES.LIST L2)))
(PERM L1 L2))

326. Definition

(MAXIMUM L)
=

(IF (NLISTP L)
0
(IF (LESSP (CAR L) (MAXIMUM (CDR L)))

(MAXIMUM (CDR L))
(CAR L)))

327. Theorem MEMBER.MAXIMUM (rewrite):

(IMPLIES (LISTP X)
(MEMBER (MAXIMUM X) X))

328. Theorem LESSP.DELETE.REWRITE (rewrite):

(EQUAL (LESSP (LENGTH (DELETE X L))
(LENGTH L))

(MEMBER X L))
329. Theorem LESSP.LENGTH (induction):

(IMPLIES (LISTP L)
(LESSP (LENGTH (DELETE (MAXIMUM L) L))

(LENGTH L)))
330. Definition

(ORDERED2 L)
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=
(IF (LISTP L)

(IF (LISTP (CDR L))
(IF (LESSP (CAR L) (CADR L))

F
(ORDERED2 (CDR L)))

T)
T)

331. Definition

(DSORT L)
=

(IF (NLISTP L)
‘‘NIL’’
(CONS (MAXIMUM L)

(DSORT (DELETE (MAXIMUM L) L))))
332. Definition

(ADDTOLIST2 X L)
=

(IF (LISTP L)
(IF (LESSP X (CAR L))

(CONS (CAR L) (ADDTOLIST2 X (CDR L)))
(CONS X L))

(CONS X ‘‘NIL’’))
333. Definition

(SORT2 L)
=

(IF (NLISTP L)
‘‘NIL’’
(ADDTOLIST2 (CAR L) (SORT2 (CDR L))))

334. Theorem SORT2.GEN.1 (rewrite):

(PLISTP (SORT2 X))
335. Theorem SORT2.GEN.2 (rewrite):

(ORDERED2 (SORT2 X))
336. Theorem SORT2.GEN (generalize):

(AND (PLISTP (SORT2 X))
(ORDERED2 (SORT2 X)))

337. Theorem ADDTOLIST2.DELETE (rewrite):

(IMPLIES (AND (PLISTP Y)
(ORDERED2 Y)
(NOT (EQUAL X V)))

(EQUAL (ADDTOLIST2 V (DELETE X Y))
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(DELETE X (ADDTOLIST2 V Y))))
338. Theorem DELETE.ADDTOLIST2 (rewrite):

(IMPLIES (PLISTP Y)
(EQUAL (DELETE V (ADDTOLIST2 V Y)) Y))

339. Theorem ADDTOLIST2.KLUDGE (rewrite):

(IMPLIES (AND (NOT (LESSP V W))
(EQUAL (ADDTOLIST2 V Y) (CONS V Y)))

(EQUAL (ADDTOLIST2 V (ADDTOLIST2 W Y))
(CONS V (ADDTOLIST2 W Y))))

340. Theorem LESSP.MAXIMUM.ADDTOLIST2 (rewrite):

(IMPLIES (NOT (LESSP V (MAXIMUM Z)))
(EQUAL (ADDTOLIST2 V (SORT2 Z))

(CONS V (SORT2 Z))))
341. Theorem SORT2.DELETE.CONS (rewrite):

(IMPLIES (LISTP X)
(EQUAL (CONS (MAXIMUM X)

(DELETE (MAXIMUM X) (SORT2 X)))
(SORT2 X)))

342. Theorem SORT2.DELETE (rewrite):

(EQUAL (SORT2 (DELETE X L))
(DELETE X (SORT2 L)))

343. Theorem DSORT.SORT2 (rewrite):

(EQUAL (DSORT X) (SORT2 X))
344. Theorem COUNT.LIST.SORT2:

(EQUAL (COUNT.LIST A (SORT2 L))
(COUNT.LIST A L))

345. Theorem LESSP.PLUS.SUB1 (rewrite):

(NOT (LESSP (PLUS Y Z) (SUB1 Z)))
346. Undefined Function.

(DECREMENTP X)
347. Undefined Function.

(MEASURE X)
348. Undefined Function.

(DECREMENT X)
349. Axiom PK (induction):

(IMPLIES (NOT (DECREMENTP X))
(LESSP (MEASURE (DECREMENT X))

(MEASURE X)))
350. Undefined Function.

(FIDDLE X)
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351. Definition

(FIDDLE.DOWN X Y)
=

(IF (DECREMENTP X)
Y
(FIDDLE (FIDDLE.DOWN (DECREMENT X) Y)))

352. Definition

(FIDDLE.DOWN.2 X Y)
=

(IF (DECREMENTP X)
Y
(FIDDLE.DOWN.2 (DECREMENT X)

(FIDDLE Y)))
353. Theorem FIDDLE.EQUAL:

(EQUAL (FIDDLE.DOWN X Y)
(FIDDLE.DOWN.2 X Y))

354. Theorem PLUS.CANCELLATION (rewrite):

(EQUAL (EQUAL (PLUS X Y) (PLUS X Z))
(EQP Y Z))

355. Definition

(MATCH PAT STR)
=

(IF (LISTP PAT)
(IF (LISTP STR)

(IF (EQUAL (CAR PAT) (CAR STR))
(MATCH (CDR PAT) (CDR STR))
F)

F)
T)

356. Definition

(STRPOS PAT STR)
=

(IF (MATCH PAT STR)
0
(IF (LISTP STR)

(ADD1 (STRPOS PAT (CDR STR)))
0))

357. Definition

(DELTA1 CHAR PAT)
=

(STRPOS (CONS CHAR ‘‘NIL’’)
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(REVERSE PAT))
358. Definition

(TOP.ASSERT PAT STR I PATLEN STRLEN PAT* STR*)
=

(AND (EQUAL PAT PAT*)
(EQUAL STR STR*)
(EQUAL PATLEN (LENGTH PAT))
(LISTP PAT)
(EQUAL STRLEN (LENGTH STR))
(NUMBERP I)
(LESSEQP (SUB1 PATLEN) I)
(LESSP I

(PLUS PATLEN (STRPOS PAT STR))))
359. Definition

(LOOP.ASSERT PAT STR I J PATLEN STRLEN NEXTI PAT* STR*)
=

(AND (TOP.ASSERT PAT STR
(SUB1 NEXTI)
PATLEN STRLEN PAT* STR*)

(NUMBERP I)
(NUMBERP J)
(NUMBERP NEXTI)
(LESSP J PATLEN)
(LESSP I STRLEN)
(EQUAL NEXTI

(PLUS PATLEN (DIFFERENCE I J)))
(LESSEQP NEXTI STRLEN)
(LESSEQP J I)
(MATCH (NTH PAT (ADD1 J))

