The Boyer-Moore Theorem Prover and Its
Interactive Enhancement

Robert S. Boyer Matt Kaufmann
University of Texas, Austin Computational Logic, Inc.
Computational Logic, Inc.

J Strother Moore
Computational Logic, Inc.

July 12, 1993

Abstract. The so-called “Boyer-Moore Theorem Prover” (otherwise known
as “Ngthm”) has been used to perform a variety of verification tasks for two
decades. We give an overview of both this system and an interactive enhance-
ment of it, “Pc-Nqthm,” from a number of perspectives. First we introduce
the logic in which theorems are proved. Then we briefly describe the two
mechanized theorem proving systems. Next, we present a simple but illus-
trative example in some detail in order to give an impression of how these
systems may be used successfully. Finally, we give extremely short descrip-
tions of a large number of applications of these systems, in order to give
an idea of the breadth of their uses. This paper is intended as an informal
introduction to systems that have been described in detail and similarly sum-
marized in many other books and papers; no new results are reported here.
Our intention here is merely to present Nqthm to a new audience.

This research was supported in part by ONR Contract N00014-91-C-0130 and the Ad-
vanced Research Projects Agency, ARPA Order 7406. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of Computational Logic, Inc., the Office
of Naval Research, the Advanced Research Projects Agency, or the U.S. Government.

Introduction

In 1972, at the Metamathematics Unit of the University of Edinburgh, Scot-
land, Boyer and Moore began work on what has become known as the
Boyer-Moore Theorem Prover. The mathematical logic behind our work was
largely inspired by McCarthy’s seminal papers on the logic of Lisp, including
[McC60b], [McC62b], and [McC63]. See also [Bur69], [Goo64], and [Sko67]
for related work on quantifier free logics for arithmetic. Since Lisp may be
viewed simultaneously as a logic and an applicative programming language,
it is a natural vehicle for the expression of theorems about computations and
constructive mathematics in general. Our theorem proving style has been
inspired by the work of W. W. Bledsoe, most notably the work reported in
[Ble71] and [BBH72].

The first version of the Boyer-Moore system was released in 1973 and we
have continued to improve the system and periodically release new versions
ever since. Such improvements may involve changes to the logic in which
theorems are proved, changes to the heuristics or proof techniques employed,
and changes to the user interface. Nevertheless, the 1973 release would be
recognized by today’s users as a primitive version of the system. By 1980 the
system, then called “Thm,” was quite similar to the present version. By 1986
the system had also become known as Ngthm (pronounced en-queue-thum),
an acronym for “New, Quantified THeoreM Prover,” the little-considered
name of the disk directory on which a rapidly evolving improvement resided
that included a limited quantification capability.

The 1978 book, A Computational Logic|[ACL) is still a largely accurate
and comprehensive description of how the theorem prover works. That ver-
sion of the system has been reimplemented by at least three groups working
from[ACL]. The book A Computational Logic Handbook] ACLH] (often called
the “Ngthm handbook”) contains a precise description of the Nqthm logic
as it stood in 1988. In addition, [ACLH] indicates by appropriate biblio-
graphic citations how to reconstruct the 1988 version of Nqthm from [ACL]
and numerous journal articles about subsequent improvements. However,
the handbook is primarily devoted to a description of how to use the Nqthm
logic and its mechanization.

We expect to release a new version of Nqthm in 1993. When it is neces-
sary to distinguish this new release from previous versions of Nqthm, we call
the new version Nqthm-1992. Nqthm-1992 differs from the older release pri-

marily by supporting the introduction of undefined but constrained function
symbols and the use of a derived rule of inference permitting the instantia-
tion of function symbols, giving Nqthm-1992 a “higher-order” feel [BGKM].
Some performance improvements were made, a few new user commands were
added, and many minor bugs were fixed. None of the bugs affected sound-
ness. Since 1989 we have been working on a new theorem prover, called Acl2,
designed from the ground up and heavily influenced by our experience with
Nqgthm. This paper is about Nqthm-1992, not Acl2.

The system Pe-Ngthm (“Proof-Checker” Nqthm) is an interactive en-
hancement of Nqthm. Pe-Nqgthm-1992 is the version of the enhancement for
Nqthm-1992. The Pc-Nqthm user can give commands at a low level (such as
deleting a hypothesis, diving to a subterm of the current term, expanding a
function call, or applying a rewrite rule) or at a high level (such as invoking
the Boyer-Moore Theorem Prover). Commands also exist for displaying use-
ful information and for controlling the progress of the proof, and for helping
the user create compound commands.

We say more about these two systems in Sections 2 and 3, respectively.
Section 4 provides a detailed illustration of their use. We conclude in Section
5 with a long list of applications of these systems, each accompanied by a
very brief description.

Acknowledgements

We thank Andrew Ireland of the MRG, Department of Artificial Intelligence,
University of Edinburgh, for useful comments on a draft of this paper.

1 Overview of the Logic

The Ngthm logic is a first order, quantifier free logic of recursive functions.

The logic includes axioms defining many useful primitive functions. Most
fundamental, perhaps, are the axioms introducing the functional analogues
of the propositional calculus connectives and the equality relation. The ax-
ioms describe two distinct objects, called T and F which play the roles of
truth values in our propositional functions. An “if-then-else” function is ax-
iomatized to return its second or third argument depending on whether its
first argument differs from F. Using IF such familiar propositional functions
as AND, OR, NOT and IMPLIES are defined. The logic also includes the func-
tion EQUAL which returns T or F according to whether its two arguments
are equal. With these functions we have essentially embedded propositional
calculus and equality into the term structure of the logic. Among the other
primitives defined are those for the construction and elementary manipula-
tion of natural numbers, integers, ordered pairs, and symbols.

The logic includes an induction principle based on the well-foundedness
of the “less than” relation on the ordinals up to ¢y and extension principles
allowing the user to introduce recursively defined functions, axiomatically
constrained functions, and new inductively defined data types. Successful
use of the extension principles require the proving of certain theorems that
guarantee the conservation of the consistency of the logic.

A precise description of the Nqthm logic may be found in Chapter 4 of
the Nqthm handbook [ACLH].

The syntax of our logic resembles that of the Lisp programming language.
For example, our definition of the Peano addition function is

DEFINITION .
(PLUS I J)

(IF (ZEROP I)
(FIX 1)
(ADD1 (PLUS (SUB1 I) J))).

Roughly speaking, this may be read “If I is 0, the sum of I and J is the natural
number J; otherwise it is one more than the sum of I-1 and J.” Observe
how the embedding of propositional calculus into the term structure of the
logic allows us to define recursive functions in a computational style. The

4

definitional principle requires the proof of a theorem exhibiting an ordinal
measure of the arguments that, in the recursive call, decreases according
to the ordinal less-than relation. A suitable measure of the arguments in
this case is simply the natural number I itself. Put another way, every
recursive definition must be proved to terminate. This (along with some
syntactic restrictions) guarantees the existence of a unique function satisfying
the definitional equation. It also means that such functions can be evaluated
to concrete results when concrete input is provided.
An example theorem is

THEOREM.
(EQUAL (PLUS (PLUS I J) K)
(PLUS I (PLUS J K)))

which states the associativity of Peano addition. Observe that the logic is
quantifier free. There are no quantifiers in the language and all theorems are
implicitly universally quantified on the far outside. Thus, one may think of
the above theorem as saying, “for all I, J, and K, (PLUS (PLUS I J) K) is
(PLUS I (PLUS J K)).”

The logic is untyped. While it is a theorem that (PLUS 2 2) equals 4, it
is also a theorem that (PLUS T 2) equals 2. The proof of the latter theorem
is based on the fact that our PLUS function is defined to coerce to 0 any
argument that is not a natural number. In particular, recalling the definition
of PLUS above, (ZEROP I) is T if either I is the natural number 0 or is not a
natural number, and (FIX J) is Jif J is a natural number and 0 otherwise.
In general, all Nqthm primitive functions are axiomatized to coerce “unex-
pected” arguments to selected values in the “intended domain” so that all
functions are total and behave in a predictable way outside of the intended
domain. User defined functions generally inherit this predictable behavior.
The result is that many theorems are more simply stated than would be
the case otherwise. While many outsiders disparage this aspect of Nqthm,
most Nqthm users recognize that by eliminating restrictive hypotheses and
potentially explosive case analysis it makes a valuable contribution to the
ease with which theorems can be proved and subsequently used.

While the logic is technically first order, the combination of certain of
the extension principles and a derived rule of inference make it feel higher
order. It is possible to introduce a new function symbol by constraint so that
the symbol is supposed to satisty a given formula. To be admissible, such

an extension must exhibit one function (a witness) satisfying the constraint.
Theorems may then be proved about the constrained function. Later, a de-
rived rule of inference permits those theorems to be functionally instantiated,
that is, the constrained function symbols may be replaced by other function
symbols, provided it can be proved that the incoming symbols satisty the
constraints on the replaced ones. See [BGKM].

2 Introduction to the Nqthm System

The Nqthm system is a Common Lisp[Ste84] program of roughly one million
characters. It is currently available by ftp from Internet host ftp.cli.com.
There is no fee, but, at the insistence of our sponsors, a license agreement
must be signed. The currently released version of Nqthm was first released
in July of 1988, and no bugs affecting soundness have been reported as of the
time of this writing. The chapter of the Nqthm handbook [ACLH] on instal-
lation describes in complete detail how to bring up Nqthm from the sources.
It is our intention to release a new version of Nqthm, called Nqthm-1992, in
1993. Included with that release will be a description of the formal logic, the
user’s reference guide, installation instructions, and almost 12 megabytes of
input files created by many users, as well as a license agreement that we does
not require a signature, we expect.

2.1 Commands and the Data Base

When Nqgthm is started up, the user is confronted with a standard Common
Lisp interactive loop. Represented within that Common Lisp, mainly via
“property lists” associating data with function symbols, is the initial Nqthm
logic. By executing commands the user can extend the logic, for example
by invoking the definitional principle command, DEFN. The data base also
contains all the theorems proved thus far in that Nqthm session and new
ones can be added by successtul invocations of the PROVE-LEMMA command.
We illustrate commands later. Commands which extend the data base are
called “event commands.” Still other commands allow the user to inspect
the data base, for example to display the definition of a previously defined
function or the statement of a previously proved theorem. A third class of
commands remove items from the data base. For example, the UBT command,
which stands for “undo back through,” rolls the data base back to a previous
extension. Finally, there are commands for saving the data base to a file and
reinstating that data base so work can be saved from day to day or moved
from one machine or user to another.
An example event command is

(DEFN PLUS (I J)
(IF (ZEROP I)

(FIX 1)
(ADD1 (PLUS (SUB1 I) I)))).

This command submits the above-mentioned definition of Peano addition to
the definitional principle. If the DEFN completes without error, it extends
the data base so as to contain the new definition. In fact, if a user tried to
submit the above DEFN command an error would result and a message would
be printed informing the user that the function symbol PLUS is already defined
and hence may not be redefined.

