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Abstract

This paper presents an algorithm for learning a
highly redundant inverse model in continuous and
non-preset environments. Our Socially Guided In-
trinsic Motivation by Demonstrations (SGIM-D) al-
gorithm combines the advantages of both social
learning and intrinsic motivation, to specialise in a
wide range of skills, while lessening its dependence
on the teacher. SGIM-D is evaluated on a fishing
skill learning experiment.

1 Approaches for Adaptive Personal Robots

The promise of personal robots operating in human environ-
ments to interact with people on a daily basis points out the
importance of adaptivity of the machine to its changing and
unlimited environment, to match its behaviour and learn new
skills and knowledge as the users’ needs change.

In order to learn an open-ended repertoire of skills, devel-
opmental robots, like animal or human infants, need to be en-
dowed with task-independent mechanisms to explore new ac-
tivities and new situations [Weng ef al., 2001; Asada et al.,
2009]. The set of skills that could be learnt is infinite but can
not be learnt completely within a life-time. Thus, deciding
how to explore and what to learn becomes crucial. Exploration
strategies of the recent years can be classified into two fami-
lies: 1) socially guided exploration; 2) internally guided explo-
ration and in particular instrinsically motivated exploration.

1.1 Socially Guided Exploration

To build a robot that can learn and adapt to human envi-
ronment, the most straightforward way might be to transfer
knowledge about tasks or skills from a human to a machine.
Several works incorporate human input to a machine learn-
ing process, for instance through human guidance to learn
by demonstration [Chernova and Veloso, 2009; Lopes et al.,
2009; Cederborg et al., 2010; Calinon, 2009] or by physi-
cal guidance [Calinon et al., 2007], through human control
of the reinforcement learning reward [Blumberg ef al., 2002;
Kaplan et al., 2002], through human advice[Clouse and Ut-
goff, 1992], or through human tele-operation during training
[Smart and Kaelbling, 2002]. However, high dependence on
human teaching is limited because of human patience, am-
biguous human input, the correspondence problem [Nehaniv
and Dautenhahn, 2007], etc. Increasing the learner’s auton-
omy from human guidance could address these limitations.
This is the case of internally guided exploration methods.

1.2 Intrinsically Motivated Exploration

Intrinsic motivation, an example of internally guided explo-
ration, has drawn attention recently, especially for open-ended

cumulative learning of skills [Weng er al., 2001; Lopes and
Oudeyer, 2010]. The word intrinsic motivation in psychol-
ogy describes the attraction of humans toward different ac-
tivities for the pleasure they experience intrinsically. This
is crucial for autonomous learning and discovery of new
capabilities [Ryan and Deci, 2000; Deci and Ryan, 1985;
Oudeyer and Kaplan, 2008]. This inspired the creation of fully
autonomous robots [Barto et al., 2004; Oudeyer et al., 2007,
Baranes and Oudeyer, 2009; Schmidhuber, 2010; Schembri
et al., 2007] with meta-exploration mechanisms monitoring
the evolution of learning performances of the robot, in or-
der to maximise informational gain, and with heuristics defin-
ing the notion of interest [Fedorov, 1972; Cohn er al., 1996;
Roy and McCallum, 2001].

Nevertheless, most intrinsic motivation approaches address
only partially the challenges of unlearnability and unbounded-
ness [Oudeyer et al., to appear]. As interestingness is based
on the derivative of the evolution of performance of acquired
knowledge or skills, computing measures of interest requires
a level of sampling density that decreases the efficiency as
the level of sampling grows. Even in bounded spaces, the
measures of interest, mostly non-stationary regressions, face
the curse of dimensionality [Bishop, 2007]. Thus, without
additional mechanisms, the identification of learnable zones
where knowledge and competence can progress, becomes in-
efficient. The second limit relates to unboundedness. If the
measure of interest depends only on the evaluation of perfor-
mances of predictive models or of skills, it is impossible to
explore/sample inside all localities in a life time. Therefore,
complementary mechanisms have to be introduced in order
to constrain the growth of the size and complexity of practi-
cally explorable spaces and allow the organism to introduce
self-limits in the unbounded world and/or drive them rapidly
toward learnable subspaces. Among constraining processes
are motor synergies, morphological computation, maturational
constraints as well as social guidance.

