
Abstract 

For a lifelong learning robot, in the context of task 
understanding, it is important to distinguish the 
‘meaning’ of a task from the ‘means’ to achieve it.  
   In this paper we will select a set of tasks in a 
typical Human-Robot interaction scenario such as 
show, hide, make accessible, etc., and illustrate that 
visuo-spatial perspective taking can be effectively 
used to understand such tasks’ semantics in terms 
of ‘effect’. The idea is, for understanding the ‘ef-
fects’ the robot analyzes the reachability and visi-
bility of an agent not only from the current state of 
the agent but also from a set of virtual states, which 
the agent might attain with different level of efforts 
from his/its current state.  
   We show that such symbolic understandings of 
tasks could be generalized to new situations or spa-
tial arrangements, as well as facilitate 'transfer of 
understanding’ among heterogeneous robots. Robot 
begins to understand the semantics of the task from 
the first demonstration and continuously refines its 
understanding with further examples.  

1 Introduction
1
 

The robots in the human centered environment will soon be 
expected to be able to acquire and enhance their knowledge 
life long, as humans do. In this context, from the task point 
of view, we identify 4 essential and complementary compo-
nents: (i) Symbolic level understanding of the task’s seman-
tics, (ii) Situation dependent symbolic level planning to per-
form the task, (iii) Symbolic to execution level mapping of 
plan, (iv) Execution of the task. Hence it is important that 
the understanding of the task could be generalizable to a 
variety of situations, without any need of providing the 
learning data for each and every situation. In the context of 
Human-Robot Interaction the learning approaches could be 
broadly divided into two categories from “what is being 
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learnt” point of view: (i) trajectory based (ii) symbolic 
primitive based. In [12], robot learns the trajectory for pick-
and-place tasks with constraints on orientations. In [11], 
robot adapts the trajectory for ‘pour’ task to avoid collision. 
In such approaches the robot is not aware about the ‘mean-
ing’ of the task and in some sense it is bound to follow the 
learnt trajectory, which makes the generalization difficult in 
different scenarios and on different robots. On the other 
side, in symbolic primitives based approaches, which is the 
focus of this paper, the task is (a) either learnt based on the 
sequence of the sub-tasks or (b) based on the effect in terms 
of changes in the environment.  

In [1], a set of symbolic predicates, such as on, under, 
etc., has been used for the incremental learning of the task 
precedence graph, for the tasks of pouring the bottle and 
laying the table. In other approaches the task performed by 
the human is inferred as symbolic descriptions of sub-tasks. 
For example “place an object next to another object” would 
be inferred as something like ‘reach’, ‘grasp’ and ‘trans-
fer_relative’, [2], and “Take a bottle out of the fridge” 
would be sub-symbolized as ‘Open the fridge’, ‘Grasp the 
bottle’, ‘Get the bottle out of the fridge’, ‘Close the fridge’ 
and ‘Put the bottle on the table in a stable position’, [10]. In 
[3], the robot grounds the task of assembling a table in terms 
of ‘reach’, ‘pick’, ‘place’ and ‘withdraw’, and tries to learn 
the dependencies in order to reorder and adapt for different 
initial setups. In [9], a hybrid approach tries to represent the 
task in a symbolic sequence but also incorporates trajectory 
information to perform the task. But these approaches try to 
represent a task from the point of view of execution of sub 
tasks. The reasoning on the task semantics independent of 
the execution is missing.  

On the other hand from the aspect of analyzing effects in 
terms of the task driven changes in the environment, [4] 
analyzes it in terms of ‘holding object’, ‘hand empty’, ‘ob-
ject at location’, etc., for the pick-and-put task domain. In 
[6] robot performs different actions such as grasp, touch and 
tap on different objects to analyze the effects; once learnt 
could be used to select the appropriate action for achieving a 
particular effect, [7]. A survey on learning from demonstra-
tion can be found in [5]. But in these approaches also, the 
effects are analyzed from the point of view of different 
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states of the object in the world frame. The effects on the 
object from the agents’ perspective have not been explored. 

In this paper we will (i) exploit the complementary issue 
of reasoning on the object from visuo-spatial perspectives of 
the agents, (ii) enable the robot to understand the task se-
mantics independent of the task execution, (iii) separate 
trajectory information from task understanding. Although 
such information could be used during planning and execu-
tion as reference for ‘how to’ perform. All these will serve 
for better generalization of the task for unknown scenarios 
as well as transfer of understanding to heterogeneous robot.  

