
Multiagent Supervised Training with Agent
Hierarchies and Manual Behavior Decomposition

Keith Sullivan Sean Luke
Department of Computer Science

George Mason University, Fairfax, VA, USA
{ksulliv2, sean}@cs.gmu.edu

Abstract

We present a supervised learning from demonstra-
tion system capable of training stateful and recurrent
behaviors, both in the single agent and multiagent
case. Furthermore, behavior complexity due to state-
fulness and multiple agents can result in a high di-
mensional learning space, which can require many
samples to learn properly. Our approach, which
relies heavily on both per-agent behavior decompo-
sition and structuring agents into a tree hierarchy,
can significantly reduce the number of samples and
make such training feasible. We demonstrate our
system in a simulated collective foraging task where
all the agents execute the same behavior set. We
also discuss how to extend our approach to a hetero-
geneous case, where different subgroups of agents
perform different behaviors.

1 Introduction
We present a system for interactive real-time training of behav-
iors for potentially large groups of robots or software agents
via supervised learning from demonstration. We are interested
in relatively “complex” behaviors, by which we mean ones
which can involve many internal states, make probabilistic
decisions, are heavily recurrent, are parameterizable, and exist
at both the agent level and at the group level.

We realize that this is a tall order for three major reasons.
First, single-agent stateful, recurrent behaviors present a learn-
ing problem of potentially high dimensionality: but real-time
learning from demonstration yields only a small number of
training examples, which may be inadequate to model the
space. Second, the design space for multiagent behaviors does
not scale gently: as the number of agents grows, the emergent
macrophenomena which arise from their interactions can be-
come more complex and difficult to predict, again presenting
a dimensionality problem for the learner, particularly if the
group of agents are heterogeneous. Third, these emergent
macrophenomena presents a daunting inverse problem for su-
pervised learning methods. Such methods usually require that
the agents be given samples of which micro-level behaviors
to perform in various situations: but the experimenter does
not know this — he only (qualitatively) knows the macro-level

behavior he wishes to produce, and may not be clear what
micro-level behaviors will produce this (due to emergence).

Still, we believe that we can make some progress. Our ap-
proach tackles these issues in two ways: by using manual task
decomposition to learn hierarchies of behaviors within agents;
and second, by organizing the agents into a tree-structured
hierarchy of agents. Both of these “hierarchical” mechanisms
enable a divide-and-conquer approach to simplifying the prob-
lem, albeit in different ways. We discuss each next.

Hierarchical Trained Behaviors We manually decompose
the task into a hierarchy of subtasks, and train a behavior for
each subtask. Lower level behaviors are composed into more
complex behaviors via scaffolding. Each behavior is a finite-
state automaton whose states are previously-learned automata
or hard-coded behaviors: the learner develops the transition
function between the states. Task decomposition allows us to
project the complex learning problem into multiple smaller, of-
ten trivial, subproblems. It also allows us to reduce the feature
space on a per-subproblem basis. Finally, our behaviors are
parameterizable (“go to A” versus “go to the door”), allowing
them to be reused in different contexts.

Agent Hierarchies We partition the agents into a tree hi-
erarchy of subgroups, with basic agents as leaf nodes and
controller agents as non-leaf nodes in a forest of trees. We
recognize that a tree structure has disadvantages, notably rigid-
ity of organization. However, we feel that the simplicity of a
tree offers advantages in our system. Importantly, this hierar-
chy allows us to run the gamut from fully-distributed (each
agent is its own one-node tree) clear to completely centralized
(all agents are grouped under a single root controller). For
example, we could create a multilayer hierarchy with level-
1 controller agents each in charge of small squads of basic
agents, then level-2 controller agents each in charge of larger
groups of level-1 controller agents, and finally a root-level
controller agent. Controller agents may be trained in a fashion
essentially the same as basic agents.

We imagine that agent hierarchies and controller agents are
most useful when they enable behavior heterogeneity in the
group (directing different subgroups to perform different tasks,
for example). We are ultimately working towards this end:
but for now we have been working solely with homogeneous
multiagent hierarchical behaviors. Even this can be useful,
however, in breaking the group into coordinating subgroups.



