Batch, Off-policy and Model-Free Apprenticeship Learning

Edouard Klein and Matthieu Geist and Olivier Pietquin

Abstract

This paper addresses the problem of apprentice-
ship learning, that is learning control policies from
demonstration by an expert. An efficient frame-
work for it is inverse reinforcement learning (IRL).
Based on the assumption that the expert maximizes
a utility function, IRL aims at learning the under-
lying reward from example trajectories. Many IRL
algorithms assume that the reward function is lin-
early parameterized and rely on the computation
of some associated feature expectations, which is
done through Monte Carlo simulation. However,
this assumes to have full trajectories for the expert
policy as well as at least a generative model for
intermediate policies. In this paper, we introduce
a temporal difference method, namely LSTD-p, to
compute these feature expectations. This allows ex-
tending apprenticeship learning to a batch and off-
policy setting.

1 Introduction

Optimal control consists in putting a machine in control of a
system with the goal of fulfilling a specific task, optimality
being defined as how well the task is performed. Various so-
lutions to this problem exist from automation to planification.
Notably, the reinforcement learning (RL) paradigm [Sutton
and Barto, 1998] is a general machine learning framework in
which an agent learns to control optimally a dynamic system
through interactions with it. The task is specified through a
reward function, the agent objective being to take sequential
decisions so as to maximize the expected cumulative reward.

However, defining optimality (through the reward func-
tion) can itself be a challenge. If the system can be empir-
ically controlled by an expert, even though his/her behavior
can be difficult to describe formally, apprenticeship learning
is a way to have a machine controlling the system by mimick-
ing the expert. Rather than directly mimicking the expert with
some supervised learning approach, Inverse Reinforcement
Learning (IRL) [Ng and Russell, 2000] consists in learning a
reward function under which the policy demonstrated by the
expert is optimal. Mimicking the expert therefore ends up to
learning an optimal policy according to this reward function.
A significant advantage of such an approach is that expert’s

actions can be guessed in states which have not been encoun-
tered during demonstration. Firstly introduced in [Russell,
1998], another advantage claimed by the author would be to
find a compact and complete representation of the task in the
form of the reward function.

There roughly exists three families of IRL algorithms:
feature-expectation-based [Abbeel and Ng, 2004; Syed et al.,
2008; Syed and Schapire, 2008; Ziebart et al., 2008], margin-
maximization-based [Ratliff ez al., 2006, 2007a,b; Kolter et
al., 2008] and approaches based on the parameterization of
the policy by the reward function [Ramachandran and Amir,
2007; Neu and Szepesvari, 2007]. The first family assumes a
linearly parameterized reward function. This naturally leads
to a linearly parameterized value function, the associated fea-
ture vector being the so-called feature expectation (see Sec. 2
for a formal definition). These approaches learn a reward
function such that the feature expectation of the optimal pol-
icy (according to the learnt reward function) is close to the
feature expectation of the expert policy. This is a sufficient
condition to have close value functions (for any parameter-
ized reward function, and therefore particularly the optimized
one). The second family expresses IRL as a constrained opti-
mization problem in which expert’s examples have higher ex-
pected cumulative reward than all other policies by a certain
margin. Moreover, suboptimality of the expert can be consid-
ered through the introduction of slack variables. The last fam-
ily parameterizes policies with a reward function. Assuming
that the expert acts according to a Gibbs policy (respectively
to the optimal value function related to the reward function
which is optimized), it is possible to estimate the likelihood
of a set of state-action pairs provided by the expert. The al-
gorithms differs in the way this likelihood is maximized.

