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“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” We
use the name both for a mathematical logic based on applicative Common Lisp
[24] and for a mechanized theorem proving system for that logic developed by
Matt Kaufmann and author Moore. ACL2 is closely related to the Boyer-Moore
logic and system and its interactive enhancement [2, 3, 4]. ACL2’s primary use
is in modeling microprocessors and proving theorems about those models. The
key reason we abandoned the Nqthm logic and adopted applicative Common
Lisp is that the latter can produce extremely efficient runtime code. Execu-
tion efficiency is important because our microprocessor models are often run as
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Abstract

ACL2 is a first-order applicative programming language based on Com-
mon Lisp. It is also a mathematical logic for which a mechanical theorem-
prover has been implemented in the style of the Boyer-Moore theorem
prover. The ACL2 system is used primarily in the modeling and verifica-
tion of computer hardware and software, where the executability of the
language allows models to be used as prototype designs or “simulators.”
To support efficient execution of certain kinds of models, especially models
of microprocessors, ACL2 provides “single-threaded objects,” structures
with the usual “copy on write” applicative semantics but for which writes
are implemented destructively. Syntactic restrictions insure consistency
between the formal semantics and the implementation. The design of
single-threaded objects has been influenced both by the need to make
execution efficient and the need to make proofs about them simple. We
discuss the issues.
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In ACL2, a single-threaded object is a structure whose use is syntactically
restricted so as to guarantee that there is exactly one reference to the struc-
ture. A perfect example of a single-threaded object is the “current state” in
a microprocessor model. The fact that only one reference to the object exists
allows updates to the structure to be performed destructively even though the
axiomatized semantics of update is “copy on write.”

This work is thus addressing the classic problem of how to implement updates
efficiently in an applicative setting. In that sense, our work is akin to that of
[23, 13, 26, 27]. Indeed, Schmidt introduced the term “single threaded” in
[23]. [27] contains a good survey of the most popular alternative in applicative
languages, Haskell’s “monads”. But ACL2 is unusual among purely applicative
programming languages in that it is focused as much on using the language as
a specification language and on mechanically produced proofs as on execution
efficiency. We find that these other concerns influenced our treatment of single-
threaded objects. We do not regard the addition of single-threaded as objects
as having changed the logic but rather just restricted its executable subset for
efficiency reasons. The unrestricted logic is available for specification and proof.

The ACL2 theorem prover is used primarily in hardware and software veri-
fication. For example, the correctness of floating point division and square root
on the AMD K5 microprocessor was proved using the theorem prover [18, 20].
ACL2 has been used to prove the correctness of hardware designs for floating
point addition, subtraction, multiplication, division, and square root on the
AMD K7 [21]. It has been used to model the Motorola CAP digital signal pro-
cessor, to prove that the CAP pipeline architecture correctly implements the
instruction set architecture, and to prove properties of CAP microcode pro-
grams [6, 7]. ACL2 has been used to study the problem of specifying advanced
microprocessor architectures, in particular the interaction of such features as
multi-issue, speculative execution and exceptions and has been used to prove
that one such design correctly implements a sequential architecture [22]. ACL2
was used to model the Rockwell-Collins JEM1, the world’s first silicon Java, Vir-
tual Machine [9, 10, 11, 12]. The use of ACL2 to prove theorems about simple
Java-like byte code programs is reported in [17].

One of the main reasons ACL2 has found industrial application is that it is
both a logic and an efficient applicative programming language. Once a formal
model is created it is possible to test it on concrete examples and to prove
properties of it. Why might one want to run a formal model? Testing the model
is a relatively inexpensive way to find the “easy” bugs. In addition, such a model
can be used as a prototype for the intended component, allowing engineers to
assess its appropriateness given the informal requirements. Another motivation
for such testing is to corroborate the formal model against some other model,
e.g., a circuit-level simulation or even an existing physical artifact like a chip or
gate-array implementation. At AMD, ACL2 formal models have been executed
on many millions of “test vectors” to corroborate them against other models.

The most common industrial applications of ACL2 involve models of mi-



croprocessors. Our motivation for adding “single-threaded objects” to ACL2
comes largely from the desire to speed up the execution of such models. Before
further describing our work, it is helpful to look closely at how microprocessor
models are written in ACL2. We assume a modicum of familiarity with Lisp.

Typically, the state of a microprocessor is modeled as an n-tuple containing
fields representing memories of various kinds. Here we will imagine a state, MS,
to be a triple containing a “next instruction counter” and two memories, one
used for read/write and the other used to hold “execute-only” programs. The
“state-transition” function, here called step, is a Lisp function that creates the
next state from a given state, usually as a function of the “next instruction”
indicated by the program counter and memory. The machine’s fetch-execute
cycle is then modeled by the simple recursive function

(defun run (MS n)
(if (zp n)
MS
(run (step MS) (- n 1))))

This Lisp command defines the function run so that, when applied to MS and
n, it successively steps MS n times and returns the final result. In Lisp, the
application of run to MS and n is written (run MS n) instead of run(MSn).

We might define step so that it fetches the next instruction from MS and
then “does” that instruction to MS,

(defun step (MS)
(do-inst (next-inst MS) MS))

where the function next-inst fetches the instruction indicated by the next
instruction counter and do-inst is defined as a “big switch” that invokes the
appropriate transition function depending on the opcode of the next instruction.

(defun do-inst (inst MS)
(case (op-code inst)

(LDAD (execute-LOAD inst MS))
(STORE (execute-STORE inst MS))
(ADD (execute-ADD inst MS))

(GOTO (execute-GOTO inst MS))

(otherwise MS)))

Each instruction modeled, e.g., ADD, has a logical counterpart that specifies the
transition, e.g., execute—-ADD. Here is one such definition:

(defun execute-ADD (inst MS)
(let ((a1 (argl inst))
(a2 (arg2 inst)))
(update-nic (+ 1 (nic MS))
(update-memi a1



(+ (memi a; MS)
(memi as MS))
MS))))

Here we are imagining that an ADD instruction has a “2-address” format. In
the definition above we bind the variables a; and a2 to the two addresses from
which the instruction is to get its operands. We then construct a new state from
MS by two “sequential” (i.e., nested) updates. The first (innermost) replaces
the contents of memory location a; by the sum of contents of memory locations
a1 and as. The second update increments the next instruction counter, nic, by
one. The program component of the state MS is unchanged.!