We will use the term ‘explanation-based understanding’, 
because similar to explanation-based learning (see [8], for 
the learning aspects of explanation-based reasoning) the 
robot will be capable of deriving the ‘effects’ of a task 
through a single ‘good’ demonstration. If the demonstration 
is ‘good’ it will not result into unresolved or ambiguous 
effects. But if there is any misunderstanding or ambiguity 
robot could resolve it with further demonstrations. We con-
sider a set of typical human-human interaction tasks such as 
make an object accessible, show or hide an object, etc. Ro-
bot benefits form its ability to perform visuo-spatial reason-
ing for agents not only from their current state/position but 
also from a set of possible achievable states by the agent. 

1.1 Motivation  

One of the common tasks in Human-Human Interaction is to 
make an object accessible to a person, which is currently 
invisible and/or unreachable for that person. As shown in 
fig. 1 depending upon the current state, relation, etc., person 
P1 could take the bottle and put it at a place to make it visi-
ble and graspable by P2 but the associated cost for doing so 
can vary, as in the cases (b) and (c) of fig. 1. The interesting 
point is: P1 perceives various abilities of P2 not only from 
her current state but also from the virtual state that if P2 will 
stand up and lean forward, she could get the bottle. 

Now assuming a robot is observing the task as performed 
in fig. 1(c), and able to learn in the terms of symbolic sub-
tasks such as ‘grasp bottle’, ‘carry bottle’ and ‘put bottle’ at 
‘x’ distance from the person P2 or put the bottle reachable 
for P2, then it will not be able to identify that the task per-
formed in fig. 1(b) is same task. This is because what the 
robot has learnt is actually how to perform the task, not the 
semantics: “the object should become ‘easier’ to see, reach 
and grasp for the target person than it was before”. 

Moreover, if the robot will not be able to reason about 
multi-state abilities of the agents, it will fail to understand 

such semantics or could ‘misunderstand’ the task with poor 
generalization.  

In this paper first we will enhance various states of an 
agent presented in [13] to perform multi-state visuo-spatial 
reasoning at object level.  Then we will categorize the effort 
levels for state-transition, followed by approach of extract-
ing various symbolic visuo-spatial facts and reason on them 
for task understanding. Successively we will analyze ex-
perimental results followed by discussion on potential ap-
plications of such symbolic understanding of tasks. 

2 Methodology 

2.1 Multi-state visuo-spatial reasoning  

To reason on various abilities such as reachability, visibility 
of an agent for a particular object, robot virtually puts the 
agent in various states as shown in table I. An object is said 
to be reachable if at least one cell (dimension 5 cm x 5 cm x 
5 cm in current implementation) belonging to the object is 
within the length of the fingertip from the shoulder, that is 
how we mostly estimate reachability in a particular posture 
[16]. As an object might be reachable to touch, push, point, 
grasp, etc., robot is further equipped to distinguish whether 
the reachable object is graspable or not. Also it estimates 
how much the object is visible in a particular state of agent:  

Where NP denotes number of pixels in the image of visual 
perspective, i.e. in field of view (FOV) of agent. 
Fig. 2(a) shows 3D representation of initial real world setup. 

TABLE I 
STATES FOR MULTI-STATE VISUO-SPATIAL PERSPECTIVE TAKING 

b a 

c 

Fig. 1: (a) Initial scenario for task of 

making the green bottle (enclosed 

by red oval) accessible to person P2 

by person P1. P1 puts the bottle so 

that it will be visible and graspable 

by P2 if she will (b) stand up and 

lean, (c) just stretching out the arm. 

a b 

c d 

Fig. 2: (a) Robot observing a 

human-human interaction. (b) 

P1’s visual perspective, visibil-

ity scores are 0.0 for entirely 

hidden toy dog, (c) 0.001 when 

partially occluded and rela-

tively far, (d) 0.003 when non-
occluded and relatively closer. 

P1 

P2 

visibility _ scoreagent,state
object

=
NPvisible_ in _FOV

object

NPFOV
...(i)



Fig. 2(b) shows human P1’s visual perspective estimated by 
robot. The increasing visibility scores for the object toy dog, 
encircled in red in fig. 2(a), from P1’s perspective have 
been shown for three different cases fig. 2(b)-(d). 