As noted above, the Nqthm user actually types commands to Common
Lisp. That is, Nqthm commands are just Common Lisp programs the user
invokes, using the available Common Lisp interaction protocols. We person-
ally most often use Nqthm from within a Gnu Emacs text editor[Sta87] “shell
buffer” running Common Lisp. We thus have available both the text pro-
cessing convenience of Gnu Emacs and the computational power of Common
Lisp to help us review what is happening in an Nqthm session and to create
and record commands. We personally find this an appealing aspect of the
Nqgthm interface: a powerful programming language and decades of design
and evolution make the Lisp interactive environment very convenient and
efficient for the experienced user. But again, this is a point of contention.
Critics of Nqthm assert, with some justification, that it has no user interface.
Our choice of interface illustrates a fundamental philosophical position: we
do not want to obstruct the experienced user from getting theorems proved
simply to provide the novice with a restrictive but “user-friendly” interme-
diary. The user is presumed interested in proving theorems and must come
to the table prepared.

2.2 The Theorem Prover

The theorem prover is a symbol manipulation program that attempts to
prove the submitted formula by applying the logic’s rules of inference. The
behavior of the theorem prover is largely determined by the data base and
hundreds of heuristics for controlling the use of the rules of inference, axioms,
definitions, and previously proved theorems. The theorem prover has seven
main proof techniques.

e Simplification coordinates the application of rewrite rules derived from
axioms, definitions, and previously proved theorems with decision pro-

cedures for propositional calculus, equality, and linear arithmetic. We
say more about rewriting below.

o Destructor elimination replaces variables by terms to explicate implied
structures and thus eliminate some function applications. For example,
if the term denoting “I mod J” occurs in the conjecture, and suitable
theorems are in the data base, the system will replace I by X+J*Y,
where X<J. After this rerepresentation of I, the term I mod J can be
replaced by X, eliminating the use of the mod function.

o Cross-fertilization is a heuristic for using equality hypotheses that is
especially effective at using inductive hypotheses.

o (Generalization replaces terms by new variables, possibly of restricted
type, so as to generalize the conjecture being proved. This is often
necessary in inductive proofs, though Nqthm’s generalization heuristic
is weak and little used.

o Elimination of irrelevance attempts to discard unnecessary hypotheses
from a conjecture and is another form of generalization.

e [nduction analyzes the uses of recursively defined functions in the con-
jecture and attempts to find a suitable application of the induction
principle. This task is made easier by the duality of recursion and in-
duction; the theorems proved at definition time, establishing that the
recursion is well-founded, are easily converted into inductive schemas.
Heuristics are used to discard inappropriate induction “suggestions”
and to combine “compatible” suggestions. It should be noted that the
absence of quantifiers also contributes to the success of the induction
heuristic. Often, merely to state the desired theorems, users have to
define explicitly some recursive function that strongly suggests the in-
duction for the proof of the conjecture. We should note that in contrast
to our approach, there has also been promising research on the mech-
anization of induction in the presence of quantifiers; see for example

[BSvHIS].

When theorems are added to the data base, the user must specify how
they are to be used later. The various proof techniques query different parts

of the data base for relevant theorems. The most common way to use a previ-
ously proved theorem is as a “rewrite rule.” The command below invokes the
theorem prover on the associativity of addition. It specifies that, if proved,
the theorem is to be stored for future use as a rewrite rule and referred to
by the name ASSOC-0F-PLUS.

(PROVE-LEMMA ASSOC-0F-PLUS (REWRITE)
(EQUAL (PLUS (PLUS I J) K)
(PLUS I (PLUS J K))))

The data base is not extended if the system fails to prove the formula. Thus,
while the user controls the behavior of the system by suggesting theorems
and their use as rules, only valid rules are entered into the data base. If the
system proves ASSOC-0F-PLUS as above, then every time the system subse-
quently encounters an instance of the left-hand side above, e.g., (PLUS (PLUS
X 3) (sSQ 2)), it replaces it by the corresponding instance of the right-hand
side, e.g., (PLUS X (PLUS 3 (SQ Z))). Thus, by proving the associativity
of addition as stated above, the user causes the system to right-associate ad-
dition expressions. By swapping the two sides of the equality above, the user
would cause addition expressions to be left-associated. If both rules were
proved, an “infinite” loop would result. Heuristics are present to prevent
some such loops (but not gross ones like this because users are presumed to
be more careful).

Rewrite rules need not be simple equalities. For example, the following
statement of the uniqueness of prime factorizations,

THEOREM .
(IMPLIES (AND (PRIMES L1)
(PRIMES L2)
(EQUAL (PROD L1) (PROD L2)))
(PERM L1 L2))

when used as a rewrite rule, causes instances of (PERM L1 L2) to be replaced
by T provided the system can prove that (the instances of) L1 and L2 are
lists of primes whose products are equal. Such “backchaining” invites infi-
nite regress and heuristics are present to limit such backchaining. As noted
previously, details are given in [ACL] and [ACLH] and the papers cited in
the latter.

10

2.3 Hard Theorems Proved and the Importance of
the User

Among the hard theorems proved by Nqthm are
e the existence and uniqueness of prime factorizations [ACL]
e the invertibility of the RSA public key encryption algorithm [BM84c]
e Wilson’s theorem [Rus85],
e Gauss’s law of quadratic reciprocity [Rus92],

e the tautology theorem (that every propositional tautology has a proof
in Shoenfield’s propositional logic) [Sha85],

e Gddel’s incompleteness theorem (for Shoenfield’s first order logic ex-
tended with Cohen’s axioms for hereditarily finite set theory, Z2) [Sha86],
and

o the correctness of many algorithms, computer programs, and digital
hardware designs including simple compilers, operating systems, the
Berkeley C string library as compiled by the gce compiler for the Mo-
torola MC68020, and a fabricated microprocessor.

Later in the paper we enumerate the current set of example files to be dis-
tributed with Nqthm-1992 in which we include all those examples mentioned
above with appropriate bibliographic citations and acknowledgment of the
authors.

This brings us to a crucial aspect of an informal understanding of Nqthm.
In one sense, Ngthm is an automatic theorem prover: once it is set loose on
a conjecture the user cannot influence its behavior. Because of this, and the
fact that Nqthm is quite capable of automatically finding proofs of many
elementary theorems—even theorems requiring induction and the discovery
of additional inductively proved lemmas—it is easy to fall into the trap of
thinking that Nqthm proved Godel’s theorem automatically. But in truth,
Nqgthm would flounder if simply presented with Godel’s theorem: its success
at “automatically” discovering a proof of that theorem was entirely due to
the care with which the user had used Ngthm to construct an appropriate

11

data base. Thus, in a practical sense, Nqthm is a proof checker: it is es-
sentially led to the proofs of hard theorems by the user, who “trains” it by
formulating an appropriate sequence of intermediate results each of which is
within its competence at the time it encounters it. The proofs of hard theo-
rems constructed by Nqthm are, in every case, actually the intellectual work
of the user. Nqthm’s contributions to the proofs are not those of discovery
and creativity but of care and plodding precision.

It is hard, perhaps impossible, to use Nqthm effectively without investing
a substantial amount of time learning how to use it. Almost all of the success-
ful users of Nqthm have taken a course at the University of Texas at Austin
on proving theorems in the Nqthm logic. The Nqthm handbook [ACLH] was
written primarily to teach users how to use Nqthm’s logic and the Nqthm
system; the handbook describes in great detail the Nqthm commands and
how to use them to control the system’s behavior. It also discusses successful
styles of Nqthm use. Prospective users of Nqthm might also find the descrip-
tion of its heuristics in [ACL] to be of use, even though the description there
is very low level. Finally, an online “users group” mailing list exists and is
often helpful, especially to new users who frequently broadcast pleas for help
and almost as often find some experienced user willing to explain some facet
of the system.

12

3 Introduction to the Pc-Nqthm System

Pc-Ngthm, written by Matt Kaufmann, is essentially an extension of Nqthm.
In particular, it allows all the interaction that Nqthm does. But it also
provides for lower-level interaction through an interactive loop. It has been
in existence since approximately 1987, and like Nqthm, is currently available
by ftp from Internet host ftp.cli.com.

Pc-Ngthm also provides full first-order quantification through a technique
generally called Skolemization. This aspect of Pc-Nqthm has been thoroughly
documented in [Kau92b|, and we’ll say no more about it here, focusing in-
stead on the system’s interactive features.

As with a variety of proof-checking systems, Pc-Nqthm is goal-directed in
the following sense. One enters the system by presenting it with a theorem
to be proved. As one proceeds, one typically simplifies and proves goals,
but generates additional goals in the process. The proof is complete when
the original goal, as well as all subgoals generated during the proof, have
been proved. Upon completion of an interactive proof, the lemma with its
proof may be stored as a PROVE-LEMMA event that can be added to the user’s
current database of definitions and lemmas. This event can later be replayed
in “batch mode,” i.e., without user interaction. Partial proofs can also be
stored.

Some features provided by the interactive loop are as follows.

e a two-layer help facility

e separation from the Nqthm (Lisp) command level, to avoid confusion
of environments

e the ability to focus on a subterm, where the context is used for sim-
plification, equality substitution, function expansion, and especially
manually-invoked rewriting, where unproved hypotheses from the rewrite
rule are used to create new subgoals

e the ability to call on the full theorem prover to simplify or prove the
current goal

o low-level commands at the goal level, which provide the ability to drop
and (with a proof obligation) add hypotheses, to do case splitting, to
generalize subterms, to change goals, or to start a proof by induction

13

e ability to choose the order in one which works on goals

e a capability for enabling and disabling events and sets of events

e abbreviation and comment mechanisms

e commands for undoing and restoring (undoing the undoing)

e support for saving multiple proof contexts

e support for instantiation of variables that it is sound to instantiate

e numerous commands for displaying relevant information, such as the
current term

o a tactic-like feature called macro commands, allowing user-extensibility
in a sound way

Technically, one can view Pc-Ngthm as an extension of Nqthm that allows
a single new hint called INSTRUCTIONS. Consider for example the following
event.

(PROVE-LEMMA ASSOC-0F-PLUS (REWRITE)
(EQUAL (PLUS (PLUS I J) K)
(PLUS I (PLUS J K)))
((INSTRUCTIONS INDUCT PROVE PROVE)))

The hint says: “Use INDUCTion to replace the main goal by subgoals (the
base and inductive steps), then use the full PROVEr capability of Nqthm to
complete one subgoal, then similarly PROVE the other subgoal.” Now actually,
users rarely type in such hints. Instead, Pc-Nqthm provides an interactive
loop for completing the proof, and upon completion, the event form displayed
above is printed by the system so that the user may insert it in the events
file.

In practice, many Nqthm users employ the interactive capability of Pc-
Nqgthm to discover additional useful lemmas to be proved. The example
provided in the next section will serve to illustrate this kind of approach,
as well as other basics of Pc-Nqthm use. Upon completion of an interactive
proof, it is often the case that one has proved enough additional rewrite rules
at the top (Ngthm) level that a proof may now succeed without interaction.

14

Thus, one often finds no INSTRUCTIONS hints in the final events file, which
therefore can be run through Ngthm (without Pc-Nqthm).

In fact, it is useful to attempt to avoid INSTRUCTIONS hints in the final
events file, because this approach encourages the user to think at a reasonably
high level. A danger of Pc-Nqthm is that it makes interaction so easy that
people sometimes do proofs at too low a level, which makes the proof scripts
difficult to modify when one changes the supporting definitions. The low-
level approach is also undesirable because it doesn’t encourage the discovery
of valuable rewrite rules that can be useful in subsequent proofs.

