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Abstract. Lazy learning methods provide useful representations and training algorithms for
learning about complex phenomena during autonomous adaptive control of complex systems.
This paper surveys ways in which locally weighted learning, a type of lazy learning, has been
applied by us to control tasks. We explain various forms that control tasks can take, and how
this affects the choice of learning paradigm. The discussion section explores the interesting
impact that explicitly remembering all previous experiences has on the problem of learning to
control.
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1. Introduction

The necessity for self improvement in control systems is becoming more
apparent as fields such as robotics, factory automation, and autonomous
vehicles become impeded by the complexity of inventing and programming
satisfactory control laws. Learned models of complex tasks can aid the design
of appropriate control laws for these tasks, which often involve decisions
based on streams of information from sensors and actuators, where data is
relatively plentiful. The tasks may change over time, or multiple tasks may
need to be performed. Lazy learning methods provide an approach to learning
models of complex phenomena, dealing with large amounts of data, training
quickly, and avoiding interference between multiple tasks during control of
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complex systems (Atkeson et al. 1997). This paper describes five ways in
which lazy learning techniques have been applied by us to control tasks.

In learning control, there is an important distinction between representa-
tional tools, such as lookup tables, neural networks, databases of experiences,
or structured representations, and what we will call learning paradigms,
which define what the representation is used for, where training data comes
from, how the training data is used to modify the representation, whether
exploratory actions are performed, and other related issues. It is difficult to
evaluate a representational tool independently of the paradigm in which it
is used, and vice versa. A successful robot learning algorithm typically is
composed of sophisticated representational tools and learning paradigms. We
will describe using the same representational tool, locally weighted learning
(Atkeson et al. 1997), in different tasks with different learning paradigms and
with different results.

In defining paradigms for learning to control complex systems it is useful
to identify three separate components of an indirect (model-based) adaptive
control system: modeling, exploration, and policy design. The first compo-
nent, modeling, is the process of forming explicit models of the task and
the environment. All of the approaches we will describe will form explicit
world models. Moore and Atkeson (1993) explore some of the advantages
and disadvantages of approaches that form explicit models versus those that
avoid forming models. Often the modeling process is equated with function
approximation, in which a representational tool is used to fit a training data
set. Focusing only on the modeling component leaves several important
questions unanswered. For example, “where does the training data come
from?” and “what new training data should be collected?” are addressed by
the exploration component. The question “how should the identified model
be used to select actions?” is addressed by the policy design or control law
design component.

The aim of this paper is to survey the implications of using locally weighted
regression, a lazy learning technique, as the modeling component of our three
part control system. Lazy modeling techniques cannot be implemented or
discussed without exploring related issues in exploration and policy design.
Although the policy design and exploration components are not “lazy” in the
same sense as the modeling component, they should exploit the capabilities
of lazy modeling, and make a lazy modeler’s job easier.

1.1. Why Focus on Lazy Learning For Learning to Control?

We will not review lazy learning here, but expect that our reader has already
read the companion paper in this collection (Atkeson et al. 1997), from which
we will borrow both terminology and notation. In the form of lazy learn-
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ing we will focus on, locally weighted learning, experiences are explicitly
remembered, and predictions and generalizations are performed in real time
by building a local model to answer any particular query (an input for which
the function’s output is desired). The motivation for focussing on locally
weighted learning was not that it is a more accurate function approxima-
tor than other methods such as multi-layer sigmoidal neural networks, radial
basis functions, regression trees, projection pursuit regression, other statistical
nonparametric regression techniques, and global regression techniques, but
that lazy learning techniques avoid negative interference. One of the primary
characteristics of learning to control a robot is that data comes in continuously,
and the distribution of the data changes as the robot learns and changes its
performance task. Locally weighted learning easily learns in real time from
the continuous stream of training data. It also avoids the negative interference
exhibited by other modeling approaches, because locally weighted learning
retains all the training data, as do many lazy learning methods (Atkeson et al.
1997).

Our approach to modeling the complex functions found in typical task or
process dynamics is to use a collection of simple local models. One benefit of
local modeling is that it avoids the difficult problem of finding an appropriate
structure for a global model. A key idea in lazy learning is to form a training
set for the local model after a query is given. This approach allows us to
select from the training set only relevant experiences (nearby samples) and
to weight those experiences according to their relevance to the query. We
form a local model of the function at the query point, much as a Taylor series
models a function in the neighborhood of a point. This local model is then
used to predict the output of the function for that query. After answering the
query, the local model is discarded. A new local model is created to answer
each query. This leads to another benefit of lazy modeling for control: we
can delay the choice of local model structure and structural parameters until
a query must be answered, and we can make different choices for subsequent
queries (Atkeson et al. 1997).

Locally weighted learning can represent nonlinear functions, yet has simple
training rules with a single global optimum for building a local model in
response to a query. This allows complex nonlinear models to be identified
(trained) quickly. Currently we are using polynomials as the local models.
Since the polynomial local models are linear in the parameters to be estimated,
we can calculate these parameters using a linear regression. Fast training
makes continuous learning from a stream of new input data possible. It is true
that lazy learning transfers the computational load onto the lookup process,
but our experience is that the linear parameter estimation process during
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lookup in locally weighted learning is still fast enough for real time robot
learning (Atkeson et al. 1997).

We use cross validation to choose an appropriate distance metric and
weighting function, and to help find irrelevant input variables and terms
in the local model. In fact, performing one cross validation evaluation in lazy
learning is no more expensive than processing a single query (Atkeson et al.
1997). Cheap cross validation makes search for model parameters routine,
and we have explored procedures that take advantage of this (Atkeson et al.
1997; Maron and Moore 1994; Moore et al. 1992; Moore and Lee 1994).

We have extended the locally weighted learning approach to give informa-
tion about the reliability of the predictions and local linearizations generated,
based on the local density and distribution of the data and an estimate of the
local variance (Atkeson et al. 1997; Schaal and Atkeson 1994a; Schaal and
Atkeson 1994b). This allows a robot to monitor its own skill level, protect
itself from its ignorance by designing robust policies, and guide its exploratory
behavior.

Another attractive feature of locally weighted learning is flexibility. There
are explicit parameters to control smoothing, outlier rejection, forgetting, and
other processes. The modeling process is easy to understand, and therefore
easy to adjust or control (Atkeson et al. 1997).

We will see how the explicit representation of specific memories can speed
up convergence and improve the robustness and autonomy of optimization
and control algorithms (Atkeson et al. 1997; Moore and Schneider 1995). It is
frustrating to watch a robot repeat its mistakes, with only a slight improvement
on each attempt. The goal of the learning algorithms described here is to
improve performance as rapidly as possible, using as little training data as
possible (data efficiency).

1.2. Related Work

Locally weighted learning is being increasingly used in control. (Connell and
Utgoff 1987) interpolated a value function using locally weighted averaging
to balance an inverted pendulum (a pole) on a moving cart. (Peng 1995)
performed the cart pole task using locally weighted regression to interpolate
a value function. (Zografski 1992) used locally weighted averaging to learn
a model of the dynamics of a robot arm, and used that model to predict
the forces necessary to drive the arm along a trajectory. (Aha and Salzberg
1993) explored nearest neighbor and locally weighted learning approaches to
a tracking task in which a robot pursued and caught a ball. (McCallum 1995)
explored the use of lazy learning techniques in situations where states were
not completely measured.
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Table 1. The control tasks explored in this paper. Symbols and mathematics described in
some of the entries will be explained in the corresponding sections.

