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Abstract
Researchers are becoming aware of the importance
of other information sources besides visual data
in robot learning by demonstration (LbD). Force-
based perceptions are shown to convey very rele-
vant information – missed by visual and position
sensors – for learning specific tasks. In this pa-
per, we review some recent works using forces as
input data in LbD and Human-Robot interaction
(HRI) scenarios, and propose a complete learning
framework for teaching force-based manipulation
skills to a robot through a haptic device. We sug-
gest to use haptic interfaces not only as a demon-
stration tool but also as a communication chan-
nel between the human and the robot, getting the
teacher more involved in the teaching process by
experiencing the force signals sensed by the robot.
Within the proposed framework, we provide solu-
tions for treating force signals, extracting relevant
information about the task, encoding the training
data and generalizing to perform successfully un-
der unknown conditions.

1 Introduction
One of the main goals of LbD is to enable non-expert hu-
man users to teach a robot the tasks to perform. There-
fore, it is one of the settings where HRI is most chal-
lenged, because of the need to provide natural and non-trivial
means of communication in a changing unstructured environ-
ment. A human user carries out examples of a given task
while a robot observes these executions and extracts rele-
vant information for learning, generalizing and executing the
taught task under unknown conditions [Billard et al., 2008;
Argall et al., 2009].

Human-robot interaction requires suitable communication
channels between the human and the robot for conveying
information [Goodrich and Schultz, 2007]. In LbD, most
works rely on vision or on motion sensors as input chan-
nels to the robotic system. As for vision-based input, posi-
tional information about the objects in the scene is captured
with cameras, which may also be used to locate and fol-
low markers placed on the teacher’s body [Dillmann, 2004].
Most state-of-the-art approaches consider vision as the best

choice for extracting information from teacher examples, as
human beings do in everyday tasks [Bentivegna et al., 2004;
Grollman and Jenkins, 2007]. However, vision-based sys-
tems must deal with typical problems as occlusion, appear-
ance changes and complex human-robot kinematics mapping,
which can be solved by using motion sensors instead. They
allow to track the teacher’s motion more precisely and to es-
tablish a straightforward mapping, which make them appro-
priate to teach tasks to humanoid robots [Dillmann, 2004;
Calinon and Billard, 2007].

In contrast to these works, we are concerned with learn-
ing from force-based perceptions. Force conveys relevant in-
formation for several tasks where vision or motion sensors
can not provide sufficient data to learn a motion or a set of
primitives. In many daily tasks, people use force-based per-
ception to perform successfully. Examples include assembly
processes, opening doors, pulling drawers, cutting slices of
bread, etc. Robots may also take advantage of force/torque
information for learning this kind of tasks. Evrard et al.
[Evrard et al., 2009] described a learning structure similar to
ours, where a humanoid robot learns to carry out collabora-
tive manipulation tasks (object-lifting in vertical axis) using
Force/Torque (F/T) data. As an extension [Gribovskaya et
al., 2011], combines LbD and adaptive control for teaching
the task, which endows the robot with variable inertia and an
adaptive algorithm to generate different reference kinematic
profiles depending on the perceived force. [Kormushev et
al., 2011] proposed to use a haptic device for defining the
force profile of contact-based tasks (ironing and door open-
ing) while the robot follows a previously learned trajectory.

Recent trends in force-based control have arised in the con-
text of the corrective/refinement phases of learning frame-
works and in HRI-based experimental settings for assuring
safety and natural interactions. In broad words, the main
idea is to take advantage of impedance control theory for
modifying the stiffness and compliance characteristics of the
robot. [Calinon et al., 2010b] suggested a control strategy for
a robotic manipulator performing ironing tasks while inter-
acting with a human operator. Their system takes the most
relevant features of the task and the redundancy of the robot
into account to determine a controller that is safe for the user.
An active control strategy based on task–space control with
variable stiffness is suggested, and combined with a safety
strategy for tasks requiring humans to move in the vicinity



Figure 1: Entire learning framework: (Top) Task learning stage, (Bottom) Robot execution stage.

of robots. On the other hand, [Lee and Ott, 2010] aimed at
extending imitation learning for HRI by incorporating physi-
cal contacts, which are treated by real-time motion reshaping
and impedance control. Lastly, [Buchli et al., 2011] proposed
a model-free, sampling-based learning method named Policy
Improvement with Path Integrals (PI2) for achieving vari-
able impedance control via reinforcement learning. No one
of these works exploits haptic feedback as a means to enrich
the teacher’s experience during the learning phase.