A user’s manual [Kau88] provides other examples and more detail about
the logical foundations of the system’s backward-directed proof method. It
also covers advanced topics such as the writing of macro commands. Little
of substance has changed in the system since that manual was written; an
update [Kau89a] describes the changes, notably variable instantiation, since
the original manual.

15

4 An Example

In this section we show a proof of correctness of a simple sorting function us-
ing Pc-Ngthm, and hence Nqthm (since Pc-Nqthm is built on top of Nqthm).
In fact, we use (Pc-)Nqthm-1992 below. An informal specification for a sort-
ing function is that the result list should be sorted, and should be a permu-
tation of the input list. We'll use a standard “mergesort” algorithm: sort a
list by splitting it into two sublists, sorting each of those, and then merging
the results together.

We will display user input in lower-case, always preceded by a prompt ‘>’.
Comments by us not intended for Pc-Nqthm are set in italics. For example,
we start by initializing the prover.

>(boot-strap nqthm) initialize the data base

The ‘global variable’ CHRONOLOGY tells us where we are. For now, we are
in a state where the “boot-strap” has been done to create the “ground-zero”
theory, but that’s all.

>chronology
(GROUND-ZERO)

Let us begin with a trivial exercise, just to get warmed up: define a function
that adds 3 to its input.

>(defn plus3 (x)
(plus x 3))

The system responds quickly as follows.
Observe that (NUMBERP (PLUS3 X)) is a theorem.

If we take another look at the CHRONOLOGY, we’ll see that the definition
event PLUS3 has been pushed onto the list.

>chronology
(PLUS3 GROUND-ZERO)

Let’s undo (Undo Back Through) the last event; after all, it was just a warm-
up. Serious users of Ngthm often undo in this manner many times during a
proof exercise; in particular, it’s easy to make mistakes in complex definitions.

16

>(ubt)

And the chronology is updated accordingly, as the system shows it to be
(GROUND-ZERQ) once again.

Let us try a recursive definition now, one which we’ll find useful later.
We also use this opportunity to introduce list processing. The function CONS
of two arquments constructs an ordered pair. The function CAR returns the
first component of such a pair. Thus, an axiom ts that (CAR (CONS X Y)) is
X. The function CDR returns the second component, i.e., (CDR (CONS X Y))
is Y. The function LISTP recognizes ordered pairs constructed by CONS, i.e.,
LISTP returns T or F according to whether its arqgument is an ordered pair
constructed by CONS. Ordered pairs are printed as lists. For ezample, (CONS
2 (CONS 4 (CONS 6 NIL))) is printed as *(2 4 6). The symbol NIL is a
constant (of type LITATOM) not constructed by CONS and is conventionally
used to terminate lists.

Now let us define the function that computes the length of a list.

>(defn length (x)
(if (listp x)
(addl (length (cdr x)))
0))

This definition may be read as follows: The LENGTH of an object constructed
by CONS is one plus the LENGTH of its CDR, the LENGTH of all other objects is
0.

The system responds to this DEFN command as follows, explaining that the
logic’s definitional principle has been satisfied using the well-founded relation
LESSP (i.e., <).

Linear arithmetic and the lemma CDR-LESSP inform us
that the measure (COUNT X) decreases according to the
well-founded relation LESSP in each recursive call. Hence,
LENGTH is accepted under the principle of definition. From
the definition we can conclude that (NUMBERP (LENGTH X)) is
a theorem.

Before we go on, let us “execute” some forms. The Ngthm system provides
a capability for evaluating terms that do not contain variables. This “reduce
loop” is valuable for debugging specification functions. Note that the prompt

17

is “*"and all input in the following display follows that prompt, except for the
invocation of R-LOOP at the outset; everything else is printed by the system.

>(r-loop)

Trace Mode: O0ff Abbreviated Output Mode: On
Type 7 for help.

*(plus 2 3)
5
*(cons 2 (cons 4 (cons 7 nil)))
'(247)
*(length °(2 4 7))
3
*ok

Exiting R-LOOP.

Let us return to the problem of writing a sorting function and proving
it correct. The main subfunction for our MERGESORT function is a MERGE
function that “zippers” together two ordered lists so that the result is ordered.
Recall that the function CAR returns the first element of a list and the function
CDR returns what is left of the list after removing the very first element.

>(defn merge (1 m)
(if (not (listp 1))
m
(if (not (listp m))

1

(if (lessp (car 1) (car m))

(cons (car 1) (merge (cdr 1) m))

(cons (car m) (merge 1 (cdr m)))))))

The system responds as follows.

ERROR: The admissibility of this definition has not been
established. The theorem prover’s heuristics found no
plausible measure to justify the recursion. In particular,
no single argument of the function is both tested in each
branch and changed in each recursive call. The definition

is rejected.

18

Evidently the definition failed. Intuitively, the theorem prover could not
verify that the arquments to MERGE get “smaller” in each recursive call.
Again, there is actually a formal “principle of definition” in the logic that
applies here.

However, we can see that in fact, the sum of the lengths of the two argu-
ments to MERGE is smaller in each recursive call than it is at the outset. That
is, if (LISTP L) and (LISTP M) hold, then the sum of the lengths of (CDR
L) and M is actually one less than the sum of the lengths of L and M; similarly
for L and (CDR M). The hint (lessp (plus (length 1) (length m))) is
intended to express such a claim, namely: for each recursive call (MERGE x
y), the sum of the lengths of x and y is LESSP the sum of the lengths of L
and M, under the hypotheses that are known to hold from the IF structure of
the body.

>(defn merge (1 m)
(if (not (listp 1))
m
(if (not (listp m))
1
(if (lessp (car 1) (car m))
(cons (car 1) (merge (cdr 1) m))
(cons (car m) (merge 1 (cdr m))))))
((lessp (plus (length 1) (length m))))) ; hints

This time the system’s response is more friendly.

Linear arithmetic, the lemma SUB1-ADD1, and the
definitions of LESSP, PLUS, and LENGTH inform us that the
measure (PLUS (LENGTH L) (LENGTH M)) decreases according to
the well-founded relation LESSP in each recursive call.
Hence, MERGE is accepted under the principle of definition.
Note that (OR (LISTP (MERGE L M)) (EQUAL (MERGE L M) M)) is
a theorem.

Another function we need is one that splits a list into two sublists. That
way, we can sort a list by sorting each “half” and then MERGE-ing them to-
gether.

>(defn odds (1)
(if (not (listp 1))

19

nil
(cons (car 1) (odds (cddr 1)))))

The system accepts the above definition without difficulty. Now let us attempt
to define MERGESORT.

>(defn mergesort (1)
(if (not (listp 1))
nil
(if (not (listp (cdr 1)))
1
(merge (mergesort (odds (cdr 1)))
(mergesort (odds 1))))))

Unfortunately, the system cannot accept this definition.

ERROR: The admissibility of this definition has not been
established. The simplifier could not prove that the
measure(s) tried decrease in each recursive call. The
definition is rejected. Below are listed the relations and
measures tried and some of the unproved goals for each.

Relation: LESSP
Measure: (COUNT L)
Unproved goals:
(IMPLIES (AND (LISTP L) (LISTP (CDR L)))
(LESSP (COUNT (ODDS L)) (COUNT L)))

Let us try again using the function LENGTH to measure L in place of the
built-in function COUNT, since although we’ve said nothing about COUNT, we
can see why if L and its tail (CDR L) are both non-emtpy, then a list formed
from every other element of L has a smaller length than L.

>(defn mergesort (1)
(if (not (listp 1))
nil
(if (not (listp (cdr 1)))
1
(merge (mergesort (odds (cdr 1)))
(mergesort (odds 1)))))
((lessp (length 1)))) ; hint, saying that (length x) < (length 1)
; for each recursive call (mergesort x)

20

Unfortunately, even with the hint to use LENGTH, the admussibility proof fails.

ERROR: The admissibility of this definition has not been
established. The simplifier could not prove that the
measure(s) tried decrease in each recursive call. The
definition is rejected. Below are listed the relations and
measures tried and the unproved goals for each.

Relation: LESSP
Measure: (LENGTH L)
Unproved goals:
(IMPLIES (AND (LISTP L)
(LISTP (CDR L))
(NOT (EQUAL (LENGTH (0DDS L)) 0)))
(LESSP (SUB1 (LENGTH (ODDS L)))
(LENGTH (CDR L))))

The definition failed to be accepted above, but we’ll take a clue from what
it says about “unproved goals” and see if we can prove a useful lemma. The
hypothesis (NOT (EQUAL (LENGTH (ODDS L)) 0)) there appears to be redun-
dant, so we’ll omit it. It may seem odd that we ask the theorem prover to
prove something that it (essentially) just failed to prove. However, when the
prover is trying to accept a definition it is trying for speed rather than com-
pleteness, so it does not use all of its power, but only uses simplification. In
particular, it does not try proof by induction, which turns out to be crucial
for the proof.

>(prove-lemma mergesort-helper (rewrite)
(implies (and (listp 1)
(listp (cdr 1)))
(equal (lessp (subl (length (odds 1)))
(length (cdr 1)))
t)))

The theorem prover proves this lemma successfully, so it seems quite reason-
able to try to define MERGESORT once again.

>(defn mergesort (1)
(if (not (listp 1))
nil

21

(if (not (listp (cdr 1)))
1
(merge (mergesort (odds (cdr 1)))
(mergesort (odds 1)))))
((lessp (length 1))))

Unfortunately, the admissibility proof still fails, this time with another goal,
as shown.

ERROR: The admissibility of this definition has not been
established. The simplifier could not prove that the
measure(s) tried decrease in each recursive call. The
definition is rejected. Below are listed the relations and
measures tried and the unproved goals for each.

Relation: LESSP
Measure: (LENGTH L)
Unproved goals:
(IMPLIES (AND (LISTP L)
(LISTP (CDR L))
(NOT (EQUAL (LENGTH (0DDS (CDR L))) 0)))
(LESSP (SUB1 (LENGTH (0DDS (CDR L))))
(LENGTH (CDR L))))

So, let us prove the goal above as well. In fact, we’ll roll back the pre-
vious lemma (using the (UBT) feature described above), and prove the two
“unproved goals” together

>(prove-lemma mergesort-helper (rewrite)
(implies (and (listp 1)
(listp (cdr 1)))
(and (equal (lessp (subl (length (odds 1)))
(length (cdr 1)))
t)
(equal (lessp (subl (length (odds (cdr 1))))
(length (cdr 1)))
t))))

The proof of this lemma also succeeds. And now, so does the admission
of MERGESORT. And, the function seems to behave properly on at least one
example.

22

>(r-loop)

Trace Mode: 0ff Abbreviated Output Mode: On
Type 7 for help.
* (mergesort (3 7829 47))
'(2347789)
*

One of the two standard properties to prove about a sorting function is
that it returns a sorted list. So, let’s define a predicate that says whether a list
is sorted. Since there are no quantifiers in the Boyer-Moore logic (actually
that’s not entirely true, but what is there doesn’t have nearly the mechanical
support that recursion does), we use recursion to define this predicate (i.e.,
this Boolean-valued function).

