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1. Introduction

The necessity for self improvement in control systems is becoming more
apparent as fields such as robotics, factory automation, and autonomous
vehicles become impeded by the complexity of inventing and programming
satisfactory control laws. Learned models of complex tasks can aid the design
of appropriate control laws for these tasks, which often involve decisions
based on streams of information from sensors and actuators, where data is
relatively plentiful. The tasks may change over time, or multiple tasks may
need to be performed. Lazy learning methods provide an approach to learning
models of complex phenomena, dealing with large amounts of data, training
quickly, and avoiding interference between multiple tasks during control of
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complex systems (Atkeson et al. 1997). This paper describes five ways in
which lazy |earning techniques have been applied by usto control tasks.

In learning control, there is an important distinction between representa-
tional tools, such aslookup tables, neural networks, databases of experiences,
or structured representations, and what we will call learning paradigms,
which define what the representation is used for, where training data comes
from, how the training data is used to modify the representation, whether
exploratory actions are performed, and other related issues. It is difficult to
evaluate a representational tool independently of the paradigm in which it
is used, and vice versa. A successful robot learning algorithm typicaly is
composed of sophisticated representational tools and learning paradigms. We
will describe using the same representational tool, locally weighted learning
(Atkeson et al. 1997), in different taskswith different learning paradigms and
with different results.

In defining paradigms for learning to control complex systemsit is useful
to identify three separate components of an indirect (model-based) adaptive
control system: modeling, exploration, and policy design. The first compo-
nent, modeling, is the process of forming explicit models of the task and
the environment. All of the approaches we will describe will form explicit
world models. Moore and Atkeson (1993) explore some of the advantages
and disadvantages of approaches that form explicit models versus those that
avoid forming models. Often the modeling process is equated with function
approximation, in which a representational tool is used to fit a training data
set. Focusing only on the modeling component leaves several important
questions unanswered. For example, “where does the training data come
from?’ and “what new training data should be collected?’ are addressed by
the exploration component. The question “how should the identified model
be used to select actions?’ is addressed by the policy design or control law
design component.

Theaim of thispaper isto survey theimplications of usinglocally weighted
regression, alazy learning technique, asthe modeling component of our three
part control system. Lazy modeling techniques cannot be implemented or
discussed without exploring related issues in exploration and policy design.
Although the policy design and exploration componentsare not “lazy” in the
same sense as the modeling component, they should exploit the capabilities
of lazy modeling, and make alazy modeler’s job easier.

1.1. Why Focuson Lazy Learning For Learningto Control?

We will not review lazy learning here, but expect that our reader has already
read the companion paper in this collection (Atkeson et al. 1997), from which
we will borrow both terminology and notation. In the form of lazy learn-
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ing we will focus on, locally weighted learning, experiences are explicitly
remembered, and predictions and generalizations are performed in real time
by building alocal model to answer any particular query (an input for which
the function’s output is desired). The motivation for focussing on localy
weighted learning was not that it is a more accurate function approxima-
tor than other methods such as multi-layer sigmoidal neural networks, radial
basisfunctions, regression trees, projection pursuit regression, other statistical
nonparametric regression techniques, and global regression techniques, but
that lazy learning techniques avoid negative interference. One of the primary
characteristicsof learning to control arobot isthat datacomesin continuously,
and the distribution of the data changes as the robot learns and changes its
performance task. Locally weighted learning easily learnsin real time from
the continuous stream of training data. It also avoidsthe negativeinterference
exhibited by other modeling approaches, because locally weighted learning
retains al the training data, as do many lazy learning methods (Atkeson et al.
1997).

Our approach to modeling the complex functions found in typical task or
processdynamicsisto use acollection of simplelocal models. One benefit of
local modeling isthat it avoidsthe difficult problem of finding an appropriate
structure for aglobal model. A key ideain lazy learning isto form atraining
set for the local model after a query is given. This approach allows us to
select from the training set only relevant experiences (nearby samples) and
to weight those experiences according to their relevance to the query. We
form alocal model of the function at the query point, much asaTaylor series
models a function in the neighborhood of a point. This local model is then
used to predict the output of the function for that query. After answering the
query, the local model is discarded. A new local model is created to answer
each query. This leads to another benefit of lazy modeling for control: we
can delay the choice of local model structure and structural parameters until
aquery must be answered, and we can make different choices for subsequent
queries (Atkeson et al. 1997).

L ocally weighted learning can represent nonlinear functions, yet hassimple
training rules with a single global optimum for building a local model in
response to a query. This allows complex nonlinear models to be identified
(trained) quickly. Currently we are using polynomials as the local models.
Sincethe polynomial local modelsarelinear in the parametersto be estimated,
we can calculate these parameters using a linear regression. Fast training
makes continuous learning from a stream of new input datapossible. It istrue
that lazy learning transfers the computational load onto the lookup process,
but our experience is that the linear parameter estimation process during
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lookup in locally weighted learning is still fast enough for real time robot
learning (Atkeson et al. 1997).

We use cross validation to choose an appropriate distance metric and
weighting function, and to help find irrelevant input variables and terms
inthelocal model. Infact, performing one crossvalidation evaluationin lazy
learning is no more expensive than processing a single query (Atkeson et al.
1997). Cheap cross validation makes search for model parameters routine,
and we have explored procedures that take advantage of this (Atkeson et al.
1997; Maron and Moore 1994; Moore et al. 1992; Moore and Lee 1994).

We have extended the locally weighted learning approach to give informa-
tion about the reliability of the predictions and local linearizations generated,
based on the local density and distribution of the data and an estimate of the
local variance (Atkeson et al. 1997; Schaal and Atkeson 1994a; Schaal and
Atkeson 1994b). This allows a robot to monitor its own skill level, protect
itself fromitsignorance by designing robust policies, and guideitsexploratory
behavior.

Another attractive feature of locally weighted learning is flexibility. There
are explicit parametersto control smoothing, outlier rejection, forgetting, and
other processes. The modeling process is easy to understand, and therefore
easy to adjust or control (Atkeson et al. 1997).

Wewill see how the explicit representation of specific memories can speed
up convergence and improve the robustness and autonomy of optimization
and control algorithms (Atkeson et al. 1997; Moore and Schneider 1995). Itis
frustrating to watch arobot repeat its mistakes, with only aslight improvement
on each attempt. The goa of the learning algorithms described here is to
improve performance as rapidly as possible, using as little training data as
possible (data efficiency).

1.2. Related Work

Locally weighted learning is being increasingly used in control. (Connell and
Utgoff 1987) interpolated a value function using locally weighted averaging
to balance an inverted pendulum (a pole) on a moving cart. (Peng 1995)
performed the cart pole task using locally weighted regression to interpolate
avalue function. (Zografski 1992) used locally weighted averaging to learn
a model of the dynamics of a robot arm, and used that model to predict
the forces necessary to drive the arm along a trgjectory. (Aha and Salzberg
1993) explored nearest neighbor and locally weighted learning approachesto
atracking task in which arobot pursued and caught aball. (McCallum 1995)
explored the use of lazy learning techniques in situations where states were
not completely measured.
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Table 1. The control tasks explored in this paper. Symbols and mathematics described in
some of the entries will be explained in the corresponding sections.

Task Task Goal Example Sec.
Specification

Temporally Y4 : the desired | Choose u such that E[y] = yq4 Billiards 2
Independent || output
Deadbeat Xg or trajectory | Choose u(t) such that Devil Sticking | 31
Control {xa(t)} E[x(t+1)] = xq(t+1)
Dynamic Xg and matrices | Minimize future cost C = Devil Sticking Il | 3.2
Regulation || Q and R oo (x(1)TQox(t) + u(t)TRu(t))
Dynamic QandR Choose setpoint to minimize future cost | Devil Sticking Il | 3.4
Regula- C
tion, unspeci-
fied setpoint
Nonlinear Cost function | Find a control policy to minimize the | Puck 3.6
Optimal G(X(t), u(t),t) | sum of future costs
Control

1.3. Outline

This article is organized by types of control tasks, and in the next sections
we will examine a progression of control tasks of increasing complexity. We
have chosen these tasks because we have implemented lazy learning as part
of alearning controller for each of them. For each type of task we will show
how lazy learning of modelsinteracts with other parts of the learning control
paradigm being described. For several tasks we also provide implementation
details. The progression of control tasks is outlined in Table 1. Temporally
independent tasks include many forms of setpoint based process control,
and are of economic importance. We describe several versions of temporally
dependent tasks, which include trajectory following tasks such as process
control transients and vehicle maneuvers. We conclude with a discussion of
some of the benefits and drawbacks of lazy learning in this context.