This paper focuses on the first family of algorithms, and
more precisely on the seminal work of Abbeel and Ng [2004].
All of them rely on the computation of the feature expecta-
tion (which depends on policies but not on rewards) of (i) the
expert and (ii) some intermediate policies. The expert’s fea-
ture expectation is computed using a simple Monte Carlo ap-
proach (which requires full trajectories of the expert). Other
feature expectations are either computed exactly (which re-
quires knowing analytically the dynamics of the system) or
with a Monte Carlo approach (which requires simulating the
system). The contribution of this paper is LSTD-u, a new
temporal-difference-based algorithm for estimating these fea-

ture expectations. It relaxes the preceding assumptions: tran-
sitions of the expert are sufficient (rather than full trajectories)
and nor the model neither a simulator are necessary to com-
pute intermediate feature expectations. This paper focuses on
the algorithm introduced in [Abbeel and Ng, 2004], but the
proposed approach can be used in other algorithms based on
feature expectation computation.

The rest of this paper is organized as follows. Sec. 2 pro-
vides the necessary background, notably the definition of fea-
ture expectation and its use in the seminal IRL algorithm
of Abbeel and Ng [2004]. Sec. 3 presents LSTD-p, our main
contribution. Sec. 4 provides some preliminary experiments
and Sec. 5 opens perspectives.

2 Background

A sequential decision problem is often framed as a
Markov Decision Process (MDP) [Puterman, 1994], a tuple
{S, A, P,R,~} with S being the state space, A the action
space, P € P(S)%*4 the set of Markovian transition prob-
abilities, R € R* the reward function (assumed to be abso-
lutely bounded by 1) and v € [0, 1] a discounting factor. A
policy m € AS maps states to actions. The quality of a pol-
icy is quantified by the associated value function V'™, which
associates to each state the expected and discounted cumu-

o0
lative reward: V™ (s) = E[Y. 7' R(s;)|so = s, 7] Dynamic
=0

programming aims at finding the optimal policy 7*, that is
one of the policies associated to the optimal value function,
V* = argmax, V™, which maximizes the value for each
state. If the model (that is transition probabilities and the
reward function) is unknown, learning the optimal control
through interactions is addressed by RL.

For IRL, the problem is reversed. It is assumed that an ex-
pert acts according to an optimal policy 7 g, this policy being
optimal according to some unknown reward function R*. The
goal is to learn this reward function from sampled trajectories
of the expert. This is a difficult and ill-posed problem [Ng and
Russell, 2000]. Apprenticeship learning through IRL, which
is the problem at hand in this paper, has a somewhat weaker
objective: it aims at learning a policy 7 which is (approxi-
mately) as good as the expert policy g under the unknown
reward function R*, for a known initial state sg (this condi-
tion can be easily weakened by assuming a distribution over
initial states). Now, the approach proposed in [Abbeel and
Ng, 2004] is presented.

We assume that the true reward function belongs to some
hypothesis space Hy = {07¢(s),0 € RP}, of which we
assume the basis functions to be bounded by 1: |¢;(s)] <
1,¥Vs € 5,1 < i < p. Therefore, there exists a parameter
vector 0* such that: R*(s) = (6*)T¢(s) In order to ensure
that rewards are bounded, we impose that ||6||2 < 1. For any
reward function belonging to H and for any policy , the
related value function V™ (s) can be expressed as follows:

VT (&)=E[3 767 ¢(s)|so=s.m=0T B[S ¥ é(s)lso=s.x] (1)

Therefore, the value function is also linearly parameterized,
with the same weights and with basis functions being grouped

into the so-called feature expectation p™:
(oo}
w(s) = E[Y_ ' é(s0)|s0 = s,7] @)
t=0

Recall that the problem is to find a policy whose performance
is close to that of the expert’s for the starting state sg, on the
unknown reward function R*. In order to achieve this goal,
it is proposed in [Abbeel and Ng, 2004] to find a policy 7
such that ||u™% (sg) — " (so)|l2 < € for some (small) € > 0.
Actually, this ensures that the value of the expert’s policy and
the value of the estimated policy (for the starting state sg) are
close for any reward function of H 4:

[V7E (s0) =V 7 (s0)|=[0T (W7E (s0) — ™ (s0))|<[|™E (80)—uﬁ(So)ll(z3)
This equation uses the Cauchy-Schwartz inequality and the
assumption that ||6||2 < 1. Therefore, the approach described
here does not ensure to retrieve the true reward function R*,
but to act as well as the expert under this reward function (and
actually under any reward function).

