
Towards a Unified Framework for Learning from Observation

Santiago Ontañón
IIIA - CSIC

Bellaterra (Spain)
santi@iiia.csic.es

José L. Montaña
University of Cantabria

Santander (Spain)
montanjl@unican.es

Avelino J. Gonzalez
University of Central Florida

Orlando, FL (USA)
gonzalez@mail.ucf.edu

Abstract
This paper discusses the recent trends in machine
learning towards learning from observation (LfO).
These reflect a growing interest in having comput-
ers learn as humans do — by observing and there-
after imitating the performance of a task or an ac-
tion. We discuss the basic foundation of this field
and the early research in this area. We then proceed
to characterize the types of tasks that can be learned
from observation and how to evaluate an agent cre-
ated in this manner. The main contribution of this
paper is a joint framework that unifies all previous
formalizations of LfO.

1 Introduction
Learning by watching others do something is a natural and
highly effective way for humans to learn. It is also an intu-
itive and highly promising avenue for machine learning. It
provides a way for machines to learn how to perform tasks
in a more natural fashion. When we teach other humans, we
often tell them “Here, watch how I do it.” This is because for
many tasks, this is better than providing static examples that
explicitly contain the solution, as in the traditional supervised
learning approach. Humans simply execute the task and trust
that the observer can figure out how to successfully imitate
the performance of the task.

Fernlund et al [Fernlund et al., 2006] define learning from
observation (LfO) as:

The agent shall adopt the behavior of the ob-
served entity solely from interpretation of data col-
lected by means of observation.

However, this is a superficial characterization of LfO that
merely dictates how the data are to be collected for learning.
It makes no effort to formalize the concept of LfO, which
algorithms to use, or what sets it apart from supervised and
unsupervised learning.

We argue that LfO is distinguishable from conventional un-
supervised learning because the examples (demonstrations)
contain indication of correct behavior. LfO can be more read-
ily likened to supervised learning, but here as well, distin-
guishing features exist. For one, the learning examples are
time-based, continuous and inseparable through the duration

of the exercise. Furthermore, no explicit linkage between
cause and effect is provided, but must be extracted automati-
cally by the learning algorithm as part of learning through ob-
servation. Our analysis shows, however, that some restricted
types of learning from observation tasks can be addressed
with supervised learning, although to solve the general prob-
lem LfO problem, supervised learning algorithms are not suf-
ficient. Finally, compared to reinforcement learning, LfO
learns from a collection of traces (or trajectories), rather than
from a reinforcement signal.

Works reported in the literature also refer to learning
from demonstration, learning by imitation, programming by
demonstration, or apprenticeship learning, as largely synony-
mous to learning from observation. In learning from demon-
stration, a human purposely demonstrates how to perform a
task or an action, expressly to teach a computer agent how to
perform the same task or mission. We consider learning from
demonstration to be a specialization of LfO and define the
latter as a more general learning approach, where the actor
being observed need not be a willing participant in the teach-
ing process. This could include opponents being observed
in team game competition or the enemy tactics being learned
through observation (and thereafter modeled).

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes previous research in the field. After
that, Section 3 introduces a common framework and vocab-
ulary for learning from observation. Section 4 then presents
a classification of all the different tasks to be attempted us-
ing LfO. Finally, Section 5 presents a statistical formalization
of the problem, which offers some interesting insights on the
kind of algorithms required to solve different LfO tasks.

2 Learning from Observation Background
Work in learning from observation can be traced back to
the early days of AI. For instance, Bauer [1979] proposed
in 1979 to learn programs from example executions, which
basically amounts to learning strategies to perform abstract
computations by demonstration, and it was especially popular
in robotics [Lozano-Pérez, 1983]. Another early mention of
learning from observation comes from Michalski et al. [1983]
who define it merely as unsupervised learning. Gonzalez et
al [Gonzalez et al., 1998] discussed learning from observa-
tion at length, but provided no formalization nor suggested
an approach to realize it algorithmically.

More recent work on the more general LfO subject came
nearly simultaneously but independently from Sammut et al
[Sammut et al., 1992] and Sidani [Sidani, 1994]. Fernlund
et al. [2006] used learning from observation to build agents
capable of driving a simulated automobile in a city environ-
ment. Pomerleau [Pomerleau, 1989] developed the ALVINN
system that trained neural networks from observation of a
road-following automobile in the real world. Moriarty and
Gonzalez [Moriarty and Gonzalez, 2009] further the use of
neural networks to carry out learning from observation for
computer games.

