Shaping
- Human trainer transfers task knowledge to an agent through signals of positive and negative reinforcement (shaping the agent).
- How should the agent use human reinforcement signals to learn the task, maximizing performance?

Why shape?
- Potential benefits over "autonomous" learning agents include:
 1. no coded evaluation function needed
 2. decreases sample size for learning a "good" policy
 3. allows users to teach agents policies which they prefer
 4. can learn in domains that are intractable for evaluation function methods

The shaped agent's perspective
Each time step, agent:
- receives state description
- might receive a scalar human reinforcement signal
- chooses an action
- does not receive an MDP reward signal

Previous work on shaping agents
- Clicker training for entertainment agents
 - RL with reward = environmental (MDP) reward + human reinforcement
- Sophie’s World
 - RL with reward = environmental (MDP) reward + human reinforcement
- Social software agent Cobot in LambdaMoo
 - RL with reward = human reinforcement

MDP reward vs. human reinforcement

Human reinforcement
- Trainer has long-term impact in mind
- Reinforcement is within a small temporal window of the targeted behavior
- Credit assignment problem is largely removed

The TAMER Framework
Training an Agent Manually via Evaluative Reinforcement (TAMER)
- Human trainer’s reinforcement reflects his understanding of behavior’s long-term consequences
- Therefore, no temporal difference learning necessary
- Model human’s reinforcement function, $H: S \times A \rightarrow R$
- Exploit learned H to choose actions

Tetris Results
Results of various Tetris agents:

Tetris and TAMER
- Drop blocks to make solid horizontal lines, which then disappear
- (state space) $> 2^{35}$
- Challenging (NP hard) but infrequent actions
- 46 features extracted from state and action
- Linear model over features
- Gradient descent updates from error $h \rightarrow \hat{h}$
- Greedy action selection

Mountain Car Results

Why shape?
- Drop blocks to make solid horizontal lines, which then disappear
- Challenging (NP hard) but infrequent actions
- 46 features extracted from state and action
- Linear model over features
- Gradient descent updates from error $h \rightarrow \hat{h}$
- Greedy action selection

The mean number of lines cleared per game by TAMER agents:

References

Publications

MDP Reward
- Key problem: credit assignment from sparse rewards
- How did you win?
 - I won!
- But why did I win?

Tetris Results

Mean Cumulative Reward in Mountain Car

Mean Cumulative Reward in Mountain Car