Let us now describe the algorithm proposed in [Abbeel and
Ng, 2004] to achieve this goal:

1. Starts with some initial policy 7(°) and compute
u”(o) (so). Setj =1;
2. Compute t) = maxg,|jg|,<1 Minge{o,j—13 07 (L= (s0)—

T (s0)) and let #U) be the value attaining this maxi-
mum. At this step, one searches for the reward function
which maximizes the distance between the value of the
expert at sg and the value of any policy computed so far
(still at sg). This optimization problem can be solved
using a quadratic programming approach or a projection
algorithm [Abbeel and Ng, 2004];

3. if tU) < ¢, terminate. The algorithm outputs a set
of policies {7(?,..., 70U~} among which the user
chooses manually or automatically the closest to the ex-
pert (see [Abbeel and Ng, 2004] for details on how to
choose this policy). Notice that the last policy is not

necessary the best (as illustrated in Sec. 4);

4. solve the MDP with the reward function RV)(s) =
(09))"¢(s) and denote 77 the associated optimal pol-

icy. Compute ;ﬂ(]) (s0);
5. set j < j + 1 and go back to step 2.

There remains three problems: computing the feature expec-
tation of the expert, solving the MDP and computing feature
expectations of intermediate policies.

As suggested in [Abbeel and Ng, 2004], solving the MDP
can be done approximately by using any appropriate rein-
forcement learning algorithm. In this paper, we use the
Least-Squares Policy Iteration (LSPI) algorithm [Lagoudakis
and Parr, 2003]. There remains to estimate feature expecta-
tions. In [Abbeel and Ng, 2004], u™#(s¢) is estimated us-
ing a Monte Carlo approach over m trajectories: fig(sg) =

1 le tZO ’ytgﬁ(sgh)) This approach does not hold if only tran-
sitions of the expert are available, or if trajectories are too

long (in this case, it is still possible to truncate them). For in-
termediate policies, it is also suggested to estimate associated
feature expectations using a Monte Carlo approach (if they
cannot be computed exactly). This is more constraining than
for the expert, as this assumes that a simulator of the system is
available. In order to address these problems, we introduce a
temporal-difference-based algorithm to estimate these feature
expectations.

3 LSTD-u

Let us write the definition of the i component of a
feature expectation u™(s) for some policy m: pf(s) =

[Z Yiéi(st)|so = s,n] This is exactly the definition of

the Value function of the policy 7 for the MDP considered
with the i'" basis function ¢;(s) as the reward function. There
exists many algorithms to estimate a value function, any of
them can be used to estimate ;7. Based on this remark, we
propose to use specifically the least-squares temporal differ-
ence (LSTD) algorithm [Bradtke and Barto, 1996] to estimate
each component of the feature expectation (as each of these
components can be understood as a value function related to
a specific and known reward function).

Assume that a set of transitions {(s;, 7, s})1<t<n} Sam-
pled according to the policy 7 is available. We assume that
value functions are searched for in some hypothesis space

Hy = {Vels) = Zézwz() = &£TY(s),§ € R}, As re-

ward and value functlons are possibly quite different, another
hypothesis space is considered for value function estimation.
But if H4 is rich enough, one can still consider H,, = Hy.
Therefore, we are looking for an approximation of the fol-
lowing form: 7 (s) = (¢;)T4(s) The parameter vector & is

here the LSTD estimate:
-1 ,
’W(St))T> D blse)dilst)
t=1

5 = (Zw St
4)

For apprenticeship learning, we are interested more particu-
larly in 1™ (sg). Let ¥ = ();(s¢))e,; be the n x g matrix of
values predictors, AW = (1;(s¢) — vi(s}))+,; be the related
n X ¢ matrix and ® = (¢;(s¢))¢,; the n x p matrix of reward
predictors. It can be easily checked that /1™ (s¢) satisfies:

(A7 (s0))" = W(s0)" (PTADL) U D Q)
This provides an efficient way to estimate the feature expec-
tation of the expert in sg.