Könik and Laird [2006] further introduced learning from
observation in complex domains with the SOAR system by
using inductive logic programming techniques.

Other significant work done under the label of learning
from demonstration has emerged recently in the case-based
reasoning community. Floyd et al. [2008] present an ap-
proach to learn how to play RoboSoccer by observing the
play of other teams. Ontañón et al. [2010] use learning from
demonstration in the context of real-time strategy games in
the context of case-based planning. The main difference be-
tween the work based on CBR and the previous work pre-
sented in this section is that CBR methods are related to lazy
machine learning techniques, which do not require any form
of generalization during learning. In CBR, thus, learning be-
comes only memorization of new cases, and any kind of gen-
eralization is delayed until problem solving time.

Finally, a related area is that of inverse reinforcement learn-
ing [Ng and Russell, 2000], where the focus is on reconstruct-
ing the reward function given optimal behavior (i.e. given a
policy, or a set of trajectories). One of the main problems
here is that different reward functions may correspond to the
observed behavior, and heuristics need to be devised to only
consider families of reward functions that are interesting.

We can see that while a significant amount of work has
been on-going over the last 20 years (see [Argall et al., 2009]
for a more in-depth recent overview), the problem does not
enjoy a modicum of formalization, or even of agreement in
terminology. We hope to provide these in this paper.

3 A Unified Framework for LfO
In this section we propose a formalization that attempts to be
a unification of previous work in the area. Let us start by
introducing the different elements appearing in LfO:

• There is a task T to be learned, which can be either
achieving a condition (such as building a tower, or de-
feating an enemy), maintaining some process over time
(such as keeping a car on the road), or maximizing some
value (e.g. a reward function)
• There is an environment E.
• There is one actor (or trainer, expert, or demonstrator)
C, who performs the task T in the environment (there
can in principle be also be more than one actor).
• There is a learning agent A, whose goal is to learn how

to achieve T in the environment E by observing C.

In Learning from observation, the learning agent A typi-
cally first observes one or several actors performing the task

in the environment, and records their behavior in the form of
traces. Then, those traces are used to learn how to perform
T . The environment in which the learning agent observes
the actor perform the task and the one in which he later tries
to perform do not necessarily have to be exactly the same.
For instance, in the context of a computer game, the learning
agent might observe the actor play the game in a particular
map, and then try to perform in a different map.

Inputs to the learning process are temporally based. In su-
pervised learning we have problem/solution pairs, in unsuper-
vised learning, only problems, and in reinforcement learning
we have a reward signal. In LfO we have traces that contain
the evolution of the environment over time while the actor is
executing actions to achieve a task.

Let BC be the behavior of an actor C. By behavior, we
mean the control mechanism, policy, or algorithm that an ac-
tor or a learning agent use to determine which actions to ex-
ecute over time. In a particular execution, a behavior BC is
manifested as the series of actions that the actor executes over
time, which we call a behavior trace, or BT . Depending on
the nature of the task to be learned, the actions of the actor
can vary in nature. These could be atomic actions, durative
actions, or just a collection of control variables that are ad-
justed over time. In general, we will assume that the actor can
control a collection of variables, and thus, a behavior trace is
defined as the variation of these variables over time (in case
of atomic actions, there would be a single variable containing
the action executed at each time step, if any):

BTC = [(t1, y1), ..., (tn, yn)]

where, ti are time points, and yi are the control variables.
We assume here that the learning agent can execute the same
set of actions as the actor. Otherwise, in addition to a LfO
problem, the agent would have to solve an action mapping
problem. The evolution of the environment is captured into
an input trace:

IT = [(t1, x1), ..., (tn, xn)]

The combination of actor behavior plus input trace, consti-
tutes a learning trace in learning from observation:

LT = [(t1, x1, y1), ..., (tn, xn, yn)]

Notice that this formalization of a trace is general enough
for both discrete and continuous time domains, since typi-
cally, LfO algorithms which operate in domains with con-
tinuous time sample the environment with a given frequency
(e.g. [Bentivegna and Atkeson, 2001]), and thus effectively
also have a trace that matches our previous definition.