>(defn sortedp (x)
(if (listp x)
(if (1istp (cdr x))
(and (not (lessp (car (cdr x)) (car x)))
(sortedp (cdr x)))
t)
t))

Now we are ready for the theorem we have been wanting to prove about
our sorting function. Notice in the proof transcript shown below that in fact
the prover uses a generalization heuristic in order to generate the interesting,
useful subgoal that says that the MERGE of two sorted lists is sorted:

(IMPLIES (AND (SORTEDP B) (SORTEDP U))
(SORTEDP (MERGE U B)))

And now for the theorem...

>(prove-lemma sortedp-mergesort (rewrite)
(sortedp (mergesort x)))

Call the conjecture *1.

23

Let us appeal to the induction principle. There is
only one suggested induction. We will induct according to
the following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X))
(IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(p X))
(IMPLIES (AND (LISTP X)
(LISTP (CDR X))
(p (0DDS X))
(p (0ODDS (CDR X))))
(p D).
The lemmas SUB1-ADD1 and MERGESORT-HELPER and the
definitions of LESSP and LENGTH inform us that the measure
(LENGTH X) decreases according to the well-founded relation
LESSP in each induction step of the scheme. The above
induction scheme leads to three new goals:

Case 3. (IMPLIES (NOT (LISTP X))
(SORTEDP (MERGESORT X))),

which simplifies, expanding the definitions of MERGESORT
and SORTEDP, to:

T.

Case 2. (IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(SORTEDP (MERGESORT X))),

which simplifies, expanding the definitions of MERGESORT
and SORTEDP, to:

T.

Case 1. (IMPLIES (AND (LISTP X)
(LISTP (CDR X))
(SORTEDP (MERGESORT (ODDS X)))
(SORTEDP (MERGESORT (0DDS (CDR X)))))
(SORTEDP (MERGESORT X))),

24

which simplifies, unfolding the definition of MERGESORT,
to:

(IMPLIES (AND (LISTP X)
(LISTP (CDR X))
(SORTEDP (MERGESORT (ODDS X)))
(SORTEDP (MERGESORT (0DDS (CDR X)))))
(SORTEDP (MERGE (MERGESORT (ODDS (CDR X)))
(MERGESORT (0DDS X))))).

Appealing to the lemma CAR-CDR-ELIM, we now replace X by
(CONS V Z) to eliminate (CDR X) and (CAR X). This
generates the conjecture:

(IMPLIES
(AND (LISTP Z)
(SORTEDP (MERGESORT (0DDS (CONS V Z))))
(SORTEDP (MERGESORT (0ODDS Z))))
(SORTEDP (MERGE (MERGESORT (ODDS Z))
(MERGESORT (0DDS (CONS V Z)))))).

We will try to prove the above formula by generalizing it,
replacing (0DDS Z) by Y and (ODDS (CONS V Z)) by A. The
result is the formula:

(IMPLIES
(AND (LISTP Z)
(SORTEDP (MERGESORT A))
(SORTEDP (MERGESORT Y)))
(SORTEDP (MERGE (MERGESORT Y) (MERGESORT A4)))).

We will try to prove the above formula by generalizing it,
replacing (MERGESORT Y) by U and (MERGESORT A) by B. We
must thus prove:

(IMPLIES (AND (LISTP Z)
(SORTEDP B)
(SORTEDP U))
(SORTEDP (MERGE U B))).

25

Eliminate the irrelevant term. We would thus like to
prove:

(IMPLIES (AND (SORTEDP B) (SORTEDP U))
(SORTEDP (MERGE U B))),

which we will finally name *1.1.

We will appeal to induction. Three inductions are
suggested by terms in the conjecture. However, they merge
into one likely candidate induction. We will induct
according to the following scheme:

(AND (IMPLIES (NOT (LISTP U)) (p U B))
(IMPLIES (AND (LISTP U) (NOT (LISTP B)))
(p U B))
(IMPLIES (AND (LISTP U)
(LISTP B)
(LESSP (CAR U) (CAR B))
(p (CDR U) B))
(p U B))
(IMPLIES (AND (LISTP U)
(LISTP B)
(NOT (LESSP (CAR U) (CAR B)))
(p U (CDR B)))
(p U B))).
Linear arithmetic, the lemma SUB1-ADD1, and the definitions
of LESSP, PLUS, and LENGTH establish that the measure:
(PLUS (LENGTH U) (LENGTH B))
decreases according to the well-founded relation LESSP in
each induction step of the scheme. The above induction
scheme leads to the following six new conjectures:

Case 6. (IMPLIES (AND (NOT (LISTP U))
(SORTEDP B)
(SORTEDP U))
(SORTEDP (MERGE U B))).

26

This simplifies, opening up MERGE and SORTEDP, to the
following two new conjectures:

Case 6.2.

The rest of this “proof output” isn’t that
interesting, so we have edited it out.

That finishes the proof of *1.1, which also finishes
the proof of *1. Q.E.D.

Now we work towards the second of two properties to prove about a sorting
function, namely, that the result is a permutation of the input. It is conve-
nient to specify this property by saying that every object occurs the same
number of times in each list. One can prove equivalence of various notions
of permutation, but we won’t do that here. So, we start by writing a function
that counts the number of occurrences of an object in a list.

>(defn occurrences (a x)
(if (listp x)
(if (equal a (car x))
(add1 (occurrences a (cdr x)))
(occurrences a (cdr x)))

0))

Linear arithmetic and the lemma CDR-LESSP establish
that the measure (COUNT X) decreases according to the
well-founded relation LESSP in each recursive call. Hence,
OCCURRENCES 1is accepted under the principle of definition.
From the definition we can conclude that:

(NUMBERP (OCCURRENCES A X))
is a theorem.

A proof of the second theorem can now be attempted. Unfortunately, it
seems to fail, so we interrupt the proof.

>(prove-lemma occurrences-mergesort (rewrite)
(equal (occurrences a (mergesort x))
(occurrences a x)))

27

Name the conjecture *1.
. most output omitted here ...

(IMPLIES
(AND
(LISTP Z)
(EQUAL
(OCCURRENCES A
(MERGESORT (0DDS (CONS V Z))))
(OCCURRENCES A (ODDS (CONS V Z))))
(EQUAL (OCCURRENCES A (MERGESORT (ODDS Z)))
(OCCURRENCES A (ODDS Z)))
(NOT (EQUAL A V)))
(EQUAL
(0OCCURRENCES A
(MERGE (MERGESORT (ODDS Z))
(MERGESORT (0DDS (CONS V Z)))))
(OCCURRENCES A Z))).

We will try to prove the above formula by generalizing
it, replacing (0DDS Z) by Y and (ODDS (CONS V Z)) by U.
We must thus prove the formula:

(IMPLIES
(AND (LISTP Z)
(EQUAL (OCCURRENCES A (MERGESORT U))
(OCCURRENCES A U))
(EQUAL (OCCURRENCES A (MERGESORT Y))
(OCCURRENCES A Y))
(NOT (EQUAL A V)))
(EQUAL
(0OCCURRENCES A
(MERGE (MERGESORT Y) (MERGESORT U)))
(OCCURRENCES A Z)))

We may as well abort the proof at this point, since the prover has made a
false generalization. The relation between Z and (ODDS Z) (among others)

28

has been lost. Note that soundness is not imperiled by such a generalization:

the theorem prover merely adopts a goal that is impossible to achieve.

One can actually look at the output above and guess a useful rewrite rule
to prove as a lemma. Below, we’ll demonstrate how to use the interactive
capability of Pe-Nqthm in order to accomplish the same thing. We’'ll annotate

an interactive session with comments. All input follows the prompt, “=>:
the rest is output, except for the comments, which are all in italics.

>(verify (equal (occurrences a (mergesort x))
(occurrences a x)))

Now we’re in the interactive ‘‘proof-checker” loop.
->: p print the current term

(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X))
->: induct call on the prover’s heuristics to create
subgoals corresponding to a proof by induction

Inducting according to the scheme:

(AND (IMPLIES (NOT (LISTP X)) (p & X))
(IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(p A X))
(IMPLIES (AND (LISTP X)
(LISTP (CDR X))
(p A (ODDS X))
(p A (0DDS (CDR X))))
(p A X)))

Creating 3 new subgoals, (MAIN . 1), (MAIN . 2), and
(MAIN . 3).

The proof of the current goal, MAIN, has been completed.

However, the following subgoals of MAIN remain to be proved:

(MAIN . 1), (MAIN . 2), and (MAIN . 3).
Now proving (MAIN . 1).
->: goals print the names of the goals that remain to be proved

29

”,
)

(MAIN . 1)

(MAIN . 2)
(MAIN . 3)
->:p

(IMPLIES (NOT (LISTP X))
(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X)))
->: prove this is a ‘‘base case” which looks easy (X is
the empty list), so we call on the prover to
prove it automatically

xxx Now entering the theorem prover *¥*x*x*:

This simplifies, opening up the functions MERGESORT, LISTP,
OCCURRENCES, and EQUAL, to:

T.

Q.E.D.

The current goal, (MAIN . 1), has been proved, and has no
dependents.
Now proving (MAIN . 2).

->:p

(IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X)))
->: prove another easy ‘‘base case”

xxx Now entering the theorem prover ¥ ¥*x*x*:

This formula simplifies, opening up the definitions of
MERGESORT, OCCURRENCES, and ADD1, to:

30

Q.E.D.

The current goal, (MAIN . 2), has been proved, and has no
dependents.
Now proving (MAIN . 3).

->: goals notice thal only one unproved goal remains

(MAIN . 3)

->: th same as p excepl thal we also see the ‘‘top-level
hypotheses” (there aren’t any yet) and the
““governors” (which we won’t discuss here)

% Active top-level hypotheses:
There are no top-level hypotheses to display.

*x**x Active governors: As we said above, please ignore this
There are no governors to display.

The current subterm is:
(IMPLIES
(AND (LISTP X)
(LISTP (CDR X))
(EQUAL (OCCURRENCES A (MERGESORT (0ODDS X)))
(OCCURRENCES A (0DDS X)))
(EQUAL (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))
(OCCURRENCES A (0DDS (CDR X)))))
(EQUAL (OCCURRENCES A (MERGESORT X))
(DCCURRENCES 4 X)))
->: promote sel oul lo prove the consequent of the implicalion
under the assumption that ils antecedents hold

->: th

31

*** Active top-level hypotheses:

Hi. (LISTP X)

H2. (LISTP (CDR X))

H3. (EQUAL (OCCURRENCES A (MERGESORT (ODDS X)))
(OCCURRENCES A (0ODDS X)))

H4. (EQUAL (OCCURRENCES A

(MERGESORT (0DDS (CDR X))))

(OCCURRENCES A (0DDS (CDR X))))

x Active governors:
There are no governors to display.