(NTH STR (ADD1 I))))
360. Theorem ZEROP.LENGTH (rewrite):

(EQUAL (EQUAL (LENGTH X) 0)
(NOT (LISTP X)))

361. Theorem FSTRPOS.VC1:

(IMPLIES (EQUAL (LENGTH PAT*) 0)
(EQUAL 0 (STRPOS PAT* STR*)))

362. Theorem SUB1.LESSP.PLUS (rewrite):

(EQUAL (LESSP (SUB1 X) (PLUS X Y))
(IF (ZEROP X) (NOT (ZEROP Y)) T))

363. Theorem FSTRPOS.VC2:

(IMPLIES (NOT (EQUAL (LENGTH PAT*) 0))
(TOP.ASSERT PAT* STR*
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(SUB1 (LENGTH PAT*))
(LENGTH PAT*)
(LENGTH STR*)
PAT* STR*))

364. Theorem MATCH.LENGTHS (rewrite):

(IMPLIES (MATCH X Y)
(NOT (LESSP (LENGTH Y) (LENGTH X))))

365. Theorem MATCH.LENGTHS1 (rewrite):

(IMPLIES (LESSP (LENGTH Y) (LENGTH X))
(NOT (MATCH X Y)))

366. Theorem STRPOS.BOUNDARY.CONDITION (rewrite):

(IMPLIES (NOT (EQUAL (STRPOS PAT STR) (LENGTH STR)))
(NOT (LESSP (LENGTH STR)

(PLUS (LENGTH PAT)
(STRPOS PAT STR)))))

367. Theorem FSTRPOS.VC3:

(IMPLIES (AND (GREATEREQP I STRLEN)
(TOP.ASSERT PAT STR I PATLEN STRLEN

PAT* STR*))
(EQUAL STRLEN (STRPOS PAT* STR*)))

368. Theorem PLUS.DIFFERENCE.SUB1.REWRITE (rewrite):

(EQUAL (PLUS X (DIFFERENCE Y (SUB1 X)))
(IF (ZEROP X)

(FIX Y)
(IF (LESSP Y (SUB1 X))

(FIX X)
(ADD1 Y))))

369. Theorem LISTP.NTH (rewrite):

(EQUAL (LISTP (NTH X I))
(LESSP I (LENGTH X)))

370. Theorem CDR.NTH (rewrite):

(EQUAL (CDR (NTH X Y))
(NTH (CDR X) Y))

371. Theorem STRPOS.EQUAL (rewrite):

(IMPLIES (AND (LESSP I (LENGTH STR))
(NOT (LESSP (STRPOS PAT STR) I))
(NUMBERP I)
(MATCH PAT (NTH STR I)))

(EQUAL (STRPOS PAT STR) I))
372. Theorem VC4.HACK.1 (rewrite):
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(IMPLIES (LESSP I (LENGTH STR))
(NOT (LESSP (SUB1 (LENGTH STR)) I)))

373. Theorem FSTRPOS.VC4:

(IMPLIES (AND (NOT (GREATEREQP I STRLEN))
(TOP.ASSERT PAT STR I PATLEN STRLEN

PAT* STR*))
(LOOP.ASSERT PAT STR I

(SUB1 PATLEN)
PATLEN STRLEN
(ADD1 I)
PAT* STR*))

374. Theorem SWAPPED.PLUS.CANCELLATION (rewrite):

(EQUAL (LESSP (PLUS B A) (PLUS A C))
(LESSP B C))

375. Theorem LESSP.SUB1.PLUS.CANCELLATION (rewrite):

(EQUAL (LESSP (SUB1 (PLUS Y X)) (PLUS X Z))
(IF (ZEROP Y)

(IF (ZEROP X) (NOT (ZEROP Z)) T)
(LESSP (SUB1 Y) Z)))

376. Theorem VC5.HACK1 (rewrite):

(IMPLIES (LESSP (SUB1 I) (STRPOS PAT STR))
(NOT (LESSP (STRPOS PAT STR) I)))

377. Theorem FSTRPOS.VC5:

(IMPLIES (AND (EQUAL J 0)
(EQUAL (NTHCHAR I STR)

(NTHCHAR J PAT))
(LOOP.ASSERT PAT STR I J PATLEN STRLEN

NEXTI PAT* STR*))
(EQUAL I (STRPOS PAT* STR*)))

378. Theorem FSTRPOS.VC6:

(IMPLIES (AND (NOT (EQUAL J 0))
(EQUAL (NTHCHAR I STR)

(NTHCHAR J PAT))
(LOOP.ASSERT PAT STR I J PATLEN STRLEN

NEXTI PAT* STR*))
(LOOP.ASSERT PAT STR

(SUB1 I)
(SUB1 J)
PATLEN STRLEN NEXTI PAT* STR*))

379. Theorem STRPOS.LESSEQP.STRLEN (rewrite):

(NOT (LESSP (LENGTH STR) (STRPOS PAT STR)))
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380. Theorem LESSP.KLUDGE1 (rewrite):

(IMPLIES (NOT (LESSP B A))
(EQUAL (LESSP A (PLUS B C))

(IF (ZEROP C) (LESSP A B) T)))
381. Theorem STRPOS.LIST.APPEND (rewrite):

(EQUAL (STRPOS (CONS C ‘‘NIL’’) (APPEND A B))
(IF (MEMBER C A)

(STRPOS (CONS C ‘‘NIL’’) A)
(PLUS (LENGTH A)

(STRPOS (CONS C ‘‘NIL’’) B))))
382. Theorem STRPOS.LESSEQP.CRUTCH (rewrite):

(IMPLIES (NOT (LESSP (LENGTH Q) (LENGTH P)))
(NOT (LESSP (LENGTH Q) (STRPOS PAT P))))

383. Theorem STRPOS.EQUAL.0 (rewrite):

(EQUAL (EQUAL (STRPOS PAT STR) 0)
(OR (NLISTP STR) (MATCH PAT STR)))

384. Theorem LESSP.KLUDGE2 (rewrite):

(IMPLIES (LESSP I (LENGTH PAT))
(LESSP (SUB1 I)

(PLUS (LENGTH PAT) Z)))
385. Theorem MATCH.IMPLIES.CAR.MEMBER (rewrite):

(IMPLIES (AND (LISTP PAT)
(NOT (MEMBER (CAR STR) PAT)))

(NOT (MATCH PAT STR)))
386. Theorem MATCH.IMPLIES.CAR.MEMBER1 (rewrite):