The goal of learning from observation is thus, given:
• A collection of learning traces LT1, ..., LTk

• An environment E (characterized by a set of input vari-
ables x and a set of control variables y).
• Optionally, a target task T
Learn a behavior B that behaves in the same way as the

actors do in the environment E, given the same inputs (while
achieving the task T , if specified). Notice that in the case
where no target task T is specified, the LfO problem is equiv-
alent to learning to predict the teacher’s actions.

3.1 Measuring Performance in LfO
Measuring the success of a LfO system is not trivial [Argall
et al., 2009]. In supervised learning, a simple way is to leave
some training examples out, and use them as test. The equiv-
alent in LfO would be to leave some learning traces out, and
use them to verify the learnt behavior B. However, in LfO we
have to compare behavior traces, which is not trivial.

If a task T is specified, the accomplishment of such task
should also be taken into account in the performance measure,
and not just resemblance with the actions executed by the ac-
tor. There are thus two main additional issues with respect
to evaluating performance in a supervised learning setting:
a) there are two different variables to measure: task perfor-
mance and resemblance with actor, and b) comparing traces
is not trivial.

Because of the previous reasons, there are three basic
strategies to evaluate agents trained through LfO, all of which
have been extensively used in the literature:

• Evaluate Performance: measure how well the learning
agentA performs T , regardless of whether it is perform-
ing similar to the actor C or not. For example, in a car
driving scenario, we could measure whether the learn-
ing agent can keep the car in the road. For example, the
work of Ontañón et al. [2010] uses this strategy.

• Evaluate Output: compare the actions executed by A
when performing task T against the actions executed by
the actor for the same task T . This evaluation method is
the most similar to supervised learning. The set of learn-
ing traces can be divided into a training set and a test
set, and use the test set of traces to evaluate the learn-
ing agent. For example, Floyd et al. [2008] used this
strategy to evaluate their techniques.

• Evaluate Model: compare the actual model (program,
state machine, set of rules, probability distribution, pol-
icy, or any other decision procedure) that the agent has
learned against the model the actor was using to generate
the traces. This evaluation method is specially interest-
ing to assess whether a given procedure can be recovered
by learning from a set of learning traces. Early work on
programming by demonstration [Bauer, 1979] used this
paradigm to evaluate success.

Depending on the specific domain, one (or a combination)
of the approaches above might be the best choice. This sec-
tion has focused on formalizing learning from observation by
specifying which are the inputs and expected outputs of LfO
systems. In the next section we focus on creating a classifica-
tion of the different tasks that could be attempted by LfO.

4 Levels of Learning from Observation
It is intuitively evident that not all learning algorithms will
work for all problems in LfO. Therefore, we next attempt
to categorize the types of problems that could be addressed
through LfO. First we must state that the general type of prob-
lems LfO addresses are those that involve some type of con-
trol function. Such control functions may be low level, such
as motor skills or higher level. Let us first identify the key

factors that play a role in the difficulty of a LfO task. In addi-
tion to the common factors such as variables (like time) being
continuous or discrete, there are three key factors that deter-
mine the complexity of an LfO task:

• Does it require generalization? Generalization is the
process by which a general statement is obtained by in-
ference from specific instances. Some tasks, as we will
show below, do not require generalization.
• Does it require planning? In some tasks, the learning

agent has to take into account events that occurred earlier
in time, or even consider events that might happen in the
future in order to take a decision. In such tasks, we say
that planning is required.
• Is the environment known? the learner might or might

not have a model of the environment, like the set of im-
portant variables to perceive in the environment, or the
effects of the actions the learner can execute. Not having
a model means that the learner, in addition to learning
the task, might have to learn a model at the same time.

We define four levels of difficulty of tasks and/or actions
that can be learned from observation, depicted in Table 1:

Level 1 - Strict imitation: strict imitation tasks do not re-
quire feedback from the environment, and thus neither
generalization nor planning. The learned tasks are a
strict function of time. For that reason, it does not mat-
ter whether the environment is known or unknown. The
learning algorithms to solve these tasks only require pure
memorization. One can think of these tasks as requiring
open-loop control. Robots in factories are an instance of
this type of learning, where the pieces are always in the
exact same place at all times.

Level 2 - Reactive skills: reactive skills correspond to input
to action mapping, without requiring planning. Gener-
alization is required to learn this task. Since the task is
just to learn a mapping from the perceived state of the
environment and action, standard supervised machine
learning techniques could be used to address this level.
Learning how to play some of the old video games such
as pong and space invaders would fit this category.