The current subterm is:

(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X))

->: commands let’s see what we’ve done so far

The commands thus far (in reverse order, i.e. last one
first) have been:

PROMOTE

. PROVE

. PROVE

. INDUCT

START

b W N

->: (comment Now open up (eXpand) the term (MERGESORT X))

->: commands

The commands thus far (in reverse order, i.e. last one
first) have been:

PROMOTE

PROVE

PROVE

INDUCT

START

->: pp-top preltyprint the conclusion, focusing on
the ““current subterm”

D W N -

32

(COMMENT NOW OPEN UP (EXPAND) THE TERM (MERGESORT X))

(*xx (EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X))
*kk)
->: (dive 1 2) focus on the first arqument of EQUAL, then
on the second argument of that term

->: pp-top

(EQUAL (OCCURRENCES A
(**%x (MERGESORT X) **%))
(OCCURRENCES A X))
->: x expand the definition of the current subterm’s function symbol,
i.e. MERGESORT, on its actual arguments; then simplify

->: pp-top

(EQUAL (OCCURRENCES A
(*x* (MERGE (MERGESORT (ODDS (CDR X)))
(MERGESORT (ODDS X)))
*%%))
(OCCURRENCES A X))
->: up

->: th

*** Active top-level hypotheses:

Hi. (LISTP X)

H2. (LISTP (CDR X))

H3. (EQUAL (OCCURRENCES A (MERGESORT (ODDS X)))
(OCCURRENCES A (0ODDS X)))

H4. (EQUAL (OCCURRENCES A

(MERGESORT (0DDS (CDR X))))

(OCCURRENCES A (0DDS (CDR X))))

x Active governors:
There are no governors to display.

The current subterm is:
(0OCCURRENCES A

33

(MERGE (MERGESORT (0DDS (CDR X)))
(MERGESORT (0ODDS X))))
->: show-rewrites

No rewrite rules apply to the current term.

At this point we seem to be stuck. However, if we stare at the conclusion
we may tmagine a possible stmplification: we may eliminate the call of MERGE
by noting that the number of occurrences of an object A in the MERGE of two
lists is the sum of its occurrences in each list. Let us note a comment to that
effect, then exit the interactive loop and prove such a theorem at the top level.

->: (comment Now exit and prove the lemma OCCURRENCES-MERGE)

->: exit

Quitting the interactive proof checker. Submit (VERIFY) to
get back in at this state. **NOTEx* -- No event has been
stored.

NIL

>(prove-lemma occurrences-merge (rewrite)
(equal (occurrences a (merge x y))
(plus (occurrences a x) (occurrences a y))))

The proof by induction is successful; we omit it here.
>(verify) re-enter the interactive loop where we left off
->: th

*** Active top-level hypotheses:
Hi. (LISTP X)
H2. (LISTP (CDR X))
H3. (EQUAL (OCCURRENCES A (MERGESORT (ODDS X)))
(OCCURRENCES A (0ODDS X)))
H4. (EQUAL (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))

34

(OCCURRENCES A (0DDS (CDR X))))

x Active governors:
There are no governors to display.

The current subterm is:
(0OCCURRENCES A
(MERGE (MERGESORT (0DDS (CDR X)))
(MERGESORT (0DDS X))))
->: show-rewrites

1. OCCURRENCES-MERGE
New term:
(PLUS (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))
(0OCCURRENCES A (MERGESORT (0ODDS X))))

Hypotheses: <none>
->: rewrite apply the rewrite rule manually, in order
to keep control of the proof.

Rewriting with OCCURRENCES-MERGE.
->:p

(PLUS (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))
(OCCURRENCES A (MERGESORT (0DDS X))))
->: top move to the top of the conclusion, so that the
current subterm is the entire conclusion

->: th

*** Active top-level hypotheses:
Hi. (LISTP X)
H2. (LISTP (CDR X))
H3. (EQUAL (OCCURRENCES A (MERGESORT (ODDS X)))
(OCCURRENCES A (0ODDS X)))
H4. (EQUAL (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))

35

(OCCURRENCES A (0DDS (CDR X))))

x Active governors:
There are no governors to display.

The current subterm is:
(EQUAL (PLUS (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))
(OCCURRENCES A (MERGESORT (ODDS X))))
(OCCURRENCES A X))

Oh—now we see that we want to use the equality hypotheses.
->: undo

Undoing: TOP
->:p

(PLUS (OCCURRENCES A
(MERGESORT (0DDS (CDR X))))
(OCCURRENCES A (MERGESORT (0ODDS X))))

(OCCURRENCES A

(MERGESORT (0DDS (CDR X))))
use an equality hypothesis that equates this with another term
->: =

->: nx move to the right sibling (the NeXt argument)
->:p

(OCCURRENCES A (MERGESORT (ODDS X)))
use an equality hypothesis that equates this with another term

36

(OCCURRENCES A (0ODDS X))
->: top

->: th

*** Active top-level hypotheses:

Hi. (LISTP X)

H2. (LISTP (CDR X))

H3. (EQUAL (OCCURRENCES A (MERGESORT (0ODDS X)))
(OCCURRENCES A (0ODDS X)))

H4. (EQUAL (OCCURRENCES A

(MERGESORT (0DDS (CDR X))))

(OCCURRENCES A (0DDS (CDR X))))

x Active governors:
There are no governors to display.

The current subterm is:
(EQUAL (PLUS (OCCURRENCES A (0DDS (CDR X)))
(OCCURRENCES A (ODDS X)))
(OCCURRENCES A X))
->: (drop 3 4) now drop the last two hypotheses; after all,
we have already used them

Dropping hypotheses 3 and 4.
->: th

*** Active top-level hypotheses:
H1. (LISTP X)
H2. (LISTP (CDR X))

x Active governors:
There are no governors to display.

The current subterm is:
(EQUAL (PLUS (OCCURRENCES A (0DDS (CDR X)))
(OCCURRENCES A (0ODDS X)))
(OCCURRENCES A X))
->: prove can we finish this by calling the prover?

37

xxx Now entering the theorem prover *¥*x*x*:

This conjecture simplifies, expanding OCCURRENCES, to the
following two new conjectures:

The proof succeeds! We’ll omit the output here.

That finishes the proof of *1. Q.E.D.

The current goal, (MAIN . 3), has been proved, and has no
dependents.

*kDklxlxlklx Al]l goals have been proved! kDkDk!lxklklklx
You may wish to EXIT -- type (HELP EXIT) for details.

make an “‘event” to add to the CHRONOLOGY
->: (exit occurrences-mergesort (rewrite))

The indicated goal has been proved. Here is the desired event:
(PROVE-LEMMA OCCURRENCES-MERGESORT
(REWRITE)
(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES A X))
((INSTRUCTIONS INDUCT PROVE PROVE PROMOTE
(COMMENT NOW OPEN UP
(EXPAND)
THE TERM
(MERGESORT X))
(DIVE 1 2)
X UP
(COMMENT NOW EXIT AND PROVE THE LEMMA
O0CCURRENCES-MERGE)
(REWRITE OCCURRENCES-MERGE)
(DIVE 1)
= NX = TOP

38

(DROP 3 4)
PROVE)))
Do you want to submit this event?
Y (Yes), R (Yes and replay commands), or N (No) 7 y

This ends our proof. However, often such interactive proofs go through au-
tomatically, once one has proved appropriate rewrite rules along the way.
Having proved such a rule (OCCURRENCES-MERGE), it is tempting to give it a
try (after executing (UBT) in order to undo the event just proved):

>(prove-lemma occurrences-mergesort (rewrite)
(equal (occurrences a (mergesort x))
(occurrences a x)))

However, the proof fails. But with the lemma below, it succeeds. This lemma
is exactly the goal that was left before the final call of prove in the interactive
proof.

>(prove-lemma plus-occurrences-odds (rewrite)
(implies (and (listp x) (listp (cdr x)))
(equal (plus (occurrences a (odds (cdr x)))
(occurrences a (odds x)))
(occurrences a x))))

Since the interactive proof encountered this exact same lemma, maybe we be-
lieve that somehow the proof of our main theorem OCCURRENCES-MERGESORT
should have gone through automatically at this point. However, recall that
we explicitly dropped two equality hypotheses in our interactive proof before
calling on the theorem prover to finish it. By isolating the rewrite rule shown
immediately above, we allow this fact about 0CCURRENCES to be applied even
while those equality hypotheses are still present, without the danger that a
proof of that final goal by induction will get “confused.”

Here is the final non-interactive proof, using the lemma just proved above.

>(prove-lemma occurrences-mergesort (rewrite)
(equal (occurrences a (mergesort x))
(occurrences a x)))

Name the conjecture *1.

39

Perhaps we can prove it by induction. There are two
plausible inductions, both of which are unflawed. So we
will choose the one suggested by the largest number of
nonprimitive recursive functions. We will induct according
to the following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p & X))
(IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(p A X))
(IMPLIES (AND (LISTP X)
(LISTP (CDR X))
(p A (ODDS X))
(p A (ODDS (CDR X))))
(p A X))).
The lemmas SUB1-ADD1 and MERGESORT-HELPER and the
definitions of LESSP and LENGTH establish that the measure
(LENGTH X) decreases according to the well-founded relation
LESSP in each induction step of the scheme. The above
induction scheme produces the following three new goals:

Case 3. (IMPLIES (NOT (LISTP X))
(EQUAL (OCCURRENCES A (MERGESORT X))
(0OCCURRENCES A X))).

This simplifies, expanding MERGESORT, LISTP, OCCURRENCES,
and EQUAL, to:

T.
Case 2. (IMPLIES (AND (LISTP X) (NOT (LISTP (CDR X))))
(EQUAL (OCCURRENCES A (MERGESORT X))

(DCCURRENCES A X))).

This simplifies, unfolding MERGESORT, OCCURRENCES, and
ADD1, to:

T.

40

Case 1. (IMPLIES

L

(AND
(LISTP X)
(LISTP (CDR X))
(EQUAL (OCCURRENCES A (MERGESORT (ODDS X)))
(OCCURRENCES A (0ODDS X)))
(EQUAL (OCCURRENCES A
(MERGESORT (0ODDS (CDR X))))
(OCCURRENCES A (0DDS (CDR X)))))
(EQUAL (OCCURRENCES A (MERGESORT X))
(OCCURRENCES 4 X))).

This simplifies, rewriting with the lemmas
PLUS-0CCURRENCES-0DDS and OCCURRENCES-MERGE, and

expanding the definitions of MERGESORT and OCCURRENCES,
to:

That finishes the proof of *1. Q.E.D.

0.0 0.2 0.1 1

O0CCURRENCES-MERGESORT

T

41

5 Example Event Files

We now summarize a number of applications of Nqthm and Pc-Nqthm. Each
entry below is of the following form:

(Author, citation, filename)
Description

The citation may be omitted; in that case, no published description of the
work is available and the interested reader should look at the indicted file,
which is included with the system. Many of the files have explanatory com-
ments. Each file has been successfully processed by PROVE-FILE. The files
are listed in alphabetical order. Much of this text appears essentially in

[Kau92a].

