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Abstract

Learning new motor tasks autonomously from interac-
tion with a human being is an important goal for both
robotics and machine learning. However, when moving
beyond basic skills, most monolithic machine learning
approaches fail to scale. In this paper, we take the task
of learning table tennis as an example and present a new
framework which allows a robot to learn cooperative ta-
ble tennis from interaction with a human. Therefore, the
robot first learns a set of elementary table tennis hit-
ting movements from a human teacher by kinesthetic
teach-in, which is compiled into a set of dynamical sys-
tem motor primitives (DMPs). Subsequently, the system
generalizes these movements to a wider range of situa-
tions using our mixture of motor primitives (MoMP) ap-
proach. The resulting policy enables the robot to select
appropriate motor primitives as well as to generalize be-
tween them. Finally, the robot plays with a human table
tennis partner and learns online to improve its behavior.
We show that the resulting setup is capable of playing
table tennis using an anthropomorphic robot arm.

1 Introduction
Learning new motor tasks autonomously and adapting mo-
tor skills online while interacting with the environment is
an important goal in robotics as well as machine learn-
ing. In recent years, it has become well accepted that for
coping with the complexity involved in motor skill learn-
ing for robots, we need to rely on the insight that humans
decompose motor tasks into smaller subtasks. These sub-
tasks can be solved using a small number of generaliz-
able movement pattern generators, also called movement
primitives (Flash and Hogan 1985; Giszter et al. 2000;
Billard et al. 2008). Movement primitives are sequences of
motor commands executed in order to accomplish a given
motor task. Efficient learning of movement primitives is cru-
cial as the state space can be high dimensional and the num-
ber of scenarios that may need to be explored grows ex-
ponentially with the number of dimensions and time-steps
(Schaal 1999). Here, learning from demonstrations can pro-
vide a good starting point for motor skill learning as it al-
lows the efficient acquisition of single movement primi-
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tives. Most approaches for robot imitation learning are ei-
ther based on physical demonstrations of a motion sequence
to the robot by kinesthetic teach-in (Guenter et al. 2007;
Peters and Schaal 2008; Bitzer, Howard, and Vijayaku-
mar 2010) or through the use of a motion capture system
such as a VICON setup (Kober, Mohler, and Peters 2008;
Gräve, Stückler, and Behnke 2010). We refer to (Schaal,
Ijspeert, and Billard 2003; Billard et al. 2008; Argall et al.
2009) for a review of imitation learning methods.

To represent movement primitives such that they can
adapt trajectories obtained by imitation learning, several
methods have been suggested (Miyamoto et al. 1996;
Ijspeert, Nakanishi, and Schaal 2002; Calinon, Guenter,
and Billard 2007; Williams, Toussaint, and Storkey 2008).
Among them an approach based on dynamical systems was
suggested by Ijspeert, Nakanishi, and Schaal (2002) and
called dynamical system motor primitives (DMPs). DMPs
are robust against perturbations, allow the change of the fi-
nal state, speed and duration without the need of chang-
ing the overall shape of the movement. Furthermore, they
are straightforward to learn by imitation learning (Ijspeert,
Nakanishi, and Schaal 2002) and well suited for reward
driven self-improvement (Kober and Peters 2009). DMPs
have been successfully used to learn a variety of motor
skills in robotics, including planar biped walking (Nakanishi
et al. 2004), T-ball batting (Peters and Schaal 2006), con-
strained reaching tasks (Guenter et al. 2007), and Ball-in-a-
cup (Kober, Mohler, and Peters 2008). However, up to now,
most applications of learning and self-improving Ijspeert’s
DMPs use only individual movement primitives to represent
the whole motor skill. An exception is the work of Ude et
al. (2010), in which the internal parameters of the DMPs are
recomputed from a library of movement primitives in each
trial using locally weighted regression. However, complex
motor tasks require several movement primitives which are
used in response to an environmental stimulus and the usage
needs to be adapted according to the performance.