2. Temporally Independent Tasks

In the simplest class of tasks we will consider, the environment provides an
outcome represented with avector y asafunction of an action vector u, which
we can choose, a state vector x, which we can observe but not choose, and
random noise.

y = f(x,u) + noise (1)
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The task is to choose u so that the expected outcome y is yq: E[Y] = Y4,
where E is the expectation operator from probability theory. The function f()
is not known at the beginning of the task. Section 2.2 will describe how lazy
learning can be used to learn amodel of f(): £().

Severa relationships could be modeled using lazy learning techniques
including forward models, inverse models, policies, and value functions.
We will discuss policies and value functions in the context of temporally
dependent tasks in later sections. The next sections describe inverse and
forward models.

2.1. Control Using Inverse Models

An inverse model uses states and outcomes to predict the necessary action
(Atkeson 1990; Miller 1989):

u=f"xy) ®)

This function specifies directly what action to take in each state, but does
not specify what would happen given a state and an action. A lazy learner
can represent an inverse model using a database of experiences, arranged so
that the input vectors of each experience are the concatenation of state and
outcome vectors (Figure 1). The corresponding output is the action needed to
produce the given outcome from the given state. The database is trained by
adding new observed states, actions, and outcomes: (X, u,y).

A learned inverse model can provide a conceptually ssmple controller for
temporally independent tasks. An action is chosen by using the current state
and desired outcome as an index into the database. The closest match in
the database can be found or an interpolation of nearby experiences (i.e., a
weighted average or locally weighted regression approach) can be used. If
there are no stored experiences close enough to the current situation, another
method, such as choosing actions randomly, can be used to select an action.
This distance threshold is task dependent and can be set by the user.

The strength of aninverse model controller in conjunction with lazy learn-
ing isthat the learning is aggressive: during repeated attempts to achieve the
same goal the action that is applied is not an incrementally adjusted version
of the previous action, but is instead the action that the lazy learner predicts
will directly achieve the required outcome. Given a monotonic relationship
between u and y, the sequence of actions that are chosen are closely related
to the Secant method (Conte and De Boor 1980) for numerically finding the
zero of afunction. See (Ortega and Rheinboldt 1970) for a good discussion
of the multidimensional generalization of the Secant method. An inverse
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5

X(0) , ¥(0) —= u(0)
x(1), y(1) —= u(1)
X(2), ¥(2) —* u(2)

X(n), y(n) — u(n)

Figure 1. A database implementing an inverse model.

model, represented using locally weighted regression and trained initially
with afeedback learner, has been used by (Atkeson 1990).

A commonly observed problem with the inverse model isthat, if the vector
space of actions has a different dimensionality than that of outcomes, then
the inverse model is not well defined. Problems also result if the mapping is
not one to one, or if there are misleading noisy observations. Learning can
become stuck in permanent pockets of inaccuracy that are not reduced with
experience. Figure 2 illustrates a problem where a non-monotonic relation
between actions and outcomes is misinterpreted by the inverse model. Even
if the inverse model had interpreted the data correctly, any locally weighted
averaging on u would haveled to incorrect actions (Moore 1991a; Jordan and
Rumelhart 1992). In subsequent sections on temporally dependent tasks, we
will discuss how sometimes the action selected by the inverse function istoo
aggressive.

2.2. Control Using Forward Models

The forward model uses states and actions to predict outcomes (Miller 1989;
Mel 1989; Moore 1990; Jordan and Rumelhart 1992):

y =f(x,u) (3)

This allows prediction of the effects of various actions (mental simulation)
but does not prescribe the correct action to take.

Wenow arrange the memory-base so that theinput vectors of each datapoint
arethe concatenation of state and action vectors (Figure 3). The corresponding
output is the actual outcome that was observed when the state-action pair
was executed in the real world. The forward model can be trained from
observations of states, actions, and outcomes: (x, u, y).

To use this model for control requires more than a single lookup. Actions
are chosen by on-line numerical inversion of the forward model, that requires
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True function

Inverse
Model
prediction

Behavior (y)
<
Q

U shosen Action (u)

Figure 2. Thetruerelation (shown asthethick black line) is non-monotonic. When an outcome
isdesired at the shown value y,4, the action that is suggested produces an outcome that differs
from the desired one. Worse, the new data point that is added (at the intersection of the thick

black line and the vertica arrow) will not change the inverse model near yq, and the same
mistake will be repeated indefinitely.

>

x(0), u(0) —= y(0)
x(1), u(1) —= y(1)
X(2),u2) — y(2)

x(n) , u(n) —= y(n)

Figure 3. A database implementing a forward model.

searching a set of actions to find one that is predicted to achieve the desired
output. Thiscomputationisidentical to numerical root finding over the empir-
ical model. A number of root-finding schemesare applicable, with desirability
depending onthe dimensionality of the actions, the complexity of thefunction
and the amount of time available in which to perform the search:

e Grid Search: Generate all available actions sampled from auniform grid

over action space. Take the action that is predicted to produce the closest
outcome to ygq.
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e Random Search: Generaterandom actions, and again usethe action which
is predicted to produce the closest outcome to yyg.

e First Order Gradient Search: Perform a steepest-ascent search from an
initial candidate action toward an action that will give the desired output
(Press et al. 1988). Finding the local gradient of the empirical model is
easy if locally weighted regression is used (Atkeson et al. 1997). Part of
the computation of the locally weighted regression model formsthelocal
linear map, so it is aready available. We may write the prediction local
toxandu as

f(x + 0X,U + 0u) = C+ AdX + Bdu + 2nd order terms  (4)
wherecisavector and A and B are matrices obtained from theregression,
such that

- of; of;
c="f(x,u) A”Za_xlj B”Za_ulj (5)
The gradient ascent iteration is:
Upt1 = Ug, + BT (ya — C) (6)

with B and c as defined in Equation 5. This approach may become stuck
in local minima, so an initial grid search or random search may provide
aset of good starting points for gradient searches.

e Second Order Gradient Search: Use Newton’s method to iterate towards
an action with the desired output (Press et a. 1988). If uy is an approxi-
mate solution, Newton's method gives uy ;1 as a better solution where

Upt1 = Ug + B Hyg—©) 7)

with B and c asdefined in Equation 5. Newton’smethod isless stablethan
first order gradient search, but if agood approximate solutionis available,
perhaps from one of the other search methods, and the local linear model
structure is correct in a region including the current action and the best
action, it produces agood estimate of the best action in only two or three
iterations.

If the partial derivative matrix B is singular, or the action space and state
space differ in dimensionality, then robust matrix techniques based on the
pseudo-inverse can be applied to invert B (Press et al. 1988). The forward
model can be used to minimize acriterion C' that penalizes large commands
aswell as errors, which also makes this search more robust:

C=(ya—0)'Q(ysa—¢) + u'Ru (8)
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The matrices Q and R allow the user to control which components of the
error are most important.

2.3. Combining Forward and Inverse models

Theinversemodel can provide agood initial starting point for a search using
the forward model:

1
Uo = f (vad)

up can be evaluated using alazy forward model with the same data:

y = ?(Xa uO)

Provided y is close to yq, Newton's method can then be used for further
refinement. If y is not close to yq, the local linear model may not be a good
fit, and the aggressive Newton step may move away from the goal.

2.4. Explorationin Temporally Independent Learning

A nice feature of the approaches described so far is that in normal operation
they perform their own exploration, reducing the need for human supervision
or external guidance. The experiments are chosen greedily at the exact points
where the desired output is predicted to be, which for the forward model is
guaranteed to provide useful data. If an actioniswrongly predicted to succeed,
the resulting new data point will change the prediction of the forward model
for that state and action, helping to prevent the error from being repeated.

In the early stages of learning, however, there may be no action that is
predicted to give the desired outcome. A simple experiment design strategy
isto choose actionsat random. Itismoreeffective to choose data pointswhich,
given the uncertainty inherent in the prediction, are considered most likely
to achievethe desired outcome. This can considerably reduce the exploration
required (Moore 1991a; Cohn et al. 1995).