(IMPLIES (AND (LISTP PAT) (MATCH PAT STR))
(MEMBER (CAR STR) PAT))

387. Theorem MATCH.IMPLIES.MEMBER (rewrite):

(IMPLIES (AND (LESSP I (LENGTH PAT))
(MATCH PAT STR))

(MEMBER (CAR (NTH STR I)) PAT))
388. Theorem DELTA1.LESSP.IFF.MEMBER (rewrite):

(EQUAL (LESSP (STRPOS (CONS CHAR ‘‘NIL’’)
(REVERSE PAT))

(LENGTH PAT))
(MEMBER CHAR PAT))

389. Theorem LESSP.PLUS (rewrite):

(IMPLIES (NOT (LESSP X Z))
(NOT (LESSP (PLUS X Y) Z)))

390. Theorem LESSP.PLUS1 (rewrite):
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(IMPLIES (NOT (LESSP Y Z))
(NOT (LESSP (PLUS X Y) Z)))

391. Theorem MATCH.IMPLIES.DELTA1.OK (rewrite):

(IMPLIES
(AND (MATCH PAT STR)

(LESSP I (LENGTH PAT)))
(LESSP (PLUS I

(STRPOS (CONS (CAR (NTH STR I)) ‘‘NIL’’)
(REVERSE PAT)))

(LENGTH PAT)))
392. Theorem SUB1.LENGTH (rewrite):

(EQUAL (SUB1 (LENGTH X))
(LENGTH (CDR X)))

393. Theorem DELTA1.LEMMA (rewrite):

(IMPLIES
(AND (LISTP PAT)

(LESSP I (LENGTH STR))
(LESSP I

(PLUS (LENGTH PAT) (STRPOS PAT STR))))
(LESSP (PLUS I

(STRPOS (CONS (CAR (NTH STR I)) ‘‘NIL’’)
(REVERSE PAT)))

(PLUS (LENGTH PAT) (STRPOS PAT STR))))
394. Theorem MATCH.EPSILON (rewrite):

(IMPLIES (AND (LESSP J (LENGTH PAT))
(MATCH PAT STR))

(EQUAL (CAR (NTH PAT J))
(CAR (NTH STR J))))

395. Theorem STRPOS.EPSILON (rewrite):

(IMPLIES
(AND (LESSP J (LENGTH PAT))

(LESSP (PLUS J (STRPOS PAT STR))
(LENGTH STR)))

(EQUAL (CAR (NTH STR (PLUS J (STRPOS PAT STR))))
(CAR (NTH PAT J))))

396. Theorem EQ.CHARS.AT.STRPOS (rewrite):

(IMPLIES (AND (NOT (LESSP I J))
(NOT (EQUAL (CAR (NTH STR I))

(CAR (NTH PAT J))))
(LESSP I (LENGTH STR))
(LESSP J (LENGTH PAT)))

(NOT (EQUAL (STRPOS PAT STR)
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(DIFFERENCE I J))))
397. Theorem LESSP.DIFFERENCE.1 (rewrite):

(IMPLIES (LESSP I J)
(EQUAL (DIFFERENCE I J) 0))

398. Theorem LESSP.SUB1.SUB1 (rewrite):

(EQUAL (LESSP (SUB1 (SUB1 X)) X)
(NOT (ZEROP X)))

399. Theorem PLUS.2.NOT (rewrite):

(NOT (EQUAL (ADD1 (ADD1 (PLUS V Z))) V))
400. Theorem LESSP.SUB1.SUB1.PLUS (rewrite):

(EQUAL (LESSP (SUB1 (SUB1 Y)) (PLUS Z Y))
(OR (NOT (ZEROP Z)) (NOT (ZEROP Y))))

401. Theorem LESSP.KLUDGE3 (rewrite):

(EQUAL (LESSP (SUB1 (PLUS L (DIFFERENCE I J)))
I)

(IF (LESSP I J)
(LESSP (SUB1 L) I)
(IF (ZEROP L)

(NOT (ZEROP I))
(NOT (LESSP J L)))))

402. Theorem GT.SUB1 (rewrite):

(NOT (LESSP (PLUS X Y) (SUB1 X)))
403. Theorem LESSP.SUB1.HACK1 (rewrite):

(IMPLIES (AND (NOT (LESSP I J))
(NOT (EQUAL I J))
(NUMBERP J)
(NUMBERP I))

(NOT (LESSP (SUB1 I) J)))
404. Theorem FSTRPOS.VC7:

(IMPLIES
(AND (NOT (EQUAL (NTHCHAR I STR)

(NTHCHAR J PAT)))
(LOOP.ASSERT PAT STR I J PATLEN STRLEN NEXTI

PAT* STR*))
(TOP.ASSERT PAT STR

(IF (LESSP (PLUS I (DELTA1 (NTHCHAR I STR) PAT))
NEXTI)

NEXTI
(PLUS I (DELTA1 (NTHCHAR I STR) PAT)))

PATLEN STRLEN PAT* STR*))



390APPENDIX A. DEFINITIONS ACCEPTED AND THEOREMS PROVED BY OUR SYSTEM



Appendix B

The Implementation of
the Shell Principle

Below we give the axioms added by our theorem prover in re-
sponse to the user command:

add the shell const, of n arguments,
with (optionally, bottom object (btm),)
recognizer r,
accessors ac1, ..., acn,
type restrictions tr1, ..., trn, and
default values dv1, ..., dvn.

Our implementation of the shell principle differs from the formal
presentation in Chapter 3 in two ways. First, we do not actually
require (or allow) the user to specify the name of a new well-
founded relation to be defined for the class. Instead, we axiom-
atize COUNT for the class and add the appropriate induction
lemmas, using COUNT and LESSP. In Chapter 3 we justified
the introduction of COUNT and LESSP. The second difference
between the formal description and our implementation is that
our implementation adds lemmas that are more useful to the
theorem prover than would be the axioms noted in Chapter 3.
For example, certain of the formal axioms are reformulated so
that they are more useful as rewrite rules. In all cases, the lem-
mas added by our implementation follow immediately from the
axioms given in Chapter 3.

Most of the axioms have names. We indicate the names
schematically below. For example, when the CONS shell is

391
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added, the schematic name ac1.const denotes CAR.CONS.
After the name, we indicate in parentheses the “type” of the

axiom (e.g., rewrite, elimination, or induction). No generaliza-
tion lemmas, per se, are added by the shell mechanism; however,
rewrite lemmas encoded as type prescriptions may restrict gen-
eralizations of shell functions since the generalization heuristic
employs type sets.