Suppose states are represented as triples and the memory component of a
state MS is (nth 1 MS), i.e., the 1st element of the triple. Suppose that the
memory is itself represented as a linear list. Then memi and update-memi are
defined as shown below.

(defun memi (7 MS)
(nth ¢ (nth 1 MS)))

(defun update-memi (i v MS)
(update-nth 1
(update-nth ¢ v (nth 1 MS))
MS))

where (nth n z) is the n*® element (0-based) of the list z and (update-nth n
v x) copies the list z, replacing the n*® element with v. The definition of the
latter is

(defun update-nth (n v z)
(cond ((zp n) (cons v (cdr z)))
(t (cons (car x)
(update-nth (1- n) v (cdr ))))))

Thus, for example, (update-nth 3 G (A B C D E)) is equal to (A B C G
E).

In principle, given a concrete microprocessor state and a particular number
of steps to take we can compute the final state. This just requires executing run
and the above subroutines on the concrete data. But if we actually implement
memi and update-memi as shown above, the time taken to execute memory
reads and writes in our model is linear in the address. This is because nth
and update-nth “chase links” in the linked list representation of memories.
In addition, because the formal semantics of update-nth is “copy on write,”
storage (in an amount proportional to the address) is allocated on memory
writes.

1Machines of commercial interest often have more complicated instruction semantics,
e.g., the +-expression might be replaced by (mod (+ (memi a; MS) (memi az MS)) (expt
2 32)), but this example is suggestive of the essential character of such models.



But inspection of the nest of functions starting with run and proceeding
through step to the individual semantic functions like execute-ADD, reveals
that we could in principle do this computation by destructively re-using the
representation of the initial state, provided we never needed the top-level state
again. If update-memi were implemented destructively, modifying the existing
representation of the current state to obtain the next one, no harm would come
because in the functions above no function references the “old” state after any
update to any part of it. This is a syntactic property of the definitions and
depends, in part, on order of evaluation.

This observation has led us to incorporate into ACL2 the notion of a user-
defined single-threaded object. Such an object is a structure, possibly containing
linear lists accessed positionally and usually quite large. Accessor functions,
such as nic and memi, are provided, as are update functions, such as update-nic
and update-memi. The axiomatic descriptions of the functions are as indicated
by the definitions of memi and update-memi above. This permits us to state
and prove properties of functions using the single-threaded object. However,
syntactic restrictions are enforced that insure that it is sufficient to allocate
only one “live” copy of the object. Updates are performed destructively on the
live object. The syntactic restrictions — which actually require that we make
minor changes to some of the definitions above — insure that no well-formed
code executed on the live object can detect the difference between the axiomatic
and implemented semantics of updates.

The history of single-threaded objects in ACL2 is rather long. The initial
design of the kernel of ACL2 was done in 1989 by Boyer and Moore. The system
is coded almost entirely in its own applicative language. That forced us to
provide ourselves an explicit notion of “state” into which we would accumulate
the effects of a session with the user. The state of the ACL2 theorem prover,
for example, includes a list of the definitions added by the user, the rewrite
rules proved, etc. This notion of state also provides streams and files so that
the input/output functions, proof descriptions, error handling, and the read-
eval-print loop could be coded applicatively in the language. To make this
applicative state efficient, we implemented it destructively, and we enforced
certain draconian syntactic rules on the use of the name state so that the
applicative semantics was not violated by the destructive implementation. We
added axioms which characterized the semantics of the accessors and updaters
of our state and proved theorems about state in order to bootstrap the system.
This “single-threaded” notion of state has been present and available to the user
in all versions of the system. Matt Kaufmann joined the ACL2 project soon
after the treatment of state had stabilized; since 1993 most ACL2 development
has been the joint work of Kaufmann and Moore.

However, while the ACL2 user could write functions that used our state,
provided the syntactic rules were followed, and the user could prove theorems
about those functions with ACL2, the user could not introduce his or her own
single-threaded object.



Researchers at Rockwell-Collins, namely David Hardin, David Greve, and
Matt Wilding, demonstrated the need for user-defined single-threaded objects
by “cheating:” they implemented destructive state manipulation functions and
then used them as though they were applicative — being careful to obey the syn-
tactic restrictions. Their results are reported in [12]. When John Cowles, of the
University of Wyoming, spent a sabbatical at Rockwell-Collins, he implemented
macros that enforced their restrictions.

When they told us what they were doing, we recognized their approach as
a straightforward generalization of what we were already doing for our state
and added single-threaded objects as described here to ACL2 Version 2.4.

2 Introduction to ACL2

ACL2 is both the name of an applicative programming language and a theorem
proving system for it. ACL2 is largely the work of Matt Kaufmann and Moore,
building on work by Boyer and Moore. This section therefore describes joint
work in which Kaufmann was a major contributor.

2.1 The Logic

The kernel of the ACL2 logic consists of a syntax, some rules of inference, and
some axioms. The kernel logic is given precisely in [16]. The logic supported by
the mechanized ACL2 system is an extension of the kernel logic.

The kernel syntax describes terms composed of variables, constants, and
function symbols applied to fixed numbers of argument terms. Thus, (* z
(fact n)) is a term that might be written as z xn! in more traditional syntactic
systems. After introducing Lisp-like terms, the kernel logic introduces the notion
of “formulas” composed of equalities between terms and the usual propositional
connectives. The kernel language is first order and quantifier free.