1.3 Combining Internally Guided Exploration and
Socially Guided Exploration

Intrinsic motivation and socially guided learning, traditionally
opposed, yet strongly interact in the daily life of humans. Both
approaches have their own limits, but combining both could on
the contrary solve them.

Social guidance can drive a learner into new intrinsically
motivating spaces or activities which it may continue to ex-
plore alone for their own sake, but which might have been
discovered only thanks to social guidance. Robots may ac-
quire new strategies for achieving those intrinsically motivated
activities by external observation or advice. Reinforcement
learning can let the human directly control the actions of a
robot agent with teleoperation to provide example task demon-
strations [Peters and Schaal, 2008; Kormushev et al., 2010]



which initialize the learning process by imitation learning and
subsequently, improve the policy by reinforcement learning.
Nevertheless, the role of the teacher here is restricted to the
initialisation phase. Moreover, these works aim at one partic-
ular preset task, and do not explore the whole world.

Inversely, as learning that depends highly on the teacher
quickly discourages the user from teaching to the robot, in-
tegrating self-exploration to social learning methods could re-
lieve the user from overly time-consuming teaching. More-
over, while self-exploration tends to result in a broader task
repertoire, guided-exploration with a human teacher tends to
be more specialised, with fewer tasks but faster learnt. Com-
bining both can thus bring out a system that acquires a wide
range of knowledge which is necessary to scaffold future
learning with a human teacher on specifically needed tasks.

In initial work in this direction has been presented in
[Thomaz and Breazeal, 2008; Thomaz, 2006], Socially
Guided Exploration’s motivational drives, along with social
scaffolding from a human partner, bias the behaviour to create
learning opportunities for a hierarchical Reinforcement Learn-
ing mechanism. However, the representation of the continuous
environment by the robot is discrete and the set up is a limited
and preset world, with few primitive actions possible.

We would like to address the learning in the case of an un-
bounded, non-preset and continuous environment. This pa-
per introduces SGIM (Socially Guided Intrinsic Motivation),
an algorithm to deal with such spaces, by merging socially
guided exploration and intrinsic motivation. The next section
describes SGIM’s intrinsic motivation part before its social in-
teraction part. Then, we present the fishing experiment and its
results.

2 Intrinsic Motivation : the SAGG-RIAC
Algorithm

In this section we introduce Self-Adaptive Goal Genera-
tion - Robust Intelligent Adaptive Curiosity, an implementa-
tion of competence-based intrinsic motivations [Baranes and
Oudeyer, 2010]. We chose this algorithm as the intrinsi-
cally motivation part of SGIM for its efficiency in learning
a wide range of skills in high-dimensional space including
both easy and unlearnable subparts. Moreover, its goal di-
rectedness allows bidirectional merging with socially guided
methods based on feedback on either goal and/or means. Its
ability to detect unreachable spaces also makes it suitable for
unbounded spaces.

2.1 Formalisation of the Problem

Let us consider a robotic system which configurations/states
are described in both a state space X (eg. actuator space),
and an operational/task space Y. For given configurations
(x1,91) € X x Y, an action ¢ € A allows a transition to-
wards the new states (x2,y2) € X x Y. We define the action
a as a parameterised dynamic motor primitive. While in clas-
sical reinforcement learning problems, a is usually defined as
a sequence of micro-actions, parameterised motor primitives
consist in complex closed-loop dynamical policies which are
actually temporally extended macro-actions, that include at the
low-level long sequences of micro-actions, but have the advan-
tage of being controlled at the high-level only through the set-
ting of a few parameters. The association M : (z1,y1,a) —
(22, y2) corresponds to a learning exemplar that will be mem-
orised, and the goal of our system is to learn both the forward

and inverse models of the mapping M. We can also describe
the learning in terms of tasks, and consider y as a goal which
the system reaches through the means a in a given context
(1,y1). In the following, both points of view will be used
interchangeably.