In this paper, we attempt to create such a framework
based on the idea that complex motor tasks can frequently be
solved using a relatively small number of movement primi-
tives (Flash and Hogan 1985) and do not require a complex
monolithic approach. The goal of the paper is to acquire a li-
brary of movement primitives from demonstration (to which
we will refer as movement library), and to select and gen-



eralize among these movement primitives to adapt to new
situations. Each movement primitive stored in the library
is associated with a set of parameters to which we refer as
the augmented state that describes the situation present dur-
ing demonstration. The primitives in the movement library
are used as components in our mixture of motor primitives
(MoMP) algorithm. The MoMP algorithm activates compo-
nents (i.e., single movement primitives) using a gating net-
work based on the augmented state and generates a new
movement using the activated components. The activation of
the components can be updated online based on the perfor-
mance of the system. Our approach is validated using robot
table tennis as a benchmark task. The hitting movements in
table tennis may vary depending on the point of impact rel-
ative to the base of the robot, the time available until impact
or the kind of stroke that should be performed. Furthermore,
small inaccuracies in timing can lead to large deviations in
the final bouncing point of the returned ball that result in un-
successful attempts return the ball to the opponent’s court.
The goal of this task is to learn autonomously from and with
a human to return a table tennis ball to the opponent’s court
and to adapt its movements accordingly. Therefore, the robot
first learns a set of striking movements from a human teacher
from physical human robot guiding, known as kinesthetic
teach-in. From this stream of data, the movement primitives
were extracted. Secondly, the learning system identifies the
augmented state that includes where, when and how the ball
should be hit. Subsequently, the system generalizes these
movements to a wider range of situations using the proposed
MoMP algorithm. Here, generalizing refers to the ability
to generate striking movements towards any given goal on
the opponent’s court for an arbitrary incoming ball served
to the forehand area of the robot. The resulting system is
able to return balls served by a ball launcher as well as to
play in a match against a human. A video can be found at
www.youtube.com/watch?v=SH3bADiB7uQ.

In the remainder of the paper, we will proceed as follows.
In Section 2, we present our general framework for learning
complex motor skills using the MoMP algorithm. We eval-
uate the MoMP approach in a robot table tennis scenario in
Section 3. In Section 4, we will present our results and sum-
marize our approach.

2 Learning Motor Behaviors
In a complex motor task such as table tennis, we need to
coordinate different movements which highly depend on a
changing context. Unlike in many classical examples (Pe-
ters and Schaal 2008; Pongas, Billard, and Schaal 2005;
Nakanishi et al. 2004), single movement primitives which
were demonstrated to work well in a certain situation do
not necessarily perform equally well in other situations that
might occur throughout the task. In table tennis, the move-
ment profile depends strongly on where, when and how the
ball has to be hit, as well as the velocity of the incoming
ball and the desired target on the opponent’s court. As it is
not feasible to demonstrate all possibly required movements
to the robot, the system needs to generalize from a much
smaller number of movement primitives. Hence, we suggest
an algorithm called mixture of motor primitives (MoMP)
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Figure 1: General setup for learning a motor task using
the MoMP framework. A supervisory level creates the aug-
mented state x containing the relevant information of the
task based on the state of the system. The MoMP algorithm
selects and generalizes among the movement templates in a
library based on x. As a result we obtain a new motor pol-
icy that can be executed. A teacher provides learning signals
to the supervisory level as well as the movement generation
level.

which generates a generalized movement for a given aug-
mented state that can be executed by a robot. Therefore, a
set of movement primitives and their corresponding aug-
mented state are extracted from a set of demonstrations.
Both the movement primitives and their corresponding aug-
mented states are stored in a library.