In this paper we give an example of a successfully trained
multiagent collective foraging task. We compare separate
agents versus a single layer hierarchy versus a two layer hier-
archy. We also compare the performance of trained behaviors
to that of hard-coded behaviors. While we can (and do) run the
system on robots, in this paper we demonstrate in simulation
due to the number of agents involved.

2 Previous Work
Our approach touches on a variety of subareas in the multia-
gent learning and learning from demonstration literature. We
discuss some of them below.

Much of the robot learning from demonstration literature
may be divided into systems which learn plans (for exam-
ple [Nicolescu and Mataric, 2002; Veeraraghavan and Veloso,
2008]) and those which learn policies, that is, stateless map-
pings from the agent’s feature vector to a desired action [Ben-
tivegna et al., 2004; Dinerstein et al., 2007; Kasper et al., 2001;
Nakanishi et al., 2004]. Some work involves stateful models
related to ours, notably via Hidden Markov Models. For ex-
ample, [Hovland et al., 1996] treat states not as behaviors but
as hidden world conditions which the learner is attempting
to discover and optimize for. [Goldberg and Mataric, 2002]
learns transitions between states corresponding to behaviors,
though it does not label the transitions.

Task decomposition and iterative hierarchical learning is
a natural way to achieve layered learning [Stone and Veloso,
2000]. Such approaches can be done to learn policies: perhaps
most similar to ourselves is [Saunders et al., 2006], who train
sequences and stateless policies iteratively built on earlier ones.
Plans may also be decomposed, then iteratively learned in a
similar fashion fashion [Nicolescu and Mataric, 2002].

One of the primary challenges addressed by this paper is
in applying learning from demonstration — at its heart a su-
pervised task — to the multiagent case. As noted in [Panait
and Luke, 2005], supervised learning methods are not very
common in multiagent learning: by far the lion’s share of liter-
ature is based on reward-based methods such as reinforcement
learning or stochastic optimization. Of those supervised meth-
ods, many fall in the category of agent modeling, where agents
learn about one another rather than about a task given to them
by demonstrator. For example, in the celebrated [Stone and
Veloso, 2000], the supervised task (“pass evaluation”) is rea-
sonably described as agent modeling, while the full multiagent
learning task (“pass selection”) uses reinforcement learning.
Multiagent learning may also be achieved via confidence esti-
mation rather than reinforcement learning [Chernova, 2009].

3 Agent Behaviors
Each agent in our world learns a set of one or more behaviors.
Each of these behaviors takes the form of a hierarchy of finite-
state automata in the form of Moore machines. An automaton
is a tuple 〈S,F,T,B〉 ∈H defined as follows:
• S = {S1, ...,Sn} is the set of states in the automaton.

Among other states, there is one start state S1 and zero or
more flag states. Exactly one state is active at a time, des-
ignated St . The states are internal states of the automaton,
not world states as we do not model world situations.

• B = {B1, ...,Bk} is the set of basic (hard-coded) behav-
iors. Each state is associated with either a basic behavior
or another automaton from H , with the stipulation that
recursion is not permitted.

• F = {F1, ...,Fm} is the set of observable features in the
environment. At any given time, each feature has a nu-
merical value. The collective values of F at time t is the
environment’s feature vector ~ft = 〈F1, ...,Fm〉.
• T = F1× ...×Fm×S→ S is the transition function which

maps the current state St and the current feature vector ~ft
to a new state St+1.

• We generalize the model with free variables (parameters)
G1, . . . ,Gn for basic behaviors and features. We replace
each behavior Bi with Bi(G1, . . . ,Gn) and feature Fi with
Fi(G1, . . . ,Gn). The evaluation of the transition function
and the execution of behaviors will both be based on
ground instances (targets) of the free variables.

An automaton starts in its start state S1, whose behavior
simply idles. Each timestep, while in state St , the automaton
queries the transition function to determine the next state St+1,
transitions to this state, and if St 6= St+1, stops performing
St’s behavior and starts performing St+1’s behavior. Finally,
St+1’s behavior is pulsed. If the associated behavior is itself an
automaton, this pulsing process recurses into that automaton.