2.2 Global Architecture of SAGG-RIAC

SAGG-RIAC is a multi-level active learning algorithm and
consists in pushing the robot to perform babbling in the goal
space by self-generating goals which provide a maximal com-
petence improvement for reaching those goals. Once a goal is
set, a lower level active motor learning algorithm locally ex-
plores how to reach the given self-generated goal. The SAGG-
RIAC architecture is organised into 2 levels :

e A higher level of active learning which decides what to
learn, sets a goal y, € Y depending on the level of
achievement of previous goals, and learns at longer time
scale.

o A lower level of active learning that attempts to reach the
goal y, set by the higher level and learns at shorter time
scale.

2.3 Lower Level Learning

The lower level is made of 2 modules. The Goal Directed
Low-Level Interest Computation module guides the system to-
ward the goal y, and creates a model of the world that may
be reused afterwards for other goals. The Goal-Directed Low
Level Actions Interest Computation module measures the in-
terest level of the goal y, by Sim, a function representing the
similarity between the final state y; of the reaching attempt,
and the actual goal y,. The exact definition depends on the
specific learning task, but Sim is to be defined in [—o0;0],
such that the higher Sim(y,,yy, p), the more efficient the
reaching attempt is.

2.4 Higher Level Learning

The two modules of the higher level compute the interesting
goals to explore, depending on the performance of the short-
term level and the previous goals already explored.

The Goal Interest Computation module relies on the feed-
back of the lower level to map the interest level in the task
space Y. The interest interest; of a region R; C Y is the
local competence progress, over a sliding time window of the
¢ more recent goals attempted inside R;:
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where {y1, Y2, ..., Yk } r, are elements of R; indexed by their
relative time order of experimentation and -, is the the com-
petence of y; € R; and defined with respect to the similarity
between the final state ; of the reaching attempt, and the ac-
tual goal y; :

if Szm(yJ,yf, p) < Esim < 0

_ J Sim(y;,yz.p)
Vi 0 otherwise

The Goal Self-Generation module uses the measure of inter-
est to split Y into subspaces to maximally discriminate areas



according to their levels of interest and select the region where
future goals will be chosen.

The goal self-generation mechanism involves random ex-
ploration of the space in order to map the level of interest for
the different subparts. This prevents it from exploring effi-
ciently large goal spaces containing small reachable subparts
because of the need for discrimination of these subparts from
unreachable ones. In order to solve this problem, we propose
to bootstrap intrinsic motivation with social guidance. In the
following section, we review different kinds of social inter-
actions modes then describe our algorithm SGIM-D (Socially
Guided Intrinsic Motivation by Demonstration).

3 SGIM Algorithm

3.1 Formalisation of the Social Interaction

Within the problem of learning the forward and the inverse
models of the mapping M : (x1,y1,a) — (z2,y2), we would
like to introduce the role of a human teacher to boost the learn-
ing of the means a and goal y, in the contexts (z1, y1) and set
a formalisation of the case where an imitator is trying to build
good world models and where paying attention to the demon-
strator is one strategy for speeding up this learning. Given the
model estimated by the robot Mg, and by the human teacher
My, we can consider social interaction as a transformation
SocInter : (Mg, Mp) — (M2g, M2p). The goal of the
learning is that the robot acquires a perfect model of the world,
ie. that Socinter(Mpr, Mu) = (Mperfect, Mperfect). SO-
cial interaction is a combination of: the human teacher’s be-
haviour or guidance SocIntery and the machine learner’s be-
haviour SocInterr. We presume a transparent communica-
tion between the teacher and the learner, i.e. the teacher can
access the real visible state of the robot as a noiseless function
of its internal state visibler(Mp). Let us note visiblep the
“perfect visible state” of the robot, i.e. the value of the visible
states of the robot when its estimation of the model is perfect:
Mg = Mperfect- Moreover, we postulate that the teacher is
omniscient, his estimation of the model is the perfect model
My = Mperfect. Therefore, our social interaction is a trans-
formation SocInter : Mg — M.