To generate a movement for a new augmented state x
(that was not presented during demonstration), the system
selects movement primitives from the library. Therefore, a
parametrized gating network is used in the MoMP algorithm
to activate movement primitives based on the presented aug-
mented state. In some cases, the augmented state might be
directly available as part of the state of the system. How-
ever, in table tennis, additionally parameters δ need to be
estimated from the state by a supervisory system. The state
of the system s consists of all variables necessary to model
the system, e.g., in our table tennis task, the position and ve-
locity of the ball moving towards the robot and the current
joint configuration of the robot itself. The additional param-
eters δ of the augmented state x are given by the point of
impact, the velocity and orientation of the racket at the hit-
ting point and the time until hitting the ball.

Both, the supervisory system which generates the aug-
mented state and the gating network of the MoMP algorithm
that selects and mixes the motor primitives according to the
augmented state may need to be adapted to improve the per-
formance of the system. Figure 1 illustrates the general setup
for executing a motor task based on the current state of the
system and the relation between the state, the augmented
state and the movement generation.

In the remainder of this section, we will first present the
MoMP framework (Section 2.1). Subsequently, we explain
how to compute the augmented state (Section 2.2). Finally,
we show how to use and initialize DMPs as elementary mo-
tor policies in the MoMP framework (Section 2.3).

2.1 Learning a Task with a Mixture of Motor
Primitives

A movement performed by an artificial or biological system
can be formalized as a policy

u = π(x,w)

that maps the state of the system, described by vector x =
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Figure 2: The mixture of motor primitive framework. The
gating network weights the single movement templates
stored in a movement library based on an augmented state.
The weighted sum of these primitives defines the new mo-
tor policy which produces the joint positions, velocities and
accelerations for one degree of freedom.

[s, δ], to a control vector u. The vector w contains task spe-
cific adjustable parameters. In the following, we will refer to
such a policy as motor policy π(x). The state of the system
x corresponds here to the augmented state.

We generate the motor policy π(x) based on a library
consisting of Lmovement primitives. Each movement prim-
itive i ∈ {1, ..., L} in the library is stored in a motor policy
πi. Additionally, for each motor policy πi, the augmented
state xi associated with this movement primitive is stored.
The movement library can be initialized using movements
demonstrated in different situations of the task.

The MoMP generates a new movement for the current sit-
uation triggered by the augmented state x by computing the
weighted average of all movement primitives πi (see Figure
2). The resulting motor policy generated by MoMP algo-
rithm is given by

π(x) =
∑L

i=1 γi(δ)πi(x)∑L
j=1 γj(δ)

, (1)

where the function γi(δ) generates the weight of πi(x) =
[s, δ] given the augmented state x. All weights γi together
form the “gating network” of the MoMP similar to a gating
network in a mixture of experts (Jordan and Jacobs 1994).

The weights of the gating network ensure that only move-
ment primitives that are well-suited for the current situation
can contribute to the resulting behavior. It appears reason-
able to assume that movement primitives with an associated
augmented state similar to the currently observed one are
more likely to produce successful movements than move-
ment primitives whose augmented states differ significantly
from the observation. However, any large set of demon-
strations will include rather poor attempts and, thus, some
demonstrations are better suited for generalization than oth-
ers. Therefore, the gating network has to weight the move-
ment primitives based on their expected performance within
the current context. Such weights can be modeled by an ex-
ponential family distribution

γi(x) = ξ exp{ϑT
i φi(x)}, (2)

where φi(x) denotes the feature vector of x, ϑi is a vector
containing internal parameters, and ξ is a normalization con-
stant. The weight γi corresponds to the probability that the

motor policy πi is the right policy in the context described
by x, i.e., γi(x) = p(πi|x). In an ideal world, there would
be just one motor policy in the library that is perfectly suited
for the current context. However, in practice, usually sev-
eral motor policies correspond to this context imperfectly.
Therefore, the MoMP needs to generalize among these mo-
tor policies, i.e., it mixes these movement primitives accord-
ing to their weights γi in order to yield a motor policy that
can be used in a broader context.