The ACL2 axioms describe the properties of certain Common Lisp primi-
tives. For example,

Axioms.
z =y — (equal z y) = ¢

z # y — (equal z y) = nil
z =nil - (if z y 2) = z
z #nil —» (if zy 2) =y

The expression (cond (py zg) ... (pp Tn) (t Zpy1)) is just an abbreviation
for (if p1 z1 ... (if pp T, Zp41)...). Using the function symbols equal and



if we “embed” propositional calculus and equality into the term language of
the logic and generally write terms instead of formulas.

The kernel logic includes axioms that characterize the primitive functions
for constructing and manipulating certain Common Lisp numbers, characters,
strings, symbols, and ordered pairs.

Of special importance here, besides equal and if, are cons, car, and cdr,
which, respectively, construct a new ordered pair and return the left and right
components of such a pair. The predicate consp “recognizes” cons-pairs by
returning one of the symbols t or nil according to whether its argument is a
cons pair.

The rules of inference are those for propositional calculus with equality,
instantiation, an induction principle and extension principles allowing for the
definition of new total recursive functions, new constant symbols, new “sym-
bol packages,” and the declaration of the “current package” (used to support
possibly overlapping name spaces). Our extension principles specify conditions
under which the proposed extensions are admissible. For example, recursive
definitions must be proved to terminate. The admissibility requirements insure
the consistency of the resulting extensions.

For example, here is the definition of the previously mentioned function nth.

(defun nth (n z)
(cond ((zp n) (car z))
(t (nth (- n 1) (cdr x)))))

The predicate zp is true if its argument is either 0 or not a natural number. Thus
nth effectively “coerces” n to be a natural, by using zp as the “test against 0.”
All values of n other than natural numbers are treated as though they were 0.
Termination of the recursion above is easy: when the recursive branch is taken,
n is a non-0 natural number and the function decreases it in the recursion.

The logic supported by the ACL2 theorem prover is somewhat richer than
the kernel logic sketched above. The full logic is obtained from the kernel by
(a) a syntactic extension and some syntactic restrictions (b) the inclusion of an
extension principle called “encapsulation” and a derived rule of inference called
“functional instantiation,” and (c¢) the inclusion of an extension principle called
“defchoose” which provides the power of first-order quantification in ACL2.
The syntactic extension is provided via the incorporation of Common Lisp’s no-
tion of macros, whereby new syntactic forms are implemented by functions that
translate those forms into terms in the kernel syntax. The syntactic restrictions
have to do with syntactic limitations on the use of certain primitives so as to
allow efficient execution, as discussed in this paper. Encapsulation and related
issues are discussed in [14], where admissibility requirements are extended to
the full logic and insure not just consistency but conservativity.



2.2 The Relation to Common Lisp

Logically speaking, all ACL2 functions are total, but not all Common Lisp
functions are total. For example, in Common Lisp, cdr is defined to be the
right component of a cons pair and to be nil on the symbol nil. But ACL2
has the axiom

(consp z) = nil — (cdr z) = nil

Thus, in both ACL2 and Common Lisp, (cdr nil) is nil. But according to the
axiom above, in ACL2 (cdr 23) is nil while in Common Lisp it is undefined
and might signal an error or behave in some erratic or arbitrary way.

Our “completion” of Common Lisp makes the task of writing a theorem
prover for it simpler, because the language is untyped and the axioms are strong
enough to let us reduce to a constant any variable-free expression involving
recursively defined functions in the primitives.

But only certain ACL2 expressions have their axiomatically described values
under Common Lisp. The expressions in question are ones in which each func-
tion, f, is applied only to arguments within the domain prescribed for f by the
Common Lisp specification [24]. The formalization of this notion of “prescribed
domain” of a function is ACL2’s notion of guard, a formula that describes the
intended inputs to the function.

The guard for nth, above, requires that n be a natural number and x be a
linear list or “true list”. A linear list is a binary tree whose rightmost tip is nil.
ACL2 uses an extension of Common Lisp’s declare statement to allow the user
to annotate definitions with their guards. Here is the definition of nth with its
guard:

(defun nth (n z)
(declare (xargs :guard (and (integerp n)
(<= 0 n)
(true-listp z))))
(cond ((zp n) (car z))
(t (nth (- n 1) (edr 2)))))

A guard may be any ACL2 formula in the formal parameters of the function.
Often guards are type-like and the system supports the use of Common Lisp’s
type declaration in conjunction with guards declared as above.

We say a function is Common Lisp compliant if, when its guard is satisfied by
the function’s inputs, the guards of all subroutines are satisfied by their inputs.
The process of verifying that a function is Common Lisp compliant is called
guard verification. Since ACL2 has a mechanical theorem prover associated
with it, guard verification is elegantly implemented. Formulas expressing the
conditions above are generated and handed over to the theorem prover for proof.
Roughly speaking, in the definition of a function f there is a guard conjecture

for each occurrence of a call of a subroutine g. The guard conjecture says “if



the formal parameters of f satisfy the guard for f and the tests governing this
call of g are true, then the actuals of the call of g satisfy the guard of g.”

If an ACL2 function is Common Lisp compliant then any execution of it on
inputs satisfying its guard is correctly calculated by executing the function in
Common Lisp.

When the user submits an admissible function definition to ACL2, two func-
tions are actually defined in the underlying Common Lisp. The first definition is
called the raw definition and corresponds to what the user actually typed. The
second is the completed definition. This definition is obtained from the given one
by replacing all function names by the names of their completed counterparts
as per the ACL2 axioms. For example, the primitive Common Lisp function
named cdr, which is undefined on 23, is replaced by another symbol — actually
the symbol cdr in another package — defined as our cdr is axiomatized. Both
definitions can be compiled. Generally, the raw definitions are faster than the
completed ones, because the latter do runtime type checks and the former do
not.

When the user submits a form to be evaluated, the system runs the guards
on the form and if they are satisfied, the form is evaluated in Common Lisp,
i.e., the faster, raw definitions are run. Otherwise, the slower, completed form
is evaluated. Note that the guard is irrelevant to the logical meaning of a
function; it only affects the efficiency with which ACL2 can compute the value
of the function. If a large system of definitions has been proved to be Common
Lisp compliant and some function in that system is called, e.g., to simulate a
test run of a microprocessor, then the guard of that top-level function call is
tested once and all subsequent execution is of fast, raw code.

