Keynote Address
10th Conference on Automated Deduction, July 1990
L ecture Notes in Computer Sciences 449

Springer-Verlag

A Theorem Prover for a
Computational Logic

Robert S. Boyer!
J Srother Moore

Computational Logic, Inc., Suite 290
1717 W. 6th St.
Austin, Texas 78703 U.SA.

Abstract

We briefly review a mechanical theorem-prover for alogic of recursive functions over finitely
generated objects including the integers, ordered pairs, and symbols. The prover, known both
as NQTHM and as the Boyer-Moore prover, contains a mechanized principle of induction and
implementations of linear resolution, rewriting, and arithmetic decision procedures. We
describe some applications of the prover, including a proof of the correct implementation of a
higher level language on a microprocessor defined at the gate level. We aso describe the
ongoing project of recoding the entire prover as an applicative function within its own logic.

1 Introduction

We feel honored to be invited to give the keynote address for CADE-10. We thank Mark
Stickel and the program committee for the invitation.

It has been suggested that we discuss our theorem prover and its application to proving the
correctness of computations. We have been working on our prover, on and off, since about
1972 [9]. This prover is known both as the Boyer-Moore theorem prover and as NQTHM.
(pronounced en-que-thum, an acronym for ‘‘New, Quantified THeoreM Prover,”” an
uninspired parochialism that has taken on alife of its own). The details of our prover and its
applications have been extensively presented in several books and articles. In fact, from these
publications the prover has been recoded by at least three other groups. In this paper, we will
(a) very briefly review the prover and its applications, (b) provide pointers to the literature on
the prover and its applications, and (c) discuss ACL 2, a new development of the prover which
involves recoding it in its own logic, a subset of applicative Common Lisp.

In the subsequent discussion, we will make reference to two books, which are the main
references on NQTHM. They are (a) A Computational Logic [11] which we will abbreviate
as “"ACL"” and (b) A Computational Logic Handbook [18] which we will abbreviate as

IMailing address: Computer Sciences Department, University of Texas at Austin, Austin,
Texas 78712 U.S.A.

““ACLH". Although a decade old, ACL still provides a rather accurate description of many
of the prover’s heuristics and some simple applications, whereas the much more recent ACLH
accurately describes the current logic and user interface.

2 Thelogic

Although many theorem provers, especialy those of the resolution tradition, are designed to
work with arbitrary collections of first order axioms, NQTHM is designed to be used mainly
with the fixed set of axioms we provide, typically augmented by a number of definitions
provided by the NQTHM user. Questions one might ask about the NQTHM theory are
““What are the well-formed formulas, what are the axioms, and what are the rules of
inference?’ The precise answers to these questions may be found in Chapter 4 of ACLH.
Roughly speaking, in that chapter, we present our logic (the Boyer-Moore Logic or NQTHM
Logic, asit is sometimes known) by starting from standard first order logic asin [70] and then
adding some axioms that describe certain data structures, including the integers, ordered pairs,
and symbols. We include in the logic a principle of definition for recursive functions over
these data structures. Among our rules of inference is a schema for proof by induction. This
schema would be merely a derived rule of inference were we to cast our induction axiomsin
the traditional form.

The syntax of our logic is close to that of Lisp. In fact, from the time we started writing our
prover [9] we have regarded it as a theorem prover for a theory of Lisp functions. Some of
the earliest theorems we proved mechanically were inspired by some of McCarthy’s seminal
papers on the logic of Lisp, including [54], [56], and [58]. Because Lisp may be viewed as
both a logic and a programming language, we have aways found it a most natural setting in
which to express theorems about computations and other parts of constructive mathematics.

Both the axioms of the NQTHM logic and the conjectures it entertains are quantifier free, or,
more precisely, implicitly universally quantified ‘‘on the far outside.”” In fact, NQTHM does
not include rules for manipulating quantifiers at all. However, by using recursive functions,
we are able to express many of the things that one usually expresses with quantifiers when
dealing with ‘*finite’’ objects such as trees of integers. For example, to state and prove the
uniqueness and existence of prime factorizations [11], we define recursive functions which
factor integers and which compute whether two finite sequences of integers are permutations
of one another. This practice of using recursive functions to do work one might do with
guantifiers may have been originated by Skolem in[71], who was perhaps the earliest to
demonstrate that arithmetic could be built up using entirely constructive methods. Skolem’s
program is further carried out in [34].

Here is an example of a definition that one might give to the prover for a function that
appends, i.e. concatenates, two lists:

Definition.
(APP X'Y)

(1F (LISTP X)
(CONS (CAR X) (APP (CDR X) Y))
Y)
In rough English, this definition says that to append alist X to alist Y, if X is nonemtpy, then

construct (i.e. CONS) the list whose first element is the first element of X, i.e. (CAR X) , and
whose other elements are the result of appending the rest of X, i.e. (CDR X), and Y. Onthe

other hand, if X isempty, just returnY.