The choice of φi(x) depends on the task. In our experi-
ments however, a Gaussian basis function where the center is
given by the augmented state xi proved to be a good choice.
The parameters ϑi of the probability distribution γi(x) are
unknown and have to be determined. If good features φ(x)
are known, linear regression methods are well suited to learn
the parameters ϑi given examples of γi and the correspond-
ing φ(x). Hence, we use linear Bayesian regression (Bishop
2006) to update the mean and variance of the parameters of
the distribution online for each motor policy in the library.
The parameters are updated during the execution of the task
based on the performance of the system. The performance
can be measured by the reward r which is provided by a
teacher to the system and corresponds in table tennis to the
distance of the returned ball to the desired goal on the op-
ponent’s court. As a result, the system is able to adapt the
choice of the used motor policies.

Altogether, the mixture of motor primitives selects and
generalizes between movement primitives in the library
based on the current augmented state x. The resulting motor
policy π(x) is composed of several primitives weighted by
their suitability in the given context of the task. The weights
are determined by a gating network and adapted to the task
based on the outcome of previous trials.

2.2 Computing the Augmented State
Some parameters required for the task are not part of the
state and need to be computed. In table tennis, these param-
eters include the temporal and spacial interception point of
the ball and the racket, as well as the velocity and orientation
of the racket while hitting the ball. When planning in joint
space, this corresponds to finding the position and velocity
at the interception point for each joint. These parameters are
an essential part of the generation of a desired movement
with the motor policy π(x) as they define the final state and
duration of the movement. We refer to these additional pa-
rameters as the meta-parameter δ. The augmented state x is
given by x = [s, δ].

One possibility of computing the meta-parameters is to
predict the trajectory of the ball using an extended Kalman
predictor starting with the current state of the system. Subse-
quently, we can determine a well suited hitting point on the
trajectory and compute the desired velocity and orientation
of the racket given a target on the opponent’s court. Using
inverse kinematics is one way to compute the corresponding
joint configuration (see Muelling, Kober, and Peters (2011)
for a detailed description).

An alternative possibility is to use an episodic reinforce-
ment learning approach to acquire the mapping from s to
the meta-parameter δ directly. Here, Cost-regularized Ker-



nel Regression (CrKR), see Kober et al.(2012), has also
proven to be suited for learning meta-parameters for motor
policies as used in this project.

2.3 Behavior Representation with Motor
Primitives

To represent a single motor policy πi used in the MoMP, we
employ dynamical system motor primitives (DMPs). DMPs,
as suggested in (Ijspeert, Nakanishi, and Schaal 2002;
Schaal, Mohajerian, and Ijspeert 2007), are a particular kind
of dynamical systems that is well-suited for imitation and
reinforcement learning. It can be understood as a set of two
differential equations that are referred to as the canonical
and the transformed system. The canonical system h acts as
a phase z of the movement generated by

ż = h(z). (3)
Intuitively, one could state that the canonical systems drives
the transformed system similar to a clock. The transformed
system

u = π(x) = d(y, gf , z,w), (4)
generates the desired movement for a single degree of free-
dom (DoF). It is a function of the current position y of the
system, the final goal position gf , the phase variable z and
the internal parameter vector w. The movement can be spec-
ified in joint or task space.