Because of guards, calls of compliant ACL2 functions can be replaced by raw
Lisp that is more efficient than their logical definitions suggest. Consider the
expression (zp n). Logically this tests whether n is a non-0 natural number.
One might think that the execution of (zp n) therefore required a runtime
type check on n and the test 0 < n. But the guard for zp is that n is a natural
number. Hence, the compiled code for (zp n) can test just whether n = 0.

Nth, as shown above, is Common Lisp compliant. On inputs satisfying its
guard, the compiled code repeatedly decrements n and cdrs z until n = 0 and
then returns the car of z. We will use nth often in this paper.

2.3 About the Theorem Prover

The ACL2 theorem prover is an improved and extended descendent of the Boyer-
Moore theorem prover, NQTHM, [2, 3, 4]. ACL2 presents itself to the user as a
read-eval-print loop. In addition to the typical commands of defining functions
and evaluating forms, ACL2 permits the user to pose theorems to be proved.
The theorem prover is fully automatic but its behavior is determined, in part,
by its state, which is in turn affected by the theorems it has already proved. We
regard the theorem prover as interactive: it is led to the proofs of complicated



theorems by the user, who formulates appropriate intermediate results to prove
first. These results are designed by the user to lead the system to the proof of
the main result.

Here is some sample input to the theorem prover:

(defthm nth-update-nth
(equal (nth i (update-nth j v z))
(if (equal (nfix %) (nfix j))
v
(nth i z))))

This form directs the system to prove the above formula and then build it in as
a rewrite rule with the name nth-update-nth.

Consider the theorem above. It is an equality and the left-hand side is the
term denoting the i*? element in the result of updating = so that its j** element
is v. The right-hand side tells us what that element is. The expression (nfix
1) “coerces” i to a natural: if ¢ is a natural number, (nfix 7) is identically i;
otherwise, it is 0. If ¢ and j are the same (when coerced to natural numbers),
the answer is v; otherwise, the answer is the i*® element of z.

If we think of the update as a destructive operation on z, then this theorem
relates the 7' element after the update to the " element before the update.
But update is not destructive; z does not change. We are dealing with a logic
here, not a programming language.

Logically speaking, there is no “before” or “after.”. There is no such “event”
as the “updating of z.” Instead, the logical expressions  and (update-nth j
v z) both denote objects and the theorem relates the i*® element of the object
denoted by the first to the i*® element of the object denoted by the second.

The ACL2 theorem prover proves nth-update-nth automatically, by in-
duction on 7 and the structure of the list . After setting up a suitable base
case and induction step, the theorem prover proves both cases by simplification,
applying such axioms as the definitions of nth and update-nth and the fact
that (car (cons z y)) = z.

Once proved, the theorem is built into ACL2’s simplifier as a rewrite rule.
Suppose that the system later tries to prove a formula ¢ involving the term
(nth i (update-nth j v z)). We will denote such a formula as ¢[(nth 4
(update-nth j v z))]. The rewrite rule nth-update-nth will split this goal
into two goals. In the first, the goal becomes @[v] and has an additional hypoth-
esis equating (as above) 7 and j; in the second, the goal becomes @[(nth i z)]
and has an additional hypothesis asserting that ¢ and j are different. Of course,
¢ or the particular instantiations of 4 and j may make a case impossible (e.g.,
as when i and j are different constants or identical expressions).

By proving lemmas such as the one above, the user can configure ACL2 to
do case splits and simplifications designed to prove certain classes of theorems
of interest. The user can augment or control ACL2’s proof search in a variety
of other ways as well.
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ACL2 is available without fee from the ACL2 home page, http://www.-
cs.utexas.edu/users/moore/acl2. Five megabytes of hypertext documentation
can be browsed there. The documentation can be downloaded with the ACL2
sources.

3 Single-Threaded Objects

In ACL2, a “single-threaded object” is a data structure whose use is so syn-
tactically restricted that only one instance of the object need ever exist and its
fields can be updated by destructive assignments.

From the logical perspective, a single-threaded object is an ordinary ACL2
object, e.g., composed of integers, symbols and conses. Logically speaking,
ordinary ACL2 functions are defined to allow the user to “access” and “update”
its fields. Logically speaking, when fields in the object, obj, are “updated” with
new values, a new object, obj’, is constructed.

But by syntactic means we insure that after an updated version of the object
is created there are no more references to the “old” object, obj. Then we can
create obj’ by destructively modifying the memory locations involved in the
representation of obj. The syntactic means is pretty simple but draconian: the
only reference to obj is in the variable named OBJ, where that is a “name” for
the object introduced when the original instance was created.

The consequences of this simple rule are far-reaching and require some get-
ting used to. For example, if OBJ has been declared as a single-threaded object
name, then:

e OBJis a top-level global variable that contains the current object, obj.

e If a function uses the formal parameter OBJ, the only “actual expression”
that can be passed into that slot is OBJ; thus, such functions can only
operate on the current object. Note that since the formal parameters of a
function must be distinct, this rule prevents a single-threaded object being
passed into a function in two or more argument positions, eliminating the
possibility of aliasing.

e The accessors and updaters have a formal parameter named OBJ, thus,
those functions can only be applied to the current object.

e The ACL2 primitives, such as cons, car and cdr, may not be applied
to the variable OBJ. Thus, for example, OBJ may not be consed into a
list (which would create another pointer to it) or accessed or copied via
“unapproved” means.

e The updaters return a “new OBJ object”, i.e., obj'; thus, when an updater
is called, the only variable which can hold its result is OBJ.

11



e If a function calls an OBJ updater, it must return OBJ.

e When a top-level expression involving OBJ returns an OBJ object, that
object becomes the new current value of OBJ.

To avoid dependence on the left-to-right order of evaluation in Common
Lisp, we impose another rule

e When a non-top-level expression returns an OBJ object, the result must
be bound to the local variable named OBJ (rather than passed as an actual
to a function with a formal parameter named OBJ).

