
Towards a Unified
Framework for Learning

from Observation
Santiago Ontañón (IIIA-CSIC, Spain)

José L. Montaña (Universidad de Cantabria, Spain)
Avelino J. Gonzalez (University of Central Florida, USA)

Motivation

• Many disconnected approaches in the
literature

• Lack of a common framework to compare

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

Learning from Observation
• Learn to perform a task solely by observing

the external behavior of another agent

Learning from Observation

• Supervised learning: learning a mapping from
input variables to output variables

• LfO: learning a control function (which might
have internal state)

Many Approaches

• Can be traced back to 1979, with different
names:

• Learning from Observation

• Learning from Demonstration

• Imitation Learning

• Apprenticeship Learning

• Programming by Demonstration

Many Approaches
• Reinforcement Learning Techniques

• Case-based Reasoning

• Decision Trees, Neural Networks, etc.

• Generic Algorithms

• Inductive Logic Programming

• Cognitive Architectures (SOAR, etc.)

• etc.

[Argall et al. 2009] “A survey of robot learning from demonstration”

Applications

• Domains with complex behaviors:

• Robotics

• Computer games

• Training and simulation

• Automated programming

• etc.

Related Problems

• Inverse Reinforcement Learning:

• Given behavior (optimal policy, or
trajectories), learn the reward function

• Workflow reconstruction / Automata
discovery

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

Vocabulary

• An environment E

• An expert (or actor) C

• A task T

• A learning agent A
E

C

A

actionperception

T

Learning Traces

• The learning agent A can only observe the
interaction of the expert C with the
environment, E, not the internal state of C:

• perceptions (state of E by A): X

• actions: Y

LT = [(t1, x1, y1), ..., (tn, xn, yn)]

LFO Task
• Given:

• A set of learning traces LT1, ..., LTk

• An environment E (characterized by a set
of input variables X, and a set of control
variables Y)

• Optionally, a description of the task T

• Learn:

• A behavior B that “behaves like” C in
achieving task T in E

“Behaves like”

• If no T is specified:

• LFO is equivalent to learning to predict
C’s actions

• If T is specified:

• LFO’s performance must take into account
both predicting C’s actions and
accomplishing T

Measuring Performance

• In traditional ML, performance is measured
by leaving some examples out of the training
set: test set

• In LFO, test set would be a set of traces

• Comparing traces is not trivial

• Achievement of task T must be taken into
account

Measuring Performance

• Evaluate performance: how well is T achieved

• Evaluate output: how well the model
predicts expert actions (like traditional ML)

• Evaluate model: inspect the learned model
(typically by human inspection)

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

Types of LFO Problems

• Not all LFO algorithms work for all LFO
problems

• Common differences:

• Continuous/discreet variables

• Observable environment or not

• etc.

Types of LFO Problems

• LFO problems can be characterized
depending on whether:

• They require generalization or not

• They require planning or not

• Do we have a model of the environment

Types of LFO Problems

Generalization? Planning? Known Env.? Level

no no - Level 1: Strict Imitation

yes no - Level 2: Reactive Behavior

yes yes yes Level 3: Tactical Behavior

yes yes no Level 4: Tactical Behavior
in unknown environment

Level 1: Strict Imitation

• No feedback required from environment

• No need for generalization nor planning

• The learned behavior is a strict function of
time

• Algorithms required: pure memorization

• Example: robots in factories

Level 2: Reactive Behavior

• Behavior is a ”perception to action mapping”

• No need for planning

• Standard (classification/regression) machine
learning algorithms can be used in this level

• Example: simple complete information games
like pong or space invaders

Level 3: Tactical Behavior

• Perception is not enough to determine
behavior:

• Behavior to be learned has internal state

• Standard (classification/regression) machine
learning algorithms cannot be used directly

• Example: driving a car, or complex games
(e.g. Stratego)

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

• Behavior as a stochastic process

• LFO consists on estimating the probability
distribution of the stochastic process

Statistical Formulation
of LFO

I = {I1, ..., In}
Ik = (Xk, Yk)

ρ(Yk|xk, ik−1, ..., i1)

Level 1: Strict Imitation

• Only the sequence of actions in the training
trace has non 0 probability:

ρ(I1 = (x1, y1), ..., In = (xn, yn)) = 1

BT = [(x1, y1), ..., (xn, yn)]

• Reactive behavior only depends on perceptions:

• In this case, LFO is equivalent to the traditional
supervised learning problem, and each entry in a
trace is one training example

Level 2: Reactive Behavior

ρ(Yk|xk, ik−1, ..., i1) = ρ(Yk|xk)

Level 3: Tactical Behavior

• The behavior needs some internal state (i.e.
memory). Assuming only a finite amount of
memory is required to learn a task:

• Where l plays a similar role as the order in a
Markov process

ρ(Yk|xk, ik−1, ..., i1) = ρ(Yk|xk, ik−1, ..., ik−l)

Level 3: Tactical Behavior

• Given a fixed l:

• Markov process of order l can be reduced
to one of order 1

• We could use supervised learning
algorithms

• With an explosion in the set of input
features

Outline

• Learning from Observation

• A Unified Framework

• Levels of Difficulty of LFO

• Statistical Formulation

• Conclusions

Conclusions

• Large amount of existing work in LFO

• Each author uses a different framework and
vocabulary

• Need for unification for easy comparison of
research and results

Conclusions

• We presented a proposal for unified
vocabulary

• Classification of LFO tasks in a series of
levels:

• Our goal was to classify the types of
algorithms needed for different types of
tasks

Future Work

• Performance evaluation methodology

• Standard testbeds for comparison:

• E.g. computer games?

Thank you!