DMPs allow us to represent arbitrarily shaped smooth
movements by the parameter vector w, which can be learned
from demonstration by locally weighted regression (for a
detailed description see Schaal et al. (2003)). Furthermore,
it is straightforward to adapt the DMPs with respect to
the final position, movement amplitude and duration of the
movement without changing the overall shape. As a conse-
quence, we can adapt the movement during execution to new
movement goals and time constraints without re-planing the
whole movement. However, the original formulation cannot
be used for striking movements in a straightforward man-
ner as the formulation does not account for non-zero end-
velocities or via-points without changing the shape of the
movement. Hence, we need motor primitives that allow for
different movement stages where the stages are switched
based on features of the state. To achieve this goal, we intro-
duce a type of two-stage motor primitive suited for hitting
movements and use the feature of ball-racket contact to al-
low the system to switch the stage. While Kober et al. (2010)
augmented Ijspeert’s approach to make it possible to strike
moving objects with an arbitrary velocity at the hitting point,
this formulatin has two drawbacks. First, movement changes
of the final position and velocity can lead to inaccuracies in
the final velocity (see Figure 3). Second, if the start and final
position in the demonstratin are close to each other, chang-
ing the goal position can cause huge accelerations at the be-
ginning of the movement (see Figure 4).

Modified Motor Primitives for Striking Movements For
discrete movements (i.e., movements between fixed start and
end positions such as reaching, pointing, grasping and strik-
ing movements) the canonical system is defined by

τ ż = −αzz, (5)
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Figure 3: This figure illustrates how the different versions of
the dynamical system based movement primitives are modu-
lated by changing the goal position and velocity of the move-
ment. The demonstration of a striking movement was ob-
tained by kinesthetic teach-in in table tennis. All movement
primitive formulations were able to reproduce the demon-
stration. We changed the position by 0.15 m and the velocity
by 0.4 m/s. The original formulation of Ijspeert, Nakanishi,
and Schaal (2002) is not able to reach the desired velocity.
The formulation of Kober et al. (2010) is able to adapt to
a new final velocity. However, the accuracy of the adapted
movement does not suffice for practical problems. The re-
formulation presented in this paper reduces this inaccuracy
drastically and stays closer to the desired movement shape.

where τ is a temporal scaling factor and αz is a pre-defined
constant which is chosen such that the behavior is stable.
Initially z is set to 1 and converges to zero at the end of the
movement.

For hitting movements, we propose the transformed sys-
tem

τ v̇ = αy (βy(g − y) + ġτ − v) + g̈τ2 + ηf(z),

τ ẏ = v, η =
exp (gf − y0)

exp(a)
,

g =
5∑

i=0

bi

(
−τ ln(z)

αz

)i

, ġ =
5∑

i=1

ibi

(
−τ ln(z)

αz

)i−1

,

g̈ =
5∑

i=2

(i2 − i)bi
(
−τ ln(z)

αz

)i−2

,

(6)

where y and v are the desired position and velocity generated
by the policy, η defines the amplitude of the movement, y0 is
the start position, gf and ġf are the desired final position and
final velocity of the system, g, ġ and g̈ are the current posi-
tion, velocity and acceleration defined by the moving target,
τ ln(z)/αz corresponds to the time and a is a reference am-
plitude. If the internal parameters w are estimated by imi-
tation learning as in the experiments performed in this pa-
per, a will correspond to the amplitude of the demonstrated
movement. The parameters bj are computed by applying the
bounding conditions, i.e., the condition that the fith order
polynomial starts with the initial position, velocity and ac-
celeration and ends at the desired goal gf with the desired
velocity ġf and zero acceleration. The pre-defined spring-
damper constants αy and βy are chosen such that the system
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Figure 4: A key problem of the previous movement primitive
formulation is the highly uneven distributed accelerations
with a peak at the beginning of the movement. Such jumps
can affect the position and velocity drastically as shown in
this figure. They may result in the attempt to generate in-
feasible trajectories for real robots. Kober et al. reduced this
effect by gradually activating the attractor dynamics. How-
ever, if the initial movement amplitude is close to zero in
a demonstration jumps will occur when the goal position is
changed.

is critically damped. The transformation function

f =

∑N
j=1 wjψj(z)z∑N

j=1 ψj(z)
, (7)

employs Gaussian basis functions ψj(z) = exp(−ρj(z −
µj)2) characterized by a center µj and a bandwidth ρj . N is
the number of adjustable parameters wj . The transformation
function f alters the output of the spring damper model and
thereby allows the generation of arbitrarily shaped move-
ments. As z converges to zero at the end of the movement,
the influence of the non-linear function f will vanish. The
augmented form of the DMP enables us to pull the DoF si-
multaneously to a desired goal position and an arbitrary end
velocity without changing the overall shape of the move-
ment or its duration. Using a fifth order polynomial allows
us to control the initial and final position, velocity and accel-
eration. The scaling term η = exp(gf −y0)/ exp(a) ensures
that f does not cause infeasible acceleration. In the follow-
ing we will refer to the acceleration yielded by the DMP i as
motor policy πi.