5.1 Ngthm example event files
First we list the example files for Nqthm.

(Boyer, "basic/alternating.events")
a formalization and correctness proof of the “Gilbreath Trick” [Gar60,
Gil58], a card trick having to do with the outcome of shuffling a deck
of cards that has been previously arranged into alternating colors; the
Nqgthm attack on this problem was inspired by Gerard Huet’s use of
the COQ theorem prover to do the proof[Hue91]

(Moore, [Mo091], "basic/async18.events")
a model of asynchronous communication and a proof of the reliability
of the biphase mark communications protocol

(Boyer and Moore, [BM88a|, "basic/binomial.events")
the binomial theorem expressed with FOR and a proof thereof

(Bronstein and Talcott, [BT88, Bro89, BT89b, BT89a],
"bronstein/*.events")
a collection of twenty six event files that are described in the four pa-
pers cited above; the work includes a formalization of “string-functional
semantics” for circuit descriptions and its use to verify the correctness
properties of many circuits, including the Saxe-Leiserson retimed cor-
relator, a pipelined ripple adder, and an abstract pipelined cpu

42

(Boyer, Moore, and Green, [BGM90],
"basic/controller.events")
a model of the problem of controlling a vehicle’s course and a proof
that under certain conditions a particular program keeps the vehicle
within a certain corridor of the desired course and, under more ideal
conditions, homes to the course

(Cowles, "basic/fibsums.events")
proofs of several interesting theorems about the sums of Fibonacci num-
bers

(Boyer and Moore, [BM81], "basic/fortran.events")
supporting definitions for a Fortran verification condition generator

(Boyer, Goldschlag, Kaufmann, and Moore, [BGKM],
"basic/fs-examples.events")
illustrations of the use of constrained functions and functional instan-
tiation

Russinoff, [Rus92|, "basic/gauss.events"
) ; g
the original Nqthm proof of Gauss’ law of quadratic reciprocity

(Russinoff, [Rus92], "basic/new-gauss.events")
an improved proof of Gauss’ law of quadratic reciprocity (after all,
Gauss proved it eight times!)

(Boyer and Moore, "basic/parser.events")
a formalization of the syntax and abbreviation conventions of the Nqthm
extended logic, expressed as a function from lists of ASCII character
codes to the quotations of formal terms

(Boyer, "basic/peter.events")
a sequence of lemmas describing the relationship between Ackermann’s
original function and R. Peter’s version of it

(Boyer, "basic/pr.events")
a proof of the existence of nonprimitive recursive functions

(Boyer and Moore, approximately Appendix A of [ACL],
"basic/proveall.events")

43

elementary list processing, number theory through Euclid’s theorem
and prime factorization, soundness and completeness of a tautology
checker, correctness of the CANCEL metafunction, correctness of a sim-
ple assembly language program, correctness of a simple optimizing ex-
pression compiler

(Boyer and Moore, [BM88a|, "basic/quant.events")
illustrations of the use of V&C$ and FOR, including a study of several
partial functions and functions, such as the “91 function,” that recurse
on the value of their own recursive calls

(Boyer and Moore, [BM84c|, "basic/rsa.events")
proof of the invertibility of the public key encryption algorithm of
Rivest, Shamir, and Adleman

(Moore, "basic/small-machine.events")
a simple operational semantics and its use to prove program properties
directly and via the so-called “functional” and “inductive assertion”
methods

(Moore, "basic/tic-tac-toe.events")
a formalization of what it means for a program to play non-losing tic-
tac-toe, the proof that a certain algorithm does so, and the successive
refinement of the algorithm into the functional expression of an iterative
number-crunching program

(Boyer and Moore, [BM84a|, "basic/tmi.events")
proof of the Turing completeness of Pure Lisp

(Boyer and Moore, [BM84b], "basic/unsolv.events")
proof of the unsolvability of the halting problem for Pure Lisp

(Russinoff, [Rus85], "basic/wilson.events")
proof of Wilson’s theorem

(Moore, [MooT9], "basic/ztak.events")
proof of the termination of Takeuchi’s function

(Bevier, [Bev8T], "bevier/kit.events")
the formalization, implementation and proof that a simple separation

44

kernel (implementing multi-processing on a uniprocessor) provides pro-
cess scheduling, error handling, message passing, and interfaces to asyn-
chronous devices

(Cowles, "cowles/intro-eg.events")
a brief introduction to Ngthm intended for mathematicians and a proof
of a theorem about factorial

(Cowles, "cowles/shell.events")
alternative ways to decompose sequences and a study of Nqthm’s shell
principle

(Flatau, [Fla92], "flatau/app-c-d-e.events")
the development and proof of correctness of a compiler and runtime
system for a subset of the Nqthm language (including IF, CONS, and
subroutine call) requiring dynamic storage allocation; this event list
corresponds to Appendices C, D, and E of [Fla92] and deals with a
runtime system that does not provide a garbage collector.

(Flatau, [Fla92], "flatau/app-f.events")
this event file is analogous to the immediately preceding one, but cor-
responds to Appendix F of [Fla92] and deals with a runtime system
including a reference counting garbage collector.

(Moore, [Moo88], "fm9001-piton/big-add.events")
a proof of the correctness of a Piton program for adding arbitrarily long
numbers in base 232

(Brock and Hunt, [HB92], "fm9001-piton/fm9001.events")
formalizations of a netlist description language, the machine code for
the 32-bit FM9001 microprocessor, the design of an implementation of
the processor, and a prootf of the correspondence of the design and the
machine code specification

(Wilding, [Wil92], "fm9001-piton/nim-piton.events")
a proof that a given 300-line Piton program plays the game of Nim opti-
mally; the program is also shown to be loadable onto the FM9001 (sat-
isfying the requirements of the correctness theorem for Piton); bounds
on the program’s execution time have been proved using Pc-Nqthm.

45

(Moore, [Moo88], "fm9001-piton/piton.events")
the definition of the Piton assembly language, its implementation on
the FM9001 via a compiler, assembler and linker, and a proof of the
correctness of the FM9001 implementation

(Boyer and Moore, [BM81], "fortran-vcg/fortran.events")
the same file as basic/fortran, above, which is duplicated on this
subdirectory for technical reasons

(Boyer and Moore, [BM81], "fortran-vcg/fsrch.events")
proofs of the verification conditions for a Fortran implementation of
the Boyer-Moore fast string searching algorithm

(Boyer and Moore, [BGM90], "fortran-vcg/isqrt.events")
proofs of the verification conditions for a Fortran implementation of
the integer version of Newton’s square root algorithm

(Boyer and Moore, [BM91], "fortran-vcg/mjrty.events")
proofs of the verification conditions for a Fortran implementation of a
linear-time majority vote algorithm

(Hunt, [Hun85], "hunt/fm8501.events")
formalizations of the machine code for the 16-bit FM8501 microproces-
sor, a register transfer model of a microcoded implementation of the
machine, and a proof of their correspondence

(Kaufmann, see Young [You90],
"kaufmann/expr-compiler.events")
the proof of correctness of a simple expression compiler, designed as an
exercise for beginners

(Kaufmann, "kaufmann/foldr.events")
an illustration of a method of proving permutation-independence of list
processing functions

(Kaufmann, [Kau91b], "kaufmann/generalize-all.events")
the correctness of a generalization algorithm that operates in the pres-
ence of free variables

46

(Kaufmann, [Kau92b], "kaufmann/koenig.events")
a proof of Koenig’s tree lemma

(Kaufmann, [Kau9la], "kaufmann/locking.events")
a model of a simple data base against which read and write transactions
can occur

(Kaufmann, "kaufmann/mergesort-demo.events")
the correctness of a merge sort function, similar to the one in Section
4 in this paper

(Kaufmann, [Kau88b], "kaufmann/note-100.events")
the proof of Ramsey’s theorem for exponent 2, finite case, described in

a style intended to assist those wishing to improve their effectiveness
with Nqthm

(Kaufmann, "kaufmann/partial.events")
an approach to handling partial functions with Nqthm

(Kaufmann, "kaufmann/permutationp-subbagp.events")
a formalization of the notion of permutation via bags

(Kaufmann, [Kau92b], "kaufmann/ramsey.events")
a proof of Ramsey’s theorem for the infinite case

(Kaufmann, [Kau90b], "kaufmann/rotate.events")
a proof about rotations of lists, intended as an introduction to Nqthm

(Kaufmann and Jamsek, "kaufmann/rpn.events")
an exercise in reverse Polish notation evaluation

(Kaufmann, "kaufmann/shuffle.events")
another solution to the Gilbreath card trick challenge (see example file
"basic/alternating.events")

(Kunen, "kunen/ack.events")
an illustrative definition of Ackermann’s function

(Kunen, "kunen/new-prime.events")
an alternative proof of the fundamental theorem of arithmetic that —

47

unlike the one presented in [ACL] — does not use concepts not involved
in the statement of the theorem

(Bevier, "numbers/bags.events")
a library of useful definitions and lemmas about bags

(Wilding, "numbers/extras.events")
a trivial extension of the integers library used in £ib2 below

(Wilding, [Wil91], "numbers/fib2.events")
a proof of Matijasevich’s lemma about Fibonacci numbers

(Bevier, Kaufmann, and Wilding, [Kau90a],
"numbers/integers.events")
a library of useful definitions and lemmas about the integers

(Bevier, Kaufmann, and Wilding, [Bev8§],
"numbers/naturals.events")
a library of useful definitions and lemmas about the natural numbers

(Wilding, "numbers/nim.events")
a formalization of the game of Nim and a proof that a certain algorithm
implements a winning strategy

(Shankar, [Sha88], "shankar/church-rosser.events")

a proof of the Church-Rosser theorem for lambda-calculus

(Shankar, [Sha86], "shankar/goedel.events")
a proof of Godel’s incompleteness theorem for Shoenfield’s first order
logic extended with Cohen’s axioms for hereditarily finite set theory,

22

(Shankar, [Sha85], "shankar/tautology.events")
a proof that every tautology has a proof in Shoenfield’s propositional
logic

(Nagayama and Talcott, [NT91],
"talcott/mutex-atomic.events")
a proof of the local correctness of a mutual exclusion algorithm under
a certain “atomicity assumption”

48

(Nagayama and Talcott, [NT91],
"talcott/mutex-molecular.events")
a proof of the local correctness of a mutual exclusion algorithm without
the “atomicity assumption” mentioned above

(Yu, "yu/amax.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a C program that finds the maximum value in an
integer array

(Yu, [Yu92], "yu/asm.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a trivial C program that uses embedded assembly

code (the object being to demonstrate that embedded assembly code
can be handled)

(Yu, [Yu92], "yu/bsearch.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a binary search program written in C

(Yu, [Yu92], "yu/cstring.events")

the correctness proofs for the MC68020 machine code produced by the
Gnu C compiler for 21 of the 22 C String Library functions from the
Berkeley Unix C string library; the proof for each function is broken
into two “phases;” the first phase establishes the correspondence of
the machine code and a suitable recursive function and the second
phase establishes that the recursive function has the specified proper-
ties; the file yu/cstring.events actually contains the second phase
proofs for all of the string functions handled; the first phase proof
for each string function is contained in a separate events file named
for the string function, e.g., yu/memchr.events, yu/memcmp.events,
yu/strnspn.events, etc.