2.5. ATemporally Independent Task: Billiards

In order to explore the efficacy of lazy learning methods for the control
of temporally independent tasks, the previously described approaches were
implemented on the billiards robot shown in Figure 4 (Moore 1992; Moore
et al. 1992). The equipment consists of asmall (1.5m x 0.75m) pool table, a
spring actuated cue with a rotary joint under the control of a stepper motor,
and two cameras attached to a Datacubeimage processing system. All sensing
isvisual: one cameralooks along the cue stick and the other |looks down at the
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Figure 4. The billiards robot. In the foreground isthe cue stick, which attemptsto sink ballsin
the far pockets.

table. The cuestick swivelsaround the cueball, which, inthisimplementation,
hasto start each shot at the same position. A shot proceeds as follows:

1

At the start of each attempt the object ball (i.e., the ball wewanttosink in
a pocket) is placed at a random position in the half of the table opposite
the cue stick. This random position is selected by the computer to avoid
human bias.

. The cameraabove the tabl e obtains the centroid image coordinates of the

object ball (XG0, Yaprs), which constitute the state .

. The controller then uses an inverse model followed by search over a

forward model to find an action, u, that is predicted to sink the object ball
into the nearer of the two pockets at the far end of the table. The action
is specified by what we wish the view from the cue to be just prior to
shooting. Figure 5 shows aview from the cue cameraduring this process.
The cue swivels until the centroid of the object ball’s image (shown by
the vertical line) coincides with the chosen action, g%, shown by the
Cross.

. The shot is then performed and observed by the overhead camera. The

image after a shot, overlaid with the tracking of both balls, is shown
in Figure 6. The outcome is defined as the cushion and position on the
cushion where the object ball first collides. In Figure 6 it is the point b.

. Independent of success or failure, the memory-base is updated with the

new observation (XG0, Yo, Xoney) — b.
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Figure 5. The view from the cue camera during aiming. The cue swivels until the centroid of
the object ball’s image (shown by the vertical line) coincides with the chosen action, Xgye.

shown by the cross.

Figure 6. The trajectory of both balls is tracked using the overhead camera. b indicates the
cushion and position on the cushion where the object ball first collides.

As time progresses, the database of experiences increases, hopefully con-
verging to expertise in the two-dimensional manifold of state-space cor-
responding to sinking balls placed in arbitrary positions. Before learning
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Figure 7. Freguency of successes versus control cycle for the billiards task. The number of
successes, averaged over the twenty previous shots, is shown.

begins there is no explicit knowledge or calibration of the robot, pool table,
or cameras, beyond having the object ball in view of the overhead camera,
and the assumption that the relationship between state, action and outcomeis
reasonably repeatable.

In thisimplementation the representation used for both forward and inverse
models was locally weighted regression using outlier removal and cross
validation for choosing the kernel width (Atkeson et a. 1997). Inverse and
forward models were used together; the forward model was searched with
steepest ascent. Early shots (when no successwas predi cted) were uncertainty-
based (M oore 19914). After 100 shots, control choice running on a Sun-4 was
taking 0.8 seconds.

This implementation demonstrates several important points. The first is
the precision required of the modeling component. The cue-action must be
extremely precise for success. Localy weighted regression provided the
needed precision. A graph of the number of successes against trial num-
ber (Figure 7) shows the performance of the robot against time. Sinking the
ball requires better than 1% accuracy in the choice of action, the world con-
tains discontinuities and there are random outliers in the data due to visual
tracking errors, and so it is encouraging that within less than 100 experiences
the robot had reached a 75% success rate. An informal assessment of this
performanceisthat its successrate isas high aspossible (given that the ball is
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placed at random positions, some of which are virtually impossibly difficult).
Unfortunately, the only evidence for thisis anecdotal: the students who built
the robot (one of whom was an MIT billiards champion) could not do any
better.

A second point is the non-uniformity of the training data distribution due
to the implicit exploration process. Although the function being learned is
only 3 inputs — 1 output, it is perhaps surprising that it achieved sufficient
accuracy in only 100 data points. Thereason isthe aggressive non-uniformity
of the training data distribution — almost all the training data was clustered
around state-action pairs which get the ball in or close to a pocket. The lazy
learner did not expend many resources on exploring or representing how to
make bad shots.

2.6. Optimizing a Performance Criterion

Often a goal in temporally independent learning is to optimize a particular
criterion, rather than achieve a particular outcome. Lazy learning can be used
to represent the cost function directly and to speed the search for maxima or
minima (Moore and Schneider 1995). A linear local model can be used to
estimate the first derivatives (gradient) and a quadratic local model can be
used to estimate the second derivatives (Hessian) of the cost function at the
current point in the optimization procedure. These estimates can be used in
first order gradient search, or in aNewton search that uses estimates of second
derivatives. Constraints on the output can be included in this optimization
process.

2.7. Temporal Dependencein Temporally Independent Tasks

It is considerably easier to choose actions for temporally independent than
temporally dependent tasks because the choice of action has no effect on
future states. There is no need to consider the effects of the current action
on future states and indirectly on future performance. In Section 3 we will
consider temporally dependent tasks where there is an opportunity to choose
suboptimal actions in the short-term to obtain more desirable states and
thereby improve performance in the long-term.

However, temporally independent tasks do provide an opportunity to in-
crease the knowledge available to the controller in order to improve future
performance. They differ from batch learning tasks, because new training
data becomes available after each action, and the choice of action, which
depends on inferences from earlier training data, affects the training data
availableto future decisions. Modifying actionsto increase knowledge rather
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than greedily pursue adesired outcomeisthe responsibility of the exploration
component of the controller.

3. Temporally Dependent Tasks

A more complex class of learning control tasks occur when the assumption
of temporal independence is removed: x(t + 1) may now be influenced by
X(t). A useful caseto explore is when the outcome is the next state:

X(t+ 1) = f(x(t), u(t)) (©)

The task may be to regulate the state to a predefined desired value called a
setpoint Xq or to a sequence or trgjectory of states: Xg(1), Xq(2), X4(3) ...

3.1. Deadbeat Control

One approach to performing temporally dependent tasksisto usethe success-
ful techniquesfrom the previous section, and ignore thetemporal dependence.
One-step deadbeat control choosesactionsto (in expectation) causetheimme-
diate next state to be the desired next state (Stengel 1986). Assuming the next
stateisalwaysattainablein one step, the action may be chosen without paying
attention to future states, decisions, or performance.

3.1.1. AnlImplementation of Deadbeat Control: Devil Sticking |

Deadbeat control using lazy learning models was explored by implementing
it for a juggling task known as devil sticking (Schaal and Atkeson 1994a,
b). A center stick is batted back and forth between two handsticks. Figure 8
shows a sketch of our devil sticking robot. The juggling robot uses its top
two joints to perform planar devil sticking. Hand sticks are mounted on the
robot with springs and dampers. Thisimplements a passive catch. The center
stick does not bounce when it hits the hand stick, and therefore requires
an active throwing motion by the robot. To simplify the problem the center
stick is constrained by a boom to move on the surface of a sphere. For small
movements the center stick movements are approximately planar. The boom
also provides a way to measure the current state of the center stick. The task
state is the predicted location of the center stick when it hits the hand stick
held in a nominal position. Standard ballistics equations for the flight of the
center stick are used to map flight trajectory measurements into a task state.
The dynamics of throwing the devil stick are parameterized by five state and
five action variables, resulting in a 10/5-dimensional input/output model for
each hand.
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7.

Figure8. (a) Anillustration of devil sticking, (b) A sketch of our devil sticking robot. A position
change due to movement of joint 1 and 2, respectively, isindicated in the small sketches.

Every time the robot catches and throws the devil stick it generates an
experience of the form (Xy,Ux,Xx+1) Where X, is the current state, uy, is the
action performed by the robot, and ;1 is the state of the center stick that
results.

Initially we explored learning an inverse model of the task, using deadbeat
control to attempt to eliminate all error on each hit. Each hand had its own
inverse model of the form:

N ~—1
Ue =T (Xi, Xkp1) (20)

Before each hit the system looked up a command with the predicted nominal
impact state and the desired result state x:

N ~—1
Up, =f " (Xk Xd) (12)

Inverse model learning using lazy learning (locally weighted regression)
was successfully used to train the system to perform the devil sticking task.
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Juggling runsup to 100 hitswere achieved. The systemincorporated new data
in real time, and used databases of several hundred hits. Lookups took less
than 15 milliseconds, and therefore several lookups could be performed before
the end of the flight of the center stick (the flight duration was approximately
0.4s). Later queriesincorporated more measurements of theflight of the center
stick and therefore more accurate predictions of the state of the task.