Task Task
Specification

Goal Example Sec.

Temporally
Independent

yd : the desired
output

Choose u such that E[y] = yd Billiards 2

Deadbeat
Control

xd or trajectory
fxd(t)g

Choose u(t) such that
E[x(t+1)] = xd(t+1)

Devil Sticking I 3.1

Dynamic
Regulation

xd and matrices
Q and R

Minimize future cost C =P
1

t=0

�
�x(t)TQ�x(t) + u(t)TRu(t)

� Devil Sticking II 3.2

Dynamic
Regula-
tion, unspeci-
fied setpoint

Q and R Choose setpoint to minimize future cost
C

Devil Sticking III 3.4

Nonlinear
Optimal
Control

Cost function
G(x(t); u(t); t)

Find a control policy to minimize the
sum of future costs

Puck 3.6

1.3. Outline

This article is organized by types of control tasks, and in the next sections
we will examine a progression of control tasks of increasing complexity. We
have chosen these tasks because we have implemented lazy learning as part
of a learning controller for each of them. For each type of task we will show
how lazy learning of models interacts with other parts of the learning control
paradigm being described. For several tasks we also provide implementation
details. The progression of control tasks is outlined in Table 1. Temporally
independent tasks include many forms of setpoint based process control,
and are of economic importance. We describe several versions of temporally
dependent tasks, which include trajectory following tasks such as process
control transients and vehicle maneuvers. We conclude with a discussion of
some of the benefits and drawbacks of lazy learning in this context.

2. Temporally Independent Tasks

In the simplest class of tasks we will consider, the environment provides an
outcome represented with a vector y as a function of an action vector u, which
we can choose, a state vector x, which we can observe but not choose, and
random noise.

y = f(x;u) + noise (1)
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The task is to choose u so that the expected outcome y is yd: E[y] = yd,
where E is the expectation operator from probability theory. The function f()
is not known at the beginning of the task. Section 2.2 will describe how lazy
learning can be used to learn a model of f(): bf().

Several relationships could be modeled using lazy learning techniques
including forward models, inverse models, policies, and value functions.
We will discuss policies and value functions in the context of temporally
dependent tasks in later sections. The next sections describe inverse and
forward models.

2.1. Control Using Inverse Models

An inverse model uses states and outcomes to predict the necessary action
(Atkeson 1990; Miller 1989):

u = bf �1
(x; y) (2)

This function specifies directly what action to take in each state, but does
not specify what would happen given a state and an action. A lazy learner
can represent an inverse model using a database of experiences, arranged so
that the input vectors of each experience are the concatenation of state and
outcome vectors (Figure 1). The corresponding output is the action needed to
produce the given outcome from the given state. The database is trained by
adding new observed states, actions, and outcomes: (x;u; y).

A learned inverse model can provide a conceptually simple controller for
temporally independent tasks. An action is chosen by using the current state
and desired outcome as an index into the database. The closest match in
the database can be found or an interpolation of nearby experiences (i.e., a
weighted average or locally weighted regression approach) can be used. If
there are no stored experiences close enough to the current situation, another
method, such as choosing actions randomly, can be used to select an action.
This distance threshold is task dependent and can be set by the user.

The strength of an inverse model controller in conjunction with lazy learn-
ing is that the learning is aggressive: during repeated attempts to achieve the
same goal the action that is applied is not an incrementally adjusted version
of the previous action, but is instead the action that the lazy learner predicts
will directly achieve the required outcome. Given a monotonic relationship
between u and y, the sequence of actions that are chosen are closely related
to the Secant method (Conte and De Boor 1980) for numerically finding the
zero of a function. See (Ortega and Rheinboldt 1970) for a good discussion
of the multidimensional generalization of the Secant method. An inverse
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Figure 1. A database implementing an inverse model.

model, represented using locally weighted regression and trained initially
with a feedback learner, has been used by (Atkeson 1990).

A commonly observed problem with the inverse model is that, if the vector
space of actions has a different dimensionality than that of outcomes, then
the inverse model is not well defined. Problems also result if the mapping is
not one to one, or if there are misleading noisy observations. Learning can
become stuck in permanent pockets of inaccuracy that are not reduced with
experience. Figure 2 illustrates a problem where a non-monotonic relation
between actions and outcomes is misinterpreted by the inverse model. Even
if the inverse model had interpreted the data correctly, any locally weighted
averaging on u would have led to incorrect actions (Moore 1991a; Jordan and
Rumelhart 1992). In subsequent sections on temporally dependent tasks, we
will discuss how sometimes the action selected by the inverse function is too
aggressive.

2.2. Control Using Forward Models

The forward model uses states and actions to predict outcomes (Miller 1989;
Mel 1989; Moore 1990; Jordan and Rumelhart 1992):

y = bf(x;u) (3)

This allows prediction of the effects of various actions (mental simulation)
but does not prescribe the correct action to take.

We now arrange the memory-base so that the input vectors of each data point
are the concatenation of state and action vectors (Figure 3). The corresponding
output is the actual outcome that was observed when the state-action pair
was executed in the real world. The forward model can be trained from
observations of states, actions, and outcomes: (x;u; y).

To use this model for control requires more than a single lookup. Actions
are chosen by on-line numerical inversion of the forward model, that requires
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Figure 2. The true relation (shown as the thick black line) is non-monotonic. When an outcome
is desired at the shown value yd, the action that is suggested produces an outcome that differs
from the desired one. Worse, the new data point that is added (at the intersection of the thick
black line and the vertical arrow) will not change the inverse model near yd, and the same
mistake will be repeated indefinitely.

Figure 3. A database implementing a forward model.

searching a set of actions to find one that is predicted to achieve the desired
output. This computation is identical to numerical root finding over the empir-
ical model. A number of root-finding schemes are applicable, with desirability
depending on the dimensionality of the actions, the complexity of the function
and the amount of time available in which to perform the search:

� Grid Search: Generate all available actions sampled from a uniform grid
over action space. Take the action that is predicted to produce the closest
outcome to yd.
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� Random Search: Generate random actions, and again use the action which
is predicted to produce the closest outcome to yd.

� First Order Gradient Search: Perform a steepest-ascent search from an
initial candidate action toward an action that will give the desired output
(Press et al. 1988). Finding the local gradient of the empirical model is
easy if locally weighted regression is used (Atkeson et al. 1997). Part of
the computation of the locally weighted regression model forms the local
linear map, so it is already available. We may write the prediction local
to x and u as

bf(x + �x;u + �u) � c + A�x + B�u + 2nd order terms (4)

where c is a vector and A and B are matrices obtained from the regression,
such that

c = bf(x;u) Aij =
@bfi

@xj
Bij =

@bfi

@uj
(5)

The gradient ascent iteration is:

uk+1 = uk + BT(yd � c) (6)

with B and c as defined in Equation 5. This approach may become stuck
in local minima, so an initial grid search or random search may provide
a set of good starting points for gradient searches.