Consider the term (£ (smash OBJ) (g OBJ)), where smash is a function
that takes obj as input and returns a modified version of it, 0bj’. Observe that
f has two arguments and that both actuals mention OBJ. Logically speaking,
the two occurrences of the variable OBJ refer to the same object, obj, which is,
of course, the value of OBJ “before” the modification. But with Lisp’s left-to-
right order of evaluation and our surreptitious destructive modification of obj
to produce obj’, the Lisp evaluation of this expression would apply g to obj’.
Hence, the rule above disallows this term and requires us to write

(let ((OBJ (smash OBJ)))
(f OBJ (g OBJ))).

If we mean to apply g to obj instead of obj’ we must write

(letx ((v (g OBJ)
(OBJ (smash OBJ)))
(f OBJ v)).

Note that £ must return OBJ for these expressions to be legal under our rules.

In ACL2, (let ((v1 x1) ... (v, x,)) body), where the v; are distinct vari-
able symbols and the z; and body are terms, is logically equivalent to the term
obtained by simultaneously and uniformly replacing the v; by the corresponding
Tj,1.e., b0dY[,, 4, . vnes,]- Lhe raw implementation of 1let binds the variables
to the values of the terms and then evaluates the body in the extended bind-
ing environment. Because ACL2 is applicative, these two “meanings” of the
expression are equivalent. Lisp’s let#* construct is similar but does sequential
assignments (nested substitutions).

The above restrictions on the use of single-threaded objects are enforced by
the ACL2 syntax checker. When a form is submitted to the read-eval-print loop,
the terms in it are checked for well-formedness. This includes, for example, the
expansion of macros, the check that functions are defined and the check that
function calls are given the correct number of arguments.

To enforce the syntactic rules on single-threaded objects, we must know the
“signature” of every function symbol. For example, memi is known to take an
“ordinary” argument and a single-threaded object of type MS as input and to
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yield an ordinary object as the single result. This is written ((memi * MS) =
*). The signature of update-memi is ((update-memi * * MS) = MS). The
signature of cons is ((cons * *) = x). Thus, the syntax checker is able to
insure such things as that MS is passed into the second argument of memi, that
MS'is passed into the third argument of update-memi, and that MSis not passed
into the second argument of update-memi or into either argument of cons. The
last restriction prevents single-threaded objects from being referenced by other
objects. The syntax checker also uses signatures to insure that the result of
update-memi is immediately let-bound or else returned as the final answer.

ACL2 supports “multi-valued” functions, i.e., functions that return a vector
of results. The rules above are generalized to handle such functions. For exam-
ple, the function func might take an ordinary first argument, the single-threaded
object MS as its second argument, and the single-threaded object STATE as its
third argument and it might return an ordinary object and a modified STATE.
Such a signature is written ((func * MS STATE) = (mv * STATE)). The
syntax checker insures that when func is called its last two arguments are the
proper single-threaded objects and that its vector of two results is either re-
turned immediately or is mv-let-bound to a vector of two variables, the second
of which is STATE.

The hardest part of the syntax checking is inducing the signature of a newly
defined function. The input signature is obvious from the formal parameters?
The output signature can be determined by examining some output branch,
where the function returns an explicit formal parameter (or vector of values) or
calls a subroutine whose output signature is known. The support for recursive
and mutually-recursive definitions, however, complicates this process, as it may
be necessary to enforce the restrictions on recursive calls before the type of the
output has been determined.

The ACL2 read-eval-print loop does not allow the use of any global variable
except single-threaded objects. For example, while (car ’(a b c)) is allowed,
(car z) is not, because in our applicative setting there is no binding environ-
ment assigning a value to z. We make an exception for single-threaded object
names. If MS, for example, is a single-threaded object, and fn is a function
which expects MS as its only argument, then (fn MS) is a legal top-level form.
If the signature of fn indicates that (fn MS) returns an updated copy of MS,
then that value becomes the new “current” MS after the evaluation. According
to our rules above, £n must return an updated MS if £n (or any of its subfunc-
tions) updates MS. We illustrate these restrictions in the next section.

What makes ACL2 different from other functional languages supporting such
operations (e.g., Haskell’s “monads” [26] and Clean’s “uniqueness type system”
[1]) is that ACL2 also implements an explicit axiomatic semantics so that theo-
rems can be proved about them. In particular, the syntactic restrictions noted

2 Actually, for reasons explained later, we require the user to declare explicitly that a given
formal is being used as a single-threaded object rather than as an ordinary object.
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above are enforced only when single-threaded objects are used in function def-
initions (which might be executed outside of the ACL2 read-eval-print loop in
Common Lisp). The accessor and update functions for single-threaded objects
may be used without restriction in formulas to be proved. Since function eval-
uation is sometimes necessary during proofs, ACL2 must be able to evaluate
these functions on logical constants representing the object, even when the con-
stant is not “the current object.” Thus, ACL2 supports both the efficient von
Neumann semantics and the clean applicative semantics, and uses the first in
contexts where execution speed is paramount and the second during proofs.

4 An Example

We describe our implementation of single-threaded objects largely by exam-
ple. For simplicity, we do not model a microprocessor state here, but rather a
much simpler structure containing a “pointer” and a small memory. The follow-
ing command to the ACL2 read-eval-print loop defines a new single-threaded
object named MS. The name “defstobj” comes from the phrase “define single-
threaded object.”

(defstobj MS
(ptr :type (integer O *) :initially 0)
(mem :type (array t (5)) :initially nil))

This constructs a single-threaded object named MS with two fields. The first,
named ptr, contains a positive integer and is initially 0. The second, named
mem, is a list of five arbitrary (i.e., of Common Lisp type t) objects, indexed
sequentially from 0 through 4. Initially mem contains five occurrences of nil.

Logically speaking, the top-level global value of the variable symbol MS is
now (0 (nil nil nil nil nil)).?