In order to define the social interaction that we wish to con-
sider, we need to peruse the different possibilities.

3.2 Analysis of Social Interaction Modes

First of all, let us define which type of interaction takes place,
and what role we shall give to the teacher. Taking inspiration
from psychology, such as the use of motherese in child de-
velopment [Breazeal and Aryananda, 2002] or the importance
of positive feedback [Thomaz and Breazeal, 2008], reward-
like feedback seems to be important in learning. They typi-
cally provide an estimation of a distance between the robot’s
visible state and its “perfect visible state” : SocIntery ~

dist(visibleg, visibler). Yet, this cheering needs to be com-
pleted by games where parents show and instruct children in-
teresting cases and help children reach their goals. Therefore,
we prefer a demonstration type of interaction. Besides, social
interaction can be separated into two broad categories of so-
cial learning [Call and M., 2002]: imitation where the learner
copies the specific motor patterns a, and emulation where the
learner attempts to replicate goal states y» € Y. To enable
both imitation and emulation and influence the learner both
from the action and goal point of view, we provide the learner
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Figure 1: Structure of SGIM-D (Socially Guided Intrinsic Motiva-
tion by Demonstration). SGIM-D is organised into 2 levels.

with both a means and a goal examples: SocIntery € AXY.
Indeed, the teacher who shows both a means and a goal offers
the best opportunity for the learner to progress, for the learner
can use both the means or the goal-driven approach.

Our next question is: when should the interaction occur?
For the robot’s adaptability or flexibility to the changing en-
vironment and demand from the user, interactions should take
place throughout the learning process. In order to test the effi-
ciency of our algorithm and control the way interactions occur,
we choose to trigger the interaction at a constant frequency.

Lastly, to induce significative improvement of the learner,
we shall provide him with demonstrations in a not yet learned
subspace, in order to make the robot explore new goals and
unexplored subspaces.

So as to bootstrap a system endowed with intrinsic moti-
vation, we choose a learning by demonstration of means and
goals, where the teacher introduces at regular pace a random
demonstration among the unreached goals for SGIM-D.

3.3 Description of SGIM-D Algorithm

This section details how SGIM learns an inverse model in a
continuous, unbounded and non-preset framework, combining
both intrinsic motivation and social interaction. Our Socially
Guided Intrinsic Motivation algorithm merges SAGG-RIAC
as intrinsic motivation, with a learning by demonstration, as
social interaction. SGIM-D includes two different levels of
learning (fig. 1).

Higher Level Learning

The higher level of active learning decides which goal (x4, y2)
is interesting to explore and contains 3 modules. The Goal
Self-Generation module and the Goal Interest Computation
module are as in SAGG-RIAC. The Social Interaction module
manages the interaction with the human teacher. It interfaces
the social guidance of the human teacher SocIntery with the
Goal Interest Computation Module and interrupts the intrin-
sic motivation at every demonstration by the teacher. It first
triggers an emulation effect, as it registers the demonstration
(@demos Ydemo) in the memory of the system and gives it as in-
put to the goal interest computation module. It also triggers the
imitation behaviour and sends the demonstrated action agemo
to the Imitation module of the lower level.

Lower Level Learning

The lower level of active learning also contains 3 modules.
The Goal Directed Exploration and Learning module and the
Goal Directed Low Level Actions Interest Computation mod-
ule, as in SAGG-RIAC, use My to reach the self-generated
goal (z2,y2). The Imitation module interfaces with the high-
level Social Interaction module. It tries small variations to ex-
plore in the locality of agemo and help address the correspon-
dence problem in the case of a human demonstration which
does not use the same parametrisation as the robot.
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Flgure 2: Fishing experimental setup. Our 6-dof robot arm manipulates a fishing rod.
Each joint is controlled by a bezier curve parameterised by 4 scalars (initial, middle and
final joint position and a duration). We track the position of the hook when it reaches the
water surface.

