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Abstract

Hierarchical Reinforcement Learning solves prob-
lems by decomposing them into a set of sub-tasks
or options. In this paper we develop a method of
soliciting options from everyday people. We show
how humans design actions that naturally decom-
pose the problem, making them compatible with
the options framework. We instantiate our ap-
proach in the Taxi domain and Pac-Man and show
that the human-derived options outperform auto-
mated methods of option extraction both in terms
of optimality and computation time. Our experi-
ments show that human-options are generalizable
across the state space of the problem. Further anal-
ysis shows that some decompositions given by peo-
ple often do not have a clear termination state. As
such, we discuss the potential use of Modular Re-
inforcement Learning to approach the problem.

1 Introduction
Our research is in the realm of Interactive Machine Learn-
ing, which leverages human input for performance gains in
Machine Learning (ML). We are interested in applying ML
algorithms in domains where everyday people are the end-
users and they can readily provide input. In this paper we
address one kind of input that we think humans will be good
at providing: task decompositions.

In psychology literature, it has been repeatedly shown that
humans interpret actions of other humans based on goals
rather than specific activities or motion trajectories[Wood-
wardet al., 2001; Gleissneret al., 2000]. From dynamic ac-
tions, people can find meaningful boundaries between smaller
action chunks. Baldwin et al. research the mechanisms by
which humans do this kind of action parsing and find that
human adults show agreement in their decomposition of a
continuous task (e.g., watching someone clean in a kitchen)
[Baldwin and Baird, 2001]. Thus, we hypothesize that these
kinds of task decompositions will be useful for a Reinforce-
ment Learner.

The field of Hierarchical Reinforcement Learning (HRL)
has studied such task decompositions in great detail. HRL
takes advantage of the hierarchy present in real-world do-
mains to simplify otherwise complex problems and has been

used successfully in the optimization of manufacturing pro-
cesses[Wang and Mahadevan, 1999] and quadruped locomo-
tion [Kolter et al., 2007] among others. Within HRL, there
have been several techniques proposed to take advantage of
task hierarchies. In this work, we make use of theoptions
framework[Suttonet al., 1999]. An option is a temporally
extended action. It provides a layer of action abstraction to
the underlying domain and offers a principled way of speed-
ing up learning algorithms[Suttonet al., 1999]. In the op-
tions framework, the components that make up each option
are either designed beforehand by an expert or are learned
automatically. Most automatic methods depend on the abil-
ity to construct options by identifying bottleneck states.In
large sparse domains, extracting these states can be compu-
tationally intensive, and some methods are prone to generat-
ing redundant options[Pickett and Barto, 2002]. Furthermore
constructing the options a priori by hand is a time-consuming
task.

We introduce an interactive method to understanding the
ability of everyday people to identify meaningful options for a
given problem. Our goal is to understand three key questions:

1. Is the way humans decompose problems consistent
with the options framework?
In our first experiment, we analyze the ways in which
humans decompose two problem domains and show that
they design actions that subdivide these problems in a
way that one might define as options for the domain.

2. Can humans teach options that lead to performance
gains?
Second, we develop an interaction technique and a learn-
ing mechanism that allows humans to teach an agent the
decompositions defined in Experiment1. We instantiate
our framework in two domains and show how human-
defined options are general across the underlying prob-
lem and provide significant speedup compared to auto-
matically generated options, and to directly learning the
entire problem.

3. Are all human-defined options designed to execute to
completion?
We briefly discuss the case where some human-options
do not always have a well defined termination state. We
propose the use of Modular Reinforcement Learning as
an alternative approach to this problem.
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Figure 1: The domains used to illustrate interactive option
learning. Taxi (left) and Pac-Man (right).

2 Preliminaries - Reinforcement Learning
A Reinforcement Learning (RL) agent interacts with an en-
vironment described by a Markov Decision Process (MDP),
a tupleM = 〈S, A, T , R, γ〉 with statesS, actionsA, tran-
sition functionT : S × A 7→ Pr[S], reward functionR :
S × A 7→ [Rmin, Rmax], and discount factorγ 7→ [0, 1].
A policy π : S 7→ A is a relation that defines which action
should be taken in a particular state. Every states ∈ S is
represented by n-tuple of features,s = (f1, f2, ..., fn).

