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Abstract

A relative new trend in machine learning is interactive
learning. Rather than passively absorbing knowledge, a
learning agent can shape its learning experience through
interaction with its teacher. As such, the learning be-
comes a bidirectional exchange. In a series of experi-
ments, both in simulation and using a robotic platform,
we examine how a learner that actively tries to influence
the learning session can become more effective. Results
show how interactive learning leads to more effective
and faster learning, as social cues provided by the robot
are picked up by human teachers. In addition, we ob-
served gender differences, with female interactants be-
ing significantly more receptive to social cues displayed
by the robot.

Introduction
Background

Within developmental robotics the aspect of learning is cru-
cial. Through effective learning mechanisms a robotic sys-
tem may gain those skills that are relevant for its task. As
autonomous robots are envisioned to work in the same envi-
ronment alongside humans, it would be most natural if peo-
ple could teach the robot what to do. And rather than having
humans, who may not be familiar and/or trained to instruct
robots, adapt to the robot, it would be better if the robot
could adapt to its human teacher. As such, robots might be
instructed in a manner similar to how adults teach young
children. To allow for this kind of teaching, a robot should
be able to tap into the communication channels that come
natural to people, such as speech and non-verbal behaviours
like facial expressions, gestures and gaze.

Recently, interactive learning has gained attention; differ-
ent studies have demonstrated that robots can benefit from
employing interactive strategies in which the robot learner
is not passively absorbing new knowledge, but rather ac-
tively engages in the learning experience through social in-
teraction with a human teacher (Brooks et al. 2004; Thomaz
and Breazeal 2008). In (Cakmak, Chao, and Thomaz 2010)
different robot behaviours were investigated, indicating that
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robots may benefit from active querying as opposed to stan-
dard supervised learning. People appear to appreciate an ac-
tive learner, but like to stay in control. Thus, balanced be-
haviour may be most optimal, and this can vary for differ-
ent users. Moreover, optimal robot behaviour might require
fine-grained understanding of the social situation in order to
be effective (Knox et al. 2012); as such, more exploration of
appropriate robot behaviour remains to be done.

In the study reported here we focus on the acquisition
of words and concepts by an agent. Language and concep-
tual knowledge lie at the root of human intelligence, and the
acquisition of both relies heavily on social interaction and
tutelage (Bloom 2000). Many social interactions between
carers and infants are actively aimed at providing oppor-
tunities for acquiring words and their meanings, with car-
ers overtly describing objects, actions, sensations and agents
and young learners steering linguistic interactions, for exam-
ple through deictic points and naming salient features in the
environment. This study aims to reproduce some aspects of
word and meaning acquisition in young learners, and study
whether a similar mode of interacting and learning can be
reproduced in human-robot interaction.

Category representation and learning

To represent categories we use the Conceptual Spaces (CS)
framework (Gérdenfors 2000). A CS consists of a geomet-
rical representation in vector space along various quality di-
mensions such as colour, shape, size etc. Within a conceptual
space we can model the learning of categories by exposing
the model to examples with associated labels. After train-
ing the model is able to classify new examples as belonging
to some known category, and specify the typicality of the
example; i.e. to what extend the example represents the cat-
egory. This allows for the representation of categories with
a prototype-like structure (Rosch 1973).

To govern category learning process we use the Language
Games model (Steels 1999). This allows agents to learn
word labels for objects through interaction with other agents.
Language games were proposed as a model for studying
the dynamics of linguistic interactions between agents. The
model has been extensively explored in a number of do-
mains, for example in the domain of colour (Steels and Bel-
paeme 2005).

The simplest form of the language game takes two agents.



Both agents perceive a common scene (called the context)
and one of the agents initiates a game by describing an el-
ement of the scene, which is called the topic. The second
agent then attempts to interpret the description by pointing
to its interpretation of the word. If the second agent points to
the element that the first agent has intended, then the interac-
tion succeeds. If it fails to point out the intended element (or
it does not know the word), the interaction fails. The failure
or success of an interaction is an opportunity to adapt the
words, categories and scores of the agents.

When games are played repeatedly, the effect is that both
agents gradually acquire and adapt a repertoire of words,
categories and scores, with which they can describe their
environment. One agent can be initialised with certain cat-
egories and words and can act as a teacher to agents with a
blank memory that have no pre-existing knowledge. Further
details can be found in (Belpaeme and Bleys 2005).