� Second Order Gradient Search: Use Newton’s method to iterate towards
an action with the desired output (Press et al. 1988). If uk is an approxi-
mate solution, Newton’s method gives uk+1 as a better solution where

uk+1 = uk + B�1(yd � c) (7)

with B and c as defined in Equation 5. Newton’s method is less stable than
first order gradient search, but if a good approximate solution is available,
perhaps from one of the other search methods, and the local linear model
structure is correct in a region including the current action and the best
action, it produces a good estimate of the best action in only two or three
iterations.

If the partial derivative matrix B is singular, or the action space and state
space differ in dimensionality, then robust matrix techniques based on the
pseudo-inverse can be applied to invert B (Press et al. 1988). The forward
model can be used to minimize a criterion C that penalizes large commands
as well as errors, which also makes this search more robust:

C = (yd � c)TQ(yd � c) + uTRu (8)
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The matrices Q and R allow the user to control which components of the
error are most important.

2.3. Combining Forward and Inverse models

The inverse model can provide a good initial starting point for a search using
the forward model:

u0 = bf �1
(x; yd)

u0 can be evaluated using a lazy forward model with the same data:

by = bf(x;u0)

Provided by is close to yd, Newton’s method can then be used for further
refinement. If by is not close to yd, the local linear model may not be a good
fit, and the aggressive Newton step may move away from the goal.

2.4. Exploration in Temporally Independent Learning

A nice feature of the approaches described so far is that in normal operation
they perform their own exploration, reducing the need for human supervision
or external guidance. The experiments are chosen greedily at the exact points
where the desired output is predicted to be, which for the forward model is
guaranteed to provide useful data. If an action is wrongly predicted to succeed,
the resulting new data point will change the prediction of the forward model
for that state and action, helping to prevent the error from being repeated.

In the early stages of learning, however, there may be no action that is
predicted to give the desired outcome. A simple experiment design strategy
is to choose actions at random. It is more effective to choose data points which,
given the uncertainty inherent in the prediction, are considered most likely
to achieve the desired outcome. This can considerably reduce the exploration
required (Moore 1991a; Cohn et al. 1995).

2.5. A Temporally Independent Task: Billiards

In order to explore the efficacy of lazy learning methods for the control
of temporally independent tasks, the previously described approaches were
implemented on the billiards robot shown in Figure 4 (Moore 1992; Moore
et al. 1992). The equipment consists of a small (1:5m� 0:75m) pool table, a
spring actuated cue with a rotary joint under the control of a stepper motor,
and two cameras attached to a Datacube image processing system. All sensing
is visual: one camera looks along the cue stick and the other looks down at the
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Figure 4. The billiards robot. In the foreground is the cue stick, which attempts to sink balls in
the far pockets.

table. The cue stick swivels around the cue ball, which, in this implementation,
has to start each shot at the same position. A shot proceeds as follows:
1. At the start of each attempt the object ball (i.e., the ball we want to sink in

a pocket) is placed at a random position in the half of the table opposite
the cue stick. This random position is selected by the computer to avoid
human bias.

2. The camera above the table obtains the centroid image coordinates of the
object ball (xabove

object, yabove
object), which constitute the state x.

3. The controller then uses an inverse model followed by search over a
forward model to find an action, u, that is predicted to sink the object ball
into the nearer of the two pockets at the far end of the table. The action
is specified by what we wish the view from the cue to be just prior to
shooting. Figure 5 shows a view from the cue camera during this process.
The cue swivels until the centroid of the object ball’s image (shown by
the vertical line) coincides with the chosen action, xcue

object, shown by the
cross.

4. The shot is then performed and observed by the overhead camera. The
image after a shot, overlaid with the tracking of both balls, is shown
in Figure 6. The outcome is defined as the cushion and position on the
cushion where the object ball first collides. In Figure 6 it is the point b.

5. Independent of success or failure, the memory-base is updated with the
new observation (xabove

object, yabove
object, xcue

object) ! b.
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Figure 5. The view from the cue camera during aiming. The cue swivels until the centroid of
the object ball’s image (shown by the vertical line) coincides with the chosen action, xcue

object,
shown by the cross.

Figure 6. The trajectory of both balls is tracked using the overhead camera. b indicates the
cushion and position on the cushion where the object ball first collides.

As time progresses, the database of experiences increases, hopefully con-
verging to expertise in the two-dimensional manifold of state-space cor-
responding to sinking balls placed in arbitrary positions. Before learning
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Figure 7. Frequency of successes versus control cycle for the billiards task. The number of
successes, averaged over the twenty previous shots, is shown.

begins there is no explicit knowledge or calibration of the robot, pool table,
or cameras, beyond having the object ball in view of the overhead camera,
and the assumption that the relationship between state, action and outcome is
reasonably repeatable.

In this implementation the representation used for both forward and inverse
models was locally weighted regression using outlier removal and cross
validation for choosing the kernel width (Atkeson et al. 1997). Inverse and
forward models were used together; the forward model was searched with
steepest ascent. Early shots (when no success was predicted) were uncertainty-
based (Moore 1991a). After 100 shots, control choice running on a Sun-4 was
taking 0.8 seconds.

This implementation demonstrates several important points. The first is
the precision required of the modeling component. The cue-action must be
extremely precise for success. Locally weighted regression provided the
needed precision. A graph of the number of successes against trial num-
ber (Figure 7) shows the performance of the robot against time. Sinking the
ball requires better than 1% accuracy in the choice of action, the world con-
tains discontinuities and there are random outliers in the data due to visual
tracking errors, and so it is encouraging that within less than 100 experiences
the robot had reached a 75% success rate. An informal assessment of this
performance is that its success rate is as high as possible (given that the ball is
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placed at random positions, some of which are virtually impossibly difficult).
Unfortunately, the only evidence for this is anecdotal: the students who built
the robot (one of whom was an MIT billiards champion) could not do any
better.

A second point is the non-uniformity of the training data distribution due
to the implicit exploration process. Although the function being learned is
only 3 inputs ! 1 output, it is perhaps surprising that it achieved sufficient
accuracy in only 100 data points. The reason is the aggressive non-uniformity
of the training data distribution – almost all the training data was clustered
around state-action pairs which get the ball in or close to a pocket. The lazy
learner did not expend many resources on exploring or representing how to
make bad shots.

2.6. Optimizing a Performance Criterion

Often a goal in temporally independent learning is to optimize a particular
criterion, rather than achieve a particular outcome. Lazy learning can be used
to represent the cost function directly and to speed the search for maxima or
minima (Moore and Schneider 1995). A linear local model can be used to
estimate the first derivatives (gradient) and a quadratic local model can be
used to estimate the second derivatives (Hessian) of the cost function at the
current point in the optimization procedure. These estimates can be used in
first order gradient search, or in a Newton search that uses estimates of second
derivatives. Constraints on the output can be included in this optimization
process.

2.7. Temporal Dependence in Temporally Independent Tasks

It is considerably easier to choose actions for temporally independent than
temporally dependent tasks because the choice of action has no effect on
future states. There is no need to consider the effects of the current action
on future states and indirectly on future performance. In Section 3 we will
consider temporally dependent tasks where there is an opportunity to choose
suboptimal actions in the short-term to obtain more desirable states and
thereby improve performance in the long-term.