There remains to compute the feature expectations of inter-
mediate policies, which should be done in an off-policy man-
ner (that is without explicitly sampling trajectories according
to the policy of interest). To do so, still interpreting each
component of the feature expectation as a value function, we
introduce a state-action feature expectation defined as follows
(much as the classic @Q-function extends the value function):

o0
u'(s,a) = E[>. v'¢(s¢)|so = s,a0 = a,n] Compared
t=0
to the classic feature expectation, this definition adds a de-
gree of freedom on the first action to be chosen before fol-
lowing the policy w. With a slightly different definition of

the related hypothesis space, each component of this feature
expectation can still be estimated using the LSTD algorithm
(namely using the LSTD-Q algorithm [Lagoudakis and Parr,
2003]). The clear advantage of introducing the state-action
feature expectation is that this additional degree of freedom
allows off-policy learning. Extending LSTD- to state-action
LSTD-p is done in the same manner as LSTD is extended to
LSTD-Q [Lagoudakis and Parr, 2003], technical details are
not provided here for the clarity of exposition.

Given the (state-action) LSTD-x algorithm, the appren-
ticeship learning algorithm presented in Sec. 2) can be eas-
ily extended to a batch and off-policy setting. The solely
available data is a set of transitions sampled according to
the expert policy (and possibly a set of sub-optimal trajecto-
ries). The corresponding feature expectation for the starting
state sg is estimated with the LSTD-p algorithm. At step 4
of this algorithm, the MDP is (approximately) solved using
LSPI [Lagoudakis and Parr, 2003] (an approximate policy it-
eration algorithm using LSTD-Q as the off-policy Q-function
estimator). The corresponding feature expectation at state sg
is estimated using the proposed state-action LSTD-(.

Before presenting some experimental results, let us stress
that LSTD-y is simply the LSTD algorithm applied to a spe-
cific reward function. Although quite clear, the idea of using
a temporal difference algorithm to estimate the feature ex-
pectation is new, as far as we know. A clear advantage of the
proposed approach is that any theoretical result holding for
LSTD also holds for LSTD-y, such as convergence [Nedi¢
and Bertsekas, 2003] or finite-sample [Lazaric et al., 2010]
analysis for example.

4 Experimental benchmark

This section provides experimental results on two comple-
mentary problems. Subsection 4.1 details the protocol and
the results while subsection 4.2 inspects the meaning of the
different quality criteria.

4.1 Experiment description and results

GridWorld

The first experimental benchmark chosen here is one of those
proposed in [Ng and Russell, 2000], a 5x5 grid world. The
agent is in one of the cell of the grid (whose coordinates
is the state) and can choose at each step one of the four
compass directions (the action). With probability 0.9, the
agent moves in the intended direction. With probability 0.1,
the direction is randomly drawn. The reward optimized by
the expert is O everywhere except in the upper-right cell,
where it is 1. For every policy, an episode ends when the
upper right cell is attained, or after 20 steps. At the start
of each episode, the agent is in the lower-left corner of the
grid (the opposite of where the reward is). Both the state
and action spaces are finite and of small cardinality. Hence,
the chosen feature functions ¢ and v are the typical features
of a tabular representation: 0 everywhere except for the
component corresponding to the current state (-action pair).

Both Abbeel and Ng [2004]’s algorithm (from now on
referred to as the MC variant) and our adaptation (referred

LSTD ———
Monte-Carlo

(1127 (s0) — 1= (50) |2

|
Hi

-0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of samples from the expert

Figure 1: ||u™(s9) — u™# (s0)||2 with respect to the number
of samples available from the expert. The error bars represent
the standard deviation over 100 runs.

to as the LSTD variant) are tested side by side. The MDP
solver of the MC variant is LSPI with a sample source
that covers the whole grid (each state has a mean visitation
count of more than 150) and draws its action randomly.