A simple example of a theorem that one might ask NQTHM to prove is the associativity of
APP, which one would state as

Theorem
(APP (APP X'Y) 2) = (APP X (APP Y 2))

We discuss a proof of this theorem below when we describe the induction heuristic.
3 TheProver
3.1 How to Get a Copy

NQTHM isaCommon Lisp program whose source files require about one million characters.
NQTHM runsin avariety of Common Lisps including Lucid, Allegro, Symbolics, and KCL.
It is publicly available, but a license is now required. We have recently started to require a
license to keep track of copies at the strong suggestion of one of our sponsors. We previously
distributed the same code without copyright or license. At the time of this writing, a copy
may be obtained without fee by anonymous ftp from Internet site cli.com (start with the file
/pub/ngthm/README) or on tape for a modest fee by writing to the authors at Computational
Logic, 1717 W. 6th St., Austin, Texas 78703. The currently released version of NQTHM was
first released in July of 1988, and no bugs affecting soundness have been reported as of the
time of thiswriting. The chapter of ACLH on installation describes in complete detail how to
bring up NQTHM from the sources.

3.2 WARNING: Difficulty of Use

It is hard, perhaps impossible, to use NQTHM effectively without investing a substantial
amount of time learning how to use it. To avoid disappointment, a prospective user should
probably be prepared first to understand most of two rather long books, ACL and ACLH.
Almost al of the successful users of NQTHM have in fact also taken a course from us at the
University of Texas at Austin on proving theoremsin our logic. Based upon teaching related
courses at Stanford, our former student N. Shankar advises that a user unfamiliar with the
heuristics employed in the prover, as described in great detail in ACL, is very unlikely to
direct the prover to prove anything significant. Besides precisely describing the logic of
NQTHM, ACLH also serves as a user’s manual, describing in great detail all of the
commands with which one can direct the prover.

3.3 Heuristic Character of NQTHM

NQTHM is a heuristic theorem-prover. By heuristic, we mean that we have coded guessing
strategies for searching through the space of possible proofs for conjectures. For example,
NQTHM guesses when it is best to cut off **back chaining’’. If the guess is wrong, which it
can easily be, then no proof may be found. As another example, NQTHM often guesses an
induction to try, when all other proof techniques cease to be applicable. If the guessiswrong,
then NQTHM will irrevocably go chasing down a search path that is probably totally fruitless.
On the other hand, because NQTHM does have heuristics, NQTHM is able to find proofs for
what we believe is a remarkable number of theorems. One crude measure of the effectiveness
of NQTHM s that it is aways is able to make an above average grade on the final
examinations we give to our students in an introductory graduate course on proving theorems
inthe NQTHM logic.

We were inspired in part to build a theorem prover that is heuristic by the success of
W. W. Bledsoe [4], [5] in writing such theorem provers, including one that guessed inductions
based upon the terms in the conjecture. One of the major concerns in the literature on
automated reasoning in the 60's and 70's was with the completeness of proof procedures.
NQTHM is certainly not complete, except when guided by a knowledgeable user.

3.4 Induction

Perhaps the most important heuristic in NQTHM is the induction heuristic. The key to the
success of our induction heuristic is that it is closely tied to the principle of recursive
definition which we employ. For example, to prove the associativity of APP, mentioned
above, NQTHM would guess to induction on X by CDR, i.e. by the length of the first
argument. This induction mirrors the way that APP recurses. An important part of the
induction heuristic is filtering out suggested inductions which are *‘not likely’’ to work, such
asthe induction on Y by CDR in the theorem above.

The NQTHM practice of not permitting quantification but of permitting the user to define
recursive functions to express what might otherwise require quantification has an effect of
forcing the user to hint implicitly how to prove conjectures: try inductions that mirror the
definitions of the recursive functions used in the conjectures. This heuristic is startlingly
successful for the NQTHM logic.

3.5 Simplification

Besides induction, the other most important theorem proving component in NQTHM is the
simplifier. The simplifier combines rewriting (cf. [74] and[4]) with linear and binary
resolution and subsumption (cf. [65] and [53]). The simplifier also includes a semi-decision
procedure for a part of arithmetic, based upon ideasin [36].

An aspect of our simplifier that accounts for much of its effectivenessisa‘‘type set’’ facility
which keeps track, for each expression actively under consideration, a bit-mask’s worth of
information indicating a conservative estimate of the *‘type’’ of the expression in terms of the
basic data types of the NQTHM Logic. The type set procedure, like most of the current
simplifier, isdescribed in ACL.

3.6 Other Heuristics

Of considerably less significance than induction or simplification are various NQTHM
routines which are named ‘‘elimination of destructors,”’ ‘‘cross fertilization,”
‘‘generalization,”’and *‘elimination of irrelevance.’”” The structure of NQTHM, at least as it
was in 1979, is described in complete detail in ACL. That work remains a largely accurate
description of NQTHM except for (a) the integration of the arithmetic decision procedure,
described in [19], (b) the addition of metafunctions and an efficient representation for large
constant terms, described in[12], (c) some simplifications of the induction machinery that
have never been documented, (d) the axiomatization of an interpreter for partial recursive
functions[20], and (e) an implementation of a derived rule of inference called ‘*functional
instantiation’’ [8].

4 Thelmportance of the User in Finding Proofs

Although NQTHM is quite capable of finding proofs for some simple theorems with which
even graduate students may struggle, we think of NQTHM as more of a proof checker than as
a theorem-prover. What do we mean by this distinction? It is perhaps not possible to spell

out clearly what the distinction is. However, whenever we have in mind an interesting
theorem for NQTHM to prove, we almost always expect to have to suggest to NQTHM what
the main intermediate steps to the proof are. We do expect NQTHM to do a great dea of
tedious work filling in minor details. And when filling in such minor details, NQTHM very
often exposes minor oversights in our statement of theorems. The situation is entirely
different for some ‘‘real theorem-provers,”’ such as those of Wu and Chou [27], which one
expects to decide quickly any theorem in their domain.