3 Evaluation
In Section 2, we have described a framework for selecting
and generalizing movements based on augmented states as
well as for computing the meta-parameters which are part of
the augmented states from the state information of the envi-
ronment. Here, we will show that we can use these methods
to learn robot table tennis from and with a human being.
Therefore, we will first give a short overview of the table
tennis task and then evaluate the methods in simulation as
well as on a real robot.

3.1 Robot Table Tennis Setup
For the robot table tennis task, we developed a system that
includes a Barrett WAM arm with seven DoFs capable of
high speed motion for hitting the ball and a vision system

with four Prosilica Gigabit GE640C cameras for tracking
the ball (Lampert and Peters 2012). The robot is mounted in
a hanging position from the ceiling. A standard racket, with
a 16 cm diameter, is attached to the end-effector. The setup
incorporates a standard sized table tennis table and a table
tennis ball in accordance with the International Table Tennis
Federation (ITTF) rules (International Table Tennis Federa-
tion 2011). The ball is served either by a ball launcher to the
forehand of the robot with a randomly chosen velocity or
served by a human. The area covered is approximately 1 m2.
The ball is visually tracked with a sampling rate of 60 Hz and
the vision information is filtered using an extended Kalman
filter (EKF). For the internal model of the EKF, we assume a
simplified model of the flight and bouncing behavior of the
ball, i.e., we consider gravity and air drag, but neglect the
spin acting on the ball due to its limited observability. The
world frame is fixed at the base of the robot, with the neg-
ative y-axis pointing towards the opponent and the z-axis
pointing upwards.

If the visual system detects a table tennis ball that moves
towards the robot, the system needs to compute the relevant
movement information as where, when and how the ball has
to be hit (see Section 2.2). The target location on the oppo-
nent’s court was fixed to the center of the court to make the
results comparable.

3.2 Computing the Meta-Parameters

To use DMPs as motor policies in a table tennis game, the
system needs to identify the hitting position, velocity and
orientation of the racket, as well as the time until impact.
These parameters need to be estimated for each incoming
ball in a match. When planning in joint space, the hitting po-
sition, velocity and orientation of the racket are defined by
the joint configuration of the robot at this time point. Alto-
gether, 15 parameters need to be determined, which include
the timing parameter that determines the initiation of the hit-
ing movement. These values depend on the impact point of
the racket and the ball, the velocity of the ball and the de-
sired goal on the court of the opponent. As the goal on the
opponent’s court is kept constant, we can neglect this pa-
rameter. A detailed description and evaluation of learning
the parameters using CrKR for this table tennis setup can
be found in Kober et al. (2012). Besides learning the meta-
parameters directly, the position, velocity and orientation of
the racket can be computed analytically based on the state
of the system and the target on the opponent’s court. These
task space parameters can also be converted into joint space
parameters using inverse kinematics (Muelling, Kober, and
Peters 2011).

3.3 MoMP

To prove the performance of our system described in Sec-
tion 2, we analyzed the MoMP framework in simulation as
well as on a real Barrett WAM in a table tennis setup. The
system learns a set of basic hitting movements from demon-
stration and, subsequently, generalizes these demonstrations
to a wider range of situations.



(a) Physical human robot interaction: kinesthetic teach-in of a striking motion in table tennis.

(b) Reproduced hitting motion by imitation learning.