The defstobj command above introduces several function definitions. These
definitions extend the logic to include the corresponding axioms and they ex-
tend the underlying Common Lisp to include the completed versions of these
axiomatic definitions. The completed definitions, recall, are used by ACL2 when
it must apply a logically defined function outside of its guarded domain. After
making these extensions, defstobj introduces raw definitions for the functions.
These definitions are destructive and will be discussed after we have clearly
described the intended semantics.

The axiomatic definition of the “recognizer” for MS objects is

(defun msp (MS)
(declare (xargs :guard t))

3If the ACL2 user were to print the value of the variable MS, the result is displayed as
<ms>. Single-threaded objects are generally so large that it is counterproductive to display
their values and yet by the nature of our syntactic conventions it is necessary that functions
return such values.
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(and (true-listp MS)
(= (length MS) 2)
(ptrp (nth 0 MS))
(memp (nth 1 MS))))

The sub-functions ptrp and memp are defined as informally sketched above, to
check that their arguments are, respectively, a positive integer and a list of five
objects.

The accessor and updater for the ptr field are

(defun ptr (MS)
(declare (xargs :guard (msp MS)))
(nth 0 MS))

(defun update-ptr (v MS)
(declare (xargs :guard
(and (and (integerp v) (<= 0 v))
(msp MS))))
(update-nth 0 v MS))

Note that the guard ensures that we do not run the raw code (shown later)
unless MS satisfies msp and, in the case of the updater, v is a positive integer.

We do not provide the user with an accessor or updater for the mem field.
Instead, we provide an accessor and updater for the elements of that field. This
allows us to implement the contents of the field itself as a (non-applicative)
Common Lisp array without exposing that implementation decision. The two
functions provided are

(defun memi (7 MS)
(declare (xargs :guard
(and (integerp 1)
(k= 0 1)
(< i 5)
(msp MS))))
(nth ¢ (nth 1 MS)))

(defun update-memi (i v MS)
(declare (xargs :guard
(and (integerp 1)
(<= 0 %)
(< i5)
(msp MS))))
(update-nth 1
(update-nth ¢ v (nth 1 MS))
MS))

Note that these names have an “i” suffix to remind the reader that they access
and update elements of the mem component of MS, not the component itself.
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So much for the axiomatic semantics of the new functions.

The initial value of the MS object is not (0 (nil nil nil nil nil)) but
a Common Lisp object outside the applicative domain of the ACL2 logic by
virtue of the use of destructively modified arrays. The initial value is (#(0)
#(NIL NIL NIL NIL NIL)). The hash marks are Common Lisp’s notation for
arrays. The two arrays serve two purposes. They will be destructively modified
to update the current MS object and they sometimes allow us to avoid “boxing,”
the allocation of additional storage to represent runtime type tags. A pointer to
this initial value is stored in the Lisp constant symbol named *the-live-ms,
which is not directly accessible to the ACL2 user. However, when the user
evaluates a top-level ACL2 form containing the global variable MS, that variable
is given the value of *the-live-ms*.

Defstobj introduces efficient raw definitions for these functions. We show
below the raw definitions for memi and update-memi.? This is legal Common
Lisp, but not within the applicative ACL2 subset.

(defun memi (i MS)
(cond
((eq MS *the-live-ms*)
(aref (car (cdr MS)) 7))
(t (nth 5 (nth 1 MS)))))

(defun update-memi (i v MS)
(cond
((eq MS *the-live-ms*)
(cond
(*wormholep* (wormhole-er ’update-memi (list ¢ v MS)))
(t (setf (aref (car (cdr MS)) i)
v)
MS)))
(t (update-nth 1 (update-nth 7 v (nth 1 MS)) MS))))

Observe that when memi is applied to the “live” instance of MS it does an array
access, aref, to get the appropriate element. When update-memi is used to
update the mem field of the live instance of MS, it does so destructively. The
clause dealing with “wormholes” has to do with an interactive environment in
which ACL2 does not allow single-threaded objects to be altered and is not
germane here. When the functions are applied to values that are not the “live”
one, they behave as per the axiomatic definitions.?

4The definitions introduced actually contain heavy use of Common Lisp declare and the
forms so the compiler will produce more efficient code.

5These functions may be applied to “non-live” values by the theorem prover itself. In
the course of proving a theorem about (update-memi ¢ v M.S) it is possible that the three
variables get instantiated to constants and ACL2 will run the definition of update-memi to
reduce the expression to a constant. If the particular values satisfy the guard on update-memi,
the raw definition is run, even though the particular value of MS may not be the live one.
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Finally, defstobj gives these functions signatures that indicate that they
traffic in single-threaded objects. For example, the signature of memi is ((memi
* MS) = *) and that of update-memi is ((update-memi * * MS) = MS).
Thus, both functions must be passed the current MS (in the appropriate argu-
ment position) when they are called. Furthermore, the output of update-memi
must be either returned or bound to the let variable named MS.

Suppose that the defstobj above has just been admitted (i.e., evaluated
successfully). Here is a sequence of interactions with the read-eval-print loop.
The “ACL2 !>” is the ACL2 prompt.

ACL2 '>MS

<ms>

ACL2 !>(ptr MS)

0

ACL2 !>(update-ptr 3 MS)
<ms>

ACL2 !>(ptr MS)

3

ACL2 !>(memi 2 MS)

NIL

ACL2 !>(update-memi 2 ’abc MS)
<ms>

ACL2 !'>(memi 2 MS)

ABC

The live version of MS is printed simply as <ms>. Case and font are irrelevant
here.

The following theorem is proved immediately (provided nth-update-nth
has been proved).