Within the framework of Reinforcement Learning, tem-
porally extended actions can be modeled using the options
framework[Suttonet al., 1999]. An option consists of three
components:〈I, π, β〉 whereI ∈ S is the initiation set, which
determines the states from which the option can be started,
π : S × A 7→ [0, 1] is the option’s policy, a probabilistic dis-
tribution over eachs, a pair that the option is defined in and
β(s) is the termination set which gives the probability of an
option terminating in states. Formally, a set of options de-
fined over an MDP constitutes a Semi-Markov Decision Pro-
cess (SMDP)[Suttonet al., 1999]. For an SMDP, the Markov
policy over optionsµ : S ×O 7→ [0, 1] is the relation that de-
fines which option should be taken in a particular state.

3 Domains
We begin by describing the two domains used in our experi-
ments: Taxi and Pac-Man. Both are shown in Figure 1.

Taxi. In the Taxi domain[Dietterich, 2000], a taxi navigates
on a grid with immovable obstacles. The taxi must transport
a passengers from and to predefined locations. The taxi can
move deterministically in one of the four cardinal directions,
pick up the passenger when the taxi is in the same cell, and
drop off the passenger. The taxi starts in a random cell of a
5x5 grid. Every state is defined by a set of10 features, includ-
ing the taxi location in the grid, location of the passenger,lo-
cation of the destination, whether passenger has been picked
up, among others. The domain has a total of500 states. There
is a reward of0 for picking up the passenger, a reward of+1
for completing the task and−1 everywhere else.

Pac-Man. In Pac-Man, the agent navigates through a maze
and eats the white dots. Pac-Man must avoid the two ghosts
who can kill him. Upon eating one of two power pills Pac-
Man can temporarily eat the ghosts who change color and
direction, and slow down. The game ends when three lives

Taxi Domain

Button Name Percentage of participants
who gave this button

Go to passenger and pickup 60%
Go to destination and dropoff 60%
Go to passenger 40%
Go to destination 40%
Pickup/Dropoff 40%
Move away from obstacles 20%

Pac-Man
Go to the closest food 100%
Avoid ghost 100%
Go to the nearest power pellet 100%
Eat the ghost 40%

Table 1: Human-defined options for the two domains

have been lost. The features for Pac-Man include agent posi-
tion, ghost position, nearest food pellet, position of the power
pill and a ghost runaway timer. We used a discretized grid of
size9 × 18.

4 Human Task Decomposition
In the first experiment we focus on how humans decompose
the Taxi and Pac-Man domains. Our hypothesis is that when
humans can define new actions to solve these tasks, they
choose ones that decompose the problem into sub-tasks that
represent usefuloptions.

Our study involved10 volunteers (with diverse back-
grounds) from the campus community. Each participant was
assigned one of the two domains. We described the domain to
the participant as an interactive game with buttons represent-
ing low-level actions. They were allowed to play the game
until they were familiar with the controls. Afterwards, each
participant was asked to suggest modified buttons that would
make winning the game “easier and faster”. They were re-
stricted to creating a fixed number of buttons, at most3 for
Taxi and at most4 for Pac-Man. Table 1 summarizes the re-
sponses from this study. Each button name can be thought
of as a sequence of temporally extended low-level actions,
thereby making them very similar to options. This suggests
that human task decomposition is performed in a manner con-
sistent with the options learning framework. We will hence-
forth refer to these buttons as human-options.

5 Human-Option Instantiation
In this section, we describe the interactive framework we used
to solicit the human-options and the learning approach used
to learn the individual components of these options.

5.1 Soliciting the Human-Options
On reviewing Table 1, we find that options given by people
depend on specific features or attributes of the domain. For
example, the button “go to passenger” can be considered as
a generalized option that depends on the passenger location
and is not a fixed sequence of primitive actions. This form of
option-specific feature selection is an important component
of our interactive framework.