However, temporally independent tasks do provide an opportunity to in-
crease the knowledge available to the controller in order to improve future
performance. They differ from batch learning tasks, because new training
data becomes available after each action, and the choice of action, which
depends on inferences from earlier training data, affects the training data
available to future decisions. Modifying actions to increase knowledge rather
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than greedily pursue a desired outcome is the responsibility of the exploration
component of the controller.

3. Temporally Dependent Tasks

A more complex class of learning control tasks occur when the assumption
of temporal independence is removed: x(t + 1) may now be influenced by
x(t). A useful case to explore is when the outcome is the next state:

x(t + 1) = f(x(t);u(t)) (9)

The task may be to regulate the state to a predefined desired value called a
setpoint xd or to a sequence or trajectory of states: xd(1), xd(2), xd(3) : : :

3.1. Deadbeat Control

One approach to performing temporally dependent tasks is to use the success-
ful techniques from the previous section, and ignore the temporal dependence.
One-step deadbeat control chooses actions to (in expectation) cause the imme-
diate next state to be the desired next state (Stengel 1986). Assuming the next
state is always attainable in one step, the action may be chosen without paying
attention to future states, decisions, or performance.

3.1.1. An Implementation of Deadbeat Control: Devil Sticking I
Deadbeat control using lazy learning models was explored by implementing
it for a juggling task known as devil sticking (Schaal and Atkeson 1994a,
b). A center stick is batted back and forth between two handsticks. Figure 8
shows a sketch of our devil sticking robot. The juggling robot uses its top
two joints to perform planar devil sticking. Hand sticks are mounted on the
robot with springs and dampers. This implements a passive catch. The center
stick does not bounce when it hits the hand stick, and therefore requires
an active throwing motion by the robot. To simplify the problem the center
stick is constrained by a boom to move on the surface of a sphere. For small
movements the center stick movements are approximately planar. The boom
also provides a way to measure the current state of the center stick. The task
state is the predicted location of the center stick when it hits the hand stick
held in a nominal position. Standard ballistics equations for the flight of the
center stick are used to map flight trajectory measurements into a task state.
The dynamics of throwing the devil stick are parameterized by five state and
five action variables, resulting in a 10/5-dimensional input/output model for
each hand.
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Figure 8. (a) An illustration of devil sticking, (b) A sketch of our devil sticking robot. A position
change due to movement of joint 1 and 2, respectively, is indicated in the small sketches.

Every time the robot catches and throws the devil stick it generates an
experience of the form (xk,uk,xk+1) where xk is the current state, uk is the
action performed by the robot, and xk+1 is the state of the center stick that
results.

Initially we explored learning an inverse model of the task, using deadbeat
control to attempt to eliminate all error on each hit. Each hand had its own
inverse model of the form:

buk = bf �1
(xk; xk+1) (10)

Before each hit the system looked up a command with the predicted nominal
impact state and the desired result state xd:

buk = bf �1
(xk; xd) (11)

Inverse model learning using lazy learning (locally weighted regression)
was successfully used to train the system to perform the devil sticking task.
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Juggling runs up to 100 hits were achieved. The system incorporated new data
in real time, and used databases of several hundred hits. Lookups took less
than 15 milliseconds, and therefore several lookups could be performed before
the end of the flight of the center stick (the flight duration was approximately
0.4s). Later queries incorporated more measurements of the flight of the center
stick and therefore more accurate predictions of the state of the task.

However, the system required substantial structure in the initial training to
achieve this performance. The system was started with a manually generated
command that was appropriate for open loop performance of the task. Each
control parameter was varied systematically to explore the space near the
default command. A global linear model was made of this initial data, and a
linear controller based on this model was used to generate an initial training
set for the locally weighted system (of approximately 100 hits). Learning with
small amounts of initial data was not possible. Furthermore, learning based
on just an inverse model was prone to get stuck at poor levels of performance
and to repeat the same mistakes for reasons discussed in the previous section.

To eliminate these problems, we also experimented with learning based
on both inverse and forward models. After a command is generated by the
inverse model, it can be evaluated using a forward model based on the same
data.

bxk+1 = bf(xk; buk) (12)

Because it produces a local linear model, the locally weighted regression
procedure will produce estimates of the derivatives of the forward model
with respect to the commands as part of the estimated parameter vector.
These derivatives can be used to find a correction to the command vector that
reduces errors in the predicted outcome based on the forward model.

@bf
@u

�buk = bxk+1 � xd (13)

This process of command refinement can be repeated until the forward model
no longer produces accurate predictions of the outcome, which will happen
when the query to the forward model requires significant extrapolation from
the current database. The distance to the nearest stored data point can be used
as a crude measure of the validity of the forward model estimate.

We investigated this method for incremental learning of devil sticking
in simulations. However, the outcome did not meet expectations: without
sufficient initial data around the setpoint, the algorithm did not work. We
see two reasons for this. First, similar to the pure inverse model approach,
the inverse-forward model acts as a one-step deadbeat controller in that it
tries to eliminate all error in one time step. One-step deadbeat control applies
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large commands to correct for deviations from the setpoint, especially in the
presence of state measurement errors. The workspace bounds and command
bounds of our devil sticking robot limit the size of allowable commands.
Large control actions may also be less accurate or robust. This was the case
in devil sticking, where a large control action tended to cause the center
stick to fly in a random direction, and nothing was learned from that hit.
Second, the ten dimensional input space is large, and even if experiences are
uniformly randomly distributed in the space there is often not enough data
near a particular point to make a robust inverse or forward model.

Thus, two ingredients had to be added to the devil sticking controller. First,
the controller should not be deadbeat. It should plan to attain the goal using
multiple control actions. We discuss control approaches that keep commands
small in the next section. Second, the control must increase the data density
in the current region of the state-action space in order to arrive at the desired
goal state. We discuss control approaches that are more tightly coupled to
exploration in a Section 3.4.

3.2. Dynamic Regulation

In this section we discuss a reformulation of temporally dependent control
tasks to avoid the problems encountered by the first implementation of a lazy
learner for robot control, which used deadbeat control. From a theoretical
point of view, it is often not possible to return to the desired setpoint or
trajectory in one step: an attempt to do so would require actions of infinite
magnitude or cause the size of the required actions to grow without limit.
One step deadbeat control will fail on some non-minimum phase systems,
of which pole balancing is one example (Cannon 1967). In these systems,
one must move away from the goal to approach it later. In the case of the
cart-pole system the cart must initially move away from the target position
so that the pole leans in the direction of future cart motion towards the target.
This maneuvering avoids having the pole fall backwards as the cart moves
toward the target.

A controller can perform more robustly if it uses smaller magnitude actions
and returns to the correct state or trajectory in a larger number of steps. This
idea is posed precisely in the language of linear quadratic regulation (LQR),
in which a long term quadratic cost criterion C is minimized that penalizes
both state-errors and action magnitudes (Stengel 1986):
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C =
1X
t=0

�
(x(t)� xd)

TQ(x(t)� xd) + uT(t)Ru(t)
�

=
1X
t=0

�
�xT(t)Q�x(t) + uT(t)Ru(t)

�
(14)

where Q and R are matrices whose elements set the tradeoff between the size
of the action components and the error components. If, for example, Q and
R were identity matrices, then the sum of squared state errors and the sum of
the squared action components would be minimized.