Features may describe both internal and external (world)
conditions, and may be toroidal (such as “angle to goal”),
continuous (“distance to goal”), or categorical or boolean
(“goal is visible”).

The purpose of a flag state is simply to raise a flag in the
automaton to indicate that the automaton believes that some
condition is now true. Two obvious conditions might be done
and failed, but there could be others. Flags in an automaton
appear as optional features in its parent automaton. For exam-
ple, the done flag may be used by the parent to transition away
from the current automaton because that automaton believes it
has completed its task.

Behaviors and features may be optionally assigned one or
more parameters: rather than have a behavior called go to
the ball, we can create a behavior called goTo(A), where A is
left unspecified. Similarly, a feature might be defined not as
distance to the ball but as distanceTo(B). If such a behavior or
feature is used in an automaton, either its parameter must be
bound to a specific target (such as “the ball” or “the nearest
obstacle”), or it must be bound to some higher-level parent
C of the automaton itself. Thus finite-state automata may
themselves be parameterized.

3.1 Training a Single-Agent Behavior
We build a “complex” agent behavior by first manually decom-
posing it into a hierarchy of N smaller behaviors, then train
each of those behaviors bottom-up until we have constructed
(via scaffolding) the “complex” one. We begin with a behavior
library consisting of basic (hard-coded) behaviors available to
the agent. Members of the behavior library form the available
states of the new behavior presently being trained. Each time
a behavior is learned, it is entered into the behavior library
and made available as a state for upcoming trained behaviors.



Forage Forage Forage Forage Forage Forage Forage Forage

Get Box 2 Search Search Get Box 3 Get Box 3Get Box 1 Get Box 1 Get Box 2

Forage Forage ForageForage

Get Box 9 Search Search Get Box 3 Get Box 3Get Box 9 Get Box 9 Get Box 9

Get Box 9 Get Box 9 ForageForage

Forage Forage

Figure 1: Structures used in the Experiments. At top is the
fully distributed structure, with each agent running an identical
copy of the same behavior (and behavior libraries). Center is
a simple one-level hierarchical structure, with agents grouped
under one level of controller agents. At bottom is a simple
two-level hierarchical structure, with level-1 controller agents
grouped under various level-2 controller agents. All agents
under a controller agent run the same behavior, though the cur-
rent state of that behavior may vary depending on the current
situation of the subgroup rooted by that agent.

To train a behavior, we place the agent into training mode,
where it performs exactly those behaviors directed by the
user. Each time the user directs the agent to perform some
new behavior, the agent records a training example: a triple
〈Bt , ft ,Bt+1〉 consisting of the current behavior Bt , the cur-
rent feature vector ft , and the desired new behavior Bt+1. If
behavior Bt+1 should be executed only once, then no addi-
tional examples are recorded. Otherwise, another example
is recorded of the form 〈Bt+1, ft ,Bt+1〉 (saying “if I am do-
ing Bt+1, and the world looks like ft , continue doing Bt+1”).
The feature vector is specified by the user from a library of
predefined but parameterizable features appropriate to the task.

After directing the agent for some time, the user then
switches to testing mode, which causes the agent to learn
the finite-state automaton. Since the automaton’s states are
fixed (they correspond to the behaviors currently in the behav-
ior library), the training process simply learns the transition
functions for the states in the automaton. To learn the transi-
tion function for a given state Si and associated behavior Bi,
we take all recorded examples of the form 〈Bi, fa,Bb〉, then re-
duce them to simply 〈 fa,Bb〉, which form points fa with labels
Bb for a classification algorithm. At present our classification
algorithm is a C4.5-style decision tree with probabilistic leaf
nodes: but most any classification algorithm could be used.
The resulting classifiers form the transition functions for the

automaton. Unused states in the automaton are trimmed and
the automaton is saved to the library. Finally, if a learned
automaton uses a parameterized behavior or feature, each such
parameter must either be bound to a ground target (“the nearest
ball”) or to a parameter of the automaton itself.