2.2 Classifying efforts 

for state transition 

Robot dynamically catego-
rizes the relative effort to 
attain a state from another 
state by the agent in terms of 
associated joints. This classification shown in table II is 
motivated from the studies of human movement and behav-
ioral psychology, [14], [15], where different types of reach 
actions of the human have been identified and analyzed, fig. 
3. The effort level categorization could be enhanced based 
on the studies of musculoskeletal kinematics and dynamics 
models such as [17]. 

2.3 Understanding task semantics 

The robot will try to understand the task in terms of the 
changes on the agent’s abilities to see, reach, grasp and visi-
bility score of the object. We use the term ‘performing-
agent’ for the agent who will perform the task for a ‘target-
agent’, for whom the task is being performed, on a ‘target-
object’. We will explain the approach through an example. 
Fig. 2(a) shows the initial world state before performing the 
task of making the yellow toy dog accessible to P1 by P2. 

Finding least effort state transition before task 
For the target-agent, robot first finds whether the object is 
reachable, visible and graspable or not from the before-task 
state. If not then robot tries to find the least effort needed by 
the agent to reach, see or grasp the object. For this, depend-
ing upon the actual state of the agent robot tries to virtually 
put the agent in a series of states in the order of the efforts. 
For example if the agent is sitting then robot will first find 
the required yaw and pitch of the head to turn it towards the 
object, respecting the joint limits. If object is still not visible 
(because of joint limit or occlusion), robot will try to put the 
human in higher effort state such as turn torso and head, 
standup and turn around, etc., until the object becomes visi-
ble or the maximum allowed effort level has been reached. 
In this way for each ability type, robot finds the least effort 
required by the agent. For our example of fig. 2(a) robot 
finds that if P1 will stand up and lean forward he will be 
able to see the toy dog thus categorizing the visibility effort 
as Whole_Body_Effort, from table II. Robot also found that 
P1 could not reach the object from any of the states from his 
current position, so it categorizes the reachability effort as 

‘Displacement_Effort’ (currently robot does not place the 
agent at new location to estimate abilities and assumes if 
human will move he will be able to see or reach the object). 

Finding least effort state transition after-task 

Similarly the robot finds least effort required by the target-
agent for the new position of the target-object. But this time 
it will be calculated from the state of the target-agent at the 
end of the task, as he might adapt his state to favor the per-
forming-agent or the task. For our example, fig. 2(d) shows 
the final state of the world from target-agent’s perspective. 
Robot estimates that target-object is visible by target-agent 
with an increased visibility score of 0.003 and will be reach-
able and graspable by him if he will lean forward. Hence it 
categorizes after-task reachability effort as 
Arm_Torso_Effort and for visibility as No_Effort_Required. 

Extracting the effect of a task 

Next step is to find the effects in terms of the changes from 
the visuo-spatial perspective of target-agent. For this robot 
compares the least effort state transitions before and after 
the task and categorizes the difference as one of the obser-
vations shown in table III. Robot found for our current ex-
ample, for the toy horse, that for target-agent P1, to reach: 
Effort_Becomes_Easier, to see: Effort_Becomes_Easier, 
grasp: Becomes_Graspable, visibility score: Increased. 

Finding the generalized meaning 
After observing a demonstration, robot understands the task 
in terms of the desirable changes in the target-agent’s 
visuo-spatial abilities on the target-object. In the current 
example at this level of abstraction the robot understands: 
‘make object accessible means target-object should be easy 
to reach, grasp and see by the target-agent’. It further rea-
sons at another level of abstraction to avoid over-
constrained understanding as well as to facilitate continuous 
refining of the understanding as explained below. 

Continuous Refining of the Understanding 

It is possible that the robot has false belief about relevance 
of a predicate for a particular task. For example if the task is 
to hide an object, depending upon the places available for 
hiding, the performing-agent could put the target-object 
closer to the target-agent but behind some object which 
makes it invisible to target-agent. So, the robot will misun-
derstand that target-object should be difficult to be seen but 
easy to be reached by the target-agent. Hence reachability 
has been falsely associated as a relevant predicate for the 
task of hiding. So, there should be provision for continuous 
refinement with further demonstrations. For this, with every 
new observation of a task robot compares its past under 
standing for the ‘consistency’ or ‘contradiction’ about the 
belief of the relevance of a particular ability. 