The choice of force feedback as a human-robot commu-
nication channel has obvious advantages, but it also require-
ments when clean and realistic signals are desired to be dis-
played to the human during the demonstration phase. We
contribute with a complete F/T data-based learning frame-
work that includes filtering processes and high-fidelity haptic
feedback (Figure 1). This allows to create a force-based bidi-
rectional communication channel, which has been very little
exploited as a human-robot interaction tool in LbD in contrast
to kinesthetic-based teaching. We constructed an experimen-
tal setup where a human user holding the end-effector of a
6-DOF haptic interface (Delta device from Force Dimension)
teleoperates a robotic arm (RX60 from Stäubli) which has a
force/torque sensor (Shunk FTC-050) placed on its wrist. The
robot holds a plastic container with a steel sphere inside it, as
shown in Figure 2. At the demonstration phase, the human
teacher repeatedly carries out the task to be learned, which
consists of taking the ball out of the box through the hole,
following a specific motion strategy (see Figure 2). During
the demonstrations, the teacher feels at the end-effector of the
haptic device the F/T sensed at the robotic wrist. Note that the
teacher has an additional information source by watching the
scene directly. No visual data are provided to the robot.

2 Processing force-based data
The force signals obtained during the demonstration or in-
teraction phases are composed of the ideal signal, external
forces and noise. It is necessary and appropriate to process
the training data in order to: i) obtain a high-fidelity commu-

nication channel between the teacher and the robot, ii) make
the task easier to be learned and iii) remove undesirable sig-
nals that may be very distracting for the teacher. Most works
do not mention how they tackle these issues, but it is im-
portant to highlight that this is a necessary step to achieve
a reliable learning framework. In our experimental setting,
the entire process implies to solve several technical and re-
search issues. Regarding the acquisition of suitable training
data from teacher demonstrations, first it is necessary to take
into account that the box is not a rigid structure, it vibrates
when the robot moves. Here, the solution is to implement a
digital low-pass filter to reduce the effects on the sensor read-
ings caused by vibrations. Second, it is important that the
teacher can feel F/T generated by the motion of the ball in the
box as faithfully as possible without distracting him/her with
other signals. For solving this, we propose to feedback only
the ball’s dynamics inside the structure without reflecting F/T
generated by the box’s mass, which is achieved by compen-
sating this mass dynamically while executions are carried out
(please see [Rozo et al., 2010] for more details).

3 Feature Selection
The what to Imitate? problem means to determine which fea-
tures of the demonstrations are relevant for learning the task
successfully [Billard et al., 2008; 2004]. Most works tackle
this problem by analyzing the variability across demonstra-
tions of the task at trajectory level. Those parts with large
variances do not have to be learned precisely, whereas low
variances suggest that the corresponding motion segments are
significant and deserve to be learned [Kormushev et al., 2011;
Calinon et al., 2007]. This approach exploits variance for
constructing task constraints [Calinon and Billard, 2008;
Calinon et al., 2010b] as well as for determining secure in-
teraction zones in a robot coaching framework [Lee and Ott,
2010]. However, these works do not focus on the relative rel-
evance of each individual input dimension for the task to be
learned. But irrelevant or redundant information may actu-
ally be present across input dimensions, which can increase



Figure 2: Experimental setup: the teacher holds the end-
effector of the haptic device and teleoperates the robotic arm
for teaching the task, while feeling forces/torques sensed at
the robotic wrist. Bottom right: the box held by the robot.

the computational cost of the learning stage and make the
task harder to learn. The point is to select the most rele-
vant subset of input variables. The benefits in computational
cost and noise reduction during the learning stage do outper-
form a hypothetical and marginal loss of information. Fur-
thermore, this approach is compatible with the previously de-
scribed variance-based analysis criterion.