The earliest version of NQTHM [9] had no facility for user guidance. The power of that early
version of the prover may be very crudely characterized by saying that, starting from Peano’s
axioms, and analogous axioms for lists, the prover could not prove anything much more
difficult than the associativity of multiplication or the correctness of an insertion sort
algorithm.

In order to permit NQTHM to prove theorems harder than these (without *‘cheating’’ by
adding additional formulas as axioms), the most important step we took was to permit the user
to suggest ‘‘lemmas,’” i.e. intermediate theorems, which would first be proved by NQTHM
and then made available for use in subsequent proofs, mainly by the simplifier [10].
Permitting the use of lemmas on the one hand makes NQTHM feel more like a proof checker
than a theorem prover, but on the other hand it permits the checking of a very substantial part
of elementary number theory [66], even including Gauss's law of quadratic reciprocity (the
crown jewel of number theory), and the correctness of some interesting algorithms [16].

5 Our Motivation: Computer System Correctness

Given that NQTHM is not avery ‘“‘smart’’ theorem prover, one might well ask why we have
kept working on it for so many years! Our main motivation has been to develop NQTHM
into a system that can be used in a practical way to check the correctness of computer
systems, thereby reducing the frequency of bugsin computer programs.

The idea of proving the correctness of algorithms is at least as old as Euclid’s demonstration
of the correctness of an algorithm for finding the greatest common divisor of two
integers[29]. The idea of correctness proofs is also clearly stated in the classic papers of
Goldstine and von Neumann [73] that describe the first von Neumann machine and how to
use it. In those papers fifteen programs, including a sort routine, are specified, coded in
machine language, and proved correct. Although correctness proofs were undoubtedly
constructed by many early programmers, publications about this idea seem rare until the 60s,
when McCarthy [56], Floyd [30], Hoare [35], and Burstall [26] described means for proving
the correctness of programs written in higher level languages. Subsequently a rather sizable
literature on the subject has devel oped.

Proofs of the correctness of computing systems seem to be much longer, much more tedious,
and much more error prone than proofs in ordinary mathematics. The additional length is due
to the fact that the computing systems may easily require hundreds of pages of specification,
whereas most propositions in mathematics can easily be stated in a few pages -- even if one
includes the axiomatization of set theory, analysis, and algebra. The tediousness and error
level are perhaps due to this length and also to the fact that many parts of computing systems
are mathematically boring.

The idea of mechanically checking proofs of correctness of computing systems has been
pursued by many researchers, e.g. those mentioned in the review article[7]. Research on this

topic has grown to the extent that there are several research laboratories (e.g. the Computer
Science Laboratory of SRI International) and several small companies (e.g. our own
Computational Logic, Inc. and Richard Platek’s Odyssey Associates, Inc.) which devote a
major portion of their efforts to research on this topic.

6 Applications

We and others have used NQTHM to check the correctness of many small programs.
However, after many years of effort, we are beginning to see mechanical correctness proofs of
entire small computing systems. By far, the most significant application of NQTHM has been
to a prove the correctness of a computing system known as the CLI Stack, which includes (a)
a microprocessor design (FM8502) based on gates and registers[38], (b) an assembler
(Piton) [61] that targets FM 8502, and (c) a higher level language (micro Gypsy) [76] that
targets Piton. We have also seen a proof of correctness of a small operating system kernel
(KIT) [2]. Except for the Piton work, all of these projects represent Ph.D. dissertations in
computer science which we supervised at the University of Texas. FM8502, Piton, micro
Gypsy, and Kit are documented in one place, a specia issue of the Journal of Automated
Reasoning [62].

Another major application of NQTHM is the Ph.D. work of N. Shankar in proof checking
Godel’ sincompleteness theorem [69]. The text of this proof effort is included in the standard
distribution of NQTHM, along with Shankar’ s checking of the Church-Rosser theorem.

On pp. 4-9 of ACLH, we enumerate many other applications of NQTHM, including those in
list processing, elementary number theory, metamathematics, set theory, and concurrent
algorithms. Descriptions of some of these applications may be found in
[16, 66, 12, 21, 17, 67, 68, 69, 20, 60, 28, 51, 37,52, 13,14,15,22,77] and d&so in
[1, 31, 32, 33,40, 75, 3,48, 44, 41, 42, 39, 45, 23, 24, 25].

Recently colleagues of ours at Computational Logic, Inc., Bill Young and Bill Bevier, have
used NQTHM to construct mechanically checked proofs of properties relating to fault-
tolerance. A key problem facing the designers of systems which attempt to ensure fault
tolerance by redundant processing is how to guarantee that the processors reach agreement,
even when one or more processing units are faulty. This problem, caled the Byzantine
Generals problem or the problem of achieving interactive consistency, was posed and solved
by Pease, Shostak, and Lamport [64, 50]. They proved that the problem is solvable if and
only if the total number of processors exceeds three times the number of faulty processors and
devised an extremely clever algorithm (the **Oral Messages* Algorithm) which implements a
solution to this problem. Bill Young and Bill Bevier, have just finished developing a machine
checked proof of the correctness of this agorithm using NQTHM.