During testing mode an agent performs the learned behavior
interactively with the user. If the user notices a wayward
action, he may step in at any time, immediately transferring
the agent back to training mode, and correct the action, adding
more examples, then reenter testing mode. For a more detailed
discussion of the single agent model see [Luke and Ziparo,
2010; Sullivan et al., 2010].

3.2 Homogeneous Multiagent Hierarchies
We wish to develop not just single-agent behaviors but collec-
tive multiagent behaviors. The obvious (distributed) approach
is to simply endow all agents with the same top-level behav-
ior. An alternative centralized approach is to define a single
controller agent in charge of all subsidiary agents. The sub-
sidiary agents all have the same behaviors in their libraries;
but the controller agent has its own separate library of behav-
iors, both basic behaviors and learned automata. A controller
agents’ basic behaviors do not manipulate the controller, but
instead correspond to a unique behavior in the libraries of the
subsidiaries. When a controller agent transitions to a new ba-
sic behavior, this directs the subsidiaries to immediately start
performing the corresponding behavior in their libraries.

Our framework is in-between: we define a hierarchy of
controller agents. The basic agents are grouped into subgroups,
each headed by a level-1 controller agent; then various level-1
controller agents are grouped as subsidiaries to level-2 agents,
and so on, up to level-m agents forming one or more roots.
Just as all basic agents have the same behaviors, all controller
agents at a given level have the same behaviors. The actual
structure of the hierarchy (number of levels, number of agents
per controller, etc.) is at present pre-specified by the user.

After training basic agents in the usual fashion, we may then
train a level-1 controller agent, then a level-2 controller agent,
and so on. Controller agent training is essentially the same as
for basic agents: the user directs the controller agent to per-
form various behaviors (which in turn cause the controller’s
subsidiaries to perform behaviors), which adds examples to a
database from which transition functions are learned. While
the basic behaviors for a controller agent are straightforward,
what is a controller agent’s set of features? We presume that,
unlike a basic agent, a controller agent isn’t embodied: his fea-
tures are derived from statistical results from his subsidiaries:
for example “a basic agent in my group is stuck (or isn’t)”,
or “all my immediate subsidiaries are ‘done’ (or not)”, or “the
average Y position of basic agents in my group”. Obviously,
like an agent’s basic behaviors and features, the choice of
features available to a controller agent are domain-specific.

4 Demonstration: Box Foraging
We applied our multiagent homogeneous hierarchies to a sim-
ulated box foraging problem: agents hunt for boxes, then
pull them towards a known deposit location. The boxes are
randomly distributed throughout the environment, and after



collection, a new box is placed randomly in the environment.
The environment consists of various circular “boxes” and 50
agents in a 200 by 200 environment. The agents moved 0.1
units per timestep. All experiments used 10 boxes, each 5
units in diameter. Some boxes require 5 agents to pull them,
and others require 25 agents. When a box is close enough to
the deposit location, it is considered “deposited”: it is reset to
a new random location and all agents are released from it.

Agent Behavior Decomposition We manually decomposed
and trained a behavior hierarchy as follows:

• Agents’ basic features were DistanceTo(X), Direc-
tionTo(X), ICanSeeABox, IAmAttachedToABox, and
Done. The first two features were parameterizable to
either visible boxes or to the deposit location. The last
feature was true when the done flag had been raised.
Boxes could only be seen if they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Ro-
tateRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish,
and Done. Both ReleaseBox and Done would raise the
done flag and (as normal) immediately transfer to the
start state. ReleaseBoxAndFinish would as well, except
that it would also raise a �finished flag in the agent which
could be detected by controllers as a feature. Boxes could
only be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the
DistanceTo(X) and DirectionTo(X) features, we trained
the behavior Goto(X), which servoed to a given target.

• Using Goto(X), GrabBox, ReleaseBoxAndFinish, and Dis-
tanceTo(X), we trained ReturnWithBox, which pulled the
box back to the deposit location and released it when the
agent was close enough to home.

• Using Wander and ReturnWithBox, we trained Forage,
a simple top-level composition which foraged for boxes
and brought them to the deposit.