Both u~ (so) and p™F(sg) are computed thanks to a
Monte-Carlo estimation with enough samples to make the
variance negligible. We consider both these computations as
perfect theoretical solvers for all intended purpose on this
toy problem. We thus are in the case intended by Abbeel
and Ng [2004]. On the other hand the LSTD variant is used
without accessing a simulator. It uses LSPI and LSTD-y, fed
only with the expert’s transitions (although we could also use
non expert transitions to compute intermediate policies, if
available). This corresponds to a real-life setting where data
generation is expensive and the system cannot be controlled
by an untrained machine.

We want to compare the efficiency of both versions of
the algorithm with repect to the number of samples available
from the expert, as these samples usually are the bottleneck.
Indeed as they are quite costly (in both means and human
time) to generate they are often not in abundance hence the
critical need for an algorithm to be expert-sample efficient.
Having a simulator at one’s disposal can also be difficult.
For the simple problem we use this is however not an issue.
The discussion about the choice of the performance metric
has its own dedicated subsection (subsection 4.2). We use

here the H/ﬂm(so) — ™ (s9)]|2 error term. Fig. 1 shows,
for some numbers of samples from the expert, the value of

||M7Tm (s0) — 1™E (s0)||2 after the algorithm converged or at-
tained the maximum number of iterations (we used 40). The
best policy is found by LSTD variant after one iteration only'
whereas in the MC variant, convergence happens after at least
ten iterations. The best policy is not always the last, and al-

"Precise reasons for why it happens are not clear now, but cer-
tainly have something to do with the fact that all the estimations are
made along the same distribution of samples.

3000
LSTD ———

g MC
& 2500 /
3 }
e |
2 |
£ 2000 |
5 |
& |
& |
% 1500 J
= i
£ |
2 |
g |
g 1000 !
bt |
bt
=} |
b5y |
2 500 |
g |
2 |
zZ

0 e e]

0 500 1000 1500 2000 2500 3000

Number of sub-optimal samples given to LSPI

Figure 2: Number of balancing steps for the policies found
by both variants with respect to the number of samples from a
sub-optimal policy given to LSPI. Note the absence of middle
ground in the quality.

though it experimentally always have been with the LSTD
variant, there is absolutely no way to tell whether this is a
feature. The score of the best policy (not the last) according

to the H/ﬂm (s0) — ™ (80)]|2 error term is plotted here. We
can see that although the LSTD variant is not as good as the
MC variant when very few samples are available, both algo-
rithm quickly converge to almost the same value ; our version
converges to a slightly lower error value. The fact that our
variant can work in a batch, off-policy and model-free set-
ting should make it suitable to a range of task inaccessible to
the MC variant, the requirement of a simulator being often
constraining.

Inverted Pendulum

Another classic toy problem is the inverted pendulum, used
for example in [Lagoudakis and Parr, 2003] from where we
drew the exact configuration (mass of the pendulum, length
of the arm, definition of the feature space, etc.). In this
setting, the machine must imitate an expert who maintains
the unstable equilibrium of an inverted pendulum allowed to
move along only one axis. A balancing step is considered
successful (reward 0) when the angle is less than 7. It is
considered a failure (reward —1) when the pendulum has
fallen (i.e. the angle is more than 7). A run is stopped after a
failure or after 3000 successful balancing steps.

This problem bears two fundamuntal differences with the
previous one and thus comes as complementary to it. First, it
pesents a continuous state space whereas in the GridWorld a
tabular representation was possible. Then, the initial state is
randomly drawn from a non singleton subspace of the state
space. This last point is addressed differently by the LSTD
variant and the MC variant. the MC variant will naturally
sample the initial state distribution at each new trajectory
from the expert. The LSTD variant, on the other hand, still
does not need complete trajectories from the expert but mere
samples. As it approximates the whole p™ function and

4000

Z

2 3500

=}

(=%

z 3000 E—
el

()

< 2500

5

2 2000

3

2

@ 1500

< 1000

O

5

: 500

@

E 0

Z

-500 L
0 500 1000 1500 2000 2500 3000

Number of sub-optimal samples given to LSPI

Figure 3: Same plot as Fig. 2, with mean and standard devia-
tion over 100 runs. The big standard deviation stems from the
absence of middle ground in the quality of the policies. The
increasing mean w.r.t. the abscissa means that the proportion
of good policies increases with the number of samples from
a sub-optimal policy given to LSPI.

not just u™(sp), it is possible to compute the mean of the
approximation 4™ over a few states drawn with the same
distribution as the initial states.