For each option, we ask the person to provide 1) option-
feature dependencies and 2) example trajectories, solicited
sequentially. Our feature selection interaction requiresthat
the state features of the domain be represented in a manner
that is verbalizable to the human. By allowing the human
to select feature dependencies for an option, we not only take
advantage of their demonstrations, but also let them explicitly
help define how an option should generalize across the state
space. Through a series ofYes or No questions, as shown be-
low, we setup the domain for the option demonstration phase:

Does the “Option-Name-X” option depend on “Feature-
Name-1”? - Yes

Does the “Option-Name-X” option depend on “Feature-
Name-2”? - No

Then, with only the option-specific features activated, theper-
son provides an example of the expected policy of the option.
Given a sequence of randomly chosen start states, they show
sample trajectories by playing the game. These trajectories
are state, action and reward pairs,s0a0r0, s1a1r1, ...snanrn

from start to end, sampled from the person’s expected policy
of the option. The human uses the primitive actions (those
available in the domain) when providing trajectories.

5.2 Learning the Human-Option Components
For every option, we need to learn its individual components:
a model of the option’s policy,π, a model of the initiation set,
I and the termination set,β. From the trajectories given by
the human, we use the visited states as part of the initiation
set, the actions taken in these states to represent the option’s
policy, the end state as part of the termination set and the
reward acquired to calculate the average return for executing
the option.

We setup three decision tree learners, one for each of the
three components of the human-option. The input to each
decision tree learner is a sequence of states (represented by
a vector of features) followed by a label. Depending on the
option component we are trying to learn, the labels can be ei-
ther the action taken or a binary variable indicating its mem-
bership to the initiation set or to the termination set. Given
a set of these training examples, each decision tree provides
us with a model of the associated option component. These
models are then assessed to determine the optimality of the
option policy and the completeness of the initiation and ter-
mination set.

In order to test the optimality of the computed option pol-
icy, we use the learned policy model to generate sample tra-
jectories. The average return from these sample trajectories,
ROπ is compared to the average return acquired form the
human demonstrationsRH

Oπ and this threshold indicates the
need for further examples from the human. The cross valida-
tion (ten-fold) error of the decision tree model for the initia-
tion and termination set,EOI

andEOβ
respectively, indicate

how representative the visited states are of the entire state
space. A higher error value indicates that more of the state
space is required to be explored and therefore more examples
are required.

In this manner, we continue to acquire trajectories from
different start states from the human until the criteria forthe

policy, the initiation set and termination set are satisfied. This
interactive process is repeated for all the options.

6 Evaluation
To test our mechanism for learning human-options through
interaction, we collected data from6 volunteers (from the
same set of volunteers used in the task decomposition exper-
iment). Each participant was given the opportunity to teach
a set of options for one of the domains. This set was de-
termined as the majority of the buttons given by the other4
participants. For the Taxi domain,2 buttons were used - “go
to passenger and pickup”, ”go to destination and dropoff” and
for Pac-Man,3 buttons were used - “go to the closest food”,
“avoid ghost1” and “go to the nearest power pellet”.

We would like to note here that in the Pac-Man domain,
the human-options that we used did not cover the entire state
space. Specifically, this included the parts of the state space
where the agent could eat the ghost after eating the power
pellet. This notion of incomplete options will be discussed
later.

6.1 Optimality of Human-Options
We perform an analysis on the optimality of the human-
options. Figures 2(a) and 2(b) show the effect of the number
of human trajectories on the policy and classification accu-
racy for two selected options. The policy accuracy is mea-
sured by sampling trajectories from the learned model and
computing the average expected return. The classification ac-
curacy is measured in terms of the how many states were cor-
rectly classified versus how many were incorrectly classified
with respect to the optimal model.

The data shown in Figure 2 is an average over the6 par-
ticipants for the specific options. We see that the accuracy
increases with larger amounts of training data and reaches ac-
ceptable levels with over40 trajectories in both the domains.
The policy accuracy indicates the optimality of the learned
human-option model. We note that the classification accu-
racy for the initiation set in both domains, although reason-
able, does not reach 100%. This can be explained by - poten-
tial error propagation from the decision tree and sub-optimal
human trajectories. To reach the maximum number of trajec-
tories, the participants, on average, took no more than15 mins
in Taxi and20 mins in Pac-Man; therefore, we were able to
achieve sufficient accuracy with reasonable interaction time
with the human.