Not using deadbeat control laws implies some amount of lookahead. LQR
control assumes a time invariant task and performs an infinite amount of
lookahead. Predictive or Receding Horizon control design techniques lookN
steps ahead every time an action is chosen. All of these techniques will allow
larger state errors to reduce the size of the control signals, when compared to
deadbeat methods.

The Linear part of the LQR approach is a local linearization of the forward
dynamics of the task. We can take advantage of the locally linear state-
transition function provided by locally weighted regression (Equation 4):

x(t + 1) = xd + �x(t + 1) � bf(xd + �x(t);u(t))

� bf(xd; 0) + A�x(t) + Bu(t) (15)

We will assume that (xd, 0) is an equilibrium point, so xd = bf (xd, 0), and we
have the following linear dynamics:

�x(t+ 1) = A�x(t) + Bu(t) (16)

The optimal action with respect to the criteria in Equation 14 and linear
dynamics in Equation 16 can be obtained by solution of a matrix equation
called the Ricatti equation (Stengel 1986). Assuming the locally linear model
provided by the locally weighted regression is correct, the optimal action u is

u = �(R + BTPB)�1BTPA�x (17)

where P is obtained by initially setting P := Q and then running the following
iteration to convergence:

P := Q + ATP[I� BR�1BTP]�1A (18)

This rather inscrutable result is not obvious from visual inspection but fol-
lows from reasonably elementary algebra and calculus that can be found in
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almost any introductory controls text. We recommend (Stengel 1986). We
also provide a very simplified self-contained derivation in Appendix A. The
long term cost starting from state xd + �x turns out to be �xT P �x. Note that
u is a linear function of the state x in Equation 17:

u = �K�x (19)

Linear quadratic regulation has useful robustness when compared to deadbeat
controllers even if the underlying linear models are imprecise (Stengel 1986).

3.3. Implementation of Dynamic Regulation: Devil Sticking II

Linear quadratic regulation controller design permitted successful devil stick-
ing. It did require manual generation of training data to estimate the matrices
of the local linear model: A and B. However, once the local linear model was
reliable the robot had a complete policy (i.e., a control law) for the vicinity
of the local linear model. The aggressiveness of the control law could be
controlled by choosing Q and R. These matrices were set once by us, and
then not adjusted during learning.

One drawback of our LQR implementation was the need for the manual
search for an equilibrium point. The robot needed to be told a nominal hit that
would actually send the devil stick to the other hand. There is a continuum
of reasonable equilibrium points, but our formulation required the arbitrary
selection of only one. Furthermore, the experimenter did not know in advance
where the set of equilibrium points were for the actual machine, so manual
search for equilibrium points was a difficult task, given the five dimension-
al action space. The next section describes a new procedure to search for
equilibrium points.

3.4. Dynamic Regulation With An Unspecified Setpoint

The learning task is considerably harder if the desired setpoint is not known
in advance, and instead must itself be optimized to achieve some higher
level task description. However, the setpoint of the task can be manipulated
during learning to improve exploration. This is done by the shifting setpoint
algorithm (SSA) (Schaal and Atkeson 1994a).

SSA attempts to decompose the control problem into two separate control
tasks on different time scales. At the fast time scale, it acts as a dynamic
regulator by trying to keep the controlled system at a chosen setpoint. On a
slower time scale, the setpoint is shifted to accomplish a desired goal. SSA
uses local models from lazy learning and can be viewed as an approach to
exploration in these regulation tasks, based on information on the quality of
predictions provided by lazy learning.
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3.4.1. Experiment Design with Shifting Setpoints
The major ingredient of the SSA is a statistical self-monitoring process.
Whenever the current location in input space has obtained a sufficient amount
of experience such that a measure of confidence rises above a threshold, the
setpoint is shifted in the direction of the goal until the confidence falls below a
minimum confidence level. At this new setpoint location, the learning system
collects new experiences. The shifting process is repeated until the goal is
reached. In this way, the SSA builds a narrow tube of data support in which
it knows the world. This data builds the basis for the first success of the
regulator controller. Subsequently, the learned model can be used for more
sophisticated control algorithms, for planning, or for further exploration.

3.5. Dynamic Regulation With An Unspecified Setpoint: Devil Sticking III

The SSA method was tested on the devil sticking juggling task (Schaal and
Atkeson 1994a, b). In this case it had the following steps.
1. Regardless of the poor juggling quality of the robot (i.e., at most two or

three hits per trial), the SSA made the robot repeat these initial actions with
small random perturbations until a cloud of data was collected somewhere
in the state-action space for each hand. An abstract illustration for this is
given in Figure 9a.

2. Each point in the data cloud of each hand was used as a candidate for a
setpoint of the corresponding hand by trying to predict its output from its
input with locally weighted regression. The point achieving the narrowest
local confidence interval became the setpoint of the hand and a linear
quadratic regulator was calculated for its local linear model, estimated
using locally weighted regression. By means of these controllers, the
amount of data around the setpoints could quickly be increased until the
quality of the local models exceeded a statistical threshold (Figure 9b)
(Atkeson et al. 1997).

3. At this point, the setpoints were gradually shifted towards the goal set-
points until the statistical confidence in the predictions made by the local
model again fell below a threshold (Figure 9c).

4. The SSA iterated by collecting data in the new regions of the workspace
until the setpoints could be shifted again. The procedure terminated when
the goal was reached, leaving a ridge of data in the state-action space
(Figure 9d).

The SSA was tested in a noise corrupted simulation and on the real robot.
Each attempt to juggle the devil stick is called a trial, which consists of a
series of left and right handed hits. Each series of trials that begins with the
lazy learning system in its initial state is referred to as a run. Our measure
of performance is the number of hits per trial. In the simulation it takes on
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Figure 9. Abstract illustration on how the SSA algorithm collects data in space: (a) sparse
data after the first few hits; (b) high local data density due to local control in this region; (c)
increased data density on the way to the goals due to shifting the setpoints; (d) ridge of data
density after the goal was reached.

average 40 trials before the setpoint of each hand has moved close enough
to the other hand’s setpoint. This is slightly better performance than with the
real robot.

At that point, a breakthrough occurs and, afterwards the simulated robot
rarely drops the devilstick. At this time, about 400 data points (hits) have been
collected in memory. The real robot’s learning performance is qualitatively
the same as that of the simulated robot. Due to stronger nonlinearities and
unknown noise sources the actual robot takes more trials to accomplish a
steady juggling pattern. We show three typical learning runs for the actual
robot in Figure 10. We do not show averages of these learning runs because
averaged runs show a gradual increase in performance, which is unlike any
individual learning run, which show sudden increases in performance. Peak
performance of the robot was more than 2000 consecutive hits (15 minutes
of continuous juggling).
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Figure 10. Learning curves of devil sticking for three runs.