Axiom r.const (rewrite):

(r (const X1 ... Xn)).
Axiom r.btm (rewrite):

(r (btm)).
Axiom BOOLEAN.r (rewrite):

(OR (EQUAL (r X) T) (EQUAL (r X) F)).
For each i from 1 to n, let tr’i be tri with all
occurrences of Xi replaced by (aci X), and add:

Axiom TYPE.OF.aci (rewrite)

tr’i.
(Observe that all of the above axioms are stored as
type prescriptions.)
For each i from 1 to n, add:

Axiom aci.const (rewrite):

(EQUAL (aci (const X1 ... Xn))
(IF tri Xi dvi)).

Axiom aci.Nr (rewrite):

(IMPLIES (NOT (r X))
(EQUAL (aci X) dvi)).

Axiom aci.TYPE.RESTRICTION (rewrite):

(IMPLIES (NOT tri)
(EQUAL (const X1 ... Xi ... Xn)

(const X1 ... dvi ... Xn))).
Axiom aci.btm (rewrite):

(EQUAL (aci (btm)) dvi).
Axiom aci.LESSP (induction):

(IMPLIES (AND (r X)
(NOT (EQUAL X (btm))))

(LESSP (COUNT (aci X)) (COUNT X))).
Let s be the substitution replacing X1 by Y1, ..., and
Xn by Yn, and let tri/s denote the result of applying s
to tri. Add:
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Axiom const.EQUAL (rewrite):

(EQUAL (EQUAL (const X1 ... Xn) (const Y1 ... Yn))
(AND (IF tr1

(IF tr1/s
(EQUAL X1 Y1)
(EQUAL X1 dv1))

(IF tr1/s
(EQUAL dv1 Y1)
T))

...
(IF trn

(IF trn/s
(EQUAL Xn Yn)
(EQUAL Xn dvn))

(IF trn/s
(EQUAL dvn Yn)
T)))).

Axiom const.ac1. ... .acn (rewrite):

(EQUAL (const (ac1 X) ... (acn X))
(IF (AND (r X)

(NOT (EQUAL X (btm))))
X
(const dv1 ... dvn))).

Axiom ac1/ ... /acn.ELIM (elimination):

(IMPLIES (AND (r X)
(NOT (EQUAL X (btm))))

(EQUAL (const (ac1 X) ... (acn X))
X)).

Axiom COUNT.const (rewrite):

(EQUAL (COUNT (const X1 ... Xn))
(ADD1 (PLUS (IF tr1 (COUNT X1) 0)

...
(IF trn (COUNT Xn) 0)))).

Axiom COUNT.btm (rewrite):

(EQUAL (COUNT (btm)) 0).

The handling of the special case in which no bottom object is
supplied should be obvious.

We simplify the right-hand sides of concluding equalities
in rewrite axioms by expanding nonrecursive functions (e.g.,
AND), putting IF-expressions into IF-normal form, and sim-
plifying IF-expressions with explicit value tests (e.g., (IF T x y)
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is replaced by x).
The following axioms resulting from an application of the

shell principle are “wired-in” to the theorem prover.

(NOT (EQUAL (const X1 ... Xn) (btm))),
(NOT (r T)),
(NOT (r F)), and
(IMPLIES (r X) (NOT (r’ X))).

The first of the above axioms is built into the rules for rewriting
an EQUAL expression given in Chapter 9. The other axioms
above are built into the type set mechanism.
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Clauses for our Theory

Readers familiar with other mechanical theorem provers might
be interested in seeing our theory cast in the more usual clausal
form. We do not formulate our shell principle, induction princi-
ple, or definition principle in clausal form.1 However, we do give
the clauses generated by these principles on specific examples.

Here we give, in clausal form, axioms for T, F, IF, EQUAL,
numbers, literal atoms, and ordered pairs. These axioms, to-
gether with our induction principle, definition principle, and the
well-foundedness of LESSP and induced lexicographic relations,
are equivalent to the theory described in Chapter 3. We also
exhibit the axioms of definition for the functions used in the
MC.FLATTEN example in Chapter 2, and we exhibit a clausal
formulation of the first induction step used in that example.

In the following clauses, we use a common notation for func-
tion application and clauses [49]. T, F, 0, and NIL are constants.
X, Y, Z, P, Q, X1, X2, Y1, and Y2 are variables.

C.1 Logical Definitions

L1. {T 6=F}
L2. {X 6=Y EQUAL(X,Y)=T}

1It is interesting that the set theory of von Neumann, Bernays, and Goedel
[21] can be stated in a finite number of clauses. Thus, in principle, one could use
a finitely axiomatized set theory with a resolution theorem prover to investigate
problems normally requiring the axiom schemes (i.e., infinite axioms) of induction
and comprehension.
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L3. {X=Y EQUAL(X,Y)=F}
L4. {X 6=F IF(X,Y,Z)=Z}
L5. {X=F IF(X,Y,Z)=Y}
L6. {NOT(P)=IF(P,F,T)}
L7. {AND(P,Q)=IF(P,IF(Q,T,F),F))}
L8. {OR(P,Q)=IF(P,T,IF(Q,T,F))}
L9. {IMPLIES(P,Q)=IF(P,IF(Q,T,F),T)}

C.2 Axioms for Natural Numbers

A1. {NUMBERP(ADD1(X1))=T}
A2. {NUMBERP(0)=T}
A3. {NUMBERP(X)=T NUMBERP(X)=F}
A4. {NUMBERP(SUB1(X))}
A5. {SUB1(ADD1(X1))=IF(NUMBERP(X1),X1,0)}
A6. {NUMBERP(X)=T SUB1(X)=0}
A7. {NUMBERP(X1)=T ADD1(X1)=ADD1(0)}
A8. {SUB1(0)=0}
A9. {NUMBERP(X)=F X=0 LESSP(COUNT(SUB1(X)),COUNT(X))=T}
A10. {EQUAL(ADD1(X1),ADD1(Y1))=

IF(NUMBERP(X1),
IF(NUMBERP(Y1),EQUAL(X1,Y1),EQUAL(X1,0)),
IF(NUMBERP(Y1),EQUAL(0,Y1),T))}

A11. {ADD1(SUB1(X))=IF(AND(NUMBERP(X),NOT(EQUAL(X,0))),X,ADD1(0))}
A12. {COUNT(ADD1(X1))=ADD1(IF(NUMBERP(X1),COUNT(X1),0))}
A13. {COUNT(0)=0}
A14. {0 6=ADD1(X1)}
A15. {NUMBERP(T)=F}
A16. {NUMBERP(F)=F}
A17. {ZEROP(X)=OR(EQUAL(X,0),NOT(NUMBERP(X)))}
A18. {FIX(X)=IF(NUMBERP(X),X,0)}
A19. {LESSP(X,Y)=IF(ZEROP(Y),