Matt Kaufmann, of Computational Logic, Inc., has made extensive additions to NQTHM,
building a system called ‘‘PC-NQTHM™ on top of NQTHM, which many find more
convenient than NQTHM for checking proofs. Information about PC-NQTHM and some
extensions and applications may be found in[46, 49, 45, 47, 63, 43, 76]. Among the
theorems which Kaufmann has checked with PC-NQTHM are:

» Ramsey’ s theorem for exponent 2 (both finite and infinite versions), with explicit
bound in the finite case [41, 46].

* Correctness of an algorithm of Gries for finding the largest ‘‘true square’
submatrix of aboolean matrix [40].

 The Cantor-Schroeder-Bernstein theorem [46].
* The correctness of a Towers of Hanoi program.
» Theirrationality of the square root of 2.

* Correctness of afinite version of the collapsing function of Cohen forcing.
7 Work in Progress. ACL2

We are currently constructing an entirely new version of our prover. The name of the new
system is A Computational Logic for Applicative Common Lisp, which might be abbreviated
as'‘ACL ACL’’ but which we abbreviate as‘*ACL2"’. Whereas NQTHM has been available
for some time, extensively documented, and widely used, ACL2 is still very much under
development. Hence the following remarks are somewhat speculative.

Instead of supporting ‘‘Boyer-Moore logic'’, which reflects an odd mixture of functions
vaguely, but not consistently, related to Lisp 1.5 and Interlisp, ACL2 directly supports
perfectly and accurately (we hope) a large subset of applicative Common Lisp. That is,
ACL2 is to applicative Common Lisp what NQTHM is to the ‘*Boyer-Moore logic’’, a
programming/theorem proving environment for an executable logic of recursive functions.

More precisely, we have identified an applicative subset of Common Lisp and axiomatized it,
following Steele’'s[72] carefully. Because arrays, property lists, input/output and certain
other commonly used programming features are not provided applicatively in Common Lisp
(i.e, they al involve the notion of explicit state changes), we axiomatized applicative
versions of these features. For example, when one *‘changes’ an array object, one gets a new
array object. However, we gave these applicative functions very efficient implementations
which are in complete agreement with their axiomatic descriptions but which happen to
execute at near von Neumann speeds when used in the normal von Neumann style (in which
“‘old’” versions of amodified structure are not accessed). The result is ** applicative Common
Lisp’’ which is also an executable mathematical logic.

Like NQTHM, the logic of applicative Common Lisp provides a definitional principle that
permits the sound extension of the system via the introduction of recursive functions. Unlike
NQTHM, however, functions in applicative Common Lisp may be defined only on a subset of
the universe. Like NQTHM, the new logic provides the standard first order rules of inference
and induction. However, the axioms are different since, for example, NQTHM and ACL2
differ on what (CAR NI L) is. Most importantly for the current purposes, we claim that all
correct Common Lisps implement applicative Common Lisp directly and that, unlike
NQTHM’slogic, applicative Common Lisp is apractical programming language.

ACL2 is a theorem prover and programming/proof environment for applicative Common
Lisp. ACL2 includes al of the functionality of NQTHM (as understood in the new setting)
plus many new features (e.g., congruence-based rewriting). The source code for ACL2
consists of about 1.5 million characters, al but 43,000 of which are in applicative Common
Lisp. That is, 97% of ACL2 iswritten applicatively in the same logic for which ACL2 proves
theorems. The 3% of non-applicative code is entirely at the top-level of the read-eval-print
user interface and deals with reading user input, error recovery and interrupts. We expect to
implement r ead applicatively and limit the non-applicative part of ACL2 to the essential
interaction with the underlying Common Lisp host system.

Thus, in ACL2 asit currently stands, the definitional principle isimplemented as afunctionin

logic, including the syntax checkers, error handlers, and data base handlers. The entire
‘“‘Boyer-Moore theorem prover’”’ -- as that term is now understood to mean ‘‘the theorem
prover Boyer and Moore have written for ACL2" -- is a function in the logic, including the
simplifiers, the decision procedures, the induction heuristics, and al of the proof description
generators.

The fact that almost all of ACL2 is written applicatively in the same logic for which it is a
theorem prover alows the ACL2 source code to be among the axioms in that definitional
extension of the logic. The user of the ACL2 system can define functions, combine his
functions with those of ACL 2, execute them, or prove things about them, in a unified setting.
One need only understand one language, Common Lisp, to use the *‘logic’’, interact with the
system, interface to the system, or modify the system. DEFMACRO can be used to extend
the syntax of the language, users can introduce their own front-ends by programming within
the logic, and all of the proof routines are accessible to users and have exceptionaly clear
(indeed, applicative) interfaces. Many new avenues in metatheoretic extensibility are waiting
to be explored. We believe we have taken a major step towards the goal of perhaps someday
checking the soundness of most of the theorem prover by defining the theorem prover in a
formalized logic.

At the time of this writing, we have completely recoded all of the functionality of NQTHM,
but have only begun experimentation with proving theorems. However, our preliminary
evidence isthat there will be no substantial degradation in performance, even though ACL2 is
coded applicatively.

8 Conclusions
8.1 Proof Checking asa Mere Engineering Challenge

In our view it seems humanly feasible to write mechanical proof checkers for any part of
mathematics and to check mechanically any result in mathematics. There has been much
doubt cast on the feasibility of formal proofs, even by such respected authorities as
Bourbaki [6]

But formalized mathematics cannot in practice be written down in full, and therefore we
must have confidence in what might be called the common sense of the mathematician ...
We shall therefore very quickly abandon formalized mathematics ...