However, the system required substantial structure in the initial training to
achievethis performance. The system was started with a manually generated
command that was appropriate for open loop performance of the task. Each
control parameter was varied systematically to explore the space near the
default command. A global linear model was made of thisinitial data, and a
linear controller based on this model was used to generate an initial training
set for thelocally weighted system (of approximately 100 hits). Learning with
small amounts of initial data was not possible. Furthermore, |earning based
onjust aninverse model was proneto get stuck at poor levels of performance
and to repeat the same mistakesfor reasons discussed in the previous section.

To eliminate these problems, we also experimented with learning based
on both inverse and forward models. After a command is generated by the
inverse model, it can be evaluated using aforward model based on the same
data.

K1 = (X, Ok) (12)

Because it produces a local linear model, the locally weighted regression
procedure will produce estimates of the derivatives of the forward model
with respect to the commands as part of the estimated parameter vector.
These derivatives can be used to find a correction to the command vector that
reduces errors in the predicted outcome based on the forward model.
g—LAUk = Xg11— Xd (13)

Thisprocess of command refinement can be repeated until the forward model
no longer produces accurate predictions of the outcome, which will happen
when the query to the forward model requires significant extrapolation from
the current database. The distance to the nearest stored data point can be used
as a crude measure of the validity of the forward model estimate.

We investigated this method for incremental learning of devil sticking
in simulations. However, the outcome did not meet expectations: without
sufficient initial data around the setpoint, the algorithm did not work. We
see two reasons for this. First, similar to the pure inverse model approach,
the inverse-forward model acts as a one-step deadbeat controller in that it
triesto eliminate all error in one time step. One-step deadbeat control applies
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large commands to correct for deviations from the setpoint, especially in the
presence of state measurement errors. The workspace bounds and command
bounds of our devil sticking robot limit the size of allowable commands.
Large control actions may also be less accurate or robust. This was the case
in devil sticking, where a large control action tended to cause the center
stick to fly in a random direction, and nothing was learned from that hit.
Second, the ten dimensional input spaceislarge, and even if experiencesare
uniformly randomly distributed in the space there is often not enough data
near a particular point to make arobust inverse or forward model.

Thus, two ingredients had to be added to the devil sticking controller. First,
the controller should not be deadbeat. It should plan to attain the goal using
multiple control actions. We discuss control approachesthat keep commands
small in the next section. Second, the control must increase the data density
in the current region of the state-action space in order to arrive at the desired
goal state. We discuss control approaches that are more tightly coupled to
exploration in a Section 3.4.

3.2. Dynamic Regulation

In this section we discuss a reformulation of temporally dependent control
tasksto avoid the problems encountered by the first implementation of alazy
learner for robot control, which used deadbeat control. From a theoretical
point of view, it is often not possible to return to the desired setpoint or
trajectory in one step: an attempt to do so would require actions of infinite
magnitude or cause the size of the required actions to grow without limit.
One step deadbeat control will fail on some non-minimum phase systems,
of which pole balancing is one example (Cannon 1967). In these systems,
one must move away from the goal to approach it later. In the case of the
cart-pole system the cart must initially move away from the target position
so that the pole leansin the direction of future cart motion towards the target.
This maneuvering avoids having the pole fall backwards as the cart moves
toward the target.

A controller can perform morerobustly if it uses smaller magnitude actions
and returns to the correct state or trajectory in alarger number of steps. This
ideais posed precisely in the language of linear quadratic regulation (LQR),
in which along term quadratic cost criterion C' is minimized that penalizes
both state-errors and action magnitudes (Stengel 1986):
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C = i( ) — Xq) Q(x(t)—xd)+uT(t)Ru(t))

t:O
Z (5XT(1)Qax(t) + uT(H)Ru(t)) (14)

where Q and R are matrices whose elements set the tradeoff between the size
of the action components and the error components. If, for example, Q and
R wereidentity matrices, then the sum of squared state errors and the sum of
the squared action components would be minimized.

Not using deadbeat control laws implies some amount of lookahead. LQR
control assumes a time invariant task and performs an infinite amount of
lookahead. Predictive or Receding Horizon control design techniqueslook N
steps ahead every time an action is chosen. All of these techniqueswill alow
larger state errors to reduce the size of the control signals, when compared to
deadbeat methods.

The Linear part of the LQR approachisalocal linearization of the forward
dynamics of the task. We can take advantage of the locally linear state-
transition function provided by locally weighted regression (Equation 4):

X(t+1) = Xg+ 0x(t + 1) = £(xq + 5x(t), u(t))
~ f(xg, 0) + AdX(t) + Bu(t) (15)

We will assume that (xg, 0) is an equilibrium point, so X4 = £(X4, 0), and we
have the following linear dynamics:

OX(t+ 1) = AdX(t) + Bu(t) (16)

The optimal action with respect to the criteria in Equation 14 and linear
dynamics in Equation 16 can be obtained by solution of a matrix equation
called the Ricatti equation (Stengel 1986). Assuming thelocally linear model
provided by the locally weighted regression is correct, the optimal actionu is

= —(R+B'PB) !BTPAJX (17)
where P isobtained by initially setting P := Q and then running the following
iteration to convergence:

P:=Q+ATP[l —-BR BTP| A (18)

This rather inscrutable result is not obvious from visual inspection but fol-
lows from reasonably elementary algebra and calculus that can be found in
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almost any introductory controls text. We recommend (Stengel 1986). We
also provide a very ssimplified self-contained derivation in Appendix A. The
long term cost starting from state x4 + 6x turns out to be 6x™ P éx. Note that
u isalinear function of the state x in Equation 17:

u=—Koéx (19)

Linear quadratic regulation has useful robustnesswhen compared to deadbeat
controllersevenif the underlying linear models are imprecise (Stengel 1986).

3.3. Implementation of Dynamic Regulation: Devil Sticking 11

Linear quadratic regulation controller design permitted successful devil stick-
ing. It did require manual generation of training data to estimate the matrices
of thelocal linear model: A and B. However, oncethe local linear model was
reliable the robot had a complete policy (i.e., a control law) for the vicinity
of the local linear model. The aggressiveness of the control law could be
controlled by choosing Q and R. These matrices were set once by us, and
then not adjusted during learning.

One drawback of our LQR implementation was the need for the manual
search for an equilibrium point. Therobot needed to be told anominal hit that
would actually send the devil stick to the other hand. There is a continuum
of reasonable equilibrium points, but our formulation required the arbitrary
selection of only one. Furthermore, the experimenter did not know in advance
where the set of equilibrium points were for the actual machine, so manual
search for equilibrium points was a difficult task, given the five dimension-
al action space. The next section describes a new procedure to search for
equilibrium points.

3.4. Dynamic Regulation With An Unspecified Setpoint

Thelearning task is considerably harder if the desired setpoint is not known
in advance, and instead must itself be optimized to achieve some higher
level task description. However, the setpoint of the task can be manipulated
during learning to improve exploration. Thisis done by the shifting setpoint
algorithm (SSA) (Schaal and Atkeson 19944).

SSA attempts to decompose the control problem into two separate control
tasks on different time scales. At the fast time scale, it acts as a dynamic
regulator by trying to keep the controlled system at a chosen setpoint. On a
slower time scale, the setpoint is shifted to accomplish a desired goal. SSA
uses local models from lazy learning and can be viewed as an approach to
exploration in these regulation tasks, based on information on the quality of
predictions provided by lazy learning.
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3.4.1. Experiment Design with Shifting Setpoints

The major ingredient of the SSA is a statistical self-monitoring process.
Whenever the current location in input space has obtained a sufficient amount
of experience such that a measure of confidence rises above a threshold, the
setpoint is shifted in the direction of the goal until the confidencefallsbelow a
minimum confidencelevel. At this new setpoint location, the learning system
collects new experiences. The shifting process is repeated until the goal is
reached. In this way, the SSA builds a narrow tube of data support in which
it knows the world. This data builds the basis for the first success of the
regulator controller. Subsequently, the learned model can be used for more
sophisticated control algorithms, for planning, or for further exploration.

3.5. Dynamic Regulation With An Unspecified Setpoint: Devil Sticking 11

The SSA method was tested on the devil sticking juggling task (Schaal and
Atkeson 1994a, b). In this case it had the following steps.

1. Regardless of the poor juggling quality of the robot (i.e., at most two or
threehitsper trial), the SSA madetherobot repeat theseinitia actionswith
small random perturbations until acloud of datawas collected somewhere
in the state-action space for each hand. An abstract illustration for thisis
given in Figure 9a.