Here we use the Mutual Information (MI) criterion, that al-
lows to establish which input variables give more information
with respect to their effects on the outputs (i.e. how F/T per-
ceptions affect the teacher actions). Depending on how the
uncertainty of the output data is reduced, an input gives more
or less information about the output, or in other words, it is
highly or lowly correlated with the output [Shannon, 2001].
Formally, the MI value is computed as:

I(x, y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

In our case, inputs are the forces/torques W =
{FxFyFzTxTyTz} sensed and transformed to the robot’s
frame, and output is the position of the robot in its joint space
defined by q = {q1 . . . q6}. Using equation 1, we computed
the MI value for each input/output pair using entire trajecto-
ries from the training data. Simple average MI values were
calculated for these input/output pairs, which shows a good
estimation of how relevant each input variable is with respect
to all outputs. In general terms, the input variables Fy and
Tz show less relevance whereas Tx and Ty are the most cor-
related variables with the outputs. This does make sense as
they are the variables that give the most useful information
for knowing where the ball is inside the box (see Figure 3).

4 Encoding the force-based task
Training data encoding depends on the level at which learn-
ing takes place (i.e. trajectory or symbolic level) and on
what the input and output data are (e.g. positions, veloci-
ties and/or accelerations in joint or operational spaces, forces
and/or torques, etc.). Basically, when treating force-based

Figure 3: Torques map representing clusters for each initial
position of the ball inside the container. Displaying samples
of the most relevant variables to the current task Tx vs. Ty ,
shows that they do describe where the ball is in the box.

tasks, input data are composed of forces and torques, and
possible kinesthetic information as joint robot position. Out-
put data often correspond to velocity and maybe acceleration
commands. Recent works have proposed to encode this kind
of tasks through Dynamic Motion Primitives (DMP) [Kor-
mushev et al., 2011; Gams et al., 2010], Gaussian Mixture
Models (GMM) [Rozo et al., 2010], Hidden Markov Models
(HMM) [Calinon et al., 2010a] or via mixed versions of some
former methods [Gribovskaya et al., 2011]. Others have ad-
dressed this problem based on control theory [Ganesh et al.,
2010].

In our experimental setup, the teacher’s demonstrations
given as training data start with the ball placed at different
positions inside the box, which means that the goal can be
reached from several initial conditions relying on teacher ex-
ecutions1. This implies that the learning framework’s goal is
not to learn merely a trajectory [Evrard et al., 2009] or a task
with predefined states as in assembly processes [Dong and
Naghdy, 2007] that can be represented at a symbolic level.
For endowing the robot with a suitable learning structure for
this kind of tasks and avoiding to assume some aspects about
the task to be learned, we propose to use a HMM to encode
the teacher demonstrations using an ergodic topology, similar
to the approach followed in [Calinon et al., 2010a].

Given our experimental setting described above and fol-
lowing the notation of [Rabiner, 1989], let us to denote train-
ing datapoints as dm

p ∈ <D, with m = 1, 2, . . . ,M and
p = 1, 2, . . . , P , where M is the number of demonstrations,
P is the number of datapoints collected along demonstration
m, and D is the total number of input and output variables.
In our current task, inputs correspond to F/T sensed at the
robotic wrist and outputs are the velocity commands ωl at
each robot joint ql with l = 1, . . . , 6. However, thanks to the

1Demonstrations were carried out executing a predefined motion
strategy that consisted in taking the ball to the wall adjacent to the
hole, and then rolling the ball along this wall to the hole.



Figure 4: Resulting 4-states HMM trained with demonstra-
tions starting at every position inside the box. Top: Input
space composed of the most relevant inputs {Tx,Ty}. Bot-
tom: Output space composed of robot joint velocities playing
the most important role for the given task. The small, hard-
to-see blue state is centred in (0,0).

