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Abstract— We present a system to learn task representations
from ambiguous feedback. We consider an inverse reinforce-
ment learner that receives feedback from a user with an
unknown and noisy protocol. The system needs to estimate
simultaneously what the task is, and how the user is providing
the feedback. We further explore the problem of ambiguous
protocols by considering that the words used by the teacher
have an unknown relation with the action and meaning expected
by the robot. This allows the system to start with a set of
known symbols and learn the meaning of new ones. We present
computational results that show that it is possible to learn the
task under a noisy and ambiguous feedback. Using an active
learning approach, the system is able to reduce the length of
the training period.

I. INTRODUCTION

Learning from demonstration has provided several exam-
ples of efficient learning in robotic systems. A feature of
most of those systems is that the data is provided in a batch
perspective where data acquisition is done before the learning
phase. Recently it has been suggested that interactive learn-
ing [1] might be a new perspective of robot learning that
combines the ideas of learning by demonstration, learning
by exploration and tutor guidance. Under this approach the
user interacts with the robot and provides extra feedback.
Approaches have considered extra reinforcement signals [2],
action requests’ [3], [4], disambiguation among actions [5]
or preferences among states [6]. In [7] the authors compare
the results when the robot has the option to ask or not the
user for feedback.

Several studies discuss the different behaviors that naive
users use when instructing robots [2], [8]. An important
aspect is that, many times, the feedback is ambiguous and
deviates from the mathematical interpretation of a reward or
a sample from a policy. For instance, in the work of [2] the
users frequently gave a reward to exploratory actions even if
the signal was used as a reward of a performed state-action
and not just for getting closer to the goal. Also, in some
problems we can define an optimal teaching sequence but
humans do not behave according to those strategies [8].

In this work we consider a setting where the robot must
learn a task description from interacting with a user that
provides feedback signals such as the name of the correct
action to be used or by explicitly saying if an action is
correct or wrong. We extend previous approaches by learning
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simultaneously how the feedback is being provided and
what is the meaning of the user’s feedback utterances. Note
that we will call what the user says/writes feedback
utterances and the meaning of the feedback feedback
meaning. In a human-robot interaction setting we consider
the case where the robot tries an action and then receives
a feedback signal from the teacher. Such feedback is not
restricted to a pre-defined protocol, with a pre-defined set
of symbols or words, but should allow for new interaction
types and instruction commands. For instance, a user might
tell a robot if an action was right or wrong while another user
might instruct the robot by saying the name of the correct
action. The users will also utter different words not expected
by the robot. A simple case is when the user gives synonyms
of feedback utterances.

II. INVERSE REINFORCEMENT LEARNING WITH
AMBIGUOUS FEEDBACK

We consider a standard markov-decision process (MDP)
and follow the notation of [9] . In our case we are not
interested in learning a task by self-exploration but will
use data from a user. In this situation we do not have a
reward function from which we can sample but will have
instead samples from the policy. This formalism is called the
inverse reinforcement learning (IRL) problem [10]. The goal
is to find the reward function that the demonstrator is trying
to maximize and later on use it to select the best actions.
Using a Bayesian perspective, we follow the Bayesian IRL
approach (BIRL)[11]. In that setting we consider that, if the
demonstrator is performing the task described by the reward
function r, the samples of the demonstration are generated by
p(x, a|r) = eηQ(x,a)∑

b
eηQ(x,b)

, where η is a confidence parameter

where high values will correspond to the optimal policy
and lower values will allow samples of non-optimal actions.
We assume a uniform state sampling. To learn the task we
compute the posterior distribution of the reward function
after observing a given data vector Dt = {A0:t, X0:t}:

p(Rt+1|At, Xt) ∝ p(At|Rt, Xt)p(Rt) (1)

for a suitable choice of prior distribution on R, see [11].

A. Feedback Model

We will change the standard setting and, for a given state
action pair (x, a), consider the probability of receiving a
given feedback meaning f . Table I shows all the possible
feedback protocols that can range from a pure learning
from demonstration behavior (protocol 1) to a pure binary



reinforcement one (protocol 8). Each protocol is defined with
the feedback that the teacher provides the learner when it
does the correct action and when it does the wrong action.
The teacher might choose to say the correct action (A), say
nothing (∅), give a confirmation (O) or inform the robot
that the selected action is wrong (W). This protocol is
ambiguous and the same feedback (∅) can either mean correct
or incorrect. If more than one correct action is available in
a state then the teacher provides, randomly, one of them. To
model perceptual errors there is a probability of “listening”
the wrong feedback and “hearing” a random symbol instead.