We believe that we have enough practical evidence to extrapolate that mechanical proof
checking any mathematical result is feasible, not some mere theoretical possibility which
would require a computer the size of the universe. We can make no definite claim about the
cost of doing such proof checking, given a suitable proof checker, but we suspect that in the
worst case it is somewhere between approximately ten and one hundred times as expensive as
doing careful hand proofs at the level of an upper level undergraduate mathematics textbook.
In a few areas of mathematics, such as those described by [27] the cost is much less than
doing careful hand proofs. We are optimistic that research by top mathematicians will expand
the areas in which mechanical theorem-provers are better than most mathematicians.

8.2 Checkingthe Correctness of Computing Systems

Almost as a corollary to the preceding view, we assert that it is humanly feasible to check
mechanically the correctness of computer systems against formal specifications for those
systems. Moreover, we believe that the reliability of computing systems could and should be
increased significantly by requiring that critical systems be formally specified and that their

correctness with respect to those specifications be mechanically checked. Again, we make no
definite claim about the cost of doing such certification, but given that, for example, there
exist microprocessors that are in control of nuclear weapons, we believe that the cost of doing
such checking may well be less than the cost of not doing such checking.

8.3 Formalizing the Real World

Although the correctness of algorithms and even systems is something that is reasonably
clearly understood from a mathematical point of view, it remains a maor and largely
unexplored area of research to formalize the interactions of computing systems with the *‘real
world.”” Even correctly formalizing the behavior of atypical industrial microcontroller, with
its myriad timers, interrupts, buses, and A/D converters seems to be on the edge of the state of
the art of formalization. Any claim that a computing system has been formally proved to
interact safely with the world is no better than the accuracy with which the behavior of the
world has been formalized. The difficulty of accurately formalizing the behavior of the world
does not diminish the fact that typically a very large part of what any computing system is
supposed to do (especially the internal workings) can be formally specified, and that part is
suitable for scrutiny with formal, mechanical proof attempts.

9 Acknowledgements

We want to express our thanks to a number of people who have contributed significantly
towards making NQTHM a successful prover.

The first version of our prover was developed in the amazingly fertile environment of
Edinburgh University in the period 1971 to 1974. While working in Bernard Meltzer's
Metamathematics Unit (which then became the Department of Computational Logic), we had
the joy of working with such figures as JA. Robinson, Bob Kowalski, Pat Hayes, Alan
Bundy, Aaron Sloman, and Woody Bledsoe. In nearby groups, such as the Department of
Machine Intelligence, we found inspiration from the likes of Rod Burstall, Donald Michie,
Robin Popplestone, Gordon Plotkin, Michael Gordon, Bruce Anderson, David Warren,
Raymond Aubin, Harry Barrow, John Darlington, and Julian Davies. The time and place
seemed to be embued with quiet inspiration. It ishard for usto imagine that our prover could
have put down its roots anyplace else.

John McCarthy’s influence on our work has been magjor. His invention of Lisp gave us a
language [55, 59] in which to write NQTHM. His papers on proof checking, e.g. [57], and
the mathematical theory of computation [58] gave us incentive to write a prover for program
verification, reasoning techniques to encode, and sample theorems on which to work. We
have mentioned above Woody Bledsoe's influence on our work in showing how to write
heuristic theorem provers similar to ours.

We thank Rod Burstall for his inspiring and elegant paper on structural induction [26]. We
thank Burstall, Michie, and Popplestone for use of the POP2 system running on an ICL 4130
on which we coded the earliest version of our prover. POP2 is a Lisp-like language with an
Algol-like syntax and many features ahead of its time, including streams and abstract data
types, which influenced the design of the shell construct in the NQTHM logic.

At SRI International and Xerox PARC (JSM), we translated our prover into Lisp and made
major extensions to it. We owe a debt of thanks to many people there for their support and
encouragement, including Robert W. Taylor, Warren Teitelmann, Peter Deutsch, Butler
Lampson, Jack Goldberg, Peter Neumann, Karl Levitt, Bernie Elspas, Rob Shostak, Jay

10

Spitzen, Les Lamport, Joe Goguen, Richard Waldinger, Nils Nilsson, and Peter Hart.

We owe our user community a major debt. In particular, we acknowledge the contributions
of Bill Bevier, Bishop Brock, S.C. Chou, Ernie Cohen, Jmi Crawford, David Goldschlag,
C.H. Huang, Warren Hunt, Myung Kim, David Russinoff, Natargjan Shankar, Mark
Woodcock, Matt Wilding, Bill Young, and Yuan Yu. In addition, we have profited
enormously from our association with Matt Kaufmann, Hans Kamp, Chris Lengauer, Norman
Martin, John Nagle, Carl Pixley, and Bill Schelter. Topher Cooper has the distinction of
being the only person to have found an unsoundness in a released version of our system.

We also most gratefully acknowledge the support of our colleagues at the Institute for
Computing Science at the University of Texas, nhow amost all at Computational Logic,
especially Don Good and Sandy Olmstead who created and maintained at the Institute a
creative and relaxed research atmosphere with excellent computing facilities. In 1986 we
moved our entire verification research group (and its atmosphere) off campus and established
Computational Logic, Inc.