2. Each point in the data cloud of each hand was used as a candidate for a
setpoint of the corresponding hand by trying to predict its output from its
input with locally weighted regression. The point achieving the narrowest
local confidence interval became the setpoint of the hand and a linear
guadratic regulator was calculated for its local linear model, estimated
using locally weighted regression. By means of these controllers, the
amount of data around the setpoints could quickly be increased until the
quality of the local models exceeded a statistical threshold (Figure 9b)
(Atkeson et al. 1997).

3. At this point, the setpoints were gradually shifted towards the goal set-
points until the statistical confidence in the predictions made by the local
model again fell below athreshold (Figure 9c).

4. The SSA iterated by collecting datain the new regions of the workspace
until the setpoints could be shifted again. The procedure terminated when
the goal was reached, leaving a ridge of data in the state-action space
(Figure 9d).

The SSA was tested in a noise corrupted simulation and on the real robot.
Each attempt to juggle the devil stick is called a trial, which consists of a
series of left and right handed hits. Each series of trials that begins with the
lazy learning system in its initial state is referred to as a run. Our measure
of performance is the number of hits per trial. In the simulation it takes on
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Figure 9. Abstract illustration on how the SSA algorithm collects data in space: (a) sparse
data after the first few hits; (b) high local data density due to local control in this region; (c)
increased data density on the way to the goals due to shifting the setpoints; (d) ridge of data
density after the goal was reached.

average 40 trials before the setpoint of each hand has moved close enough
to the other hand's setpoint. Thisis slightly better performance than with the
real robot.

At that point, a breakthrough occurs and, afterwards the simulated robot
rarely dropsthe devilstick. At thistime, about 400 data points (hits) have been
collected in memory. The real robot’s learning performance is qualitatively
the same as that of the simulated robot. Due to stronger nonlinearities and
unknown noise sources the actual robot takes more trials to accomplish a
steady juggling pattern. We show three typical learning runs for the actual
robot in Figure 10. We do not show averages of these learning runs because
averaged runs show a gradual increase in performance, which is unlike any
individua learning run, which show sudden increases in performance. Peak
performance of the robot was more than 2000 consecutive hits (15 minutes
of continuous juggling).
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Figure 10. Learning curves of devil sticking for three runs.

3.5.1. LimitsFor Linear Quadratic Regulation

Control laws based on linear quadratic regulator designs are not useful if the
task requires operation outside a locally linear region. The LQR controller
may actually be unstable. For example, thefollowing one dimensional system
with aone dimensional action

Tyl = 2T + ug + x%uk (20)

has a local linear model at the origin (x = 0) of A = 2and B = 1 (al
matrices are 1 x 1 for this one dimensional problem). For the optimization
criteria Q = 1 and R = 1, and the Ricatti equation (Equations 17 and
19) gives K = 1.618. For a goa of moving to the origin (x4 = 0), this
linear control law is unstable for = larger than 0.95, because the actions u
are too large. This means that the LQR “optimal” action actually increases
the error z if the error is already larger than 0.95. This limitation of linear
quadratic regul ation motivates usto explore full dynamic programming based
policy design approaches, which are described in the next section. Figure 11
compares the LQR based control law and the control law based on full
dynamic programming using the same model and optimization criteria. Note
that the shifting setpoint algorithm can provide the initial training data for
these more complex approaches.

3.6. Nonlinear Optimal Control

In more general control design we must accommodate a more general formu-
lation of the cost function or criterion to optimize and also move from local
control laws based on asmall number of local modelsto more global control
laws based on many local models. We now need to learn not just alocal model
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Figure 11. Solid line: optimal action based on dynamic programming (DP) using the nonlinear
model; dashed line: optimal command based on a LQR design using a single linear forward
model at the origin. Although in both cases the optimization criterion is the same and the LQR
and DP-based control laws agree for small z, the LQR control law is linear and does not take
into account the nonlinear dynamics of the task for large «.

of the task, but many local models of the task distributed throughout the task
space. We will first discuss amore general formulation of cost functions.
Weare given acost function for each step, which isknown by the controller:
g(t) = G(x(1),u(t), 1) (21)
Thetask is to minimize one of the following expressions:

00 t, 00 n
Y g(t) or > g(t) or Y Afg(t)whereO <y <1or lim =3 g¢(t)
t=0 t=0 t=0 e oo

The attractive aspect of these formulations is their generality. All of the
previously described control formulations are special cases of at |east one of
these. For example, the quadratic one step cost defined by Q and R can be
viewed as alocal quadratic model of g(t).

The delayed rewards nature of these tasks means that actions we choose at
time ¢ do not only affect the quality of the immediate reward but also affect
the next, and all subsequent states, and in so doing affect the future rewards
attainable. Thisleadsto computational difficultiesin the general case. A large
literature on such learning control problems has sprung up in recent years,
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with the general name of reinforcement learning. Overviews may befoundin
(Sutton 1988; Barto et al. 1990; Watkins 1989; Barto et al. 1995; Moore and
Atkeson 1993). In this paper we will restrict discussion to the applications of
lazy learning to these problems.

Again, we proceed by learning an empirical forward model Xy 1 =
(X, Ts). A general-purpose solution can be obtained by discretizing state-
spaceinto amultidimensional array of small cells, and performing adynamic
programming method (Bellman 1957; Bertsekas and Tsitsiklis 1989) such as
valueiteration or policy iteration to produce two things:

1. A value function, V' (x), mapping cells onto the minimum possible sum
of future costsif one startsin that cell.
2. A policy, u(x), mapping cells onto the optimal action to take in that cell.

Value iteration can be used in conjunction with learning a world model.
However, it is extremely computationally expensive. For afixed quantization
level, the cost is exponential in the dimensionality of the state variables.
For a D dimensional state space and action space, and a grid resolution
of R for both states and actions, one value iteration pass would require
R?P evaluations of the forward model. The most computationally intensive
version would perform several cycles of value iteration after every update
of the memory base. Less expensive forms of dynamic programming would
normally perform value iteration only at the end of each trial (aswe do in
the example in Section 3.6.1), or as an incremental parallel process (Sutton
1990; Moore and Atkeson 1993; Peng and Williams 1993).

3.6.1. A Smulation Example: The Puck

Weillustrate this form of learning by means of a simple simulated example.
Figure 12 depicts a frictionless puck on a bumpy surface, whose objective
isto drive itself up the hill to a goal region in the minimum number of time
steps. The state, x = (x, %), is two-dimensional and must lie in the region
—-1< <1, -2< 1 <2 z denotes the horizontal position of the puck in
Figure 12. The action u = « is one-dimensional and represents the horizontal
force applied to the puck. Actions are constrained suchthat —4 < a < 4. The
goal region isthe rectangle 0.5 < z < 0.7, —0.1 < ¢ < 0.1. The surface
upon which the puck slides has the following height as afunction of x:

I ifz <O
Hz) = {a;/\/1+5a;2 ifz>0 (22)
The puck’s dynamics are given by:
!
§ = a gH (z) (23)

M1+ (H(@)? 1+ (H (@)
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mg -4<F<4

-1 o
Position (x)

Figure 12. A frictionless puck acted on by gravity and ahorizontal thruster. The puck must get
to the goa as quickly as possible. There are bounds on the maximum thrust.
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Figure 13. The state transition diagram for a puck that constantly thrusts right with maximum
thrust.

where M = 1 and g = 9.81. This equation is integrated using:

z(t+1) = x(t) + hi(t) + 3h2i(t)
B+ 1) = () + hilt) (24)



LOCALLY WEIGHTED LEARNING FOR CONTROL 101

2
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Figure 14. The minimum-time path from start to goal for the puck on the hill. The optimal
value function is shown by the background dots. The shorter the time to goal, the larger the
black dot. Notice the discontinuity at the escape velocity.

where i = 0.01 is the simulation time step.

Because of gravity, there is a region near the center of the hill at which
the maximum rightward thrust isinsufficient to accelerate up the slope. If the
goal region is at the hill-top, a strategy that proceeded by greedily choosing
actions to thrust towards the goal would get stuck. This is made clearer in
Figure 13, a state transition diagram. The puck’s state has two components,
the position and velocity. The hairs show the next state of the puck if it were
to thrust rightwards with the maximum legal force of 4 Newtonsfor 0.01s. At
the center of state-space, even when this thrust is applied, the puck velocity
decreasesand it eventually slidesleftwards. The optimal solution for the puck
task, depicted in Figure 14, isto initially thrust away from the goal, gaining
negative velacity, until it is on the far left of the diagram. Then it thrusts hard
right, to build up sufficient energy to reach the top of the hill.