The choice of the topic from the elements in the context is
the basis of active learning. In a non-active learning setting
this choice is made by the teacher, typically at random. In
an active-learning setting, the learner tries to influence this
choice.

Robotic platform: LightHead robot

As a robotic platform we used the LightHead robot, which
has the appearance of a young child (see figure 1). This robot
sports a novel robotic face that exhibits a retro-projected
face technology (Delaunay, de Greeff, and Belpaeme 2009;
2010). As such, the robot offers advantages over the more
classic mechatronic faces, most notably the ease of project-
ing computer animations which allow for rich social interac-
tion. Retro-projected faces rely on the rear projection of an
animation onto a semi-transparent surface shaped as a face,
which is generated in real-time by an off-board computer.

To support the interaction, the robot head is mounted on
a robot arm, with the arm acting as a thorax and neck. This
allows the robot’s head to move, giving the impression of
scanning the environment, and to crane over a table, for
example to inspect objects in front of it. For more details
about the design, materials, software architecture and
implementation see (Delaunay, de Greeff, and Belpaeme
under review).

Experiment

In order to test the effects of an active learner, we set up a se-
ries of experiments in which the learner tries to influence the
interaction with the teacher as to achieve the most optimal
learning experience. This is was done in simulation first and
later tested in a setup in which the LightHead robot embod-
ied a learning agent and human subjects acted as teachers.
To teach the robot categories, we use the Zoo Data Set
from the UCI Machine Learning Repository (Frank and
Asuncion 2010) which is a simple database containing 101
exemplar animals with 16 different properties. All proper-
ties are binary, except for the ‘number of legs’, which is nor-
malized to allow for proper representation using a Concep-
tual Space. The exemplars are divided into 7 different cate-

Figure 1: the LightHead robot face, mounted on a robot arm
(Jennie Hills, Science Museum, London).

gories: MAMMAL, FISH, BIRD, INVERTEBRATE, AM-
PHIBIAN, INSECT and REPTILE. We removed ‘girl’ as an
exemplar of MAMMAL to avoid confusion.

We compared the performance of learning agents that uti-

lizes active learning (AL) to learning agents that do (non-
AL).

Simulated experiment

Active learning Active learning in simulation very much
followed the setup that is described in more detail in (de
Greeff, Delaunay, and Belpaeme 2009). In short, during a
guessing game it is not the teacher but the learner that de-
cides on the topic of the guessing game. The learner does
this through examination of the context and choosing the
item that is least familiar as the topic of the guessing game,
thus exhibiting a novelty preference. As such, it allows for a
quicker exploration of the conceptual space and thus yields
better learning results in terms of speed and final guessing
game success. In the simulation, the teaching agent will al-
ways follow the topic of choice of the learning agent.

Experimental setup The agents played 50 guessing game
interactions. The context consisted of 3 animal exemplars,
randomly drawn from the data set. The experiment was
replicated 50 times to obtain an average measure.

Results We measure the ability of agents to successfully
play guessing games over the course of development. The
guessing success is the percentage of language game interac-
tions in which the learner correctly identified the topic from
the context based on the teacher’s word. As can be seen in
figure 2, on average the AL condition performs better than
the non-AL condition, both in terms of speed (AL reaches
higher guessing game success quicker), and on the long run
(difference between final guessing game success). The dif-
ference in performance for the two conditions is significant
with p < 0.001.

Robotic experiment

Materials Participants were recruited around the Univer-
sity of Plymouth campus. This resulted in a pool of 41 par-
ticipants who were randomly assigned to one of the two
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Figure 2: guessing success in simulation for the AL and non-
AL groups.

conditions. Due to technical reasons (the robot facial pro-
jection malfunctioned) two participants were removed from
the pool, thus bringing the total to 39. There were 20 female
and 19 male participants, with an average age of 24.82. Par-
ticipants were paid £7.50 for their participation.

Participants interacted with the robot by means of a touch-
screen. For every round of the guessing game the touch-
screen displayed 3 pictures of animals along with 7 buttons
to indicate animal categories (figure 3, top). The LightHead
robot was placed behind the touchscreen facing the partic-
ipant and equipped with speakers to allow for speech. The
robot’s actions were cued by interaction events picked up by
the touchscreen and the camera mounted in the robot head
served to run face tracking.