Notwithstanding the contributions of all our friends and supporters, we would like to make
clear that NQTHM isavery large and complicated system that was written entirely by the two
of us. Not asingle line of Lisp in our system was written by a third party. Consequently,
every bug in it isours alone. Soundness is the most important property of a theorem prover,
and we urge any user who finds such a bug to report it to us at once.

The development of our logic and theorem prover has been an ongoing effort for the last 18
years. During that period we have received financia support from many sources. Our work
has been supported for over a decade by the National Science Foundation and the Office of
Naval Research. Of the many different grants and contracts involved we list only the latest:
NSF Grant DCR-8202943, NSF Grant DCR81-22039, and ONR Contract N00014-81-
K-0634. We are especialy grateful to NSF, ONR, and our technical monitors there, Tom
Keenan, Bob Grafton, and Ralph Wachter, for years of steady support and encouragement.

The development of our prover is currently supported in part at Computational Logic, Inc., by
the Office of Naval Research. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of Computational Logic, Inc., ONR, or the U.S. Government.

We have received additional support over the years from the following sources, listed
chronologically: Science Research Council (now the Science and Engineering Research
Council) of the United Kingdom, Xerox, SRI International, NASA, Air Force Office of
Scientific Research, Digital Equipment Corporation, the University of Texas at Austin, the
Venture Research Unit of British Petroleum, Ltd., and IBM.

We thank Bill Schelter for the numerous suggestions he has made for improving the
performance of NQTHM under Austin-Kyoto Common Lisp.

Thanks to Anne Boyer for editing this and other writings.

Finally, we wish to express one negative acknowledgement. The research group assembled at
Edinburgh in the early 70's was scattered to the winds by the *‘Lighthill Report,”” the
devastatingly negative review of artificial intelligence in Britain conducted by Sir James
Lighthill. 1f computing becomes the dominant branch of both science and engineering, as
seems possible, we hope that renowned computer scientists, if asked, will take the greatest

11

care to review new developments in physics with humility, not arrogance, and not attempt to
guash new developments that do not fit into old paradigms of science.

12

References

1. W. Bevier. A Verified Operating System Kernel. Ph.D. Th., University of Texas at Austin,
1987.

2. W. R. Bevier. "Kit and the Short Stack”. Journal of Automated Reasoning 5, 4 (1989),
519-530.

3. William Bevier, Matt Kaufmann, and William Y oung. Trandation of a Gypsy Compiler
Example into the Boyer-Moore Logic. Internal Note 169, Computational Logic, Inc.,
January, 1990.

4. W.W. Bledsoe. "Splitting and Reduction Heuristics in Automatic Theorem Proving".
Artificial Intelligence 2 (1971), 55-77.

5. W. Bledsoe, R. Boyer, and W. Henneman. "Computer Proofs of Limit Theorems".
Artificial Intelligence 3 (1972), 27-60.

6. N. Bourbaki. Elements of Mathematics. Addison Wedley, Reading, Massachusetts, 1968.

7. R. S. Boyer and JS. Moore. "Program Verification". Journal of Automated Reasoning 1,
1 (1985), 17-23.

8. R. S. Boyer, D. M. Goldschlag, M. Kaufmann, and JS. Moore. Functional Instantiation in
First Order Logic, Report 44. Computational Logic, 1717 W. 6th St., Austin, Texas, 78703,
U.S.A., 1989. To appear in the proceedings of the 1989 Workshop on Programming Logic,
Programming Methodology Group, University of Goteborg.

9. R. S. Boyer and JS. Moore. "Proving Theorems about LI1SP Functions®'. JACM 22, 1
(1975), 129-144.

10. R. S. Boyer and JS. Moore. A Lemma Driven Automatic Theorem Prover for Recursive
Function Theory. Proceedings of the 5th Joint Conference on Artificial Intelligence, 1977,
pp. 511-519.

11. R. S. Boyer and JS. Moore. A Computational Logic. Academic Press, New Y ork, 1979.

12. R. S. Boyer and JS. Moore. Metafunctions: Proving Them Correct and Using Them
Efficiently as New Proof Procedures. In The Correctness Problemin Computer Science,
R. S. Boyer and J S. Moore, Eds., Academic Press, London, 1981.

13. R. S. Boyer and JS. Moore. A Verification Condition Generator for FORTRAN. In The
Correctness Problemin Computer Science, R. S. Boyer and J S. Moore, Eds., Academic
Press, London, 1981.

14. R. S. Boyer and JS. Moore. The Mechanical Verification of a FORTRAN Square Root
Program. SRI International, 1981.

15. R. S. Boyer and JS. Moore. MJRTY - A Fast Mgority Vote Algorithm. Technical
Report ICSCA-CMP-32, Institute for Computing Science and Computer Applications,
University of Texas at Austin, 1982.

16. R. S. Boyer and JS. Moore. "Proof Checking the RSA Public Key Encryption
Algorithm". American Mathematical Monthly 91, 3 (1984), 181-1809.

13

17. R. S. Boyer and JS. Moore. "A Mechanica Proof of the Unsolvahility of the Halting
Problem". JACM 31, 3 (1984), 441-458.

18. R. S. Boyer and JS. Moore. A Computational Logic Handbook. Academic Press, New
Y ork, 1988.

19. R. S. Boyer and JS. Moore. Integrating Decision Procedures into Heuristic Theorem
Provers. A Case Study with Linear Arithmetic. In Machine Intelligence 11, Oxford
University Press, 1988.