F,
IF(ZEROP(X),T,LESSP(SUB1(X),SUB1(Y))))}

A19. {PLUS(X,Y)=IF(ZEROP(X),FIX(Y),ADD1(PLUS(SUB1(X),Y)))}

C.3 Axioms for Literal Atoms

B1. {LITATOM(PACK(X1))=T}
B2. {LITATOM(NIL)=T}
B3. {LITATOM(X)=T LITATOM(X)=F}
B4. {UNPACK(PACK(X1))=X1}
B5. {LITATOM(X)=T UNPACK(X)=0}
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B6. {UNPACK(NIL)=0}
B7. {LITATOM(X)=F X=NIL LESSP(COUNT(UNPACK(X)),COUNT(X))=T}
B8. {EQUAL(PACK(X1),PACK(Y1))=EQUAL(X1,Y1)}
B9. {PACK(UNPACK(X))=IF(AND(LITATOM(X),NOT(EQUAL(X,NIL))),X,PACK(0))}
B10. {COUNT(PACK(X1))=ADD1(COUNT(X1))}
B11. {COUNT(NIL)=0}
B12. {NIL 6=PACK(X1)}
B13. {LITATOM(T)=F}
B14. {LITATOM(F)=F}
B15. {LITATOM(X)=F NUMBERP(X)=F}

C.4 Axioms for Ordered Pairs

C1. {LISTP(CONS(X1,X2))=T}
C2. {LISTP(X)=T LISTP(X)=F}
C3. {CAR(CONS(X1,X2))=X1}
C4. {CDR(CONS(X1,X2))=X2}
C5. {LISTP(X)=T CAR(X)=NIL}
C6. {LISTP(X)=T CDR(X)=NIL}
C7. {LISTP(X)=F LESSP(COUNT(CAR(X)),COUNT(X))=T}
C8. {LISTP(X)=F LESSP(COUNT(CDR(X)),COUNT(X))=T}
C9. {EQUAL(CONS(X1,X2),CONS(Y1,Y2))=AND(EQUAL(X1,Y1),EQUAL(X2,Y2))}
C10. {CONS(CAR(X),CDR(X))=IF(LISTP(X),X,CONS(NIL,NIL))}
C11. {COUNT(CONS(X1,X2))=ADD1(PLUS(COUNT(X1),COUNT(X2)))}
C12. {LISTP(T)=F}
C13. {LISTP(F)=F}
C14. {LISTP(X)=F NUMBERP(X)=F}
C15. {LISTP(X)=F LITATOM(X)=F}

C.5 A Sample Theorem In Clausal Form

To “define” APPEND, FLATTEN, and MC.FLATTEN for a
resolution theorem prover, one could add the clauses:

{APPEND(X,Y)=IF(LISTP(X),CONS(CAR(X),APPEND(CDR(X),Y)),Y)},
{FLATTEN(X)=IF(LISTP(X),APPEND(FLATTEN(CAR(X)),FLATTEN(CDR(X))),

CONS(X,NIL))},
{MC.FLATTEN(X,Y)=IF(LISTP(X),MC.FLATTEN(CAR(X),MC.FLAT-
TEN(CDR(X),Y)),

CONS(X,Y))}.

When our theorem prover is given the definitions of APPEND,
FLATTEN, and MC.FLATTEN, it discovers and remembers the
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following theorems:

{LISTP(APPEND(X,Y))=T APPEND(X,Y)=Y},
{LISTP(FLATTEN(X))=T},
{LISTP(MC.FLATTEN(X))=T}.

One could, in principle, use a resolution theorem prover to help
perform the noninductive parts of our proofs. For example, one
might ask such a theorem prover to undertake the first inductive
step of the FLATTEN.MC.FLATTEN example of Chapter 2.
One might therefore provide such a theorem prover with all the
foregoing clauses of this appendix and then, letting A and ANS
be constants, attempt to derive a contradiction from:

{LISTP(A)=T},
{MC.FLATTEN(CAR(A),MC.FLATTEN(CDR(A),ANS)),
=APPEND(FLATTEN(CAR(A)),MC.FLATTEN(CDR(A),ANS))},
{MC.FLATTEN(CDR(A),ANS)=APPEND(FLATTEN(CDR(A)),ANS)}, and
{MC.FLATTEN(A,ANS)6=APPEND(FLATTEN(A),ANS)}.

Of course, the imagined resolution theorem prover would prob-
ably fail to find a contradiction, because we know of no proof
that does not depend upon the associativity of APPEND. While
our theorem prover discovered and inductively proved that AP-
PEND is associative in the course of the FLATTEN.MC.FLAT-
TEN proof, one would need to add the clause:

{APPEND(APPEND(X,Y),Z)=APPEND(X,APPEND(Y,Z))}

to the previous collection of clauses before a resolution theorem
prover might be expected to derive a contradiction.
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In this index a number indicates the page on which a concept
is introduced, a number preceded by “A-” indicates the number
of the defining formula in Appendix A, and a shell name (e.g.,
ADD1) indicates that the indexed name is introduced as a re-
sult of axiomatizing the shell. The naming conventions for shell
axioms are given in Appendix B.