If agents were acting on their own (they had no controller),
their top-level behavior would be simply Forage. When acting
under a 1-level controller, the current behavior of the agent
would be determined by the controller.

1-Level Controller Agent Behavior Decomposition The
1-level controller’s behavior hierarchy was as follows:

• A controller’s basic features were SomeoneIsAttached-
ToABox and SomeoneIsFinished. The latter feature was
true if any subsidiary agent had raised its finished flag. A
controller also had access to an additional target: closest-
attached-agent, which pointed to the subsidiary agent
which had grabbed the box (if any).

• A controller’s basic behaviors corresponded to the full
set of behaviors of its subsidiary agents: Forward, Ro-
tateLeft, RotateRight, GrabBox, ReleaseBoxAndDone,
Done, Wander, Goto(X), ReturnWithBox, and Forage.

Home Base

2

66
6

46

4

4
4

4
6

6

6 4

4
4

Figure 2: A screenshot of our system in action (showing part
of the environment). The large grey circles are the boxes,
and the X in the middle is the collection location. Note that
while the agents pulling the box on left are all from the same
subgroup, the box in the bottom is being pulled by agents from
different subgroups.

• Using ReleaseBox, ReturnWithBox, Forage, Some-
oneIsAttachedToABox, SomeoneIsFinished, and
Goto(closest-attached-agent), we trained the behavior
ControlForage, which directed agents to Forage until an
agent found a box. Then, the controller would direct
agents to Goto(closest-attached-agent); once agents
where close to the attached agent, they would grab the
box and begin pulling it towards the deposit location.
Once one agent finished pulling the box, the controller
would direct the agents to ReleaseBox, and to resume
Forage.

If the agents were acting on their own (they had no 2-level
controller), their top-level behavior would be simply Control-
Forage. When acting under a 2-level controller, the current
behavior of the 1-level controllers would be determined by
their 2-level controllers.

2-Level Controller Agent Behavior Decomposition The
2-level controller’s behavior hierarchy was as follows:

• A controller’s basic features were SomeoneNeedsHelp
and SomeoneIsFinished. The former feature is true if
a subsidiary agent knows of a box which requires more
agents to push it than are available to the subsidiary agent.
A 2-level controller also had an additional target: biggest-
attached-agent, which is the agent attached to the largest
box (if any) in the controller’s subgroup.

• A 2-level controller’s basic behaviors corresponded to
behaviors from its subsidiary 1-level controllers: Control-
Forage, ReturnWithBox, Goto(X).



 0

 20

 40

 60

 80

 100

 120

 140

0 25000 50000 75000 100000

M
ea

n 
C

ol
le

ct
ed

 B
ox

es

TimeStep

Trained Swarm
Trained Groups

Hand-Coded Swarm
Hand-Coded Groups

Figure 3: Mean number of boxes collected over time for the
first experiment.

• We trained the behavior ControlForage2, which is similar
to the ControlForage behavior. The difference is that the
2-level controller directs agents to Goto(biggest-attached-
agent) when a 1-level controller requires help.

A 2-level controller’s top behavior was ControlForage2.

4.1 Experiments
We considered three structures: (1) 50 independent agents
(2) a semi-distributed group of 10 independent 1-level con-
troller agents, each heading a five-agent subgroup (3) two
independent 2-level controller agents, each heading five 1-
level controller agents, each heading a five-agent subgroup.
The idea behind these structures is illustrated in Figure 1.

We performed two experiments. In the first experiment,
we first sought to demonstrate that a simple hierarchy can
out-perform a group of independent agents; and second, that
the behaviors learned in this experiment would perform ad-
equately compared to fine-tuned hand-coded behaviors. In
the second experiment, we sought to demonstrate that a two-
layer hierarchy can outperform a one-layer hierarchy. Each
experimental run lasted 100,000 timesteps, and each treatment
consisted of 100 independent runs. Stated differences in results
are measured at the 100,000 timestep with a 95% confidence,
using two-tailed t-tests with a Bonferroni correction.