We explored two implementations of adaptive controllers, one of which
used lazy learning techniques.

e Implementation 1 (Grid Based): Conventional Discretization. This
used the conventional reinforcement learning strategy of discretizing state
spaceinto agrid of 60 x 60 cellsfor theforward model and valuefunction.
The reinforcement learning algorithm was chosen to be as efficient as
possible (i.e., in terms of data needed for convergence) given that we
were working with a fixed discretization. All transitions between cells
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Figure 15. Thefirst five trias for both implementations of the puck controller.

Grid

experienced by the system were remembered in a discrete state transition
model. A learning algorithm similar to Dyna (Sutton 1990) was used
with full valueiteration carried out on the discrete model every time-step.
Exploration was achieved by assuming any unvisited state had a future
cost of zero. The action, which is one-dimensional, was discretized to
fivelevels: {—4N, —2N,0N,2N,4N }.

e Implementation 2 (LWR): Lazy Forward Model. The second imple-
mentation was the same as the first, except that transitions between cells
were filled in by predictions from alocally weighted regression forward
model x(t+ 1) = f(x(t), u(t)). Thus, unlikeimplementation 1, many dis-
crete transitions that had not been physically experienced were stored in
thetransition table by extrapol ation from the actual experiences. Also, the
lazy model supported a higher resolution representation in areas where
many experienceshad been collected. Thevaluefunction wasrepresented
by atable in both implementations.

The experimental domain is a simple one, but its empirical behavior demon-
strates an important point. A lazy forward model in combination with value
iteration can dramatically reduce the amount of actual data needed during
learning. The graphs of the first five trgjectories of the two experiments are
shownin Figure 15. The steps per trial for both implementationsare shownin
Figure 16. The best possible number of steps per trial is23. The implementa-
tion using the locally weighted regression forward model |earns much faster
in terms of trials than the implementation using the grid. The lazy model
based implementation also requires approximately two orders of magnitude
fewer steps in order to reach optimal performance. For example, after trial
150 the grid based implementation has executed 26297 total steps more than
the optimal required when all trials are combined, while the lazy forward
model based implementation has executed only 260 suboptimal steps.
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Figure 16. Top: Steps per tria for a grid based forward model. Bottom: Steps per trial for an
LWR based forward model. Note the difference in vertical scales.

Sincewedid not include any random noisein this simulation these numbers
are deterministic. The spikesin Figure 16 are due to the severe nonlinearity
of this problem, where small errorsin the policy may lead to the puck failing
to have enough energy to get to the goal. In this case the puck dlides back
down and must perform another “orbit” of the start point in state space before
reaching the goal. The lack of random sensor or actuator noise makes the
problem unrealistically easy for both approaches. We expect the benefits of a
lazy model over the standard grid model to carry over to the stochastic case.

The computational costs of this kind of control are considerable. Although
it is not necessary to gather datafrom every part of the state space when gen-
eralization occurs with a model, the simple form of value iteration requires
amultidimensional discretization for computing the value function. Several
researchers are investigating methods for reducing the cost of value itera-
tion when a model has been learned (e.g. (Moore 1991b; Mahadevan 1992;
Atkeson 1994)).

3.6.2. Exploration

The approach we have described does not explicitly explore. If the learned
model contains serious errors, a part of state space that wrongly looks unre-
warding will never be visited by the real system, so the model will never
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be updated. On the other hand, we do not want the system to explore every
part of state space explicitly —the supposed advantage of lazy |earning based
function approximation is the ability to generalize parts of the model without
explicitly performing an action. To resolve this dilemma, a number of use-
ful exploration heuristics can be used, al based on the idea that it is worth
exploring only where thereislittle confidencein the empirical model (Sutton
1990; Kaelbling 1993; Moore and Atkeson 1993; Cohn et al. 1995).

4. Lazy Learningof Models: Prosand Cons

Lazy learning of models leads to new forms of autonomous control. The
control algorithms explicitly perform empirical nonlinear modeling as well
assimultaneously designing policies, without astrong commitment to amodel
structure or controller structure in advance. Parametric modeling approaches,
such as polynomial regression, multi-layer sigmoidal neural networks, and
projection pursuit regression, all make a strong commitment to amodel struc-
ture, and new training data hasaglobal effect onthelearned function. Locally
weighted learning only assumes local smoothness. This section discussesthe
strengths and weaknesses of alocal and lazy modeling approach in the con-
text of control. (Stanfill and Waltz 1986) provide asimilar discussion for lazy
approachesto classification.

4.1. Benefits of Lazy Learning of Models

e Automatic, empirical, local linear models. Locally weighted linear
regression returns a local linear map. It performs the job of an engineer
who is trying to empirically linearize the system around a region of
interest. It is not difficult for neural net representations to provide alocal
linear map too, but other approximators such as straightforward nearest
neighbor or the origina version of CMAC (Albus 1981; Miller 1989)
are lessreliable in their estimation of local gradients because predicted
surfaces are not smooth. Additionaly, if the input data distribution is
not too non-uniform, it can be shown that the linearizations returned
by locally weighted learning accomplish a low-bias estimate of the true
gradient with fewer data points than required for alow-bias prediction of
aquery (Hastie and Loader 1993).

e Automatic confidence estimations. Locally weighted regression can
also be modified to return a confidence interval along with its predic-
tion. This can be done heuristically with the local density of the data
providing an uncertainty estimate (Moore 1991a) or by making sensible
statistical assumptions (Schaal and Atkeson 1994b; Cohn et a. 1995).
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In either case, this has been shown empirically to dramatically reduce
the amount of exploration needed when the uncertainty estimates guide
the experiment design. The cost of estimating uncertainty with locally
weighted methodsis small. Nonlinear parametric representations such as
multi-layer sigmoidal neural networks can also be adapted to return confi-
denceintervals (MacKay 1992; Pomerleau 1994), but approximationsare
required, and the computational cost is larger. Worse, parametric models
(e.g., globa polynomial regression) that predict confidence statistically
aretypically assuming that the true world can be perfectly modeled by at
least one set of parameter values. If this assumption is violated, then the
confidenceintervals are difficult to interpret.

Adding new data to a lazy model is cheap. For alazy model adding a
new data point means simply inserting it into the data base.

One-shot learning. Lazy models do not need to be repeatedly exposed
to the same data to learn it. A consequence of this rapid learning is that
errors are not repeated and can be eliminated much more quickly than
approaches that incrementally update parameters. Nonlinear parametric
models can be trained by 1) exposing the model to anew data point only
once (e.g., (Jordan and Jacobs 1990; Kuperstein 1988)), or 2) by storing
the datain a database and cycling through the training data repeatedly. In
case 1, much more datamust be collected, sincethetraining effect of each
data point is small. This leads to slower learning, since real robot move-
ments take time, and to increased wear-and-tear on the robot or industrial
process that is to be controlled. In case 2, alazy learning approach has
been adopted, and one must then eval uate the rel ative benefits of complex
and simple local models.

Non-linear, yet nodanger of local minimain function approximation.
Locally weighted regression can fit a wide range of complex non-linear
functions, and finds the best fit directly, without requiring any gradient
descent. There are no dangers of the model learner becoming stuck in a
local optimum. In contrast, training nonlinear parametric models can get
stuck in local minima.

However, someof the control law design agorithmswehave surveyed can
become stuck (Moore 1992; Jordan and Rumelhart 1992). The inverse-
model method can become stuck with non-monotonic or highly noisy
systems. The shifting setpoint algorithm can become stuck in principle,
although this has not yet occurred in practice.

Avoids interference. Lazy modeling is insensitive to what task it is
currently learning or if the data distribution changes. In contrast, nonlinear
parametric modelstrained incrementally with gradient descent eventual ly



106 CHRISTOPHER G. ATKESON, ANDREW W. MOORE, AND STEFAN SCHAAL

forget old experiences and concentrate representational power on new
experiences.