accessor ??
ACK ??
ADD1 ??
ADD1.EQUAL ADD1
ADD1.SUB1 ADD1
ADDTOLIST A-73
ADDTOLIST2 A-332
ADDTOLIST2.DELETE A-337
ADDTOLIST2.KLUDGE A-339
alist ??
Allen ??
AND ??
APPEND A-2
APPEND.CANCELLATION A-166
APPEND.REVERSE A-9
APPEND.RIGHT.ID A-7
applies ??
APPLY A-23
ASSIGNEDP A-243
ASSIGNMENT A-231
assignment ??
ASSIGNMENT.APPEND A-247
ASSIGNMENT.IMPLIES.ASSIGNEDP A-250
ASSOC A-79
ASSOC.PAIRLIST A-81
association list ??
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ASSOCIATIVITY.OF.APPEND A-5
ASSOCIATIVITY.OF.EQUAL A-95
ASSOCIATIVITY.OF.PLUS A-14
ASSOCIATIVITY.OF.TIMES A-20
ASSUME.FALSE A-245
ASSUME.TRUE A-244
atom ??
atomic ??
Aubin ??
backwards chaining ??
Ballantyne ??
Bendix ??
BIG.PLUS A-177
BIG.PLUS1 A-174
binding ??
Bledsoe ??
body ??
BOOLEAN A-88
Boolean ??
bottom object ??
bound ??
Bourbaki ??
Brotz ??
Burstall ??
CAAR ??
CADDR ??
CADR ??
call of ??
CAR CONS
CAR.CDRP CONS
CAR.CONS CONS
CAR.LESSP CONS
CAR/CDR.ELIM CONS
Cartwright ??
CDAR ??
CDDR ??
CDR CONS
CDR.CONS CONS
CDR.LESSP CONS
CDR.NLISTP CONS
CDR.NTH A-370
Chang ??
changeables ??
changing variables ??
character string ??
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Church ??
clause ??
closed ??
CODEGEN A-29
COMMUTATIVITY.OF.APPEND.WRT.LENGTH A-77
COMMUTATIVITY.OF.EQUAL A-93
COMMUTATIVITY.OF.EQUALP A-134
COMMUTATIVITY.OF.GCD A-198
COMMUTATIVITY.OF.PLUS A-13
COMMUTATIVITY.OF.SGCD A-201
COMMUTATIVITY.OF.TIMES A-18
COMMUTATIVITY2.OF.PLUS A-12
COMMUTATIVITY2.OF.TIMES A-19
COMPILE A-30
CONS ??
CONS.EQUAL CONS
CONS.IF A-230
constructor ??
COPY A-121
CORRECTNESS.OF.BIG.PLUS A-194
CORRECTNESS.OF.CODEGEN A-35
CORRECTNESS.OF.OPTIMIZE A-32
CORRECTNESS.OF.OPTIMIZING.COMPILER A-36
CORRECTNESS.OF.SAMEFRINGE A-273
COUNT ??
COUNT.LIST A-117
COUNT.LIST.SORT A-118
COUNT.LIST.SORT2 A-344
COUNT.SORT-LP A-165
COUNT1 ??
COUNTING.DOWN.BY.N+1 A-169
COUNTING.UP.BY.1 A-168
COUNTPS A-144
COUNTPS- A-143
COUNTPS-COUNTPS A-145
COUNTPS-LOOP A-142
cross-fertilization ??
Darlington ??
DEC ??
DECREMENT A-348
DECREMENTP A-346
default value ??
definition ??
definition type set ??
DELETE A-312
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DELETE.ADDTOLIST2 A-338
DELTA1 A-357
delta1 ??
DELTA1.LEMMA A-393
DELTA1.LESSP.IFF.MEMBER A-388
destructor ??
DIFFERENCE A-167
DIFFERENCE.ADD1.CANCELLATION A-215
DIFFERENCE.ELIM A-222
DIFFERENCE.PLUS A-208
DIFFERENCE.PLUS2 A-213
DISTRIBUTIVITY.OF.DIVIDES A-318
DISTRIBUTIVITY.OF.TIMES.OVER.GCD A-227
DISTRIBUTIVITY.OF.TIMES.OVER.PLUS A-16
DIVIDES A-211
DIVIDES.IMPLIES.TIMES A-323
DIVIDES.PLUS.REWRITE A-219
DIVIDES.PLUS.REWRITE.COMMUTED A-220
DIVIDES.PLUS.REWRITE1 A-217
DIVIDES.PLUS.REWRITE2 A-218
DIVIDES.TIMES A-212
DIVIDES.TIMES.LIST A-316
DIVIDES.TIMES1 A-304
DOUBLE A-99
DOUBLE.HALF A-103
DOUBLE.TIMES.2 A-104
DSORT A-331
DSORT.SORT2 A-343
DUPLICITY.OF.LESSEQP A-113
elaboration ??
ELEMENT.APPEND A-204
elimination ??
ENOUGH.FACTORS A-296
EQ.CHARS.AT.STRPOS A-396
EQP A-45
EQUAL ??
EQUAL.COPY A-122
EQUAL.DIFFERENCE A-214
EQUAL.EQUALP A-136
EQUAL.TIMES.0 A-21
EQUALP A-123
EUCLID A-225
EVAL A-27
EVEN1 A-97
EVEN1.DOUBLE A-100
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EVEN1.EVEN2 A-111
EVEN2 A-98
EXEC A-33
EXP A-108
EXP.PLUS A-109
EXP.TIMES A-110
explicit value ??
explicit value preserving ??
explicit value template ??
extension ??
F ??
f-free ??
FACT A-146
FACT- A-148
FACT-FACT A-150
FACT-LOOP A-147
FACT-LOOP.FACT A-149
FALSE ??
FALSIFY A-254
FALSIFY1 A-253
FALSIFY1.EXTENDS.MODELS A-255
FALSIFY1.FALSIFIES A-256
FIDDLE A-350
FIDDLE.DOWN A-351
FIDDLE.DOWN.2 A-352
FIDDLE.EQUAL A-353
FIX ??
FLATTEN A-48
FLATTEN.MC.FLATTEN A-50
FLATTEN.SINGLETON A-264
FLATTEN.SWAPTREE A-139
flawed ??
Floyd ??
FORMP A-26
FORMP.OPTIMIZE A-31
free variable ??
fringe ??
FSTRPOS ??
FSTRPOS.VC1 A-361
FSTRPOS.VC2 A-363
FSTRPOS.VC3 A-367
FSTRPOS.VC4 A-373
FSTRPOS.VC5 A-377
FSTRPOS.VC6 A-378
FSTRPOS.VC7 A-404
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functional semantics ??
GCD A-196
GCD.DIVIDES.BOTH A-228
GCD.IS.THE.GREATEST A-229
general recursive ??
generalizable ??
Gentzen ??
GETVALUE A-24
Gloess ??
Goedel ??