Level 3 - Tactical behavior in known environments:
learning tactical behaviors requires generalization,
and planning. This levels includes tasks in which the
current state of the world is not enough to determine
which actions to execute, previous states or potential
future events might have to be taken into account. The
control function to learn is not just a situation to action
mapping, but might have internal state. For example,
learning how to play a game like Stratego is a task of
Level 3. The player has to remember and analyze past
events in order to infer the piece types of the opponent.

Level 4 - Tactical behavior in unknown environments:
Tasks that fall in this category do require generalization,
and potentially also planning. Additionally, the agent
does not understand the environment. Thus, the learning
algorithms might need to address both the problem of
learning the task and learning the environment. For

Generalization? Planning? Known environment? Level
no no - Level 1: Strict Imitation
yes no yes Level 2: Reactive skills
yes yes yes Level 3: Tactical in known environment
yes - no Level 4: Tactical in unknown environment

Table 1: Characterization of the different levels of difficulty of learning from observation.

example, any of the previously mentioned tasks for
levels 2 and 3 would be Level 4 if the environment is
unknown.

Let us now formalize the intuitive descriptions of each of
the 4 levels by using a statistical formulation of LfO.

5 Towards a Statistical Formulation of
Learning from Observation

Imagine some actor C exhibiting a certain behavior BC . The
learning trace LT = [(t1, x1, y1), ..., (tn, xn, yn)] observed
by the learning agent A can be seen as the realization – also
trajectory or sample path – of a stochastic process ([Papoulis
and Pillai, 2002]) with state space I = X × Y , where X
denotes the representation of the environment and Y denotes
the representation of the space of actions. Each component of
the learning trace LT satisfies, xk ∈ X and yk ∈ Y .

Accordingly, the behavior BC can be interpreted as the
stochastic process I = {Ik : k ∈ T}, where T = {1, ..., n}
and Ik = (Xk, Yk) is the random variable whose components
have the following obvious meaning: Xk and Yk represent re-
spectively the state of the environment E at time tk and the
action performed by actor C at time tk. In the following we
assume that the random variables Ik = (Xk, Yk) are multidi-
mensional variables that can be either continuous or discrete,
that is, X = Rp, for some p (or X is some discrete set) and
Y = Rq for some q (or Y is a discrete set). Examples in
which the environment is a continuous space and the actions
are described inside a discrete space are found quite often in
the literature (see for instance Pomerleau [1989]).

We also assume, as usual in stochastic process theory,
that variables Ik are defined over the same probability space
(Ω, F, ρ), where Ω is a nonempty set, F is the σ-algebra of
events and ρ is an unknown probability measure that governs
the behavior of the observed agent C. To simplify notation,
the joint probability distributions ρ1,...,k of the joint random
variables (I1, ..., Ik) will also be denoted by ρ if not confu-
sion may arise.

Under this formalization, the LfO problem is to estimate
some features of the unknown probability measure ρ, taking
as input data a set of trajectories {LTj : 1 ≤ k ≤ k} of the
stochastic process I = {Ik : k ∈ T}. The features to be
learned regarding the probability distribution ρ depend on the
level of the problem under consideration.

In a quite general situation, the learning agent A has to
decide next action Yk+1 assuming the current state Xk+1 =
xk+1 is known and the subtrace generated until the present
moment, Ik = (xk, yk), ..., I1 = (x1, y1). This LfO scenario
can be formulated as the problem of estimating the condi-
tional probability distribution of Yk+1 given Xk+1 and vari-

ables Ik = (xk, yk), ..., I1 = (x1, y1):

ρ(Yk+1|Xk+1 = xk+1, {Ij = (xj , yj))k
j=1}) (1)

In order to simplify, we shall denote the conditional prob-
ability in Equation 1 by

ρ(Yk+1|xk+1, ik, ik−1, . . . , i1)

However the scenario defined in Equation 1 may not cover
all cases considered in a particular LfO problem. Imagine
for instance that we have to imitate a behavior that has a task
as goal. The task may specify some given future states and
actions at some particular instants. In such situations it may
be necessary to take into account knowledge regarding future
events, that is, at times j > k. This suggests that in this
scenario the LfO problem consists in estimating some condi-
tional probability measure of the form:

ρ(Yk+1|xk+1, ik+j1, ik+j2, ..., ik+jk, ik . . . , i1) (2)

with j1 > j2 > ... > jk ≥ 1.
Next we analyze the simplifications that occur in Equation

1 at each level of the LfO hierarchy proposed in Section 4.
The same simplifications can be translated into the scenario
described by Equation 2 if necessary.