MI process we concluded that just torques along x and y axes
(i.e. Tx and Ty) are necessary as inputs to learn the task suc-
cessfully because these describe the position of the ball inside
the box entirely. Thus, each training datapoint is defined as
dm
p = (Tx, Ty, ω1, ω2, . . . , ω6).
With all the demonstrations we can encode the joint dis-

tribution P (T, ω) through an ergodic HMM defined as λ =
(A,B, π). The main idea is to adjust the model λ to max-
imize P (O|λ) where O is an observation sequence O =
O1O2 . . . OT with each Ot corresponding to a training dat-
apoint dm

p . To achieve this objective, an iterative proce-
dure such as the Baum-Welch method is used (more details
in [Rabiner, 1989]). This permits obtaining a suitable trained
HMM that represents the teacher demonstrations statistically
through a states model capturing the velocity commands for
given sensed torques and taking temporal coherence into ac-
count from the resulting matrix A. This may be better un-
derstood by observing Figure 4, where the red state in input
space covers the beginning of all demonstrations whose ini-
tial positions are placed on the wall opposite to where the hole
is. At these starting positions, a larger velocity command is
required to draw the ball out of its resting configuration (Fig-
ure 4, bottom). On the other hand, the blue state covers the
trajectory segments corresponding to the end of the task (i.e.
when the ball is getting out of the box) in input space. For
these torque data, the robot should not carry out any move-
ment (small blue ellipse at (0,0) in output space).

5 Generalization of the task
With respect to how the robot can perform the task au-
tonomously under new conditions, it is crucial to estab-
lish a suitable method for computing correct actions rely-
ing on given perceptions. In this context, it is also rele-
vant to keep in mind the kind of task the robot has to ex-

ecute, that is, whether it is a trajectory-level approach or a
symbolic-level one. At a trajectory-level, most of the works
suggest to use regression-based techniques where the main
idea is just to reproduce a generalized trajectory from given
demonstrations, mostly using time as the main (sometimes
unique) input data [Calinon and Billard, 2007]. On the
other hand, some symbolic-level approaches find the robot’s
action by searching the most probable action to be exe-
cuted depending on the perceptions [Bentivegna et al., 2004;
Dong and Naghdy, 2007].

In this work, we encode the task using HMM, which are
mostly used in symbolic approaches, but we compute the
robot’s action via a modified version of the well-know Gaus-
sian Mixture Regression (GMR) technique. This version uses
the temporal information captured by the HMM [Calinon et
al., 2010a] for obtaining the velocity commands to be sent
to each robot joint. The idea of using this temporal infor-
mation (from the HMM variable α) is to predict the desired
velocity command as a function of the given perception (i.e.
torques sensed at the robotic wrist) and sequential informa-
tion probabilistically encapsulated in the HMM, without in-
cluding time as an input variable. HMM/GMRa provide an
estimation by using a weight that takes into consideration
both F/T and sequential information. Formally, the new def-
inition of GMR based on temporal information for obtaining
the velocity command estimation is given by:

ω̂ =

N∑
i=1

α(i)
[
µω,i + ΣωT,i(ΣTT,i)

−1(T − µT,i)
]

(2)

where α(i) is the forward variable for the i-th Gaussian in the

HMM, µi = {µT,i, µω,i}, Σi =

(
ΣTT,i ΣTω,i

ΣωT,i Σωω,i

)
and N

is the number of states in the HMM.
Figures 5(a) and 5(b) show the robot joint trajectories for

q5 and q6. These trajectories are obtained from the veloc-
ity commands predicted through GMRa using the resulting
HMM shown in Figure 4. Here, it is possible to observe how
the robot’s execution is similar to the teacher’s one for a given
input pattern. Moreover, the learning framework performs
successfully when input data lie simultaneously on two HMM
states, because it uses the temporal information encapsulated
in variable αk for deciding which state the system is in. Fur-
thermore, robot’s executions are smoother than the teacher’s
ones, which is good and important for the maintenance of
joint motors.