Goodstein ??
GOPHER A-267
GOPHER.PRESERVES.COUNT A-268
GOPHER.RETURNS.CORRECT.STATE A-272
GOPHER.RETURNS.LEFTMOST.ATOM A-271
governs ??
GREATEREQP A-68
GREATERP A-66
GREATERP.CONS A-112
GREATEST.FACTOR A-276
GREATEST.FACTOR.0 A-283
GREATEST.FACTOR.1 A-284
GREATEST.FACTOR.DIVIDES A-280
GREATEST.FACTOR.LESSP A-279
GREATEST.FACTOR.LESSP.IND A-282
GT.SUB1 A-402
Guibas ??
HACK1 A-307
HALF A-101
HALF.DOUBLE A-102
Henneman ??
Hoare ??
ID A-277
ID.ADD1 A-294
IF ??
IF-normal form ??
IF.COMPLEXITY A-235
IF.COMPLEXITY.GOES.DOWN1 A-238
IF.COMPLEXITY.GOES.DOWN2 A-239
IF.COMPLEXITY.NOT.0 A-236
IF.COMPLEXITY.STAYS.EVEN A-240
IF.DEPTH A-233
IF.DEPTH.GOES.DOWN A-234
IF.EXPRP CONS.IF
IF.TIMES.THEN.DIVIDES A-321
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IFF A-89
IFF.EQUAL.EQUAL A-90
IMPLIES ??
induced ??
induction ??
induction template ??
inductive assertion ??
instance ??
INTERLISP ??
INTERSECT A-57
Kelley ??
KLUDGE.BRIDGE A-306
Knuth ??
Lankford ??
LAST A-78
LAST.APPEND A-106
LAST.REVERSE A-107
Lee ??
left-most match ??
LEFT.BRANCH CONS.IF
LEFT.BRANCH.CONS.IF CONS.IF
LEFT.BRANCH.LESSP CONS.IF
LEFTCOUNT A-265
LEFTCOUNT.GOES.DOWN A-266
LENGTH A-55
LENGTH.MAPCAR A-84
LENGTH.REVERSE A-56
LENGTH.SORT A-116
LENGTH.TIPCOUNT A-141
LESSEQP A-67
LESSEQP.HALF A-120
LESSEQP.NTH A-114
LESSEQP.PLUS A-75
LESSEQP.PLUS2 A-76
LESSP ??
LESSP.ADD1.ID A-295
LESSP.D.V A-237
LESSP.DELETE.REWRITE A-328
LESSP.DIFFERENCE A-183
LESSP.DIFFERENCE.1 A-397
LESSP.DIFFERENCE1 A-179
LESSP.DIFFERENCE2 A-221
LESSP.EQUAL A-46
LESSP.ID2 A-278
LESSP.ID3 A-281
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LESSP.KLUDGE1 A-380
LESSP.KLUDGE2 A-384
LESSP.KLUDGE3 A-401
LESSP.LENGTH A-329
LESSP.MAXIMUM.ADDTOLIST2 A-340
LESSP.NOT.COMMUTATIVE A-197
LESSP.NOT.REFLEXIVE A-44
LESSP.PLUS A-389
LESSP.PLUS.CANCELATION2 A-224
LESSP.PLUS.CANCELLATION A-223
LESSP.PLUS.SUB1 A-345
LESSP.PLUS.TIMES A-188
LESSP.PLUS1 A-390
LESSP.QUOTIENT1 A-189
LESSP.REMAINDER1 A-190
LESSP.REMAINDER2 A-182
LESSP.SUB1.HACK1 A-403
LESSP.SUB1.PLUS.CANCELLATION A-375
LESSP.SUB1.SUB1 A-398
LESSP.SUB1.SUB1.PLUS A-400
LESSP.TIMES.CANCELLATION A-226
Levitt ??
lexicographic ??
lexicographic relation ??
LISP ??
LISTP CONS
LISTP.CONS CONS
LISTP.GOPHER A-270
LISTP.NTH A-369
lists ??
LIT A-86
LIT.APPEND A-87
LITATOM PACK
literal ??
literal atoms ??
LITTLE.STEP A-311
LOOP.ASSERT A-359
Loveland ??
machine ??
MACRO-10 ??
Manna ??
MAPCAR A-82
MAPCAR.APPEND A-83
MATCH A-355
MATCH.EPSILON A-394
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MATCH.IMPLIES.CAR.MEMBER A-385
MATCH.IMPLIES.CAR.MEMBER1 A-386
MATCH.IMPLIES.DELTA1.OK A-391
MATCH.IMPLIES.MEMBER A-387
MATCH.LENGTHS A-364
MATCH.LENGTHS1 A-365
MAXIMUM A-326
MC.FLATTEN A-49
McCarthy ??
MEASURE A-347
measure ??
measured subset ??
MEMBER A-51
MEMBER-INTERSECT A-58
MEMBER.APPEND A-52
MEMBER.APPEND2 A-53
MEMBER.MAXIMUM A-327
MEMBER.OCCUR A-132
MEMBER.REVERSE A-54
MEMBER.SORT A-115
MEMBER.UNION A-60
MEMBER.UNION- A-162
merge ??
Milner ??
minimal ??
Morris ??
Morris ??
Morse ??
Naur ??
NEQUAL.PLUS.ADD1 A-207
new ??
NIL PACK
NLISTP A-1
nonrecursive ??
NORMALIZE A-241
NORMALIZE.IS.SOUND A-258
NORMALIZE.NORMALIZES A-259
NORMALIZED.IF.EXPRP A-242
NOT ??
NTH A-64
NTH.APPEND A-205
NTH.APPEND1 A-92
NTH.MEMBER A-65
NTH.NIL A-91
NTHCHAR A-203
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NUMBER.LISTP A-124
NUMBERP ADD1
NUMBERP.APPLY A-25
NUMBERP.GREATEST.FACTOR A-285
OCCUR A-131
OCCUR.SUBST A-133
ODD A-96
Odlyzko ??
Oppen ??
OPTIMIZE A-28
OR ??
ORDERED A-72
ORDERED.ADDTOLIST A-163
ORDERED.APPEND A-119
ORDERED.SORT A-125
ORDERED.SORT-LP A-164
ORDERED2 A-330
OTHERS ??
PACK ??
Painter ??
PAIRLIST A-80
parameter ??
partially correct ??
PERM A-313
permutative ??
Peter ??
PK A-349
PLISTP A-6
PLISTP.REVERSE A-8
PLUS ??
PLUS- A-157
PLUS-PLUS A-158
PLUS.2.NOT A-399
PLUS.ADD1 A-11
PLUS.CANCELATION1 A-187
PLUS.CANCELLATION A-354
PLUS.DIFFERENCE.SUB1.REWRITE A-368
PLUS.DIFFERENCE3 A-209
PLUS.EQUAL.0 A-186
PLUS.NEQUAL.X A-206
PLUS.RIGHT.ID A-10
Pnueli ??
POP PUSH
POP-2 ??
POP.PUSH PUSH
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position ??