(defthm memi-update-memi
(equal (memi ¢ (update-memi j v z))
(if (equal (nfix i) (nfix j)) v (memi i z))))

There are several noteworthy points about this theorem. First, it uses the
variable z where the single-threaded object MS might have been expected. Our
syntactic restrictions apply only to functions to be executed in Common Lisp,
not to logical formulas to be proved as theorems. It is often necessary to break
the single-threaded rules simply to state the desired properties of functions that
manipulate these objects. For example, one might wish to pose a conjecture
that relates components of the state before and after a change. Secondly, the
theorem has no hypotheses restricting its use to (msp z) or legal ¢, j, and v.
Those restrictions are reflected in the guards to the functions, not their logical
meanings. The upshot of this is that powerful general theorems can often be
proved — theorems without hypotheses which may encumber their subsequent
use by the automatic theorem prover. However, to use the single-threaded
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objects in the most efficient way — i.e., to gain access to the raw code produced
for them — they must be applied to their intended domains. When functions are
defined in terms of memi, update-memi, and the other single-threaded primitives
here, those functions should be proved to be Common Lisp compliant to gain
maximal efficiency.

5 Using Single-Threaded Objects

To illustrate the use of single-threaded objects, we use the MS object to imple-
ment a ring buffer. We wish to define (insert z MS) so that it writes x to the
mem location indicated by ptr and increments the pointer. Logically speaking
we mean

(defun insert (z MS)
(update-ptr (inc (ptr MS))
(update-memi (ptr MS) =z MS)))

where inc increments its argument modulo 5. However, this violates our syn-
tactic rules because the output of update-memi is not immediately let-bound
to the variable MS. In addition, we have found it desirable to require the user
to declare explicitly the intention to use single-threaded objects. (Otherwise,
the raw definition produced by an acceptable defun would be dependent on
whether its formals had been defined to be single-threaded objects. This would
open the user to the possibility that the inclusion of another user’s library into
a session would change effect of legal definitions.) The following definition of
insert is legal in our system, provided MS has been introduced as above.

(defun insert (x MJS)
(declare (xargs :stobjs (MS)))
(let ((MS (update-memi (ptr MS) = MS)))
(update-ptr (inc (ptr MS)) MS)))

Logically, this definition is provably equivalent to the earlier one, but, we think,
makes the sequencing more explicit. Finally, the user may define define a macro
to produce a nest of let-bindings of the variable MS. We call that macro
“sequentially” below. With such a macro we could write the defun above
as

(defun insert (z MS)
(declare (xargs :stobjs (MS)))
(sequentially
(update-memi (ptr MS) z MS)
(update-ptr (inc (ptr MS)) MS)))

Suppose then that we have the initial MS (with ptr 0 and mem consisting of
five nils). If we execute the following
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(sequentially

(insert ’A MS)
(insert ’B MS)
(insert ’C MS)
(insert ’D MS))

then the logical value of MSis (4 (A B C D NIL)). If we then do (insert ’E
MYS) the logical value is (0 (A B C D E)). Finally, if we do (insert ’F MS),
the logical value (1 (F B C D E)). However, if we ask ACL2 to print the value
of MS the result is always the same <ms>.

It is convenient to define a function to display that part of the object in
which we are interested. In the case of MS, we define (show MS) so that it
returns the five elements in the ring buffer, starting with the oldest. Thus, for
the state of MS shown above, (show MS) is (B C D E F). So far we have only
executed insert. What theorems can we prove about it?

We have proved

(defthm show-insert
(implies (< (ptr MS) 5)
(equal (show (insert z MS))
(cdr (append (show MS) (list 2))))))

Again, note the relatively weak hypothesis, which makes this lemma easier to
apply in the future. We do not need to know that MSis a well-formed ring buffer,
only that its pointer is less than five. ¢ This lemma is proved by reasoning about
nth and update-nth.

Now suppose we wish to scan a binary tree and keep track of the last five
tips seen. We can write this as follows:

(defun scan (z MS)
(declare (xargs :stobjs (MS)))
(if (comnsp z)
(sequentially
(scan (car z) MS)
(scan (cdr z) MS))
(insert =z MYS)))

Let7be’(((A.B) .C) . (M. ((E. (F.®). (H.I))),ie,abi-
nary tree whose fringe consists of the nine symbols A, B, C, ..., I. Then (show
(scan 7 MS)) is (E F G H I). No new storage is allocated to compute (scan
T MS).

We can prove the following theorem,

6The equality by itself is not a theorem. If (ptr MS) exceeds four, then the insert on
the left-hand side inserts z beyond the end of memory and then show on the left-hand side
collects the first five elements of the buffer, ignoring the z altogether. Meanwhile, the (show
MS) on the right-hand side collects the nil beyond the end of memory and then the first four
elements of the buffer. The nil is cdr’d off and the final list of length five contains the first
four elements of the buffer, followed by z.
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(defthm show-scan
(implies (< (ptr MS) 5)
(equal (show (scan z MS))
(lastn 5 (append (show MS) (fringe ))))))

where (lastn 7 z) returns the last n elements of list z and

(defun fringe (x)
(if (comsp z)
(append (fringe (car z))
(fringe (cdr z)))
(1ist z)))

Note that this theorem “abuses” our syntactic restrictions on the use of MSin a
completely unavoidable way. It relates the result of “showing” the object after
a scan with the result of showing it before the scan. Such constructions must
be legal if we are to use the language to specify our intentions. The theorem
above is proved by reasoning inductively about the tree structure of z. The
proof requires knowledge of the properties of lastn, append, etc., but no new
knowledge about the primitives for our single-threaded object MS.

Obviously, if the fringe of z contains five or more elements, the initial con-
tents of MS is irrelevant. That is, an easy corollary of the above, derived via a
lemma about lastn and append, is

(defthm show-scan-corollary
(implies (and (< (ptr MS) 5)
(<= 5 (len (fringe z))))
(equal (show (scan z MS))
(lastn 5 (fringe z)))))

While these theorems are not fundamentally deep, we offer them to illuminate
the claim that we can reason about “destructive” functions such as scan with-
out much trouble thanks to the observation that their syntactic nature allows
applicative semantics but von Neumann implementations.