6 Measuring robot performance
Many LbD works miss a very crucial issue in robotics,
namely performance metrics. Most works evaluate the robot
performance based on success or failure to carry out the task,
or on the number of trials for accomplishing the goal satis-
factorily in reinforcement learning applications. However, it
is a relevant issue to determine if the robot learns the task
successfully through specific methods, allowing to compare
the human and robot executions, how similar the robot mo-
tion is with respect to the one shown by the teacher, how long
the robot takes to achieve the specific goal, etc. In an initial
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Figure 5: Top: Input torques {Tx,Ty} during demonstrations. Middle: Robot joint trajectories corresponding to the teacher’s
demonstration (blue solid line) and the robot’s execution using the HMM/GMRa approach (red dashed line). Bottom: Robot
joint velocity profiles obtained from teacher and robot executions, the latter computed through GMRa.

work, we addressed the same task as a trajectory-level learn-
ing problem where the GMM/GMR approach was used and
the robot performance measured through the Mean Squared
Errors (MSE) between teacher and robot executions for the
same input patterns [Rozo et al., 2010]. Although this mea-
sure can provide a kind of similarity degree, it is not enough
to evaluate the robot performance, because low MSEs at tra-
jectory level do not guarantee that the robot accomplish a
goal-driven task.

We propose to use success/failure and time-based measures
to assess a degree of accomplishment. Therefore, in a first set
of experiments, the ball was placed at the same initial posi-
tions where the teacher started from. For all different posi-
tions of the ball, the robot was able to take the ball out of the
box. Afterwards we placed the ball at random positions (un-
trained ones), and the robot executions achieved the final goal
as well. In these cases, the robot executes the motions learned
for the closest initial position, by identifying the correspond-
ing HMM state. It was observed that in some executions the
ball reached and surpassed the hole, without falling through
it. However, the robot was always able to take the ball out
of the box after some more executions, as it correctly iden-
tified the HMM state corresponding to the current and past
input patterns (taking into account the temporal information).
This means that the robot predicts its actions as a function of
its current and past perceptions, following the teached motion
strategy.

Then, we evaluated the performance of the robot execu-
tions using a time-based criterion. Here, the idea is to de-
termine how much time the robot takes to complete the task
successfully compared with the time needed by the teacher,
starting at each pre-defined initial position. For comparison
purposes, we did also measure the time needed by the robot
to reach the goal simply by chance, performing a series of
random motions (Figure 6). As expected, the teacher’s exe-
cutions correspond to the lowest times. A relevant aspect to
discuss is the fact that the robot execution times are much
larger than the teacher’s ones for most positions. Higher
times are due to the fact that the robot starts the task by
moving the joint q6 as expected, however it also moves q5

slightly which sometimes causes the ball go to the bottom
of the box. This causes that, when the ball reaches the wall
adjacent to the hole, the robot has to carry out more move-
ments in order to take the metalic sphere towards the hole. It
would be possible to formulate an equation as a function of
time, the MSEs and the success/failure criteria for obtaining
a kind of measure of the robot performance (videos available
in http://www.iri.upc.edu/people/lrozo/index.html).

7 Conclusions
We briefly reviewed some LbD works using force-based per-
ceptions as input data for their learning processes, where it
was possible to derive how force information can be exploited
in the LbD context. Furthermore, we described a learning
framework that uses force/torque data in order to learn and
reproduce the taught task. The paper highlighted that there
are some critical issues to be addressed: filtering processes
for developing a good bi-directional channel between human
and robot, selection of the most relevant perceptions in order
to learn the task faster and easier, encoding of force-based
tasks and generalization for performing successfully under
know and unknown conditions. We also demonstrated how
a robot can learn a task successfully only using force data,
from which we can state that F/T information can provide
relevant data about a given task and complement other kind
or data sources.

As future work, we plan to take the learning framework
to more realistic settings where force/torque feedback is rele-
vant: opening doors, pulling drawers or emptying deformable
bags. Moreover, we would like to apply force-based skill
learning to compliant robots in an active learning environ-
ment as a refinement or correction phase. In addition, this
type of robots would allow us to extend our approach to
human-robot collaborative tasks by taking advantage of their
compliance features, from an impedance control-based per-
spective.
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