4.2. Drawbacks of Lazy Learning of Models

Here we consider the disadvantages of lazy learning that may be encountered
under some circumstances, and we also point out promising directions for
addressing them.

e Lookup costs increase with the amount of training data. Memory

and computation costs increase with the amount of data. Memory costs
increaselinearly with theamount of data, and are not generally aproblem.
Any algorithm that avoids storing redundant data would greatly reduce
the amount of memory needed, and one can also discard data, perhaps
selected according to predictive usefulness, redundancy, or age (Atkeson
et a. 1997).
Computational costs are more serious. For a fixed amount of computa-
tion, a single processor can process a limited number of training data
points. There are several solutions to this problem (Atkeson et al. 1997):
The database can be structured so that the most relevant data points are
accessed first, or so that close approximations to the output predicted by
locally weighted regression can be obtained without explicitly visiting
every point in the database. There are a surprisingly large number of
algorithms available for doing this, mostly based on k-d trees (Preparata
and Shamos 1985; Omohundro 1987; Moore 1990; Grosse 1989; Quinlan
1993; Omohundro 1991; Deng and Moore 1995).

e |sthe curse of dimensionality a problem for lazy learning for con-

trol? The curse of dimensionality is the exponential dependence of
needed resources on dimensionality found in many learning and plan-
ning approaches. The methods we have discussed so far can handle a
wide class of problems. On the other hand, it iswell known that, without
strong constraints on the class of functions being approximated, learning
with many input dimensions will not successfully approximate a partic-
ular function over the entire space of potential inputs unless the data set
isunredlisticaly large.
This is an apparently serious problem for multivariate control using
locally weighted learning, and rai sesthe question as to why the examples
given in this paper worked. Happily, it is actually quite difficult to think
of useful tasksthat requirethe system to have an accurate model over the
entire input space (Albus 1981). Indeed, for a robot of more than, say,
eight degrees of freedom, it will not be possible for it to get into every
significantly different configuration even oncein its entire lifetime.
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Many tasks require high accuracy only in low-dimensional manifolds of
input spaceor thin slicesaround those manifolds. In some casesthese may
be clumps around the desired goal value of stationary tasks. For example,
in devil sticking the robot needsto gain highly accurate expertise only in
the vicinity of stable juggling patterns. Another common task involves
the system spending most of itslife traveling along anumber of important
trgjectories, “ highways’, through state space, in which case expertise need
only be clustered in these regions. In general, the curse of dimensionality
may not be dangerous for tasks whose solutionslie in alow-dimensional
manifold or athin slice, even if the number of state variables and control
inputsis several times larger.

In any event we expect the performance of locally weighted regression
to be as good as any other method as the dimensionality of the problem
increases, as locally weighted learning can become global if necessary
to emulate global models, and can become global or local in particular
directionsto emul ate projection pursuit models(e.g., thedistancefunction
can be set to choose a projection direction, for example, but for multiple
projection directions multiple distance functions must be used in additive
locally weighted fits) (Friedman and Stuetzle 1981). We expect locally
weighted learning to degrade gracefully as the problem dimensionality
increases.

e Lazy learning depends on having good representations already
selected. Good representational choices (i.e., choices of the elements
of the state and control vectors, etc.) can dramatically speed up learning
or make learning possible at all. Feature selection and scaling algorithms
are a crude form of choosing new representations (Atkeson et al. 1997).
However, we have not solved the representation problem, and locally
weighted learning and all other machine learning approaches depend on
prior representational decisions.

5. Conclusions

This paper has explored methods for using lazy learning to learn task models
for control, emphasizing how forward and inverse learned models can be
used. Theimplementationsall used lazy models. Thelast section discussedin
more detail the prosand cons of lazy learning as the specific choice of model
learner.

There is little doubt that these advances can be converted into general
purpose software packages for the benefit of robotics and process control.
But it should also be understood that we are still a considerable way from
full autonomy. A human programmer has to decide what the state and action
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variablesarefor aproblem, how thetask should be specified, and what class of
control task it is. The engineering of real-time systems, sensors and actuators
isstill required. A human must take responsibility for safety and supervision
of the system. Thus, at this stage, if we are given a problem, the relative
effectiveness of learning control, measured as the proportion of human effort
eliminated, is heavily dependent on problem-specific issues.

Appendix A: Simple Linear Quadratic Regulator derivation

Thisappendix provides asimplified, self-contained introduction to L QR con-
trol for readers who wish to understand the ideas behind Equations 17 and
18. Assume a scalar state and action, and assume that the desired state and
action are zero (z4 = ug = 0). Assume linear dynamics:

Tk4+1 = G + buy (25)

where ¢ and b are constants. Define V;* () to be the minimum possible sum
of future costs, starting from state z, assuming we are at time-step k. Assume
the system stops at time k = N, and the stopping cost is gz%;. For all other
steps(i.e., k < N) thecostis gz2 + ru2.

N-1

Vil(z) = Z (q:v? + rui) + q:v%v (26)
j=k

assuming ug, ug41,...,uy—1 chosen optimaly. V;*(x) can be defined
inductively:

Vi () = qaiy 27)

Ug

by the principal of optimality, which saysthat your best bet for minimal costs
IS to minimize over your first step for the cost of that step plus the minimum
possible costs of future steps. We will now prove by inductionthat V" (x) isa
quadratic in z, with the quadratic coefficient dependent on k: V¥ (z) = pja?
for some pg, p1, ..., PN-

e Basecase: py = ¢ from Equation 27.

e Inductive step: Assume V;, ;(z) = py112%; We'll prove V¥ (z) = pya?

for some py.
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From here on, al that remains is algebra. We begin with Equation 28, in
which we replace 2, 1 with ax + buy from Equation 25:

Vi (z) = argmin (qx% + rus + Vi 1(azy, + buk)) (29)
U,

Then we use the inductive assumption V;*, 1 () = pg412?

V() = argmin (qx% + ru% + prr1(axy + buk)z) (30)
ug

Next we simplify with three new variables, a, 3, ~:

Vi) = agmin (asf + 28zkuy + yuf) where  (31)
ug

o = ¢+ pppr0® (32)

B = pry1ab (33

Y =1+ prgab® (34)

To minimize Equation 31 with respect to « we differentiate and set to zero
the bracketed expression giving:

20z + 2yuy, =0 (35)

where u}, is the optimal action. Thus

up = —(B/7)x (36)
Since u;, minimizes Equation 31 we have

Vi (2) = aa? + 28w + v (uf)? (37)
So from Equation 36

Vii(@) = aa®+ 282(~B/7)z + v(=B/y) %
= (a=28/7+82/7)a* = (a = 671) s> (39

so that we have shown V¥ (z) = pz? where
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pe = (o — /) (39)

Inserting back the substitutions of Equations 32, 33, 34 into Equations 36 and
39:

* _pk+lab )
Uk (7” + pk+1b2 Tk ( )
2 \wh 2 P 1b?
Vii(z) = wherep;, = ¢ + 1- == 41
i () = pr Pk =q+apria T (41)

Assuming that thereare N — k stepsremaining, to compute the cost-to-go from

statex weset p := ¢ and then iterate the assignment p := ¢ +a?p(1— Tﬁ’;:bz) a
total of N — k times. As N — k becomeslarge p convergesto aconstant value
(not proven here). This gives the cost-to-go value function of pz?, assuming

that the system will run forever.

6. Acknowledgments

Support for C. Atkeson and S. Schaal was provided by the ATR Human
Information Processing Research Laboratories. Support for C. Atkeson was
provided under Air Force Office of Scientific Research grant F49-6209410362,
and by aNational ScienceFoundation Presidential Young Investigator Award.
Support for S. Schaal was provided by the German Scholarship Foundation
and the Alexander von Humboldt Foundation. Support for A. Moore was
provided by the U.K. Science and Engineering Research Council, NSF Re-
search Initiation Award # IRI-9409912, and a Research Gift from the 3M
Corporation.

References

Aha, D. W. & Salzberg, S. L. (1993). Learning to catch: Applying nearest neighbor algorithms
to dynamic control tasks. In Proceedings of the Fourth International Werkshop on Artificial
Intelligence and Statistics, pp. 363-368, Ft. Lauderdale, FL.

Albus, J. S. (1981). Brains, Behaviour and Robotics. BY TE Books, McGraw-Hill.

Atkeson, C. G. (1990). Using local models to control movement. In Touretzky, D. S. (ed.),
Advances in Neural Information Processing Systems 2, pp. 316-323. Morgan Kaufmann,
San Mateo, CA.

Atkeson, C. G. (1994). Using local trajectory optimizers to speed up global optimization in
dynamic programming. In Hanson, S. J., Cowan, J. D. & Giles, C. L. (eds.), Advancesin
Neural Information Processing Systems 6, pp. 663-670. Morgan Kaufmann, San Mateo,
CA.



LOCALLY WEIGHTED LEARNING FOR CONTROL 111

Atkeson, C. G., Moore, A. W. & Schaal, S. (1997). Localy weighted learning. Artificial
Intelligence Review, thisissue.

Barto, A. G., Sutton, R. S. & Watkins, C. J. C. H. (1990). Learning and Sequential Decision
Making. In Gabriel, M. & Moore, J. W. (eds.), Learning and Computational Neuroscience,
pp. 539-602. MIT Press, Cambridge, MA.