Level 1. Strict imitation of a given behavior BC from a
trace is a deterministic process. If what we want is to re-
produce the set of actions defined by a behavior trace BT =
[(t1, y1), ..., (tn, yn)], we just consider the set Ω = (X×Y)n,
where Y is the space of actions, the σ-algebra F given by all
subsets of Ω, and the joint probability measure ρ defined as
follows: ρ(I1 = (X1, Y1), ..., In = (Xn, Yn))(A) = 1, if
(y1, . . . , yn) ∈ A and 0 otherwise, for all subsets A ⊂ Ω.
It is easy to see that in this level, the conditional variable
ζk = Yk+1|(xk+1, ik, ik−1, . . . , i1), takes value yk+1 with
probability 1. Hence, the stochastic process defined above
I = {Yk : k ∈ T}, T = {1, ..., n}, represents the LfO prob-
lem at level 1.

Level 2. At this level, generalization is required, and the
task is just to learn a mapping from the perceived state of the
environment into the state of actions. This means essentially
that in this kind of problems the action only depends on the
current state of the environment and no other dependencies
must be considered. This implies, in particular, that the prob-
ability measure in Equation 1 satisfies the following property:

ρ(Yk+1|xk+1, ik, ..., i1) = ρ(Yk+1|xk+1)

In this case a learning trace LT can be seen as a sample of
a supervised learning problem. Our LfO problem consists in
this case in predicting the value of random variable Y = Yk+1

known the value X = xk+1. In this context we can factorize

the probability measure ρ as usual: ρX is the induced prob-
ability measure on X (marginal distribution) and the distri-
bution ρ(Y |X = x) is the conditional probability measure.
The LfO problem then consists in estimating the conditional
probability measure.

Level 3. At this level the state and/or the action at time
k+ 1 depend on the environment states and/or actions at pre-
vious instants and no other dependencies must be considered.
The amount of previous knowledge required for predicting
variable Yk+1 reflects the memory requirements to learn the
agent’s behavior. If, for instance, we only need to know the
previous action and state, the conditional distribution consid-
ered in Equation 1 follows a rule which is similar to that of a
Semi-Markov process, that is:

ρ(Yk+1|xk+1, ik, ..., i1) = ρ(Yk+1|xk+1, ik)

Note however that in many real world situations at level 3
we need knowledge of more situations than the previous one.
For instance, if what we want is to imitate the behavior of
a person that browses the net, it is possible that, apart from
knowledge of the current page, we need to take into account
at least the two or three pages previously visited. This yields
to a simplification of the form:

ρ(Yk+1|xk+1, ik, ..., i1) = ρ(Yk+1|xk+1, in, ..., ik−l) (3)

Here l plays a similar role to the order of a Markov process
and defines a sub-level of level 3 that captures the amount
of previous knowledge required to predict the current action.
We assume that only a finite amount of previous knowledge
is required to perform any task, and thus, this can be captured
with the finite number l.

Level 4 As in level 3, at this level the state and/or the action
at time k+ 1 depend on the environment states and/or actions
at previous times. However the learner might not have a com-
plete description of the environment. For modeling this sit-
uation we can assume that variables Xk take values in some
infinite dimensional space in which the known part is embed-
ded. For this purpose, a quite general stochastic scenario is
that provided by Hilbert-valued stochastic processes.

5.1 An example: Autonomous Land Vehicle
To clarify the model presented above we consider the exam-
ple of statistical modeling of the task performed by an Au-
tonomous Land Vehicle (ALV) learning to drive by observing
a human doing it. We represent the environment variable X
by a matrix X = (Xkl) of real valued random variables rep-
resenting the input retina image obtained by the driver. Each
variable Xkl is a real random variable with values in the in-
terval [0, 1] representing a pixel greyscale.

The space of actions is represented by two random discrete
variables Y = (S,A), where A is the correct steering direc-
tion and A represents the correct accelerator position of the
vehicle. Let us consider that S can take a finite set of values
S = {s1, ..., sp} where s1 is the left most position and sp is
the corresponding right most position. Analogously A takes
a finite set of values A = {a1, ..., aq} where a1 represents
throttle up and aq represents full throttle.