First Experiment: 1-Level Hierarchies Initially, we com-
pared an entirely distributed group against a semi-distributed
group, and also compared a trained behavior versus a hand-
coded behavior. Figure 3 shows the results of all four experi-
mental runs.

Independent Agents Versus Hierarchies We expected the
controller agents to improve performance due to the semi-
centralized coordination available, because the controller en-
abled specific groups of agents to work together on a single
box. Without controller agents, agents could become stranded
at boxes waiting for other agents to help pull. These waiting
agents simply relied on random discovery of the box by other
agents to gather enough helpers. Figure 3 verifies the expected
improvement due to the controller agents, particularly when

 0

 50

 100

 150

 200

 250

 300

0 25000 50000 75000 100000

M
ea

n 
C

ol
le

ct
ed

 B
ox

es

Timestep

1-level
2-level

Figure 4: Mean number of boxes collected over time for the
second experiment.

using trained behaviors rather than hand-coded ones. The
improvement was statistically significant in both cases.

Hand-Coded Versus Trained We then compared the
trained versions of the two previous structures with hand-
coded versions of the same. Figure 3 again shows the results.
We had expected the hand-coded solutions to perform better,
since trained solutions contained significant training error. But
in fact, in the 1-level hierarchy case the trained solution actu-
ally performed statistically significantly better than the hand-
coded solution due to a more random exploration strategy,
which allowed agents to disperse throughout the environment
better. This exploration strategy didn’t fare as well in the in-
dependent agents case, however: the hand-coded solution did
statistically significantly better because its exploration strat-
egy happened to result in more agents trying to pull the same
box, rather than distributing across multiple boxes. While the
results do not present a clear advantage to either training or
programming, they do suggest that training the agents will
crucially not significantly impair performance.

Second Experiment: 2-Level Hierarchies We then com-
pared the same 1-level hierarchy as before against a two-level
hierarchy: two 2-level controllers, each in charge of five 1-
layer controllers, each in charge of five agents. We changed the
scenario to favor two levels of coordination: the environment
had eight boxes which each required five agents to pull, and
two boxes which each required twenty-five agents to pull. Just
as the first experiment was constructed so as to demonstrate
the use of some degree of homogeneous coordination, the sec-
ond experiment is meant to show the value of homogeneous
coordination at two levels (5 agents or 25 agents per box).

As shown in Figure 4, two layers significantly outdo a
single layer, and for similar reasons as the first experiment.
If in the one-layer case a group discovers a 25-agent box, 4
other groups must randomly discover the box before it can
be moved and all the groups freed. But with two layers of
coordination, we can train agents to work together not only at
in 5-agent groups but also in 25-agent groups. (Indeed we can
train agents in any level of hierarchy.)



5 Future Work
Multiagent Heterogeneity Our ultimate goal is to demon-
strate learned heterogeneous multiagent behaviors. To do
this, we distinguish between homogeneous and heterogeneous
controller agents. Our controller agents described so far are
homogeneous. Heterogeneous controller agents might, at their
top level, have behaviors which are pairs of automata. The
controller would divide its subsidiary agents into two disjoint
sets, and each automaton would control one set. Homoge-
neous controller agents might have heterogeneous subsidiaries
and vice versa: though we expect the most common scenario
would be a hierarchy of heterogeneous controller agents above
a layer of homogeneous agents controlling the basic agents.
We also imagine a dynamic agent hierarchy where basic and
controller agents can change their parent based on higher level
agent decisions.

Behavior Revision Our system is interactive in two senses:
first, the user directly takes control of the agent, showing
it how to perform a given behavior. Second, after training
the behavior and observing its performance, the user may
again take control and revise the behavior further. However at
present once the behavior has been saved and used in a higher-
level composed behavior, the user can no longer revise it. We
have found that this presents difficulties for the experimenter:
if he discovers an error in the behaviors, he must not only
revise that behavior but also redo, from scratch, all behaviors
which have formed compositions over it. We need to enable
low-level behavior revision and examine the cascading effects
that such revision has on all learned higher-level behaviors.