Barto, A. G., Bradtke, S. J. & Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence 72(1): 81-138.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

Bertsekas, D. P. & Tditsiklis, J. N. (1989). Parallel and Distributed Computation. Prentice
Hall.

Cannon, R. H. (1967). Dynamics of Physical Systems. McGraw-Hill.

Cohn, D. A., Ghahramani, Z. & Jordan, M. I. (1995). Activelearning with statistical models. In
Tesauro, G., Touretzky, D. & Leen, T. (eds.), Advances in Neural Information Processing
Systems 7. MIT Press.

Connell, M. E. & Utgoff, P. E. (1987). Learning to control a dynamic physical system. In
Sixth National Conference on Artificial Intelligence, pp. 456460, Seattle, WA. Morgan
Kaufmann, San Mateo, CA.

Conte, S. D. & DeBoor, C. (1980). Elementary Numerical Analysis, McGraw Hill.

Deng, K. & Moore, A. W. (1995). Multiresolution Instance-based Learning. In Proceedings
of the International Joint Conference on Artificial Intelligence, pp. 1233-1239. Morgan
Kaufmann.

Friedman, J. H. & Stuetzle, W. (1981). Projection Pursuit Regression. Journal of the American
Satistical Association, 76(376): 817-823.

Grosse, E. (1989). LOESS: Multivariate Smoothing by Moving Least Squares. In C. K. Chul,
L.L.S & Ward, J. D. (eds.), Approximation Theory VI. Academic Press.

Hastie, T. & Loader, C. (1993). Local regression: Automatic kernel carpentry. Satistical
Science 8(2): 120-143.

Jordan, M. I. & Jacaobs, R. A. (1990). Learning to control an unstable system with forward
modeling. In Touretzky, D. (ed.), Advances in Neural Information Processing Systems 2,
pp. 324-331. Morgan Kaufmann, San Mateo, CA.

Jordan, M. I. & Rumelhart, D. E. (1992). Forward Models: Supervised Learning with aDistal
Teacher. Cognitive Science 16: 307-354.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press, Cambridge, MA.

Kuperstein, M. (1988). Neural Model of Adaptive Hand-Eye Coordination for Single Postures.
Science 239: 1308-3111.

MacKay, D. J. C. (1992). Bayesian Model Comparison and Backprop Nets. In Moody, J. E.,
Hanson, S. J. & Lippman, R. P. (eds.), Advancesin Neural Information Processing Systems
4, pp. 839-846. Morgan Kaufmann, San Mateo, CA.

Mahadevan, S. (1992). Enhancing Transfer in Reinforcement Learning by Building Stochastic
Models of Robot Actions. In Machine Learning: Proceedings of the Ninth International
Conference, pp. 290-299. Morgan Kaufmann.

Maron, O. & Moore, A. (1994). Hoeffding Races: Accelerating Model Selection Search for
Classification and Function Approximation. In Advancesin Neural Information Processing
Systems 6, pp. 59-66. Morgan Kaufmann, San Mateo, CA.

McCalum, R. A. (1995). Instance-based utile distinctions for reinforcement learning with
hidden state. In Prieditis and Russell (1995), pp. 387-395.

Mel, B. W. (1989). MURPHY: A Connectionist Approach to Vision-Based Robot Motion
Planning. Technical Report CCSR-89-17A, University of Illinois at Urbana-Champaign.

Miller, W. T. (1989). Real-Time Application of Neural Networks for Sensor-Based Control of
Robotswith Vision. IEEE Transactions on Systems, Man and Cybernetics 19(4): 825-831.

Moore, A. W. (1990). Acquisition of Dynamic Control Knowledge for a Robotic Manipulator.
In Proceedings of the 7th International Conference on Machine Learning, pp. 244-252.
Morgan Kaufmann.



112 CHRISTOPHER G. ATKESON, ANDREW W. MOORE, AND STEFAN SCHAAL

Moore, A. W. (1991a). Knowledge of Knowledge and Intelligent Experimentation for Learning
Control. In Proceedings of the 1991 Seattle International Joint Conference on Neural
Networks.

Moaoore, A. W. (1991b). Variable Resolution Dynamic Programming: Efficiently Learning
Action Maps in Multivariate Real-valued State-spaces. In Birnbaum, L. & Collins, G.
(eds.), Machine Learning: Proceedings of the Eighth International Workshop, pp. 333—
337. Morgan Kaufmann.

Maore, A. W. (1992). Fast, Robust Adaptive Control by Learning only Forward Models. In
Moody, J. E., Hanson, S. J. & Lippman, R. P. (eds.), Advances in Neural Information
Processing Systems 4, pp. 571-578. Morgan Kaufmann, San Mateo, CA.

Moore, A. W. & Atkeson, C. G. (1993). Prioritized Sweeping: Reinforcement Learning with
Less Dataand Less Real Time. Machine Learning 13: 103-130.

Moaore, A. W., Hill, D. J. & Johnson, M. P. (1992). An Empirical Investigation of Brute Force
to Choose Features, Smoothers and Function Approximators. In Hanson, S., Judd, S. &
Petsche, T. (eds.), Computational Learning Theory and Natural Learning Systems, Volume
3. MIT Press.

Moore, A. W. & Lee, M. S. (1994). Efficient Algorithms for Minimizing Cross Validation
Error. In Proceedings of the 11th International Conference on Machine Learning, pp.
190-198. Morgan Kaufmann.

Maore, A. W. & Schneider, J. (1995). Memory-Based Stochastic Optimization. In Proceedings
of Neural Information Processing Systems Conference.

Omohundro, S. M. (1987). Efficient Algorithms with Neural Network Behaviour. Journal of
Complex Systems 1(2): 273-347.

Omohundro, S. M. (1991). Bumptrees for Efficient Function, Constraint, and Classification
Learning. In Lippmann, R. P, Moody, J. E. & Touretzky, D. S. (eds.), Advancesin Neural
Information Processing Systems 3, pp. 693-699. Morgan Kaufmann, San Mateo, CA.

Ortega, J. M. & Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equationsin Several
Variables. Academic Press.

Peng, J. (1995). Efficient memory-based dynamic programming. In Prieditis and Russell
(1995), pp. 438-446.

Peng, J. & Williams, R. J. (1993). Efficient L earning and Planning Within the Dyna Framework.
In Proceedingsof the Second | nter national Conferenceon Simulation of Adaptive Behavior.
MIT Press.

Pomerleau, D. (1994). Reliability estimation for neural network based autonomous driving.
Robotics and Autonomous Systems, 12.

Preparata, F. P. & Shamos, M. (1985). Computational Geometry. Springer-Verlag.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1988). Numerical Recipes
in C. Cambridge University Press, New York, NY.

Prieditis, A. & Russell, S. (eds.) (1995). Twelfth International Conference on Machine Learn-
ing, Tahoe City, CA. Morgan Kaufmann, San Mateo, CA.

Quinlan, J. R. (1993). Combining Instance-Based and Model-Based Learning. In Machine
Learning: Proceedings of the Tenth International Conference, pp. 236-243. Morgan Kauf-
mann.

Schaal, S. & Atkeson, C. (1994a). Robot Juggling: An Implementation of Memory-based
Learning. Control Systems Magazine 14(1): 57-71.

Schaal, S. & Atkeson, C. G. (1994b). Assessing the Quality of Local Linear Models. In Cowan,
J. D., Tesauro, G. & Alspector, J. (eds.), Advances in Neural Information Processing
Systems 6, pp. 160-167. Morgan Kaufmann.

Stanfill, C. & Waltz, D. (1986). Towards Memory-Based Reasoning. Communications of the
ACM 29(12): 1213-1228.

Stengel, R. F. (1986). Stochastic Optimal Control. John Wiley and Sons.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3: 9-44.



LOCALLY WEIGHTED LEARNING FOR CONTROL 113

Sutton, R. S. (1990). Integrated Architecture for Learning, Planning, and Reacting Based on
Approximating Dynamic Programming. In Proceedings of the 7th International Confer-
ence on Machine Learning, pp. 216—-224. Morgan Kaufmann.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD. Thesis, King's College,
University of Cambridge.

Zografski, Z. (1992). Geometric and neuromorphic learning for nonlinear modeling, control
and forecasting. In Proceedings of the 1992 | EEE International Symposium on Intelligent
Control, pp. 158-163. Glasgow, Scotland. |EEE catalog number 92CH3110-4.