Level 1: ALV Problem If the road is always the same,
there are no other vehicles and traffic signals, persons or
agents interacting with the environment and the goal is merely
to drive from a starting point to end point then the task is
Level 1. This is because if the environment does not change
then the agent will drive just by exactly imitating the ac-
tions of the human driver. This means in the statistical model
that the behavior trace is a temporal series of actions repre-
senting the correct positions of the steering and the accelera-
tor of the form BT = [(t1, (sb

1, a
b
1)), ..., (tn, (sb

n, a
b
n))], with

(sb
i , a

b
i) ∈ S × A, Ω = (X × Y)n is the space of events,

where Y = S × A is the space of actions, the σ-algebra
F given by all subsets of Ω, and the joint probability dis-
tribution ρ defined as follows: ρ(I1 = (X1, X1), ..., In =
(Xn, Yn))(B) = 1, if (sb

i , a
b
i)1≤i≤n ∈ B and 0 otherwise,

for any B ⊂ Ω. It is straightforward to realize that he con-
ditional variable ζk = Yk+1|(xk+1, ik, ik−1, . . . , i1), takes
value (sb

k+1, a
b
k+1) with probability 1, for k = 0 to k = n−1.

Level 2: ALV Problem If there are other agents on the
road, like other vehicles driving with a given speed limit,
and our autonomous agent is supposed to learn to slow down
when crossed with other vehicles, then the task becomes
Level 2, since generalization is required (the agent must learn
from the particular instances when the human slowed down
or stopped in the presence of other vehicles) and we must
take into account the vehicle position, that is, the input retina
image. In this case the learning trace is a sequence of pairs,
LT = (xi, yi)1≤i≤n, where each xi represents an input retina
image (i.e. a matrix of pixels) and each yi is a pair (si, ai),
where si ∈ S and ai ∈ A are respectively the correct steer-
ing and accelerator positions obtained from a demonstration
performed for instance by one or several human drivers.

We assume in this case, as in classical supervised learn-
ing, that the learning trace is a sample of random identically
distributed variables (Xi, Yi), generated according to an un-
known probability measure ρ defined on the space X × Y .
This probability measure factorizes, as usual, in the marginal
distribution ρX defined on the instance spaceX (environment
in LfO) and the conditional probability measure ρ(Y |X = x)
defined on Y . The LfO problem is to estimate the probability
that governs the random variable Y |X = x whose meaning
is ”action y corresponding to input retina image x”. We note
that this approach is basically the initial formulation given in
the ALVINN project by Pomerleau in [Pomerleau, 1989].

Level 3: ALV Problem If the task is to learn how to drive a
car in several specified kinds of roads that may include other
vehicles, traffic signals and maybe other agents like persons
and animals crossing along the road, then the ALV task be-
comes Level 3, since the autonomous agent requires to take
actions that depend on previous actions and situations. Note,
for instance, that if the human driver sees a traffic signal like
a stop signal at instant i, he will start to slow down and will
stop at time k = i + j, j > 0. This means in particular, that
action Yk at time k depends of input retina image and actions
at some previous instant i < k. This explains why we are
interested in estimating the probability measure that governs
variable Yk+1|xk+1, ik, ..., ik−l as expressed in Equation 3
whose meaning is “action y corresponding to input retina im-
age x = xk+1 assuming that we know situations and actions

at the l+1 previous instants”. Here l represents the number of
previous images and actions that must be considered in order
to predict action at present instant.

Note that this formulation seems to be more realistic than
that provided by level 2. Note also that the generalization er-
ror of the steering and accelerator depends of the particular
learning algorithm used to solve the problem, but for a given
kind of algorithm –for instance, a neural network with an
specified architecture. i. e., a fixed estimation error– the gen-
eralization error depends of the empirical error. We conjec-
ture that a more realistic formulation of the problem, taking
into account previous actions and situations and their depen-
dencies can help to produce more robust algorithms to correct
the steering and accelerator errors.

Level 4: ALV Problem Finally, the task could even be-
come Level 4 if the agent has no information of which input
variables in its sensors determine that there is a certain type of
obstacle, or some of those variables are not even observable
from the demonstrations provided by the human (for instance
driving under rainy weather). In that case, the agent has to
learn first, for example, which variables are relevant to learn
the task and add these variables to the environment.