The above description is detailed for our choice of SGIM

by Demonstration. Such a structure remains suitable for other
choices of social interaction modes, we only have to change
the content of the Social Interaction module, and change the
Imitation module to the chosen behaviour. Our structure, no-
tably, can deal with cases where the intrinsically motivated
part gives a feedback to the teacher, as the Goal Interest Com-
putation module and the Social Interaction module communi-
cate bilaterally. For instance, the case where the learner asks
the teacher for demonstrations can still use this structure.

We have hitherto presented intrinsic motivation’s SAGG-
RIAC and analysed social learning and its different modes,
to design Socially Guided Intrinsic Motivation by Demonstra-
tion (SGIM-D) that merges both paradigms, to learn a model
in a continuous, unbounded and non-preset framework. In the
following section we use SGIM-D to learn fishing skill.

4 Fishing Experiment

This fishing experiment focuses on the learning of inverse
models in a continuous space, and deals with a very high-
dimensional and redundant model. The model of a fishing rod
in a simulator might be mathematically computed, but a real-
world fishing rod’s dynamics would be impossible to model.
A learning system of such a case is therefore interesting.

4.1 Experimental Setup

Our continuous environment sets a 6 degrees-of-freedom robot
arm that learns how to use a fishing rod (fig. 2), i.e. for a given
goal position y, where the hook should reach when falling into
the water, which action a to perform.

In our experiment, X describes the actuator/joint positions
and the state of the fishing rod. Y is a 2-D space that describes
the position of the hook when it reaches the water.The robot
always starts with the same initial position, 1 and y; always
take the same values z,,.4 and y,,,. Variable a describes the
parameters of the commands for the joints. We choose to con-
trol each joint with a Bezier curve defined by 4 scalars (initial,
middle and final joint position and a duration). Therefore an
action is represented by 24 parameters: a = (a',a?,...a**)
define the points ¢ = (q', ¢?,...¢°%) of the Bezier curve and
then the joint positions made physically consistent which the
robot attains sequentially . Because our experiment uses at
each trial the same context (gr:org7 yorg), our system memorises
after executing every action a only the association (a, y2) and
learns the context-free association M : a — ys.

The experimental scenario sets the robot to explore the
task space through intrinsic motivation when it is not inter-

rupted by the teacher. After P movements, the teacher in-
terrupts whatever the robot is doing, and gives him an ex-
ample (Gdemos, Ydemo)- The robot first registers that exam-
ple in its memory as if it were its own. Then, the Imitation
module tries to imitate the teacher with movement parameters
Aimitate = Qdemo + Grand WhEre arqng 1S a random move-
ment parameter variation, so that |a,qnq4| < €. At the end
of the imitation phase, SAGG-RIAC resumes the autonomous
exploration, taking into account the new set of experience. We
hereafter describe the low-level exploration, specific to this
problem.

4.2 Empirical Implementation of the Low-Level
Exploration

Let us first consider that the robot learns to reach a fixed goal

position y, = (y2,y2). We first have to define the similarity

function Sim with respect to the euclidian distance D :
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To learn the inverse model InvModel : y — a, we use the
following optimisation mechanism which can be divided into:
a exploitation regime and an exploration regime.

Exploitation Regime

The exploitation regime uses the memory to locally interpo-
late an inverse model. Given the high redundancy of the
problem, we chose a local approach and extract the most
reliable data by computing the set L of the [,,,, nearest
neighbours of y, and their corresponding movement param-
eters using an ANN method [Muja and Lowe, 2009] which
is based on a tree split using the k-means process: L =
{(y,a)1, (y,a)2, -, (y, @)1, } C (¥ X A)fmes,

Then, for each element (y,a); € L, we compute
its reliability. Let K; be the set of the k,,,, nearest
neighbours of a; chosen from the full dataset : K; =
{(y,a)1, (y,a)2, ..., (y,a),.. },» and var; is the variance of
K. As the reliability of a movement depends both on the lo-
cal knowledge and its reproductivity, we define the reliability
of (y,a); € L as dist(y;, yq) +a X var;, where « is a constant
(o = 0.5 in our experiment). We choose among L the smallest
value, as the most reliable set (y, a)pest-

In the locality of the set (y,a)pest, We interpolate using
the k4. elements of K. to compute the action corre-
sponding to y, : a; = ZQZ‘{“ coefrap where coefy, ~
Gaussian(dist(yx, yg)) is a normalized gaussian.