Our behavior training is also at present only additive: when
the experimenter jumps in to revise a behavior after detecting
an error, his revision adds new examples to the behavior but
does not remove errant examples. We need to examine how to
determine which examples caused the incorrect trained model,
and whether to remove or modify them.

6 Conclusion
We demonstrated a supervised learning from demonstration
system capable of learning stateful, recurrent multiagent be-
haviors in the form of probabilistic hierarchical finite-state
automata, with an aim towards full heterogeneity. We do this
by manually decomposing the task, learning simple behaviors,
and using scaffolding to learn increasingly complex composed
automata until we have achieved the behavior needed. This re-
duces the dimensionality of the learned problem, making possi-
ble more complex problems despite limited training examples.
We also construct an agent hierarchy, which enables agents to
work together as independent small groups as needed.

References
[Bentivegna et al., 2004] Darrin C. Bentivegna, Christo-

pher G. Atkeson, and Gordon Cheng. Learning tasks from
observation and practice. Robotics and Autonomous Sys-
tems, 47(2-3):163–169, 2004.

[Chernova, 2009] Sonia Chernova. Confidence-based Robot
Policy Learning from Demonstration. PhD thesis, Carnegie
Mellon University, 2009.

[Dinerstein et al., 2007] Jonathan Dinerstein, Parris K. Eg-
bert, and Dan Ventura. Learning policies for embodied
virtual agents through demonstration. In Proceedings of the
International Joint Conference on Artificial Intelligence,
pages 1257–1252, 2007.

[Goldberg and Mataric, 2002] Dani Goldberg and Maja J
Mataric. Maximizing reward in a non-stationary mobile
robot environment. Autonomous Agents and Multi-Agent
Systems, 6:2003, 2002.

[Hovland et al., 1996] G. E. Hovland, P. Sikka, and B. J. Mc-
Carragher. Skill acquisition from human demonstration us-
ing a hidden markov model. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pages
2706–2711, 1996.

[Kasper et al., 2001] Michael Kasper, Gernot Fricke, Katja
Steuernagel, and Ewald von Puttkamer. A behavior-based
mobile robot architecture for learning from demonstration.
Robotics and Autonomous Systems, 34(2-3):153–164, 2001.

[Luke and Ziparo, 2010] Sean Luke and Vittorio Ziparo.
Learn to behave! rapid training of behavior automata. In
Marek Grześ and Matthew Taylor, editors, Proceedings of
Adaptive and Learning Agents Workshop at AAMAS 2010,
pages 61 – 68, 2010.

[Nakanishi et al., 2004] Jun Nakanishi, Jun Morimoto, Gen
Endo, Gordon Cheng, Stefan Schaal, and Mitsuo Kawato.
Learning from demonstration and adaptation of biped loco-
motion. Robotics and Autonomous Systems, 47(2-3):79–91,
2004.

[Nicolescu and Mataric, 2002] Monica N. Nicolescu and
Maja J. Mataric. A hierarchical architecture for behavior-
based robots. In The First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 227–233. ACM, 2002.

[Panait and Luke, 2005] Liviu Panait and Sean Luke. Cooper-
ative multi-agent learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[Saunders et al., 2006] Joe Saunders, Chrystopher L. Ne-
haniv, and Kerstin Dautenhahn. Teaching robots by mould-
ing behavior and scaffolding the environment. In Human-
Robot Interaction, pages 118–125, 2006.

[Stone and Veloso, 2000] Peter Stone and Manuela M.
Veloso. Layered learning. In Ramon López de Mántaras
and Enric Plaza, editors, 11th European Conference on Ma-
chine Learning (ECML), pages 369–381. Springer, 2000.

[Sullivan et al., 2010] Keith Sullivan, Sean Luke, and Vitto-
ria Amos Ziparo. Hierarchical learning from demonstration
on humanoid robots. In Proceedings of Humanoid Robots
Learning from Human Interaction Workshop, Nashville,
TN, 2010.

[Veeraraghavan and Veloso, 2008] Harini Veeraraghavan and
Manuela M. Veloso. Learning task specific plans through
sound and visually interpretable demonstrations. In 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2599–2604. IEEE, 2008.