TABLE I
FEEDBACK PROFILES. POSSIBLE FEEDBACK INSTRUCTIONS GIVEN BY

THE USER WHEN THE ROBOT DOES THE CORRECT OR WRONG ACTION

ARE: THE ACTION NAME (A), NOTHING (∅), CORRECT (O) OR WRONG

(W). EIGHT FEEDBACK PROFILES WERE CONSIDERED.

`````````Action
Feedback 1 2 3 4 5 6 7 8

Correct A A A ∅ ∅ O O O
Wrong A ∅ W A W A ∅ W

Each different teacher will be modeled as a convex com-
bination of these profiles. For the teacher model we will
consider a set of parameters M that describe the mixture of
profiles in Table I.

We have to extend the model in Eq. 1 to include the
ambiguous feedback. The goal is now to learn simultaneously
the task R and the feedback model M , based on the pairs of
executed actions A and the feedback meaning received F .
Our posterior now depends not only on the demonstration
but also on the feedback model. By independence, and
removing the state dependency to simplify notation, we get
the following factored model:

p(Rt+1,Mt+1|A0:t, F0:t)

∝ p(Ft|At, Rt,Mt)p(At|Rt)p(Rt,Mt) (2)

B. Utterance-Meaning Correspondences

Another aspect of human-robot interaction systems is that
the feedback is often given using a natural interface such as
gestures or speech. Most of the times there is an implicit
assumption that the vocal symbols are assumed to have a
known semantics for the robot. Now, we will relax this
assumption and allow the user to provide instructions to the
robot that are unknown. We will define the feedback meaning
as the instruction the user wants to provide to the robot, as
defined in Table I, and the feedback utterances as the words
actually provided by the user. In this way it is possible for the
robot to accept new words and learn their meanings. As an
example, the user might say “good”, or “ok”, or “correct” and
the robot should always understand it as a confirmation, i.e.
the different utterances all correspond to the same feedback,
as in Figure 1.

We have to extend the previous model, in Equation 2,
to include the uncertainty in the symbols received. We will
consider a new relation that gives the probability of having an
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Fig. 1. Relation between uttered feedback and its intended meaning. There
are only Na + 3 feedback meanings, one corresponding to each available
action and the meanings of CORRECT and WRONG. They are fixed and
known from the beginning. We assume that there is at least one utterance
with a known correspondence to a feedback signal, there is the possibility
of unknown feedback symbols to exist and their relation to the feedback
must be learned. For instance the user might say good instead of ok.

utterance g when the user wants to provide a given feedback
f , p(g|f, .). As the feedback is no longer observed, we have
to integrate it out from the observation of the utterance.
Finally, we get the following expression:

p(Gt+1|Dt) =
∑
g

p(Gt|Ft)p(g|Dt) (3)

This posterior distribution on the utterance-meaning model
can also be implemented as a particle filter.

C. Algorithm

The algorithm involves the estimation of three entities
from data: the reward, the feedback model and the meanings
of the feedback symbols. We will use a particle filter to
estimate all the variables of interest. To reduce the number of
particles we will not represent the full joint distribution but
only an approximate of each marginal. We update the weight
of each particle taking into account the maximum likelihood
estimate of the other variables. Table II, summarizes the
algorithm.

We can follow the active learning extension for IRL as
presented in [4] to allow the learner to request the most
informative samples. In that approach the policy distribution
is inferred from the distribution on the rewards. Then, for
each state, a measure of the uncertainty is made to select the
state where the policy posterior has higher variance.

III. RESULTS

We now consider an environment where the robot can
navigate and where there is a probability of finding three
different objects. The robot has to learn which objects it
should collect, or not, and for each of the object classes learn
where they must be delivered. The number of actions is 7,
the 5 navigation ones plus collect and release. The number
of feedback symbols is 10, again we assume that we have
an initial known set of symbols and the user will provide
10 new synonyms. The robot executes an action and then it
receives the feedback.



TABLE II
ALGORITHM FOR THE JOINT ESTIMATION OF THE TASK, FEEDBACK AND

UTTERANCE-MEANING MODELS. IT COMBINES THREE PARTICLE

FILTERS TO APPROXIMATE THE POSTERIOR DISTRIBUTION OF THE

THREE VARIABLES.

• Select number of samples nr , ng and nm

• Sample nr reward vectors
• Sample ng utterance-meaning parameters
• Sample nm meanings tables

1) Sample state x
2) Choose and execute action a
3) Observe utterance g
4) Sample feedback from ft p(f |gt)
5) Find best feedback parameters M = argmaxiw

(i)
f

6) w
(i)
r ← p(ft|At, Ri

t,M)p(At|Rt)w
(i)
r

7) Resample reward particles
8) Find best reward parameters r∗ = argmaxiw

(i)
r

9) w
(i)
f
← p(ft|At, r∗,Mt)p(At|r∗)w(i)

f
10) Resample feedback model
11) w

(i)
g ←

∑
i
p(gt|ft)w(i)

g

12) Resample utterance-meaning model
13) goto 1

Fig. 2. Mean and variance for the active learning method in the “Object
Collecting” Task. The system is able to learn the task, the feedback system
and new feedback symbols. Top - policy loss; Middle - likelihood of correct
feedback model; Bottom - number of correctly assigned symbols.

Figures 2 and 3 give the results for a problem with three
objects and 64 possible locations. In each execution of the
problem the system randomly selects the objects that should
be collected and their delivery locations. Results show that
the system can learn the task, the feedback model and (part
of) the novel feedback symbols.

IV. CONCLUSIONS

Computational approaches in learning by demonstration
have evolved a lot in recent years. These methods can now
be applied in realistic human-robot interaction settings to
effectively provide an intuitive way for untrained users to
program robots. Under this setting most algorithms have to
be adapted to the noise and ambiguity usually present in

human dialog. In this work we showed how a robot can learn

Fig. 3. Comparison between active and randomly sampling in the “Object
Collecting” Task. The system is able to learn the task, the feedback system
and new feeback symbols. Top - policy loss; Middle - likelihood of correct
feedback model; Bottom - number of correctly assigned symbols.

a task description when the feedback it gets from the user
does not follow a rigid protocol and is very noisy (10% error
in correctly recognizing the feedback symbols). We showed
that a learning system can simultaneously estimate the feed-
back protocol and the task representation in a reasonable
amount of time and computational complexity. We took a
further challenge and only assumed partial knowledge of the
guidance symbols. By bootstrapping the systems with some
known guidance-feedback correspondences, the system could
successfully estimate the correspondences of new guidance
symbols.
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