Figure 5: Sequence of a hitting motion in table tennis demonstrated by a human teacher and reproduced with a Barrett WAM
arm with seven DoF. From the left to the right the single pictures represent the system at the end of the awaiting, preparing,
hitting and follow through stage respectively.

Evaluation in Simulation. To evaluate our setup as de-
scribed in Section 2 in a variety of different situations un-
der near-perfect conditions, we first evaluate it in simulation.
The parameters of the hitting movement depend on the inter-
ception point of the racket and the ball and vary in their over-
all shape. To generate a movement that is able to cope with
the varying conditions, we use our MoMP framework with
the estimated hitting point and velocities as augmented state.
The movement library was built using 300 movement tem-
plates sampled from successful strokes of an analytical robot
table tennis player (Muelling, Kober, and Peters 2011). For
the simulation of the ball, we neglected air drag in this evalu-
ation. The system had full knowledge of the correct position
and velocity of the ball. Note that this reduces the number
of potential error sources. Thus, the success rate of return-
ing the ball back to the desired goal on the opponent’s court
reflects the performance of the algorithm more accurately.
We collected arm, racket and ball trajectories and extracted
the duration of the submovements and the Cartesian ball po-
sitions and velocities at the hitting point. The parameters w
for all movement primitives were learned offline by imita-
tion learning. All DoFs were modeled independently in the
transformed system but are synchronized such that they all
start at the same time, have the same duration and are driven
by the same canonical system. The Cartesian position and
velocity of the expected hitting point were used as meta-
parameters of the augmented state. The balls were served
equally distributed on an area of 1.1 m x 0.3 m.

First, we evaluated the single mixture components (i.e.,
the movement primitives learned by imitation learning) in-
dependently. Testing randomly selected movement primi-
tives individually, we observed a success rate of 23 % to
89 %, where success was defined as the ability to return
the ball to the opponent’s court. The combination of these
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Figure 6: Improvement of the MoMP system with a growing
number of movement primitives in the library.

components in an untrained MoMP algorithm resulted into
a player which achieved a success rate of 67 %. Learning
of the weight parameters γi over 1000 trials improved the
performance to 94 %.

Real Robot Table Tennis. We evaluated our setup on a
Barrett WAM arm. Kinesthetic teach-in was used to record
25 striking motions which all started at the same initial po-
sition (see Figure 5). Gravity compensation of the robot was
enabled, but no additional movement commands were sent
to the robot. As a result, the robot could be moved freely by
the teacher. For the demonstrations, the ball was served by
a ball launcher covering the forehand area of the robot. The
recorded arm movements were divided into submovements
according to the following events: contact with the ball, zero
velocity and change in movement direction. As a result, each
demonstration could be divided into four submovements:



preparing the hitting by moving the racket backwards, hit-
ting the ball in a circular forward movement, follow throw
until the velocity goes to zero and moving back to the default
position. We created the movement library of DMPs for each
movement recorded from the human teacher using imitation
learning. As augmented state, we used the estimated hitting
position and velocity.

We evaluated the performance of the created movement
library intensively in simulation first. Here, we used the ex-
ponential of the negative distance between the desired joint
velocity and the actual joint velocity of the last three DoFs1

at the interception point of the ball and the racket. The balls
were served to an area of 1.1 m x 0.3 m. The system was
trained using 100 trials and evaluated over 200 additional
trials. The average performance of the system using MoMP
without updating the gating network was 0.08 rad/s. Updat-
ing but just choosing the movement primitive with the best
expected performance, we had an error of 0.05 rad/s and
mixing the movement primitives yielded an error of 0.02
rad/s. An overview of the improvement of the system with
increasing number of movement primitives used is shown in
Figure 6.