6 Conclusion

Of course, single-threaded objects have not added anything to the expressive
power of ACL2; since they are axiomatized entirely in terms of the predefined
functions nth and update-nth, we cannot use them to model computing sys-
tems previously beyond our grasp. But the new models execute much faster.
For example, researchers at Rockwell-Collins, Inc., have used ACL2 to model
a microprocessor, both with and without using single-threaded objects. The
models are logically identical. We can compare the speeds of these two models
when executing test programs for the modeled microprocessor. It is convenient
to measure speeds in simulated microprocessor instructions per second. The
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model that does not use single-threaded objects executes about 278 instruc-
tions/second. The model with single-threaded objects executes at about 2,326
instructions/second. These tests are extremely sensitive to the program being
run since the execution time of the first model is heavily dependent upon the
memory addresses at which writes are being done. Furthermore, if the test
is arranged so that all the integers created are Common Lisp fixnums, the first
model still executes at about 278 instructions/second while the second improves
to over 75,000 instructions/second because no “boxes” are created for the data.
These tests were performed on a Sun Ultra 2 (160 MHz) running the beta release
of ACL2 Version 2.4 under Gnu Common Lisp.

It should be noted that the use of single-threaded objects explicitly sequen-
tializes (some of the updates in) any function using them. This reduces the
opportunities to introduce parallelism, which is one of the potential payoffs of
an applicative language. For this reason, we have sometimes used the name “von
Neumann bottlenecks” instead of “single-threaded objects.” However, until we
realize the potential parallelism in ACL2, we feel that single-threaded objects
are very useful.

Our single-threaded objects are similar in spirit to Haskell’s “monads.” A
monad is a type constructor together with two operations that correspond,
roughly, to the notions of “update” and “sequentially.” Like our single-threaded
objects, monads are state-holding objects that are understood applicatively but
can be implemented destructively because of syntactic (type) checks analogous
to those we implement. It is possible in Haskell for a function to temporarily
create a monad for the purpose of some computation. The state-holding object
“evaporates” when it is no longer referenced. ACL2 does not support such a
use of single-threaded objects. Indeed, every single-threaded object must appear
as an explicitly named actual to any expression using it. The storage for the
object is allocated once and is never deallocated. Another limitation of our
single-threaded objects is that they cannot be nested: it is against our syntactic
rules for such an object to be a component of any object, including another
single-threaded one. It is perhaps possible to find syntactic restrictions under
which such hierarchies of objects may be safely used.

The paper [27] relates monads to other popular alternative approaches, in-
cluding synchronized streams [25], continuations [19], linear logic [8], and side-
effects. Our approach shares a lot with linear logic, but we do not regard the
provision of single-threaded objects as having produced a new logic. Indeed,
the situation is exactly the opposite: if one regards this paper having “added”
single-threaded objects to our existing logic, we must stress that we did not alter
the logic in any way. Our conventions are merely syntactic restrictions on the
executable subset of a conventional first-order, quantifier free logic of recursive
functions. We exploit the fact that the syntax of the logic is unchanged so that
we can state theorems about the effects of updates.

In general, it is our opinion that our single-threaded objects are less ex-
pressive than monads and the alternative mechanisms but have the winning
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attributes of being very simple, very efficient, and sufficient for our purposes.

As supporting evidence we cite the ACL2 system itself. ACL2 is largely
coded in the ACL2 applicative programming language. The system constructed
by Kaufmann and Moore consists of 5.5 megabytes of compiled code. Roughly
400,000 bytes is compiled non-applicative Common Lisp code implementing the
single-threaded applicative state containing property lists, clocks, streams and
files. Thus, we think of 7% of the code as being the non-applicative implemen-
tation of the primitives and the remaining 93%, or 5 megabytes, being pure
applicative code. The applicative code includes all of the theorem prover, in-
cluding its rule-based simplifier, various decision procedures including a bdd
package and a linear arithmetic procedure, the induction mechanism and all the
other heuristics and proof techniques. Many parts of the theorem prover access
and update the applicatively formalized property list “world” containing tens of
thousands of properties when the system is in its initial state and before it has
loaded user-supplied “books” of previously proved theorems, which may add
tens of thousands of additional properties. The applicative code also includes
the error checkers and error handlers, all input/output including the generation
of natural language proof descriptions, the syntax checking and macro expan-
sion, and the read-eval-print loop. The theorem prover is not a toy; it is used
to do industrial-scale verification projects. This is powerful evidence that our
single-threaded state provides adequate expressiveness, convenience and effi-
ciency for practical application.

The main contribution of this work is that we have connected an efficient
implementation of state holding objects with an applicative programming lan-
guage while preserving our ability to reason formally and mechanically about the
functions. The “limitation” that single-threaded objects are explicitly named
in expressions using them is useful in this setting because it allows us to state
hypotheses about their current configuration, e.g., that (ptr MJS) is less than
five. These hypotheses may in fact be invariants that could be proved of the
object; but more often in our work they are true restrictions on the space of
possible states of the object — restrictions which allow one to address the situ-
ations of interest. For example, in our microprocessor work, a theorem might
have a hypothesis that restricts the theorem to those states in which a given
microcode program occupies a certain region of memory; the theorem might
conclude with a relation between the initial state and final state of a run. That
is, the theorem characterizes the correctness (or some other property) of the mi-
crocode program in question. Other memory configurations are possible under
the model and are indeed studied with theorems about other programs. These
theorems can then be combined to prove facts about systems of programs. See
[5, 17] for some simple examples of how this is done and citations of applica-
tions of industrial interest. In [27] the question is raised, in regard to linear
logic, whether “mentioning state explicitly” is a “pain” or a “boon;” [27] says
additional experience is necessary to determine the answer. Our experience is
that it is a boon when one wishes to state theorems about one’s functions and
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compose those theorems.

Our connection of an efficient implementation with a proof engine also ex-
poses the need for an applicative programming language to support not just the
execution of such functions on the “live” object but to support execution on
“non-live” instances of the object as well. This is necessary since applications
of the functions arise in proofs and must be calculated. Indeed, the syntactic
restrictions on the use of single-threaded objects must be lifted when one is
writing formulas for the purpose of expressing specifications.
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