POWER.EVAL A-173
POWER.EVAL.BIG.PLUS A-178
POWER.EVAL.BIG.PLUS1 A-176
POWER.EVAL.POWER.REP A-193
POWER.REP A-192
Pratt ??
predicates ??
Presburger ??
PRIME A-275
PRIME.BASIC A-301
PRIME.BRIDGE A-299
PRIME.FACTORIZATION.EXISTENCE A-297
PRIME.FACTORIZATION.UNIQUENESS A-325
PRIME.FACTORS A-286
PRIME.GCD A-308
PRIME.KEY A-309
PRIME.KRUTCH A-298
PRIME.LIST A-287
PRIME.LIST.APPEND A-290
PRIME.LIST.DELETE A-315
PRIME.LIST.PRIME.FACTORS A-291
PRIME.LIST.TIMES.LIST A-320
PRIME.MEMBER A-322
PRIME1 A-274
PRIME1.BASIC A-300
proper list ??
propositional IF-expression ??
pure LISP ??
PUSH A-22
PUSH.EQUAL PUSH
QUOTIENT A-171
QUOTIENT.DIVIDES A-310
QUOTIENT.LESSP A-293
QUOTIENT.TIMES A-317
QUOTIENT.TIMES1 A-292
recognizer ??
RECURSION.BY.DIFFERENCE A-170
RECURSION.BY.QUOTIENT A-191
RECURSION.BY.REMAINDER A-202
recursive ??
REMAINDER A-172
REMAINDER.ADD1 A-216
REMAINDER.GCD A-302
REMAINDER.GCD.1 A-303
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REMAINDER.QUOTIENT A-175
REMAINDER.QUOTIENT.ELIM A-185
REMAINDER.TIMES A-314
REMAINDER.WRT.1 A-180
REMAINDER.WRT.12 A-181
REMAINDER.X.X A-184
replacement principle ??
result of substituting ??
REVERSE A-3
REVERSE- A-152
REVERSE-APPEND A-155
REVERSE-LOOP A-151
REVERSE-LOOP.APPEND.REVERSE A-153
REVERSE-REVERSE A-154
REVERSE-REVERSE- A-156
REVERSE.MAPCAR A-85
REVERSE.REVERSE A-47
rewrite with lemmas ??
RIGHT.BRANCH CONS.IF
RIGHT.BRANCH.CONS.IF CONS.IF
RIGHT.BRANCH.LESSP CONS.IF
Rivest ??
Robinson, J.A. ??
Robinson, L. ??
RUSSELL ??
SAMEFRINGE A-269
score ??
SEQUENTIAL.EXECUTION A-34
SGCD A-195
SGCD.X.0.X A-199
SGCD.X.X.X A-200
shell ??
Skolem ??
smaller ??
SORT A-74
SORT- A-161
SORT-LP A-160
SORT.OF.ORDERED.NUMBER.LIST A-126
SORT.ORDERED A-128
SORT2 A-333
SORT2.DELETE A-342
SORT2.DELETE.CONS A-341
SORT2.GEN A-336
SORT2.GEN.1 A-334
SORT2.GEN.2 A-335
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STACKP PUSH
STRPOS A-356
STRPOS.BOUNDARY.CONDITION A-366
STRPOS.EPSILON A-395
STRPOS.EQUAL A-371
STRPOS.EQUAL.0 A-383
STRPOS.LESSEQP.CRUTCH A-382
STRPOS.LESSEQP.STRLEN A-379
STRPOS.LIST.APPEND A-381
structural induction ??
SUB1 ADD1
SUB1.ADD1 ADD1
SUB1.ELIM ADD1
SUB1.LENGTH A-392
SUB1.LESSP ADD1
SUB1.LESSP.PLUS A-362
SUB1.LESSP1 A-37
SUB1.TYPE.RESTRICTION ADD1
SUB1P ADD1
SUBSETP A-61
SUBSETP.CONS A-105
SUBSETP.INTERSECT A-63
SUBSETP.UNION A-62
SUBST A-129
SUBST.A.A A-130
substitution ??
subsume ??
subsumes ??
SUM ??
SWAPPED.PLUS.CANCELLATION A-374
SWAPTREE A-137
SWAPTREE.SWAPTREE A-138
T ??
tautology ??
TAUTOLOGY.CHECKER A-252
TAUTOLOGY.CHECKER.COMPLETENESS.BRIDGE A-260
TAUTOLOGY.CHECKER.IS.COMPLETE A-261
TAUTOLOGY.CHECKER.IS.SOUND A-263
TAUTOLOGY.CHECKER.SOUNDNESS.BRIDGE A-262
TAUTOLOGYP A-246
TAUTOLOGYP.FAILS.MEANS.FALSIFY1.WINS A-257
TAUTOLOGYP.IS.SOUND A-251
Teitelman ??
term ??
TEST CONS.IF
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TEST.CONS.IF CONS.IF
TEST.LEFT.BRANCH.RIGHT.BRANCHP CONS.IF
theorem ??
TIMES A-4
TIMES.ADD1 A-17
TIMES.DIFFERENCE A-210
TIMES.EQUAL.1 A-324
TIMES.IDENTITY A-305
TIMES.LIST A-288
TIMES.LIST.APPEND A-289
TIMES.LIST.DELETE A-319
TIMES.ZERO A-15
TIPCOUNT A-140
TOP PUSH
TOP.ASSERT A-358
TOP.POPP PUSH
TOP.PUSH PUSH
TRANSITIVITY.OF.EQUAL A-94
TRANSITIVITY.OF.EQUALP A-135
TRANSITIVITY.OF.GREATERP A-69
TRANSITIVITY.OF.LESSEQP A-70
TRANSITIVITY.OF.LESSP A-38
TRANSITIVITY.OF.LESSP2 A-39
TRANSITIVITY.OF.LESSP3 A-40
TRANSITIVITY.OF.NOT.LESSP A-41
TRANSITIVITY.OF.NOT.LESSP2 A-42
TRANSITIVITY.OF.NOT.LESSP3 A-43
TRICHOTOMY.OF.LESSP A-71
TRUE ??
type ??
type prescription ??
type restriction ??
type set ??
type set alist ??
types ??
unchangeables ??
unchanging ??
UNION A-59
UNION- A-159
UNIVERSE ??
UNPACK PACK
UNPACKP PACK
VALUE A-232
value ??
VALUE.CAN.IGNORE.REDUNDANT.ASSIGNMENTS A-248
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VALUE.SHORT.CUT A-249
variable alist ??
VC4.HACK.1 A-372
VC5.HACK1 A-376
verification conditions ??
Waldinger ??
Wegbreit ??
well-founded ??
Weyhrach ??
WHILELOOP ??
worse than ??
XOR A-127
ZERO ADD1
ZEROP ??
ZEROP.LENGTH A-360
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