A striking finding on this toy problem is that the parameter
controlling the success or the failure of the experiment is not
the number of samples from the expert, but the quality of
the samples available to LSPI to solve the MDP. A contrario
to what happened in the previous toy problem, the samples
from the expert are less than what LSPI needs to solve the
MDP as they do not cover the whole state space. When
given only these samples, the LSTD variant fails. The MC
variant, however, is not bound by such restrictions and can
use as much samples as it needs from a simulator. Thus, with
only one trajectory from the expert (100 samples) the MC
variant is able to successfully balance the pendulum for more
than 3000 steps. The problem here stems from the fact that
we don’t learn the reward, but a policy that maximizes the
reward. If the optimal control problem was solved separately,
learning the reward only from the samples of the expert
would be possible.

The sensibility of both algorithms to the number of
samples available to LSPI is extreme, as is shown in Fig. 2.
It may seem nonsensical to restrict the number of samples
available to LSPI for the MC variant as it can access a
simulator, but this has been done to show that both variants
exhibits the same behavior, hence allowing us to locate the
source of this behavior in what both algorithms have in
common (the use of LSPI inside the structure of [Abbeel and
Ng, 2004]) excluding the point where they differ (LSTD-p
and Monte-Carlo).

Fig. 3 shows that when given samples from a sub-optimal
policy, the LSTD variant can sort the problem out, statis-

6 I A7, (s0) = 7% (s0) |2

N W\

0 2 4 6 8 10 12 14

Iterations (j)

Figure 4: Different criteria with respect to the number of iter-
ations for a run of the MC variant.

tically almost always with 3000 sub-optimal samples, and
sometimes with as low as 200 sub-optimal samples. Such
a setting is still batch, off-policy and model-free. When
given enough sub-optimal samples, both variants are success-
ful with only one trajectory from the expert (i.e. 100 samples,
this is what is plotted here). Giving more trajectory from the
expert does not improve the success rate.

4.2 Discussion about the quality criterion

Fig. 4 and 5 illustrate (using the GridWorld problem) the
difficulty of choosing the quality criterion ; Fig. 4 shows
four different quality criteria during a run of the MC variant.
Fig. 5 shows the same criteria for several runs of the LSTD
variant with a varying number of samples from the expert.
The Hu”(])(so) — u™E(s9)]|2 term is widely discussed in
[Abbeel and Ng, 2004]’s additional material. It bears an
interesting relation with the difference between the expert’s
value function and the current value function in the initial
state with respect to the current reward (Eq. 3).

The fact that the
term HM”(J)(SO) -
||[ﬂm(so) — [i™E(sg)||2 are indistinguishable in Fig. 4
means that, for it has access to a cheap simulator, the MC
variant works as if it had access to the exact values. This
however cannot be said of the LSTD variant, for which the
two curves are indeed different (Fig. 5). Not knowing the
true value of u™#(sy) may be a problem for our variant,
as it can introduce an error in the stopping criterion of the
algorithm.

curves of the true error
L™E(s9)]l2 and its estimate

It shall be noted that although it plays its role, the halt crite-
rion is not a good measure of the quality of the current policy
in the MC variant either, as it can be low (and thus halt the
algorithm) when the policy is bad. The best policy, however,
can be easily chosen among all those created during the exe-

cution of the algorithm thanks to the H,u”(j) (s0) — ™2 (s0)||2
term, which the MC variant can compute. When this term is

o

) -

i ¢ (s0)

i (s0) = ™= (s0)][2
(50)

12

05 |

-0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of samples from the expert

Figure 5: Different criteria with respect to the number of sam-
ples from the expert, for several runs of the LSTD variant.
We can see that the algorithm is blind, as all it has access to
is always zero. The true error values, however, smoothly con-
verge to something small. Knowing how many expert sam-
ples are actually needed in a real world problem is an open
question. The error bars represent the standard deviation over
100 runs.

low, the objective performance (that is, V™7 (sq) — yr (s0)
with respect to the unknown true reward function) is low too.