Performing the movement on a real system, we used the
exponential of the negative distance between the desired
goal on the opponent’s court and the actual bouncing point
as reward signal. If the ball missed the table, the distance
would be set to 5 m and the reward was set close to zero.
We evaluated the algorithm in two experiments. In the first
experiment we used the ball launcher to serve the ball to
the robot to ensure similar conditions for both initial and
final test phases. We chose to fix the ball launcher in a posi-
tion where the system was not able to return the ball using
the initial policy generated by MoMP. The area served by
the ball launcher was 0.25 m x 0.25 m. Initially the system
was not able to return any of these balls. After training dur-
ing 60 trials, the system was able to return 79% of the balls
successfully to the opponent’s court. The mean distance be-
tween the bouncing point of the returned balls and the de-
sired target on the table was 0.31 m. During the training, the
usage of the applied movement primitives changed drasti-
cally. While some of the movement primitives were relo-
cated, other movement primitives were avoided completely
and replaced by others used instead (see Figure 7).

In a third experiment, a human played against the robot.
The human served balls on an area of 0.8 m x 0.6 m. The
robot hit back up to 9 balls in a row in a match against the
robot. Initially the robot was able to return 74.4 % of the
balls. After playing one hour against the human, the robot
was able to return 88 % of the balls successfully, i.e., to the
opponent’s court.

4 Conclusion
In this paper, we presented a new framework that enables
a robot to learn basic cooperative table tennis. To achieve
this goal, we created an initial movement library from kines-

1Please note, that we choose only the last three DoFs, as the
peroformance of these DoF were the most critical in this applica-
tion.

−0.55 −0.5 −0.45 −0.4 −0.35

−1.05

−1

−0.95

−0.9

−0.85
Orininal MP distribution on the hitting manifold

x in m

z
 i

n
 m

(a)

−0.54 −0.52 −0.5 −0.48 −0.46 −0.44 −0.42 −0.4 −0.38 −0.36 −0.34

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

Learned MP distribution on the hitting manifold

x in m

z
 i

n
 m

(b)

Figure 7: Distribution on the hitting manifold of the used
movement primitives before (a) and after (b) training. Each
color corresponds to one movement primitive in the move-
ment library. Each point corresponds to the point of impact
during evaluation.

thetic teach-in and imitation learning. The movements stored
in the movement library can be selected and generalized us-
ing a mixture of movement primitives algorithm. As a result,
we obtain a task policy that is composed of several move-
ment primitives weighted by their ability to generate suc-
cessful movements in the given task context. These weights
are computed by a gating network and can be updated au-
tonomously.

The setup was evaluated successfully in a simulated and
real table tennis environment. We showed in our experiments
that both (i) selecting movement primitives from a library
based on the current task context instead of using only a
single demonstration and (ii) the adaptation of the selec-
tion process during a table tennis game improved the per-
formance of the table tennis player. As a result, the system
was able to perform a game of table tennis against a human
opponent.

References
Argall, B.; Chernova, S.; Veloso, M.; and Browning, B.
2009. A survey of robot learning from demonstration.
Robotics and Autonomous System 57(5):469 – 483.



Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot Programming by Demonstration. Springer. 1371–
1394.
Bishop, C. 2006. Pattern Recognition and Machine Learn-
ing. Springer.
Bitzer, S.; Howard, M.; and Vijayakumar, S. 2010. Using
dimensionality reduction to exploit constraints in reinforce-
ment learning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).
Calinon, S.; Guenter, F.; and Billard, A. 2007. On learn-
ing, representing, and generalizing a task in a humanoid
robot. IEEE Transactions on Systems, Man and Cybernetics
32(2):286–298.
Flash, T., and Hogan, N. 1985. The coordination of
arm movements: an experimentally confirmed mathematical
model. Journal of Neurosciences 5(7):1688–1703.
Giszter, S.; Moxon, K.; Rybak, I.; and J., C. 2000. Neurobio-
logical and neurorobotic approaches to control architectures
for a humanoid motor system. Intelligent Systems and their
Applications 15:64 – 69.
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