Figure 3: top: the GUI that participants used to play guessing
games with the robot. Bottom: experimental setup showing
the participant, the touchscreen and the robot.

Procedure Participants were asked to sit in front of the
touchscreen facing the robot, (figure 3, bottom). After a brief
explanation they were invited to sit through a tutorial in
which the robot explained how the guessing game was to
be played, and they played a practice round which involved
teaching the robot colour categories. After this the real ex-
periment was run with the animal categories. When partici-
pants expressed doubt or uncertainties about what to do (e.g.
because they were unsure about a category) the experimenter
would tell them to “just try to teach as best as you can”.
The guessing game was played in a fashion similar to the
one in simulation, with a human participant acting as teacher
and the LightHead robot embodying the learner. During each
round both the teacher and learner examined the context (3
random animal pictures displayed on the touchscreen), and
depending on the condition (AL or non-AL) the robot ex-
pressed a learning preference through looking back and forth
from a particular exemplar to the participant while making a
verbal statement along the lines of “what about this one?” or
“I would like to learn this”. The teacher mentally decided on
a topic and then provided the corresponding category label
by pressing the relevant button. Upon perception of the cate-
gory the robot tried to guess which exemplar the teacher had
in mind. The teacher then indicated which exemplar was the
topic of the guessing game, thus providing feedback to the
learner. Teacher and learner played 50 guessing games.

Results

Guessing game success All participants succeeded in
teaching the robot animal categories. For the final guessing
success, on average the AL group was bit more successful
than the non-AL group. Final average success for AL was
0.626 (SD = 0.077) and for non-AL 0.566 (SD = 0.087).
This difference was significant with p = 0.028. As can be
observed in figure 4, the learning trend of both conditions
is very similar to the one obtained in simulation (figure 2).
What can also be observed from the figure is that AL speeds
up learning: the slope of the AL curve is steeper and at 10
interactions the difference between AL and non-AL is also
significant with p < 0.001.
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Figure 4: guessing success from the AL and non-AL groups.

Response to active learning We measured the proportion
in which the robot’s preferred topic was similar to the one
the participant indicated they had chosen as the topic. For



non-AL this is 0.32, as the robot does not provide a social
cues and hence the topic choice is random. For AL however,
this proportion turned out to be 0.56, indicating that the level
at which participants followed the robots choice was more
than chance (p < 0.001). Thus, on average, participants
did respond to the robot’s social cues. There are quite some
individual differences amongst the AL group; some par-
ticipants completely ignored the robot’s social cues, while
others strongly responded to this. Figure 5 (left) plots the
responsiveness to AL against the final success rate of the
teaching. Because of this high variance only a weak correla-
tion between the participants responsiveness to AL and the
guessing game success rate was found (AL condition, Pear-
son’s r = (0.09).
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Figure 5: left: responsiveness to social cues against perfor-
mance for AL and non-AL groups. Right: guessing success
split into AL/non-AL and gender.

Gender differences We found an interaction between ac-
tive learning condition and gender. It appears that in the case
of female teachers the robot was more successful in guessing
games in the AL condition (0.653) than with male teach-
ers (0.602), while in the non-AL condition this is reversed
with (0.540) and (0.597) for female and male groups respec-
tively (figure 5, right). This interaction is significant with
p = 0.040. Thus, it appears that an active learning robot
might be more effective with a female teacher.

Conclusion

The ability of a robot to learn from a human teacher is im-
portant for achieving an effective robotic system that can co-
exist with humans in an unstructured environment. Further-
more, to utilize learning experiences to the fullest potential,
an active learner may be able to shape the learning interac-
tion in such a way as to experience a more optimal teaching.

We have presented experiments in simulation and with a
real robot in which an active learner is able to positively in-
fluence the learning experience offered by a teacher through
utilization of social clues. This allows the learner to learn
quicker and more effectively. We showed that human partic-
ipants are responsive to these kind of clues, suggesting that a
robot learner might well utilize active learning mechanisms.
Moreover, we found gender differences, indicating that the
most effective learning experience might be achieved by a
learner that personalizes its use of social clues with respect
to different teachers.
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