3.5.1. Limits For Linear Quadratic Regulation
Control laws based on linear quadratic regulator designs are not useful if the
task requires operation outside a locally linear region. The LQR controller
may actually be unstable. For example, the following one dimensional system
with a one dimensional action

xk+1 = 2xk + uk + x2
kuk (20)

has a local linear model at the origin (x = 0) of A = 2 and B = 1 (all
matrices are 1 � 1 for this one dimensional problem). For the optimization
criteria Q = 1 and R = 1; and the Ricatti equation (Equations 17 and
19) gives K = 1:618: For a goal of moving to the origin (xd = 0), this
linear control law is unstable for x larger than 0:95, because the actions u
are too large. This means that the LQR “optimal” action actually increases
the error x if the error is already larger than 0:95. This limitation of linear
quadratic regulation motivates us to explore full dynamic programming based
policy design approaches, which are described in the next section. Figure 11
compares the LQR based control law and the control law based on full
dynamic programming using the same model and optimization criteria. Note
that the shifting setpoint algorithm can provide the initial training data for
these more complex approaches.

3.6. Nonlinear Optimal Control

In more general control design we must accommodate a more general formu-
lation of the cost function or criterion to optimize and also move from local
control laws based on a small number of local models to more global control
laws based on many local models. We now need to learn not just a local model
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Figure 11. Solid line: optimal action based on dynamic programming (DP) using the nonlinear
model; dashed line: optimal command based on a LQR design using a single linear forward
model at the origin. Although in both cases the optimization criterion is the same and the LQR
and DP-based control laws agree for small x, the LQR control law is linear and does not take
into account the nonlinear dynamics of the task for large x.

of the task, but many local models of the task distributed throughout the task
space. We will first discuss a more general formulation of cost functions.

We are given a cost function for each step, which is known by the controller:

g(t) = G(x(t);u(t); t) (21)

The task is to minimize one of the following expressions:

1X
t=0

g(t) or
tmaxX
t=0

g(t) or
1X
t=0

tg(t) where 0 <  < 1 or lim
n!1

1
n

nX
t=0

g(t)

The attractive aspect of these formulations is their generality. All of the
previously described control formulations are special cases of at least one of
these. For example, the quadratic one step cost defined by Q and R can be
viewed as a local quadratic model of g(t).

The delayed rewards nature of these tasks means that actions we choose at
time t do not only affect the quality of the immediate reward but also affect
the next, and all subsequent states, and in so doing affect the future rewards
attainable. This leads to computational difficulties in the general case. A large
literature on such learning control problems has sprung up in recent years,
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with the general name of reinforcement learning. Overviews may be found in
(Sutton 1988; Barto et al. 1990; Watkins 1989; Barto et al. 1995; Moore and
Atkeson 1993). In this paper we will restrict discussion to the applications of
lazy learning to these problems.

Again, we proceed by learning an empirical forward model bxk+1 =bf(xk; buk). A general-purpose solution can be obtained by discretizing state-
space into a multidimensional array of small cells, and performing a dynamic
programming method (Bellman 1957; Bertsekas and Tsitsiklis 1989) such as
value iteration or policy iteration to produce two things:
1. A value function, V (x), mapping cells onto the minimum possible sum

of future costs if one starts in that cell.
2. A policy, u(x), mapping cells onto the optimal action to take in that cell.
Value iteration can be used in conjunction with learning a world model.

However, it is extremely computationally expensive. For a fixed quantization
level, the cost is exponential in the dimensionality of the state variables.
For a D dimensional state space and action space, and a grid resolution
of R for both states and actions, one value iteration pass would require
R2D evaluations of the forward model. The most computationally intensive
version would perform several cycles of value iteration after every update
of the memory base. Less expensive forms of dynamic programming would
normally perform value iteration only at the end of each trial (as we do in
the example in Section 3.6.1), or as an incremental parallel process (Sutton
1990; Moore and Atkeson 1993; Peng and Williams 1993).

3.6.1. A Simulation Example: The Puck
We illustrate this form of learning by means of a simple simulated example.
Figure 12 depicts a frictionless puck on a bumpy surface, whose objective
is to drive itself up the hill to a goal region in the minimum number of time
steps. The state, x = (x, _x), is two-dimensional and must lie in the region
�1 � x � 1, �2 � _x � 2. x denotes the horizontal position of the puck in
Figure 12. The action u = a is one-dimensional and represents the horizontal
force applied to the puck. Actions are constrained such that�4 � a � 4. The
goal region is the rectangle 0:5 � x � 0:7, �0:1 � _x � 0:1. The surface
upon which the puck slides has the following height as a function of x:

H(x) =

(
x2 + x if x < 0
x=
p

1 + 5x2 if x � 0
(22)

The puck’s dynamics are given by:

�x =
a

M

q
1 + (H 0(x))2

� gH 0(x)

1 + (H 0(x))2 (23)
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Figure 12. A frictionless puck acted on by gravity and a horizontal thruster. The puck must get
to the goal as quickly as possible. There are bounds on the maximum thrust.

Figure 13. The state transition diagram for a puck that constantly thrusts right with maximum
thrust.

where M = 1 and g = 9:81. This equation is integrated using:

x(t+ 1) = x(t) + h _x(t) + 1
2h

2�x(t)
_x(t+ 1) = _x(t) + h�x(t)

(24)
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Figure 14. The minimum-time path from start to goal for the puck on the hill. The optimal
value function is shown by the background dots. The shorter the time to goal, the larger the
black dot. Notice the discontinuity at the escape velocity.

where h = 0:01 is the simulation time step.
Because of gravity, there is a region near the center of the hill at which

the maximum rightward thrust is insufficient to accelerate up the slope. If the
goal region is at the hill-top, a strategy that proceeded by greedily choosing
actions to thrust towards the goal would get stuck. This is made clearer in
Figure 13, a state transition diagram. The puck’s state has two components,
the position and velocity. The hairs show the next state of the puck if it were
to thrust rightwards with the maximum legal force of 4 Newtons for 0.01s. At
the center of state-space, even when this thrust is applied, the puck velocity
decreases and it eventually slides leftwards. The optimal solution for the puck
task, depicted in Figure 14, is to initially thrust away from the goal, gaining
negative velocity, until it is on the far left of the diagram. Then it thrusts hard
right, to build up sufficient energy to reach the top of the hill.

We explored two implementations of adaptive controllers, one of which
used lazy learning techniques.

� Implementation 1 (Grid Based): Conventional Discretization. This
used the conventional reinforcement learning strategy of discretizing state
space into a grid of 60�60 cells for the forward model and value function.
The reinforcement learning algorithm was chosen to be as efficient as
possible (i.e., in terms of data needed for convergence) given that we
were working with a fixed discretization. All transitions between cells
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Figure 15. The first five trials for both implementations of the puck controller.

experienced by the system were remembered in a discrete state transition
model. A learning algorithm similar to Dyna (Sutton 1990) was used
with full value iteration carried out on the discrete model every time-step.
Exploration was achieved by assuming any unvisited state had a future
cost of zero. The action, which is one-dimensional, was discretized to
five levels: f�4N;�2N; 0N; 2N; 4Ng.