5 Conclusion

Given some transitions generated by an expert controlling
a system and maximizing in the long run an unknown
reward, we ported Abbeel and Ng [2004]’s approach to
apprenticeship learning via inverse reinforcement learning
to a batch, model-free, off-policy setting. Experimentally,
there is a need for either a slightly bigger number of samples
from the expert or some samples from a sub-optimal policy.
We believe this cost is not prohibitive as our approach only
requires isolated samples which are often less difficult to get
than whole trajectories as needed by the original approach.
Furthermore, tranferring the reward and not he policy may
overcome this difficulty. We intend to do this in a real life
setting. The simple idea of using LSTD to estimate the
feature expectation could be applied to other algorithms as
well, for example [Abbeel and Ng, 2004; Syed et al., 2008;
Syed and Schapire, 2008; Ziebart et al., 2008].

References

P. Abbeel and A.Y. Ng. Apprenticeship learning via in-
verse reinforcement learning. In Proceedings of the twenty-
first international conference on Machine learning, page 1.

ACM, 2004.

S.J. Bradtke and A.G. Barto. Linear least-squares algo-
rithms for temporal difference learning. Machine Learn-
ing, 22(1):33-57, 1996.

J.Z. Kolter, P. Abbeel, and A.Y. Ng. Hierarchical apprentice-
ship learning with application to quadruped locomotion. In

Neural information processing systems, volume 20. Cite-
seer, 2008.

M.G. Lagoudakis and R. Parr. Least-squares policy iteration.
The Journal of Machine Learning Research, 4:1107-1149,
2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample
analysis of Istd. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

A. Nedi¢ and DP Bertsekas. Least squares policy evaluation
algorithms with linear function approximation. Discrete
Event Dynamic Systems, 13(1):79-110, 2003.

G. Neu and C. Szepesvari. Apprenticeship learning using
inverse reinforcement learning and gradient methods. In
Proc. UAI pages 295-302. Citeseer, 2007.

A.Y. Ng and S. Russell. Algorithms for inverse reinforcement
learning. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 663—670. Morgan
Kaufmann Publishers Inc., 2000.

M.L. Puterman. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons, Inc.
New York, NY, USA, 1994.

D. Ramachandran and E. Amir. Bayesian inverse reinforce-
ment learning. Urbana, 51:61801, 2007.

N.D. Ratliff, J.A. Bagnell, and M.A. Zinkevich. Maximum
margin planning. In Proceedings of the 23rd international
conference on Machine learning, page 736. ACM, 2006.

N. Ratliff, J.A. Bagnell, and S.S. Srinivasa. Imitation learning
for locomotion and manipulation. In Humanoid Robots,
2007 7th IEEE-RAS International Conference on, pages
392-397. IEEE, 2007.

N. Ratliff, D. Bradley, J.A. Bagnell, and J. Chestnutt. Boost-
ing structured prediction for imitation learning. Advances
in Neural Information Processing Systems, 19:1153, 2007.

S. Russell. Learning agents for uncertain environments (ex-
tended abstract). In Proceedings of the eleventh annual
conference on Computational learning theory, page 103.
ACM, 1998.

R.S. Sutton and A.G. Barto. Reinforcement learning. MIT
Press, 1998.

U. Syed and R.E. Schapire. A game-theoretic approach to
apprenticeship learning. Advances in neural information
processing systems, 20:1449-1456, 2008.

U. Syed, M. Bowling, and R.E. Schapire. Apprenticeship
learning using linear programming. In Proceedings of the
25th international conference on Machine learning, pages
1032-1039. ACM, 2008.

B.D. Ziebart, A. Maas, J.A. Bagnell, and A.K. Dey. Max-
imum entropy inverse reinforcement learning. In Proc.
AAAI, pages 1433-1438, 2008.