6.2 Human vs. Automatic Decomposition
Comparison

Next we compare the task decomposition abilities of the se-
lected human-options with automated methods. We extract
automated options using the algorithm described in Stolle and
Precup (2002). This approach is the first principled algorithm
used to extract options in reinforcement learning domains.

1The option name “avoid ghost” that humans gave is misleading
with respect to its functionality. The option humans definedtermi-
nated after the agent moved a specific number of steps away from
the ghost.
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(a) Optimality of “Go to destination and dropoff” human-option in the Taxi Domain
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Figure 2: Diagram showing Policy and Classification accuracy of the human-option components with increasing number of
trajectories
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Figure 3: Diagram showing automatic options on the left and
human-options on the right, extracted for the Taxi domain

The automatic option extraction algorithm works by extract-
ing “bottleneck states” in the domain. Bottleneck states refer
to the states that are most often visited when performing a set
of relevant tasks in the domain. It uses these states as ter-
mination states and builds a policy to reach these states. A
sample of human-options and the automatically extracted op-
tions for the Taxi domain is shown in Figure 3. The checkered
flags show the locations of bottleneck states identified by the
algorithm as target states.

The automated algorithm generated9 options. Four for
going to each of the passenger locations and performing a
pickup action, another four to navigate the passenger to oneof
the four destinations and perform a dropoff and one to reach
the cell in the center of the grid. In the Pac-Man domain, the
automated options were used to get Pac-Man to the two food
pellets and to several different junctions on the grid.

We note that in both cases there are were more automated
options than the number of primitive actions available. Fur-

thermore, the automated options cover very similar sub-tasks.
For example, the four passenger options in the taxi domain
can be thought of as a single generalized “go to passenger at
(x,y) and pickup” option. The human-options, “go to passen-
ger and pickup”, ”go to destination and dropoff” are shown
in Figure 3. The human-options are more general in that the
same option is applicable for different passenger and destina-
tion locations.

6.3 Human vs. Automatic Performance
Comparison

To evaluate the performance of the human-options, we com-
pared it with the automated options as well as using the prim-
itive actions in terms of computation and efficiency. We use
Synchronous VI as described in[Precup, 2000] to compute
the optimal value function for the options. We sampled the
policy acquired and computed the average return. Results of
this comparison are seen in Table 2. We observe that the op-
tions selected by humans were more efficient than the ones
obtained automatically. In terms of computation time, the
human-options were able to achieve significant speed-up, par-
ticularly in the Pac-Man domain. This can be attributed to
the nature of the human-options: more general and fewer in
number, making them more desirable. Additionally this ad-
vantage clearly offsets the time spent in the interactions to
learn the components of each option. The automated options
do not do as well as human-options and we attribute this re-
sult to the redundancy in the selection of automated options.
From Table 2 it is clear that there is significant speed-up in



Model
Computation Time
(seconds)

Average Reward of
Computed Policy

Taxi Domain
Primitive
actions 17.45 -2.294

Human options 10.45 -4.294
Automated op-
tions 25.75 -4.311

Pac-Man
Primitive
actions

600 1890

Human options 60.45 1790
Automated op-
tions 120.47 1442

Table 2: Comparative listing of Computation Time and Aver-
age Reward using different action sets
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Figure 4: Steps taken per episode with Q-learning on prim-
itive actions, human-options and automatic options for the
Taxi domain.

convergence when using options (both automatic and human-
defined); however, the computed value for the options are not
as good as when using primitive actions. This idea of whether
value of the policies with primitive actions are better than
those with options has been described in Precup (2000) as
thevalue achievement property.

Figure 4 shows the learning rate of the different action sets
in terms of the number of steps in an episode of Q-learning for
the Taxi domain. The graph shows the speed-up in learning
that can be achieved when using human-options when com-
pared to automated options.

7 Discussion
From our experiments there were several insights we gained
about learning from human-options. In our first experiment
we allowed each human to devise the set of options without
receiving any feedback about the options’ performance. This
leads to a question of whether humans might be inclined to
come up with new options or maybe refine their current ones
given feedback about their performance. While we did not
test this hypothesis for this paper, we consider it to be an im-
portant question for future work.