� Implementation 2 (LWR): Lazy Forward Model. The second imple-
mentation was the same as the first, except that transitions between cells
were filled in by predictions from a locally weighted regression forward
model x(t+1) = bf(x(t);u(t)). Thus, unlike implementation 1, many dis-
crete transitions that had not been physically experienced were stored in
the transition table by extrapolation from the actual experiences. Also, the
lazy model supported a higher resolution representation in areas where
many experiences had been collected. The value function was represented
by a table in both implementations.

The experimental domain is a simple one, but its empirical behavior demon-
strates an important point. A lazy forward model in combination with value
iteration can dramatically reduce the amount of actual data needed during
learning. The graphs of the first five trajectories of the two experiments are
shown in Figure 15. The steps per trial for both implementations are shown in
Figure 16. The best possible number of steps per trial is 23. The implementa-
tion using the locally weighted regression forward model learns much faster
in terms of trials than the implementation using the grid. The lazy model
based implementation also requires approximately two orders of magnitude
fewer steps in order to reach optimal performance. For example, after trial
150 the grid based implementation has executed 26297 total steps more than
the optimal required when all trials are combined, while the lazy forward
model based implementation has executed only 260 suboptimal steps.
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Figure 16. Top: Steps per trial for a grid based forward model. Bottom: Steps per trial for an
LWR based forward model. Note the difference in vertical scales.

Since we did not include any random noise in this simulation these numbers
are deterministic. The spikes in Figure 16 are due to the severe nonlinearity
of this problem, where small errors in the policy may lead to the puck failing
to have enough energy to get to the goal. In this case the puck slides back
down and must perform another “orbit” of the start point in state space before
reaching the goal. The lack of random sensor or actuator noise makes the
problem unrealistically easy for both approaches. We expect the benefits of a
lazy model over the standard grid model to carry over to the stochastic case.

The computational costs of this kind of control are considerable. Although
it is not necessary to gather data from every part of the state space when gen-
eralization occurs with a model, the simple form of value iteration requires
a multidimensional discretization for computing the value function. Several
researchers are investigating methods for reducing the cost of value itera-
tion when a model has been learned (e.g. (Moore 1991b; Mahadevan 1992;
Atkeson 1994)).

3.6.2. Exploration
The approach we have described does not explicitly explore. If the learned
model contains serious errors, a part of state space that wrongly looks unre-
warding will never be visited by the real system, so the model will never
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be updated. On the other hand, we do not want the system to explore every
part of state space explicitly – the supposed advantage of lazy learning based
function approximation is the ability to generalize parts of the model without
explicitly performing an action. To resolve this dilemma, a number of use-
ful exploration heuristics can be used, all based on the idea that it is worth
exploring only where there is little confidence in the empirical model (Sutton
1990; Kaelbling 1993; Moore and Atkeson 1993; Cohn et al. 1995).

4. Lazy Learning of Models: Pros and Cons

Lazy learning of models leads to new forms of autonomous control. The
control algorithms explicitly perform empirical nonlinear modeling as well
as simultaneously designing policies, without a strong commitment to a model
structure or controller structure in advance. Parametric modeling approaches,
such as polynomial regression, multi-layer sigmoidal neural networks, and
projection pursuit regression, all make a strong commitment to a model struc-
ture, and new training data has a global effect on the learned function. Locally
weighted learning only assumes local smoothness. This section discusses the
strengths and weaknesses of a local and lazy modeling approach in the con-
text of control. (Stanfill and Waltz 1986) provide a similar discussion for lazy
approaches to classification.

4.1. Benefits of Lazy Learning of Models

� Automatic, empirical, local linear models. Locally weighted linear
regression returns a local linear map. It performs the job of an engineer
who is trying to empirically linearize the system around a region of
interest. It is not difficult for neural net representations to provide a local
linear map too, but other approximators such as straightforward nearest
neighbor or the original version of CMAC (Albus 1981; Miller 1989)
are less reliable in their estimation of local gradients because predicted
surfaces are not smooth. Additionally, if the input data distribution is
not too non-uniform, it can be shown that the linearizations returned
by locally weighted learning accomplish a low-bias estimate of the true
gradient with fewer data points than required for a low-bias prediction of
a query (Hastie and Loader 1993).

� Automatic confidence estimations. Locally weighted regression can
also be modified to return a confidence interval along with its predic-
tion. This can be done heuristically with the local density of the data
providing an uncertainty estimate (Moore 1991a) or by making sensible
statistical assumptions (Schaal and Atkeson 1994b; Cohn et al. 1995).
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In either case, this has been shown empirically to dramatically reduce
the amount of exploration needed when the uncertainty estimates guide
the experiment design. The cost of estimating uncertainty with locally
weighted methods is small. Nonlinear parametric representations such as
multi-layer sigmoidal neural networks can also be adapted to return confi-
dence intervals (MacKay 1992; Pomerleau 1994), but approximations are
required, and the computational cost is larger. Worse, parametric models
(e.g., global polynomial regression) that predict confidence statistically
are typically assuming that the true world can be perfectly modeled by at
least one set of parameter values. If this assumption is violated, then the
confidence intervals are difficult to interpret.

� Adding new data to a lazy model is cheap. For a lazy model adding a
new data point means simply inserting it into the data base.

� One-shot learning. Lazy models do not need to be repeatedly exposed
to the same data to learn it. A consequence of this rapid learning is that
errors are not repeated and can be eliminated much more quickly than
approaches that incrementally update parameters. Nonlinear parametric
models can be trained by 1) exposing the model to a new data point only
once (e.g., (Jordan and Jacobs 1990; Kuperstein 1988)), or 2) by storing
the data in a database and cycling through the training data repeatedly. In
case 1, much more data must be collected, since the training effect of each
data point is small. This leads to slower learning, since real robot move-
ments take time, and to increased wear-and-tear on the robot or industrial
process that is to be controlled. In case 2, a lazy learning approach has
been adopted, and one must then evaluate the relative benefits of complex
and simple local models.

� Non-linear, yet no danger of local minima in function approximation.
Locally weighted regression can fit a wide range of complex non-linear
functions, and finds the best fit directly, without requiring any gradient
descent. There are no dangers of the model learner becoming stuck in a
local optimum. In contrast, training nonlinear parametric models can get
stuck in local minima.

However, some of the control law design algorithms we have surveyed can
become stuck (Moore 1992; Jordan and Rumelhart 1992). The inverse-
model method can become stuck with non-monotonic or highly noisy
systems. The shifting setpoint algorithm can become stuck in principle,
although this has not yet occurred in practice.

� Avoids interference. Lazy modeling is insensitive to what task it is
currently learning or if the data distribution changes. In contrast, nonlinear
parametric models trained incrementally with gradient descent eventually
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forget old experiences and concentrate representational power on new
experiences.