TABLE II 

EFFORT CLASSES FOR VISUO-SPATIAL ABILITIES 

Fig. 3. Taxonomy of reach ac-

tions:(a) arm-shoulder reach, (b) 
arm-torso reach, (c) standing reach. 

TABLE III 

VARIOUS AFTER TASK OBSERVATIONS 



We define Observation Occurrence Belief  (OOB) for a 
particular ‘task_type’ for a particular ‘ability_type’ as: 

Numerator denotes the number of times, for the target-
object, the particular observation, from table III (such as 
Effort_Becomes_Easier, etc.), has been observed about a 
particular ability (such as reachability, etc.), for a particular 
task (such as make accessible, etc.). The denominator is 
number of times the task has been demonstrated. We clas-
sify the observations as supportive or non-supportive for an 
ability of an agent, marked (S) and (NS) in table III. For 
example if after a task the agent’s ability to reach the target-
object has been maintained or has become easier then it is 
supportive to that agent, and so on. Then we define two be-
liefs: Supportive Observation Occurrence Belief (SOOB) 
and Non-Supportive Observation Occurrence Belief 
(NSOOB) for a particular task as follows: 

Where ns and nns are number of supportive and non-
supportive observations for a particular ability of the agent. 
Now robot can detect a contradiction in the observations 
from two or more demonstrations of a task. If for a particu-
lar ability type, SOOB and NSOOB both are non zero then 
that particular ability might not be relevant for that particu-
lar task and the observations for that ability is just a side 
effect. Let us assume that the task of hiding an object has 
been observed by robot twice. Depending upon the avail-
ability of places to hide, performing agent puts the object at 
a place, which made it difficult for the target-agent to see. 
But in one demonstration the target-object was easier to 
reach and in another it was difficult to reach. Hence for the 
visibility, SOOB is non-zero and NSOOB is zero but for 
reachability, SOOB and NSOOB both becomes non-zero 
after these two demonstrations. So, robot detects a ‘consis-
tency’ in visibility but ‘contradiction’ in reachability from 
the target-agent’s perspective. At this state instead of di-

rectly concluding that the reachability is irrelevant for the 
task of hiding, we further define ‘non-relevance factor’ for a 
particular task type, ‘t’ and a particular ability type ‘a’ as: 
Eq. (v) will result into non-relevance factor as 1, for a par-
ticular ability, if contradiction and consistency have been 
observed for equal number of demonstrations. On the other 
hand if there has been no contradictions it will return 0 
meaning the ability is relevant for the task and the observed 
effects should be maintained.  
 Because of the inheriting conflict driven calculation of 
non-relevance factor and assuming that the demonstrations 
can contain ambiguous effects but are not to intentionally 
produce a incorrect effect (i.e. we are not trying to teach a 
child with wrong demonstration), an ability will be treated 

as non-relevant even if there is less 
evidence, green band in fig. 4. But if 
the non-relevance factor for a particu-
lar ability is very low but non-zero, as 
shown a red ‘confusion zone’ in fig. 4, 
then it will put robot in a ‘confusing’ 
state because something seems to be non-relevant but the 
supporting evidence is not sufficient. This confusing situa-
tion could be treated in a variety of ways: (i) Treat the con-
flicting ability as relevant but give least preference to satisfy 
the related supportive or non-supportive (whichever is hav-
ing higher belief) observation while performing that task. 
(ii) Communicate the confusion to the human for help to 
resolve. (iii) Simply discard the current demonstration caus-
ing confusion assuming that the task understood and refined 
with time in past is more stable understanding than the cur-
rent single demonstration, so non relevance factor will al-
ways be either 0 or 1. But this will limit the flexibility of 
refinement and understanding will become ‘rigid’ after few 
observations. For the current implementation we adapt (i) 
but the work is in progress towards a hybrid approach 
combining (i) and (ii). 

Separating execution preferences from task semantics 

In the same framework the robot also extracts the ‘effect’ 
from the performing-agent’s perspectives, which could 
serve as execution preferences. Also if the robot would be 
equipped with additional capabilities, it could further infer 
that performing-agent preferred to take the object from sup-
port plane-1 and put it on support plane-2, for the task of 
fig. 2. But there could be a case where the performing-agent 
would displace some other object, which is occluding and 
hindering the otherwise visible and graspable target-object 
from target-agent. So, if such task execution sequences 
would be used for task understanding, the robot will not be 
able to understand the ‘desirable’ meaning.  