(Yu, "yu/fixnum-gcd.events")
the correctness proof for the MC68020 machine code produced by the
AKCL compiler for a Common Lisp program that computes the great-
est common divisor of two FIXNUMs

49

(Yu, [Yu92], "yu/fmax.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a trivial C program to compute the maximum of
two integers according to a supplied comparison function (the object
being to demonstrate that C “function pointers” are handled)

(Yu, [Yu92] (also [Hea08]), "yu/gcd.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for Euclid’s greatest common divisor algorithm written

in C

(Yu, [Yu92], "yu/gcd3.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a C program consisting of two nested calls of the
GCD program (the object being to demonstrate that procedure call is
handled in a way that allows hierarchical verification)

(Yu, [Yu90], "yu/group.events")
proofs of two theorems in finite group theory, the first is about kernels
of homomorphisms and the second is the Lagrange theorem

(Yu, "yu/isqrt.events")
the correctness proof for the MC68020 machine code produced by the
GNU C compiler for C program for computing integer square roots via
Newton’s method

(Yu, "yu/isqrt-ada.events")
the correctness proof for the MC68020 machine code produced by
the Verdix Ada compiler from an Ada program for computing integer
square roots via Newton’s method

(Yu, "yu/log2.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a C program for computing integer logarithms (base
2) e.g., repeated division by 2

(Yu, [Yu92], "yu/mc20-0.events")
some utilities involved in the formal specification of the MC68020

50

(Yu, [BY92], "yu/mc20-1.events")
the formal specification of about 80% of the user available instructions
for the Motorola MC68020 microprocessor

(Yu, [Yu92], "yu/mc20-2.events")
a library of useful definitions and lemmas about the formalization of

the MC68020

(Yu, "yu/mjrty.events")
the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for a linear time majority vote algorithm written in C

(Yu, "yu/qsort.events")

the correctness proof for the MC68020 machine code produced by the
Gnu C compiler for Hoare’s in situ quick sort program written in C;
the source code is that on page 87 of [KR88] except that inline code
is used rather than the subroutine swap; Yu reports (private commu-
nication) that this change was made only because he was, at the time,
investigating methods of proving recursive programs correct and did
not want to be distracted by other subroutine calls

(Yu, [Yu92], "yu/switch.events")
the correctness proof for the MC68020 machine code produced by the
GNU C compiler for a trivial C program that employs the switch state-
ment (the object being to demonstrate the technique used to compile
switch can be handled)

(Yu, "yu/zero.events")
the correctness proof for the MC68020 machine code produced by the
GNU C compiler for a C program that zeros an integer array (the object
being to demonstrate that writes to memory can be handled)

5.2 Pc-Nqthm example event files
Next we list the example files for Pc-Nqgthm.

(Kaufmann, "basic/arith.events")
some supporting arithmetic events for other event files in this directory

ol

(Kaufmann, "basic/hanoi.events")
proof of correctness of a Towers of Hanoi program

(Kaufmann, "basic/pigeon-hole.events")
proof of a version of the pigeon-hole principle

(Kaufmann, "basic/ramseyl.events")
proof of correctness of Ramsey’s Theorem for exponent 2

(Kaufmann, "basic/ramsey2.events")
proof that a certain binomial coefficient serves as a bound on the Ram-
sey number

(Kaufmann, "basic/square.events")
ugly proof of an ugly formalization of the irrationality of the square
root of 2

(Kaufmann, "basic/subset.events")
some supporting events about lists and their use as an implementation
of sets

(Kaufmann, "basic/symmetric-difference.events")
commutativity and associativity of symmetric difference as a set oper-
ation

(Kaufmann, "basic/transitive-closure.events")
proof of correctness of a transitive closure algorithm

(Kaufmann, [Kau86], "basic/tsquare.events")
proof of correctness of a “true square” algorithm of Gries

(Kaufmann, [Kau92b], "defn-sk/csb.events")
proof of a formalization of the Schroeder-Bernstein theorem of set the-
ory

(Kaufmann, "defn-sk/finite-state-machine-example.events")
a little finite state machine example

(Kaufmann, [Kau92b], "defn-sk/koenig.events")
a formalization of Koenig’s Tree Lemma, which says that any finitely
branching tree which is infinite has an infinite branch

52

Kaufmann, [Kau92b|, "defn-sk/ramsey.events"
bl bl y
proof of a formalization of the infinite Ramsey Theorem for exponent

2

(Bevier, [Bev88], "dmg/bags.events")
some supporting events about bags

(Goldschlag, [Gol91], "dmg/dining.events")
the verification of a dining philosopher’s program, under the assump-
tions of deadlock freedom and strong fairness, using a mechanized im-
plementation of Unity on the Boyer-Moore prover

(Goldschlag, [Gol90d], "dmg/fifo.events")
the verification of both the safety and liveness properties of an n-node
delay insensitive fifo circuit, using a mechanized implementation of
Unity on the Boyer-Moore prover

(Goldschlag [Gol90c¢], "dmg/interpreter.events")
a mechanized implementation of Unity on the Boyer-Moore prover

(Goldschlag [GolThesis], "dmg/me . events")
verification of an n-processor program satisfying both mutual exclusion
and absence of starvation, using a mechanized implementation of Unity
on the Boyer-Moore prover

(Goldschlag [GolThesis], "dmg/min.events")
the correctness of a distributed algorithm that computes the minimum
node value in a tree, using a mechanized implementation of Unity on
the Boyer-Moore prover

(Bevier and Wilding, [Bev88], "dmg/naturals.events")
some supporting events about natural numbers

(Kaufmann, [Kau91b], "generalize/*.events")
the correctness of a generalization algorithm that operates in the pres-
ence of free variables; same as the corresponding events from the Nqthm
example suite, except that the quantifier (DEFN-SK, [Kau92b]) events
have been replaced by DCL and ADD-AXIOM events in that version

23

(Young, [You89], "mg/*.events")
a mechanically-verified code-generator for micro-Gypsy, which is a Pas-
cal-like language

(Good, Siebert, Young, [GSY], "middle-gypsy/*.events")
a mathematical definition of a subset of the Gypsy 2.05 language, in-
cluding a preliminary rationals library created by Matt Wilding

(Wilding, "wilding/ground-resolution.events")

a proof of the completeness of ground resolution using Bledsoe’s excess
literal technique

References

[ACL]

[ACLH]

[BBHT72

[BGKM]

[BGMO0]

[BKY90]

R. 5. Boyer and J S. Moore. A Computational Logic. Academic
Press, New York, 1979.

R. S. Boyer and J 5. Moore. A Computational Logic Handbook.
Academic Press, New York, 1988.

W. Bledsoe, R. S. Boyer, and W. Henneman. Computer proofs
of limit theorems. Artificial Intelligence, 3:27-60, 1972.

R.S. Boyer, D.M. Goldschlag, M. Kaufmann, and J S. Moore.
Functional instantiation in first order logic. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation:

Papers in Honor of John McCarthy, pages 7-26. Academic Press,
1991.

R. S. Boyer, M. W. Green, and J S. Moore. The Use of a For-
mal Simulator to Verify a Simple Real Time Control Program.
In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra,
editor, Beauty ts Our Business: A Birthday Salute to Fdsger W.
Dijkstra, pages 54—66. Springer-Verlag Texts and Monographs in
Computer Science, 1990.

W. Bevier, M. Kaufmann, and W. Young. Translation of a Gypsy
compiler example into the Boyer-Moore logic. Internal Note 169,
Computational Logic, Inc., January 1990.

o4

[BM75]

[BM77]

[BMS1]

[BM81a]

[BMS1b]

[BM84a]

[BMS84b]

[BM84c¢]

[BMS5]

[BMS88a)

R. S. Boyer and J S. Moore. Proving theorems about Lisp func-
tions. JACM, 22(1):129-144, 1975.

R. S. Boyer and J S. Moore. A lemma driven automatic theorem
prover for recursive function theory. In Proceedings of the 5th
Joint Conference on Artificial Intelligence, pages 511-519. Inter-
national Joint Conferences on Artifical Intelligence, 1977.

R. S. Boyer and J 5. Moore. A verification condition generator

for Fortran. In The Correctness Problem in Computer Science.
Academic Press, London, 1981.

R. S. Boyer and J S. Moore. The mechanical verification of a
Fortran square root program. Csl report, SRI International, 1981.

R. S. Boyer and J S. Moore. Metafunctions: Proving them correct
and using them efficiently as new proot procedures. In The Cor-
rectness Problem in Computer Science. Academic Press, London,

1981.

R. S. Boyer and J S. Moore. A mechanical proof of the Tur-
ing completeness of Pure Lisp. In Automated Theorem Proving:
After 25 Years, pages 133-167. American Mathematical Society,
Providence, R.I., 1984.

R. S. Boyer and J S. Moore. A mechanical proof of the unsolv-
ability of the halting problem. JACM, 31(3):441-458, 1984.

R. 5. Boyer and J S. Moore. Proof checking the RSA pub-
lic key encryption algorithm. American Mathematical Monthly,
91(3):181-189, 1984.

R. S. Boyer and J S. Moore. Program verification. Journal of
Automated Reasoning, 1(1):17-23, 1985.

R. S. Boyer and J S. Moore. The addition of bounded quan-
tification and partial functions to a computational logic and its

theorem prover. Journal of Automated Reasoning, 4(2):117-172,
1988.

)

[BMSSb]

[BMY1]

[BSvHIS]

[BTSS]

[BT89a]

[BTS9b]

[BY92]

[Bev8T]

[Bev88|

R. S. Boyer and J S. Moore. Integrating decision procedures into
heuristic theorem provers: A case study with linear arithmetic.
In Machine Intelligence 11. Oxford University Press, 1988.

R. S. Boyer and J S. Moore. MJRTY - A Fast Majority Vote
Algorithm, pages 105-117. Automated Reasoning Series, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1991.

A.Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.
Rippling: A Heuristic for Guiding Inductive Proofs. Department
of Artificial Intelligence Research Paper No. 567, Edinburgh Uni-
versity 1991. To appear in The Journal of Artificial Intelligence.

A. Bronstein and C. Talcott. String-functional semantics for for-
mal verification of synchronous circuits, Report No. STAN-CS-88-
1210. Technical report, Computer Science Department, Stanford
University, 1988.

A. Bronstein and C. Talcott. Formal verification of pipelines
based on string-functional semantics. In [IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design,
Leuven, Belgium, 19809.

A. Bronstein and C. Talcott. Formal verification of synchronous
circuits based on string-functional semantics: The 7 Paillet cir-
cuits in Boyer-Moore. In C-Cube 1989 Workshop on Automatic
Verification Methods for Finite State Systems. LNCS /07, pages
317-333, 1989.

R.S. Boyer and Y. Yu. A formal specification of some user mode
instructions for the motorola 68020. Technical Report TR-92-
04, Computer Sciences Department, University of Texas, Austin,

February 1992.

W. Bevier. A Verified Operating System Kernel. PhD thesis,
University of Texas at Austin, 1987.

W. Bevier. A library for hardware verification. Internal Note
57, Computational Logic, Inc., 1717 W. Sixth Street, Suite 290,
Austin, TX 78703, August 1988.

26

[Bev89]

[BleT1]

[Bou68|

[Bro89]

[Bur69]

[Cho88|

[Fla92]

[GSY]

[Gar60]

Gil58]
[Gol90a]

[Gol90b)]

W. Bevier. Kit and the short stack. Journal of Automated Rea-
soning, 5(4):519-530, 1989.

W. W. Bledsoe. Splitting and reduction heuristics in automatic
theorem proving. Artificial Intelligence, 2:55-77, 1971.

N. Bourbaki. Elements of Mathematics. Addison Wesley, Read-
ing, Massachusetts, 1968.

A. Bronstein. MLP: String-functional semantics and Boyer-
Moore mechanization for the formal verification of synchronous
circutts. PhD thesis, Stanford University, 1989.