4.2. Drawbacks of Lazy Learning of Models

Here we consider the disadvantages of lazy learning that may be encountered
under some circumstances, and we also point out promising directions for
addressing them.
� Lookup costs increase with the amount of training data. Memory

and computation costs increase with the amount of data. Memory costs
increase linearly with the amount of data, and are not generally a problem.
Any algorithm that avoids storing redundant data would greatly reduce
the amount of memory needed, and one can also discard data, perhaps
selected according to predictive usefulness, redundancy, or age (Atkeson
et al. 1997).
Computational costs are more serious. For a fixed amount of computa-
tion, a single processor can process a limited number of training data
points. There are several solutions to this problem (Atkeson et al. 1997):
The database can be structured so that the most relevant data points are
accessed first, or so that close approximations to the output predicted by
locally weighted regression can be obtained without explicitly visiting
every point in the database. There are a surprisingly large number of
algorithms available for doing this, mostly based on k-d trees (Preparata
and Shamos 1985; Omohundro 1987; Moore 1990; Grosse 1989; Quinlan
1993; Omohundro 1991; Deng and Moore 1995).

� Is the curse of dimensionality a problem for lazy learning for con-
trol? The curse of dimensionality is the exponential dependence of
needed resources on dimensionality found in many learning and plan-
ning approaches. The methods we have discussed so far can handle a
wide class of problems. On the other hand, it is well known that, without
strong constraints on the class of functions being approximated, learning
with many input dimensions will not successfully approximate a partic-
ular function over the entire space of potential inputs unless the data set
is unrealistically large.
This is an apparently serious problem for multivariate control using
locally weighted learning, and raises the question as to why the examples
given in this paper worked. Happily, it is actually quite difficult to think
of useful tasks that require the system to have an accurate model over the
entire input space (Albus 1981). Indeed, for a robot of more than, say,
eight degrees of freedom, it will not be possible for it to get into every
significantly different configuration even once in its entire lifetime.
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Many tasks require high accuracy only in low-dimensional manifolds of
input space or thin slices around those manifolds. In some cases these may
be clumps around the desired goal value of stationary tasks. For example,
in devil sticking the robot needs to gain highly accurate expertise only in
the vicinity of stable juggling patterns. Another common task involves
the system spending most of its life traveling along a number of important
trajectories, “highways”, through state space, in which case expertise need
only be clustered in these regions. In general, the curse of dimensionality
may not be dangerous for tasks whose solutions lie in a low-dimensional
manifold or a thin slice, even if the number of state variables and control
inputs is several times larger.
In any event we expect the performance of locally weighted regression
to be as good as any other method as the dimensionality of the problem
increases, as locally weighted learning can become global if necessary
to emulate global models, and can become global or local in particular
directions to emulate projection pursuit models (e.g., the distance function
can be set to choose a projection direction, for example, but for multiple
projection directions multiple distance functions must be used in additive
locally weighted fits) (Friedman and Stuetzle 1981). We expect locally
weighted learning to degrade gracefully as the problem dimensionality
increases.

� Lazy learning depends on having good representations already
selected. Good representational choices (i.e., choices of the elements
of the state and control vectors, etc.) can dramatically speed up learning
or make learning possible at all. Feature selection and scaling algorithms
are a crude form of choosing new representations (Atkeson et al. 1997).
However, we have not solved the representation problem, and locally
weighted learning and all other machine learning approaches depend on
prior representational decisions.

5. Conclusions

This paper has explored methods for using lazy learning to learn task models
for control, emphasizing how forward and inverse learned models can be
used. The implementations all used lazy models. The last section discussed in
more detail the pros and cons of lazy learning as the specific choice of model
learner.

There is little doubt that these advances can be converted into general
purpose software packages for the benefit of robotics and process control.
But it should also be understood that we are still a considerable way from
full autonomy. A human programmer has to decide what the state and action
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variables are for a problem, how the task should be specified, and what class of
control task it is. The engineering of real-time systems, sensors and actuators
is still required. A human must take responsibility for safety and supervision
of the system. Thus, at this stage, if we are given a problem, the relative
effectiveness of learning control, measured as the proportion of human effort
eliminated, is heavily dependent on problem-specific issues.

Appendix A: Simple Linear Quadratic Regulator derivation

This appendix provides a simplified, self-contained introduction to LQR con-
trol for readers who wish to understand the ideas behind Equations 17 and
18. Assume a scalar state and action, and assume that the desired state and
action are zero (xd = ud = 0). Assume linear dynamics:

xk+1 = axk + buk (25)

where a and b are constants. Define V �
k (x) to be the minimum possible sum

of future costs, starting from state x, assuming we are at time-step k. Assume
the system stops at time k = N , and the stopping cost is qx2

N . For all other
steps (i.e., k < N ) the cost is qx2

k + ru2
k.

V �
k (x) =

N�1X
j=k

�
qx2

j + ru2
j

�
+ qx2

N (26)

assuming uk; uk+1; : : : ; uN�1 chosen optimally. V �
k (x) can be defined

inductively:

V �
N (x) = qx2

N (27)

V �
k (x) = argmin

uk

�
qx2

k + ru2
k + V �

k+1(xk+1)
�

(28)

by the principal of optimality, which says that your best bet for minimal costs
is to minimize over your first step for the cost of that step plus the minimum
possible costs of future steps. We will now prove by induction that V �

k (x) is a
quadratic in x, with the quadratic coefficient dependent on k: V �

k (x) = pkx
2

for some p0; p1; : : : ; pN .
� Base case: pN = q from Equation 27.
� Inductive step: Assume V �

k+1(x) = pk+1x
2; we’ll prove V �

k (x) = pkx
2

for some pk.
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From here on, all that remains is algebra. We begin with Equation 28, in
which we replace xk+1 with axk + buk from Equation 25:

V �
k (x) = argmin

uk

�
qx2

k + ru2
k + V �

k+1(axk + buk)
�

(29)

Then we use the inductive assumption V �
k+1(x) = pk+1x

2

V �
k (x) = argmin

uk

�
qx2

k + ru2
k + pk+1(axk + buk)

2
�

(30)

Next we simplify with three new variables, �; �; :

V �
k (x) = argmin

uk

�
�x2

k + 2�xkuk + u2
k

�
where (31)

� = q + pk+1a
2 (32)

� = pk+1ab (33)

 = r + pk+1b
2 (34)

To minimize Equation 31 with respect to u we differentiate and set to zero
the bracketed expression giving:

2�x+ 2u�k = 0 (35)

where u�k is the optimal action. Thus

u�k = �(�=)xk (36)

Since u�k minimizes Equation 31 we have

V �
k (x) = �x2 + 2�xu�k + 

�
u�k
�2 (37)

So from Equation 36

V �
k (x) = �x2 + 2�x(��=)x+ (��=)2x2

=
�
�� 2�2= + �2=

�
x2 =

�
�� �2=

�
x2 (38)

so that we have shown V �
k (x) = pkx

2 where
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pk =
�
�� �2=

�
(39)

Inserting back the substitutions of Equations 32, 33, 34 into Equations 36 and
39:

u�k =

� �pk+1ab

r + pk+1b2

�
xk (40)

V �
k (x) = pkx

2 where pk = q + a2pk+1

 
1� pk+1b

2

r + pk+1b2

!
(41)

Assuming that there areN�k steps remaining, to compute the cost-to-go from
state xwe set p := q and then iterate the assignment p := q+a2p(1� pb2

r+pb2 ) a
total ofN �k times. AsN �k becomes large p converges to a constant value
(not proven here). This gives the cost-to-go value function of px2, assuming
that the system will run forever.
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