Robot could also have the trajectory of the object and the 
hand, but as mentioned earlier we prefer to put such infor-
mation also in the execution preferences, which could facili-
tate robot for human preferable motion and behavior. 

Planning and performing the understood task 
Since the robot is equipped with the geometric interpretation 
of the symbolic terms, it can calculate a set of candidate 
space for performing a particular task. But this level of 
symbolic task understanding could provide more flexibility 
to the task planner about various ways to perform the task to 
achieve the desirable effect from the target-agent’s perspec-
tive. We have adapted the framework presented in [13] to 
find candidate search space and perform a particular task. 

3 Experimental Results and Analysis 

Our robot is equipped with an integrated 3D representation 
and planning platform in which the models of all the agents 
and objects are updated online with the data through various 
sensors. Human gaze is simplified to the human head orien-
tation. We have two ways of providing the robot with the 
data about human-human task performance: online and off-
line. The offline data is collected through markers based 

OOBobservation _ type
task _ type, ability _ type

=
Nobservation _ occurred
task _ type,ability _ type

Ndemonstrations
task _ type

...(ii)

SOOBtask _ type, ability _ type = OOBi
task _ type, ability _ type

i=1
ns ...(iii)

NSOOBtask _ type, ability _ type = OOBi
task _ type, ability _ type

i=1
nns ...(iv)

non _ relevancea
t = 1

abs SOOBa
t NSOOBa

t( )
SOOBa

t + NSOOBa
t( )

...(v)

Fig. 4: Interpretation of 

non-relevance factor.



motion capture system, fig. 5(a). In the online process the 
robot directly observes the tasks, fig 5(b). It uses its stereo-
vision system (enclosed by red oval) to identify and localize 
objects based on the tag and uses Kinect motion sensor sys-
tem (enclosed by green oval) mounted on it to track the 
whole body of the humans. The yellow rectangle encloses 
the screen displaying online 3D representation of the envi-
ronment by the robot. In both cases of getting the data, the 
task name, time stamps for starting and finishing of the task, 
information about the performing agent, target agent, target 
object are provided to the robot.  

Fig. 5(a) is actually the final scenario of making the glass 
accessible to the person on the right by the person on the 
left. Following is the observation for this task by the robot, 
which is similar for the example scenario of fig. 2: 

For target-object, for target-agent:  
For reachability the Effort_Becomes_Easier, and for visibil-
ity the Effort_Becomes_Easier, and from the new easiest 
state to reach the target-object Becomes_Graspable, and 
from the new easiest state to see, the visibility score of the 
target-object has Increased.  

Hence the robot is able to understand from a single dem-
onstration that making an object accessible means the target 
agent’s ability to reach and see the object should be sup-
ported (which the robot interprets as the efforts should be-
come easier or in worst case it should be maintained, while 
planning for a task). We have further demonstrated the same 
task twice with different environmental setups. Below is 
snap of the different beliefs after 3 demonstrations: 

The Observation Occurrence Belief  (OOB): 
for reachability: 

Easiest_Effort_Maintained=0.33,  
Effort_Becomes_Easier=0.66,  
Effort_Becomes_Difficult=0 

for visibility: 
Easiest_Effort_Maintained=0.66,  
Effort_Becomes_Easier=0.33, 
Effort_Becomes_Difficult=0 

 … 
Based on OOB robot further concludes that: 
  Supportive Observation Occurrence Belief (SOOB): 

for reachability = 1, for visibility =1, … 
 Non-Supportive Observation Occurrence Belief (NSOOB): 
    for reachability =0, for visibility =0, … 
  Non relevance factor for: reachability =0, visibility =0, …   
Hence till 3 demonstrations of the task ‘make object acces-
sible’ robot did not find any contradiction in belief and will 
maintain all the effects while performing the task. 

Now we will demonstrate how the robot refines its mis-
understanding about relevance of ‘reach’ for the task of 
showing an object, similar to the task of hiding an object. 
Fig. 6(a)-(c) show final scenarios in three different situa-
tions for the task of showing an object. Red quadrilaterals 
show initial positions of the target object (which is cup in 
(a) and wooden cube in (b) and (c)), the red arrows mark the 
final position of object in hand. For (a) and (c) the person on 
the left was the target-agent whereas for (b) he was the per-
forming-agent. Table IV shows the refined understanding of 
robot after each demonstration, for two abilities: visibility 
and reachability. Note that because of significant non-
relevance factor after incorporating observation from 3

rd
 

demonstration, robot understood that reachability from the 
target-agent’s perspective is not relevant for this task.  