R. Burstall. Proving properties of programs by structural induc-

tion. The Computer Journal, 12(1):41-48, 1969.
S. Chou. Mechancial Geometry Theorem Proving. Reidel, 1988.

A. Flatau. A Verified Implementation of an Applicative Lan-
guage with Dynamic Storage Allocation. PhD thesis, University

of Texas, 1992. Also available through Computational Logic, Inc.,
Suite 290, 1717 West Sixth Street, Austin, TX 78703.

D. I. Good, Ann E. Siebert, and W. D. Young. Middle Gypsy
2.05 Definition. Technical Report 59, Computational Logic, Inc.,
May 1990.

M. Gardner. Mathematical recreation column. Scientific Ameri-

can, 203(2):149-154, August, 1960.
N. Gilbreath. Magnetic colors. The Linking Ring, 38(5):60, 1958.

D. M. Goldschlag. Proving proof rules: A proof system for con-
current programs. Compass ‘90, June 1990.

D. M. Goldschlag. Mechanically verifying concurrent programs
with the Boyer-Moore prover. IEEE Transactions on Software
Engineering, September 1990. To appear.

57

[Gol90¢]

[Gol90d]

[Gol91]

D. M. Goldschlag. Mechanizing Unity. In Proceedings of the IFIP
TC2/WGE2.3 Working Conference on Programming Concepts and
Methods. Elsevier, Amsterdam, 1990.

D. M. Goldschlag. Mechanically Verifying Safety and Liveness
Properties of Delay Insensitive Circuits. Computer Aided Verifi-
cation 1991, July, 1991.

D. M. Goldschlag. A Mechanical Formalization of Several Fair-
ness Notions. In S. Prehn and W.J. Toetenel, editors, VDM 91
Formal Software Development Methods, pages 133-167. Springer-
Verlag Lecture Notes in Computer Science 551, 1991.

[GolThesis] D. M. Goldschlag. Mechanically Verifying Concurrent Programs.

[Goob4]

[HBY2]

[Hea08]

[Hue91]

[Hun85]

[Hun89]

[KRSS]

PhD thesis, University of Texas at Austin, 1992.

R. L. Goodstein. Recursive Number Theory. North-Holland Pub-
lishing Company, Amsterdam, 1964.

W.A. Hunt Jr. and B. Brock. A formal HDL and its use in the
FM9001 verification. Proceedings of the Royal Society, (to appear,
April 1992), 1992.

T. L. Heath (translation and commentary). The Thirteen Books
of Fuclid’s Elements. Dover, New York, 1908. p. 298, Vol 2., i.e.
Proposition 2, Book VII.

G. Huet. The Gilbreath trick: A case study in axiomatization
and proof development in the COQ proof assistant. Technical
Report 1511, INRIA, Domaine de Voluceau, Rocquencourt B.P.
105, 78153 Le Chesnay Cedex, France, 1991.

W.A. Hunt, Jr. FM8501: A Verified Microprocessor. PhD thesis,
University of Texas at Austin, 1985.

W. A. Hunt, Jr.. Microprocessor design verification. Journal of

Automated Reasoning, 5(4):429-460, 1989.

B.W. Kernighan and D.M. Ritchie. The C Programming Lan-
guage, Second Fdition. Prentice Hall, 1988.

a8

[KW89)]

[KYST]

[Kaug6]

[Kau87]

[Kau88]

[Kau88a]

[Kau88b]

[Kau88¢]

[Kau89a]

[Kau89b]

M. Kautfmann and M. Wilding. A parallel version of the Boyer-
Moore prover. Technical Report 39, Computational Logic, Inc.,

February 1989.

M. Kaufmann and W. D. Young. Comparing Gypsy and the
Boyer-Moore logic for specitying secure systems. Technical report,
Institute for Computing Science, University of Texas at Austin,

May 1987. ICSCA-CMP-59.

M. Kaufmann. A mechanically-checked semi-interactive proof of
correctness of Gries’s algorithm for finding the largest size of a
square true submatrix. Internal Note 236, Institute for Comput-
ing Science, University of Texas at Austin, October 1986.

M. Kaufmann. A formal semantics and proof of soundness for the
logic of the Nqthm version of the Boyer-Moore theorem prover.
Internal Note 229, Institute for Computing Science, University of
Texas at Austin, February 1987.

M. Kaufmann. A user’s manual for an interactive enhancement
to the Boyer-Moore theorem prover. Technical Report 19, Com-
putational Logic, Inc., May 1988.

M. Kaufmann. Boyer-Moore-ish Micro Gypsy and a prototype
hardware expander. Internal Note 73, Computational Logic, Inc.,

August 1988.

M. Kaufmann. An example in Nqthm: Ramsey’s theorem. Inter-
nal Note 100, Computational Logic, Inc., November 1988.

M. Kaufmann. A mutual recursion and dependency analysis tool
for Nqthm. Internal Note 99, Computational Logic, Inc., 1988.

M. Kaufmann. Addition of free variables to an interactive en-
hancement of the Boyer-Moore theorem prover. Technical Re-
port 42, Computational Logic, Inc., Austin, Texas, May 19809.

M. Kaufmann. A user’s manual for RCL. Internal Note 157,
Computational Logic, Inc., October 1989.

29

[Kau90a]

[Kau90b]

[Kau9la]

[Kau91b]

[Kau92a]

[Kau92b]

[McC60a]

[McC60b]

[McC62a]

[McC62b]

M. Kaufmann. An integer library for Nqthm. Internal Note 182,
Computational Logic, Inc., March 1990.

M. Kaufmann. An instructive example for beginning users of the
Boyer-Moore theorem prover. Internal Note 185, Computational
Logic, Inc., 1717 W. Sixth Street, Suite 290, Austin, TX 78703,
April 1990.

M. Kaufmann. A simple example for Nqthm: Modeling lock-
ing. Internal Note 216, Computational Logic, Inc., 1717 W. Sixth
Street, Suite 290, Austin, TX 78703, February 1991.

M. Kaufmann. Generalization in the presence of free variables:

A mechanically-checked proof for one algorithm. Journal of Au-
tomated Reasoning, 7(1), March 1991.

M. Kaufmann. Response to FM91 Survey of Formal Methods:
Ngthm and Pc-Ngthm. Technical Report 75, Computational
Logic, Inc., Austin, Texas, March 1992.

M. Kaufmann. An extension of the Boyer-Moore theorem prover
to support first-order quantification. J. Automated Reasoning,

9(3):355-372, December 1992.

J. McCarthy. The Lisp Programmer’s Manual. M.1.'T. Computa-
tion Center, 1960.

J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine. Communications of the Associa-

tion for Computing Machinery, 3(4):184-195, 1960.

J. McCarthy. Computer programs for checking mathematical
proofs. In Recursive Function Theory, Proceedings of a Sympo-
stum in Pure Mathematics, volume V, pages 219-227, Providence,
Rhode Island, 1962. American Mathematical Society.

J. McCarthy. Towards a mathematical science of computation. In

Proceedings of IFIP Congress, pages 21-28. North-Holland, 1962.

60

[McC63]

[McC65]

[MooT9]

[Moo88]

[Moo89]

[Moo89a]

[Moo91]

[NT91]

[Rus85]

[Rus92]

[SLP82]

J. McCarthy. A basis for a mathematical theory of computation.
In Computer Programming and Formal Systems. North-Holland
Publishing Company, Amsterdam, The Netherlands, 1963.

J. McCarthy et al. LISP 1.5 Programmer’s Manual. The MIT
Press, Cambridge, Massachusetts, 1965.

J S. Moore. A mechanical proof of the termination of Takeuchi’s
function. Information Processing Letters, 9(4):176-181, 1979.

J 5. Moore. Piton: A verified assembly-level language. Techni-
cal Report CLI-22, Computational Logic, Inc., Austin, Tx, June
1988.

J S. Moore. A mechanically verified language implementation.

Journal of Automated Reasoning, 5(4):461-492, 1989.

J S. Moore et al. Special issue on system verification. Journal of

Automated Reasoning, 5(4):409-530, 1989.

J S. Moore. A formal model of asynchronous communication
and its use in mechanically verifying a biphase mark protocol.
Technical Report 68, Computational Logic, Inc., 1717 W. Sixth
Street, Suite 290, Austin, TX 78703, August 1991. To appear in

Formal Aspects of Computing, 1993.

M. Nagayama and C. Talcott. An Ngthm mechanization of “An
exercise in the verification of multi-process programs”. Technical
Report STAN-CS-91-1370, Computer Science Department, Stan-
ford University, 1991.

D. M. Russinoff. An experiment with the Boyer-Moore theorem
prover: A proof of Wilson’s theorem. Journal of Automated Rea-

soning, 1(2):121-139, 1985.

D.M. Russinoff. A mechanical proof of quadratic reciprocity.

Journal of Automated Reasoning, 8(1):3-21, 1992.

R. Shostak, L. Lamport, and M. Pease. The Byzantine generals
problem. ACM TOPLAS, 4(3):382-401, July 1982.

61

[Sha85]

[Sha86]

[Sha88]

[Sho67]

[Sko67]

[Sta87]

[Ste84]

[Vit82]

[Wil91]

[Wil92]

[Wos67]

[You89]

N. Shankar. Towards mechanical metamathematics. Journal of

Automated Reasoning, 1(4):407-434, 1985.

N. Shankar. Proof Checking Metamathematics. PhD thesis, Uni-
versity of Texas at Austin, 1986.

N. Shankar. A mechanical proof of the Church-Rosser theorem.
JACM, 35(3):475-522, 1988.

J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading,
Ma., 1967.

T. Skolem. The foundations of elementary arithmetic established
by means of the recursive mode of thought, without the use of
apparent variables ranging over infinite domains. In J. van Hei-
jenoort, editor, From Frege to Godel. Harvard University Press,

Cambridge, Massachusetts, 1967.

R. M. Stallman. GNU Emacs Manual. Free Software Foundation,
1000 Massachusetts Avenue, Cambridge, MA 02138, 1987.

G. L. Steele Jr. Common Lisp the Language. Digital Press, 30
North Avenue, Burlington, MA 01803, 1984.

B. L. Di Vito. Verification of Communications Protocols and Ab-
stract Process Models. PhD thesis, University of Texas at Austin,
1982.

M. Wilding. Proving Matijasevich’s lemma with a default arith-
metic strategy. Journal of Automated Reasoning, 7(3):439-446,
1991.

M. Wilding. A proved application with simple real-time proper-
ties. Technical Report 78, Computational Logic, Inc., 1717 W.
Sixth Street, Suite 290, Austin, TX 78703, 1992.

L. Wos et al. The concept of demodulation in theorem proving.

Journal of the ACM, 14:698-709, 1967.

W. D. Young. A mechanically verified code generator. Journal

of Automated Reasoning, 5(4):493-518, 1989.

62

[You90]

[Yu90]

[Yu92]

W. D. Young. A simple expression compiler: A programming and
proof example for an Nqthm course. Internal Note 210, Compu-
tational Logic, Inc., 1717 W. Sixth Street, Suite 290, Austin, TX
78703, November 1990.

Y. Yu. Computer proofs in group theory. Journal of Automated
Reasoning, 6(3), 1990.

Y. Yu. Automated Proofs of Object Code for a Widely Used Mi-
croprocessor. PhD thesis, University of Texas, 1992.

63