Exploration Regime

The system just uses a random movement parameter to ex-
plore the space. It continuously estimates the distance be-
tween the goal y, and the closest already reached position
Ye, dist(Ye, yg). The system has a probability proportional to
dist(y.,y,) of being in the exploration regime, and the com-
plementary probability of being in the exploitation regime.

4.3 Simulations

The experimental setup has been designed for a human
teacher. Nevertheless, to test our algorithm, to control better
the demonstrations of the teacher, to be able to run statistics,
and as starting point, we used V-REP physical simulator with
ODE physics engine, which updates every 50 ms. The noise
of the control system of the 3D robot is estimated to 0.073
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Figure 3: Maps of the benchmark points used to assess the performance of the robot,
and the teaching set, used in SGIM.
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Figure 4:
goal space (y1 s y2). On each row shows the timeline of the cumulated set of points
throughout 5000 random movements. Each row represents a different learning algorithm
: random input parameters, SAGG RIAC and SGIM-D.

Histograms of the positions explored by the fishing rod inside the 2D

for 10 attempts of 20 random movement parameters while the
reachable area spans between -1 and 1 for each dimension.
Per experiment, we ran 5000 movements and assessed the per-
formance on a 129 points benchmark set (fig. 3) every 250
movements. After several runs of random explorations and
SAGG-RIAC, we determined the apparent reachable space as
the set of all the reached points in the goal/task space, which
makes up some 70 000 points. We then divided the space into
small squares, and generated a point randomly in each square.
Using a 26 x 16 grid, we obtained a set of 129 goal points
in the task space, representative of the reachable space, and
independent of the experiment data used.

Likewise, we prepared a teaching set of 27 demonstrations
(fig. 3) and defined in the reachable space small squares
subY . To each subY’, we will choose a demonstration (a, y)
so that y € subY. So that the teacher gives the most use-
ful demonstration, we compute M ;' (subY’) {a|My
a — y € subY}. We tested all the movement parameters
a € M}}l(subY) to choose the most reliable one agemo, i€,
the movement parameters that resulted in the smallest variance

in the goal space agemo = min{var(MH(a)))}aeMI;l(Suby).

4.4 Experimental results

A Wide Range of Skills

We ran the experiment in the same conditions but with differ-
ent learning algorithms, and plotted in fig. 4 the histogram
of the positions of the fishing rod when it reaches the water
surface. The Ist line of fig. 4 shows that a natural position
lies around (0.5, 0) in the case of an exploration with random
movement parameters. Most movements parameters map to
a position of the hook around that central position. The sec-
ond line of fig. 4 shows the histogram in the task space of
the explored points under SAGG-RIAC algorithm throughout
different timeframes. Compared to a random parameters ex-
ploration, SAGG-RIAC has increased the explored space, and
most of all, explores more uniformly the explorable space. The

——SGIM when task space is small
SAGG-RIAC when task space is small

““““ SGIM when task space s large

““““ SAGG-RIAC when task space is large

—— demonstrations only, when task space is small
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Figure 5: Evaluation of the performance of the robot under the learning algorithms:
SAGG-RIAC and SGIM-D, when the task space is small or 20 times larger. We plotted
the mean distance to the benchmark pmnm over several runs of the experiment.