20. R. S. Boyer and JS. Moore. "The Addition of Bounded Quantification and Partial
Functionsto A Computational Logic and Its Theorem Prover”. Journal of Automated
Reasoning 4 (1988), 117-172.

21. R. S.Boyer and JS. Moore. A Mechanica Proof of the Turing Completeness of Pure
Lisp. In Automated Theorem Proving: After 25 Years, W.W. Bledsoe and D.W. Loveland,
Eds., American Mathematical Society, Providence, R.I., 1984, pp. 133-167.

22. R. S. Boyer, M. W. Green and JS. Moore. The Use of a Formal Simulator to Verify a
Simple Real Time Control Program. In D. Gries, et. a, Ed., Beauty Is Our Business,
Springer, 1990. To Appear.

23. A. Bronstein and C. Talcott. String-Functional Semantics for Formal Verification of
Synchronous Circuits, Report No. STAN-CS-88-1210. Computer Science Department,
Stanford University, 1988.

24. A.Bronstein. MLP: String-functional semantics and Boyer-Moore mechanization for the
formal verification of synchronous circuits. Ph.D. Th., Stanford University, 1989.

25. A. Bronstein and C. Tacott. Formal Verification of Synchronous Circuits based on
String-Functional Semantics: The 7 Paillet Circuitsin Boyer-Moore. C-Cube 1989 Workshop
on Automatic Verification Methods for Finite State Systems. LNCS 407, 1989, pp. 317-333.

26. R. Burstal. "Proving Properties of Programs by Structural Induction”. The Computer
Journal 12, 1 (1969), 41-48.

27. S. Chou. Mechancial Geometry Theorem Proving. Reidel, 1988.

28. Benedetto Lorenzo Di Vito. Verification of Communications Protocols and Abstract
Process Models. Ph.D. Th., University of Texas at Austin, 1982.

29. T. L. Heath (trandation and commentary). The Thirteen Books of Euclid’s Elements.
Dover, New York , 1908. p. 298, Vol 2., i.e. Proposition 2, Book VII.

30. R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics, American Mathematical Society,
Providence, Rhode Island, 1967, pp. 19-32.

31. David M. Goldschlag. "Mechanically Verifying Concurrent Programs with the Boyer-
Moore Prover". |EEE Transactions on Software Engineering (September 1990). To appear.

32. David M. Goldschlag. Mechanizing Unity. In Proceedings of the IFIP TC2/WG2.3
Working Conference on Programming Concepts and Methods, M. Broy and C. B. Jones, Eds,,
Elsevier, Amsterdam, 1990.

14

33. David M. Goldschlag. "Proving Proof Rules: A Proof System for Concurrent Programs”.
Compass’90 (June 1990).

34. R. L. Goodstein. Recursive Number Theory. North-Holland Publishing Company,
Amsterdam, 1964.

35. C. A.R. Hoare. "An Axiomatic Basis for Computer Programming”. Comm. ACM 12, 10
(1969), 576-583.

36. L. Hodes. Solving Problems by Formula Manipulation. Proc. Second Inter. Joint Conf.
on Art. Intell., The British Computer Society, 1971, pp. 553-559.

37. C.-H. Huang and C. Lengauer. "The Automated Proof of a Trace Transformation for a
Bitonic Sort". Theoretical Computer Science 1, 46 (1986), 261-284.

38. W. A. Hunt. "Microprocessor Design Verification”. Journal of Automated Reasoning 5,
4 (1989), 429-460.

39. Matt Kaufmann. A Formal Semantics and Proof of Soundness for the Logic of the
NQTHM Version of the Boyer-Moore Theorem Prover. Internal Note 229, Institute for
Computing Science, University of Texas at Austin, February, 1987.

40. Matt Kaufmann. A Mechanically-checked Semi-interactive Proof of Correctness of
Gries's Algorithm for Finding the Largest Size of a Square True Submatrix. Internal Note
236, Institute for Computing Science, University of Texas at Austin, October, 1986.

41. Matt Kaufmann. An Examplein NQTHM: Ramsey’s Theorem. Internal Note 100,
Computational Logic, Inc., November, 1988.

42. Matt Kaufmann. Boyer-Moore-ish Micro Gypsy and a Prototype Hardware Expander.
Internal Note 73, Computational Logic, Inc., August, 1988.

43. Matt Kaufmann. A Mutual Recursion and Dependency Analysis Tool for NQTHM.
Internal Note 99, Computational Logic, Inc., 1988.

44. Matt Kaufmann. A User’s Manual for RCL. Internal Note 157, Computational Logic,
Inc., October, 1989.

45. Matt Kaufmann and Matt Wilding. A Parallel Version of the Boyer-Moore Prover.
Tech. Rept. 39, Computational Logic, Inc., February, 1989.

46. Matt Kaufmann. DEFN-SK: An Extension of the Boyer-Moore Theorem Prover to
Handle First-Order Quantifiers. Tech. Rept. 43, Computationa Logic, Inc., 1717 W. 6th S,
Suite 290, Austin, Texas, June, 1989.

47. Matt Kaufmann. Addition of Free Variablesto an Interactive Enhancement of the Boyer-
Moore Theorem Prover. Tech. Rept. 42, Computational Logic, Inc., Austin, Texas, May,
1989.

48. Matt Kaufmann. A Mechanically-checked Correctness Proof for Generalization in the
Presence of Free Variables. Tech. Rept. 53, Computational Logic, Inc., Austin, Texas,
March, 1990.