6 Conclusions
Despite the considerable amount of interest and work on
learning from observation, the field lacks a unified framework
for comparing different approaches. The main goal of this pa-
per is to put forward a proposal to fill in that gap, and present
a unified framework for learning from observation, consisting
of three main components: a) a unified formalism, b) a clas-
sification of the different levels of difficulty of the tasks at-
tempted by LfO, and c) a statistical model which sheds some
light on the formal differences between LfO and other forms
of learning. Finally, we have illustrated with an example how
different LfO tasks fit in our formalism.

In our formalism, we have not discussed the different ex-
isting algorithms for LfO. We have instead focused on char-
acterizing the task itself. As part of our future work we plan
to characterize existing algorithms for LfO, and how do they
fit under each of the levels presented in this paper.

References
[Argall et al., 2009] Brenna D. Argall, Sonia Chernova,

Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robot. Auton. Syst., 57:469–
483, May 2009.

[Bauer, 1979] Michael A. Bauer. Programming by examples.
Artificial Intelligence, 12(1):1–21, 1979.

[Bentivegna and Atkeson, 2001] Darrin C. Bentivegna and
Christopher G. Atkeson. Learning from observation us-
ing primitives. In In IEEE International Conference on
Robotics and Automation, pages 1988–1993, 2001.

[Fernlund et al., 2006] H. K. G. Fernlund, Avelino J. Gon-
zalez, Michael Georgiopoulos, and Ronald F. DeMara.
Learning tactical human behavior through observation of
human performance. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 36(1):128–140, 2006.

[Floyd et al., 2008] Michael W. Floyd, Babak Esfandiari,
and Kevin Lam. A case-based reasoning approach to imi-
tating robocup players. In Proceedings of the Twenty-First
International Florida Artificial Intelligence Research So-
ciety (FLAIRS), pages 251–256, 2008.

[Gonzalez et al., 1998] Avelino J. Gonzalez, Michael Geor-
giopoulos, Ronald F. DeMara, Amy Henninger, and
William Gerber. Automating the cgf model development
and refinement process by observing expert behavior in
a simulation. In Proceedings of The 7th Conference on
Computer Generated Forces and Behavioral Representa-
tion, 1998.

[Könik and Laird, 2006] Tolga Könik and John E. Laird.
Learning goal hierarchies from structured observations
and expert annotations. Mach. Learn., 64(1-3):263–287,
2006.

[Lozano-Pérez, 1983] Tomás Lozano-Pérez. Robot pro-
gramming. In Proceedings of IEEE, volume 71, pages
821–841, 1983.

[Michalski and Stepp, 1983] Ryszard S. Michalski and
Robert E. Stepp. Learning from observation: Conceptual
clustering. In Ryszard S. Michalski, Jaime G. Carbonell,
and Tom M. Mitchell, editors, Machine Learning: An Ar-
tificial Intelligence Approach, chapter 11, pages 331–364.
Tioga, 1983.

[Moriarty and Gonzalez, 2009] Christopher Lawrence Mori-
arty and Avelino J. Gonzalez. Learning human behav-
ior from observation for gaming applications. In FLAIRS
Conference, 2009.

[Ng and Russell, 2000] Andrew Y. Ng and Stuart Russell.
Algorithms for Inverse Reinforcement Learning. In in
Proc. 17th International Conf. on Machine Learning,
pages 663–670, 2000.

[Ontañón et al., 2010] Santiago Ontañón, Kinshuk Mishra,
Neha Sugandh, and Ashwin Ram. On-line case-based
planning. Computational Intelligence Journal, 26(1):84–
119, 2010.

[Papoulis and Pillai, 2002] Athanasios Papoulis and S. Un-
nikrishna Pillai. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill Series in Electrical
and Computer Engineering. McGraw-Hill, 2002.

[Pomerleau, 1989] Dean Pomerleau. Alvinn: An au-
tonomous land vehicle in a neural network. In D.S. Touret-
zky, editor, Advances in Neural Information Processing
Systems 1. Morgan Kaufmann, 1989.

[Sammut et al., 1992] Claude Sammut, Scott Hurst, Dana
Kedzier, and Donald Michie. Learning to fly. In ML, pages
385–393, 1992.

[Sidani, 1994] T.A. Sidani. Automated Machine Learning
from Observation of Simulation. PhD thesis, University
of Central Florida, 1994.