The options given by humans, for both domains, were gen-
eral and adaptable across the state space. The advantage of

using such options over automated methods is the reduction
in the generation of redundant options. The smaller number
of human-options can be attributed to the ability of humans to
identify the important “bottleneck” states within the domain.
In addition, we observe, in Pac-Man, that the human-options
do not necessarily form a complete set in that it is not always
possible to learn the optimal policy for the entire domain us-
ing only the human-options. We can explain this result in
part by inferring that the human’s reward function is some-
what different than the reward function for the root problem.
For example, in Pac-Man, points matter less than survival.
The inclusion of an option by the human indicates that it is
relevant to the human’s reward function.

In the Pac-Man domain, we also noticed that in order to
perform optimally, the learned options were required to be
terminated before completion. For example, the options of
“go to the nearest food pellet” and “move away from ghost”
rarely run until completion. In specific states, a decision
would have to be taken to interrupt an option before comple-
tion and switch to the other in order to stay alive. This issueis
not unique to our approach and the literature describes meth-
ods to deal with this need (see for example, a heuristic based
on the value function[Precup, 2000] and a parametric form
of the termination condition[Comanici and Precup, 2010]).
Each method takes advantage of certain structural featuresof
the target domain, so it is not clear whether there is an opti-
mal mechanism for when to interrupt an option in the general
case. Our current approach does not handle this issue.

Given the kinds of temporal actions that humans seem to
provide, we propose another way of thinking about them. Hu-
mans give us two kinds of actions, ones that are sequential
and have a clear terminal state and others that run in paral-
lel and only have a failure states. The former is similar to
options while the latter can be thought of modules. Modules
are policies that are required to be run in parallel, while each
one seeks control. Learning with such competing modules
can be viewed as a Modular Reinforcement Learning prob-
lem [Samejimaet al., 2003]. We consider this to be research
direction worth pursuing for human-generated task decompo-
sitions.

8 Related Work
Our work is an instance of Interactive Machine Learning.
Argall et al. (2009) provides a broad overview of the use
of humans in the Learning by Demonstration framework.
Specifically within the RL domain, Apprenticeship Learning
[Abbeel and Ng, 2004], TAMER [Knox and Stone, 2009] and
Social Learning[Thomaz and Breazeal, 2008] describe ways
in which we can use human input to learn an optimal policy
for the given domain. These algorithms use primitive actions
for planning so can, in principal, benefit from the use of tem-
porally extended actions.

Within the scope of Interactive Machine Learning, there
has been some recent work on leveraging human information
into action abstraction that is close to our approach. Zang
et al. (2009) describe a method of automatically extracting
options from human trajectories. In their work, they assume
that the features relevant to actions are already known while



our setup extracts these features from human interaction. Co-
manici and Precup (2010) develop a policy switching algo-
rithm that iteratively decides how to switch from one option
policy to another using human examples. They assume that
the low-level behavioral policies are given as prior knowl-
edge, while in our work we extract these policies from human
examples.

Most of the previous work on learning with options either
uses an expert to design the options by hand or automatically
extracts them. The automatic methods focus on the ability to
find subgoals or bottleneck states within the domain. Heuris-
tics for selecting goal states for options have been developed
based on frequency of visit on successful trajectories[Mc-
Govern and Barto, 2001], relative novelty[Simsek and Barto,
2004], clustering algorithms[Mannoret al., 2004] and others.

In all these methods, the heuristics may be of limited appli-
cability. Worse, a human expert must understand the domain
well enough to design and encode these heuristics. By con-
trast, automated methods generate numerous options, making
them susceptible to option redundancy. Jonget al. (2008)
highlight some of the disadvantages of planning with such
options and their work motivates the need for more general-
ized options applicable to different parts of the state space.
Our approach is aimed at leveraging human information to
generate general options that serve to mitigate some of these
problems.

9 Conclusions
In this work, we have shown that everyday people can decom-
pose problems in a way consistent with the options frame-
work. Further, we can extract these options in such a way
that we learn their components. In particular, we were able to
efficiently generalize these options across the state spaceand
obtain significant speed-up in planning time. We discussed
several characteristics of human-options, including introduc-
ing the need to allow for continual interruptions.
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