49. Matt Kaufmann. An Integer Library for NQTHM. Internal Note 182, Computational
Logic, Inc., March, 1990.

15

50. Ledlie Lamport, Robert Shostak, and Marshall Pease. "The Byzantine Generals
Problem”. ACM TOPLASA4, 3 (July 1982), 382-401.

51. C. Lengauer. "On the Role of Automated Theorem Proving in the Compile-Time
Derivation of Concurrency”. Journal of Automated Reasoning 1, 1 (1985), 75-101.

52. C. Lengauer and C.-H. Huang. A Mechanically Certified Theorem about Optimal
Concurrency of Sorting Networks. Proc. 13th Ann. ACM Symp. on Principles of
Programming Languages, 1986, pp. 307-317.

53. D. Loveland. Automated Theorem Proving: A Logical Basis. North Holland,
Amsterdam, 1978.

54. J. McCarthy. "Recursive Functions of Symbolics Expressions and their Computation by
Machine". Communications of the Association for Computing Machinery 3, 4 (1960),
184-195.

55. J. McCarthy. The Lisp Programmer’s Manual. M.I.T. Computation Center, 1960.

56. J. McCarthy. Towards a Mathematical Science of Computation. Proceedings of IFIP
Congress, 1962, pp. 21-28.

57. J. McCarthy. Computer Programs for Checking Mathematical Proofs. Recursive
Function Theory, Proceedings of a Symposium in Pure Mathematics, Providence, Rhode
Island, 1962, pp. 219-227.

58. J. McCarthy. A Basisfor aMathematical Theory of Computation. 1n Computer
Programming and Formal Systems, P. Braffort and D. Hershberg, Eds., North-Holland
Publishing Company, Amsterdam, The Netherlands, 1963.

59. J. McCarthy, et al. LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge,
Massachusetts, 1965.

60. JS. Moore. "A Mechanica Proof of the Termination of Takeuchi’s Function”.
Information Processing Letters 9, 4 (1979), 176-181.

61. J. S. Moore. "A Mechanically Verified Language Implementation”. Journal of
Automated Reasoning 5, 4 (1989), 461-492.

62. J. S. Moore, et. al. "Specia Issue on System Verification”. Journal of Automated
Reasoning 5, 4 (1989), 409-530.

63. Matt Kaufmann. A User’s Manual for an Interactive Enhancement to the Boyer-Moore
Theorem Prover. Tech. Rept. 19, Computational Logic, Inc., Austin, Texas, May, 1988.

64. Marshall Pease, Robert Shostak, and Leslie Lamport. "Reaching Agreement in the
Presence of Faults'. JACM 27, 2 (April 1980), 228-234.

65. J. A. Robinson. "A Machine-oriented Logic Based on the Resolution Principle". JACM
12, 1 (1965), 23-41.

66. David M. Russinoff. "An Experiment with the Boyer-Moore Theorem Prover: A Proof
of Wilson's Theorem". Journal of Automated Reasoning 1, 2 (1985), 121-139.

16

67. N. Shankar. "Towards Mechanical Metamathematics'. Journal of Automated Reasoning
1, 4 (1985), 407-434.

68. N. Shankar. A Mechanical Proof of the Church-Rosser Theorem. Tech. Rept. ICSCA-
CMP-45, Institute for Computing Science, University of Texas at Austin, 1985.

69. N. Shankar. Proof Checking Metamathematics. Ph.D. Th., University of Texas at
Austin, 1986.

70. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Ma., 1967.

71. T. Skolem. The Foundations of Elementary Arithmetic Established by Means of the
Recursive Mode of Thought, without the Use of Apparent Variables Ranging over Infinite
Domains. In From Fregeto Godel, J. van Heijenoort, Ed., Harvard University Press,
Cambridge, Massachusetts, 1967.

72. G. L. Steele, Jr. Common Lisp The Language. Digital Press, 30 North Avenue,
Burlington, MA 01803, 1984.

73. J. von Neumann. John von Neumann, Collected Works, Volume V. Pergamon Press,
Oxford, 1961.

74. L. Wos, et a. "The concept of demodulation in theorem proving". Journal of the ACM
14 (1967), 698-709.

75. Matt Kaufmann and William D. Young. Comparing Gypsy and the Boyer-Moore Logic
for Specifying Secure Systems. Institute for Computing Science, University of Texas at
Austin, May, 1987. ICSCA-CMP-59.

76. W. D. Young. "A Mechanically Verified Code Generator". Journal of Automated
Reasoning 5, 4 (1989), 493-518.

77. Yuan Yu. "Computer Proofsin Group Theory". Journal of Automated Reasoning
(1990). To appear.

Table of Contents
1 Introduction
2 ThelLogic
3 TheProver
3.1 How to Get a Copy
3.2 WARNING: Difficulty of Use
3.3 Heuristic Character of NQTHM
3.4 Induction
3.5 Simplification
3.6 Other Heuristics
4 The Importance of the User in Finding Proofs
5 Our Motivation: Computer System Correctness
6 Applications
7 Work in Progress. ACL2
8 Conclusions
8.1 Proof Checking asa Mere Engineering Challenge
8.2 Checking the Correctness of Computing Systems
8.3 Formalizing the Real World
9 Acknowledgements

QOO ~NOOUIRARRADMDMNWWWWDNE