We have demonstrated various other tasks to the robot, 
such as give an object, hide an object, hide an object away, 
put an object away, etc. Table V shows the understanding of 
the robot in terms of effects on visibility and reachability 
from the target-agent’s perspective. Table V also shows 
number of demonstrations per task, N, and the average proc-
essing time per demonstration, T, once the initial and final 
world states are known to the robot. It is interesting to ob-
serve that T is more for the tasks, which require the robot to 
put the target-agent in more number of states before getting 
first state of least effort satisfying reachability or visibility.  

Another observation is that for the task of ‘Make Accessi-
ble’ and ‘Give’ robot understanding is similar. Perhaps they 
are same or there might be some differences, which are hid-

TABLE IV 
ROBOT’S UNDERSTANDING FOR TASK SHOW AN OBJECT  

TABLE V 
ROBOT’S UNDERSTANDING OF DIFFERENT TASKS  

Fig. 5: Human-Human task performance data collection (a) by motion-
capture system, (b) by observing online by the robot. 

Fig. 6: Demonstrating ‘show an 

object’ task. (a) Right human 

shows the cup, (b) Left human 

and (c) Right human shows the 

wooden cube. Red quadrilaterals 
show initial positions of object. 

a b 

c 



den in the layers below the current level of abstraction. Such 
situations need exploration at lower levels to find relevant 
information to disambiguates the tasks understanding. For 
example, for the ‘give’ task the least effort for reachability 
is always No_Effort_Required whereas for ‘make accessi-
ble’ task it is varying.  And the inherited meaning of 
No_Effort_Required for reach is target-object should be in 
hand of target-agent. This is a pointer, which needs further 
investigation to disambiguate by involving other predicates. 

4 Discussion on Potential Applications 

Symbolic understanding of a task along with its geometric 
counterpart makes the robot more ‘aware’ about its behav-
ior. Below we discuss few of the potential applications. 

Generalization to novel scenario 

As the understanding of task 
is independent of the relative 
arrangements of agents and 
objects, it facilitates the ro-
bot to perform the task in an 
entirely different way as 
well as scenario. As shown 
in fig. 7 robot is making the 
wooden cube (initially at the 
place of red rectangle) ac-
cessible to the human by putting it at the top of a box be-
cause robot was not able to plan a collision free trajectory 
for any other commonly reachable and visible place of less 
effort from human’s perspective on the table.  

Transfer of understanding among heterogeneous agents 

Since the robot has understood the task independent of the 
trajectory planning and control level execution, it can easily 
transfer the task semantics to another robot of entirely dif-
ferent kinematics structure. And the other robot equipped 
with similar capabilities of visuo-spatial perspective taking 
of the agents could then interpret the understanding and 
perform it by respecting its own constraints.  

Generalization for multiple target-agents 

This level of symbolic understanding would also help in 
generalizing for multiple target humans. Such as hide from 
two humans, show to a group of people, etc.  

Greater flexibility to the symbolic planner, interaction 

If the planner at symbolic level knows the semantics of a 
task independent of execution, it could plan to achieve the 
task in a variety of ways. Such as it could decide to cover an 
object by another object to hide or to involve a third agent. 

Such symbolic awareness about the task’s semantics 
could also enrich the verbalize interaction with the human as 
well as could help in generating shared co-operative plan for 
achieving complex tasks. Such understanding could also be 
used to predict action and show proactive behavior.  

5 Conclusion and Future Works 

This paper is towards making the boundary between task 
primitives and execution primitives evident and enables the 

robot to understand task’s semantics independent of the 
means to achieve it. As a primary step we have incorporated 
a complementary but important aspect, multi-state visuo-
spatial perspective taking, to understand basic human-robot 
interaction tasks by the robot. 

We have shown that such understandings would be easy 
to generalize to novel scenario as well as for heterogeneous 
robots. The presented approach could further be benefited 
by incorporating estimation of additional abilities and primi-
tives to understand more complex tasks. Another interesting 
future work is to enable robot with the capabilities of 
autonomously finding inter-task relations, such as ‘give’ 
could be ‘show’ with some additional constraints. 
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