Flgure 6: Hlstograms of the goals set by the Goal Self Generatlon Module when
the task space is large. The different figures correspond to the results for different runs of
the experiment with SAGG-RIAC algorithm (1st row) and SGIM-D algorithm (2nd row).
Both rows figures have been zoomed and centred on the reachable space

regions of interest change through time as the system finds
new interesting subspaces to explore. Intrinsic motivation ex-
ploration results in a wider repertoire for the robot. Besides,
Fig. 4 highlights a region around (—0.5, —0.25) that was ig-
nored by both the random exploration and SAGG-RIAC, but
was well explored by SGIM-D. This isolated subspace cor-
responds to a tiny subspace in the parameters space, seldom
explored by the random exploration or seen by SAGG-RIAC
which was focusing on the subspaces around the places it al-
ready explored. On the contrary, in SGIM, the teacher gives
a demonstration that brings new competence to the robot, and
triggers the system’s interest to define the area as interesting.

Precision

To assess the precision of its learning, and compare its perfor-
mance in large spaces, we plotted the performance of SAGG-
RIAC, SGIM-D and when performing only variations of the
teacher’s demonstrations (with the same number of demon-
strations as with SGIM-D). Fig. 5 shows the mean error for
the benchmark in the case of a task space bounded close to the
reachable space, and when we multiplied the size by 20. In
the case of the small task space, the plots show that SGIM-D
performs better than SAGG-RIAC or the learning by demon-
strations alone. As expected, performance decreases when the
size of the task space increases (cf. section 1). However it
improves with SGIM-D, and the difference between SAGG-
RIAC and SGIM-D is more important in the case of a large the
task space, thus the improvement is most significative when
the task space size increases.

Identification of the reachable space

This difference in the performance is explained by Fig 6,
which plots the histogram of the set of the self-generated goals
and the subspaces explored by the robot. We can see that in
the second row, most goals are within the reachable space, and
cover mostly the reachable space. This means the SGIM-D



could differentiate the reachable subspaces from the unreach-
able subspaces. On the contrary, the first row shows goal
points that appear disorganised : SAGG-RIAC has not iden-
tified which subspaces are unreachable. Demonstrations given
by the teacher improved the learner’s knowledge of the inverse
model InvModel. We also note that the demonstrations oc-
curred only once every 150 movements, meaning that even
a slight presence of the teacher can improve significantly the
performance of the autonomous exploration. In conclusion,
SGIM-D improves the precision of the system with little inter-
vention from the teacher, and helps point out key subregions
to be explored. The role of SGIM-D is most significant when
the size of the task space increases.

5 Conclusion and Future Work

Our experiment shows that SGIM learns a model of its envi-
ronment, and little intervention from the teacher can improve
its learning compared to demonstrations alone or SAGG-
RIAC, especially in the case of a large task space. Even though
the teacher is not omniscient, he can transfer his knowledge to
the learner and bootstrap autonomous exploration.

Nevertheless, in this initial validation study in simulation,
we made strong supposition about the teacher. He has the
same motion generation rules than the robot, and is omniscient
so that he teaches the robot the reachable space. A study of a
non-omniscient teacher should show how his demonstrations
bias the subspaces explored by the robot. Experiments with
human demonstrations need to be conducted to address the
problems of correspondence and biased teacher. Albeit these
suppositions, our simulation indicates that SGIM-D success-
fully combines learning by demonstration and autonomous ex-
ploration even in an experimental setup as complex as having
a continuous 24-dimension action space.

This paper introduces Socially Guided Intrinsic Motiva-
tion by Demonstration, a learning algorithm for models in
a continuous, unbounded and non-preset environment, which
efficiently combines social learning and intrinsic motivation.
It proposes a hierarchical learning with a higher level that de-
termines which goals are interesting either through intrinsic
motivation or social interaction, and a lower-level learning that
endeavours to reach it. Our framework takes advantage of the
demonstrations of the teacher to explore unknown subspaces,
to gain precision, and efficiently identify the reachable space
from the unreachable space even in large task spaces thanks to
the knowledge transfer from the teacher to the learner. It also
takes advantage of the autonomous exploration to improve its
performance in a wide range of tasks in the teacher’s absence.

In our experiment, the robot imitates the teacher for a fixed
duration before returning to emulation mode where SGIM-D
takes into account the goal of this new data. However, future
work on a more natural and autonomous algorithm to switch
between imitation and emulation could improve the efficiency
of the system.
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