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 Setting:
 Document classification (multi-class)

 Features are words, n-grams, etc.

 End user labels features as positive or negative for a class
 Small data set; user-specific classes



Related Work
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Supervised feature labeling algorithms:
1. SVM Method 1 [Raghavan and Allan 2007]

• Scales relevant features by ࢇ
• Scales non-relevant features by ࢊ
• Where ܽ	  	݀

2. SVM Method 2 [Raghavan and Allan 2007]
• Inserts pseudo-documents into the dataset

pseudo-document: (0, 0, ..., 0 ,... ,ݎ, class label)
• Influences position of margin

Combined method will be called SVM-M1M2



Idea: Combine local learning algorithm with 
feature weights
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 Algorithm:
 Locally-weighted logistic regression
 Given query ݔ assign weight ݓ ൌ ,ݔሺ݉݅ݏ ሻݔ to each 

training example ݔ
 Fit logistic regression to maximize weighted log likelihood

 Incorporating feature labels:
 When training classifier for class ݇, if ݔ and ݔ share a feature 

labeled as positive for class ݇ then make them “more similar”
 If they share a feature labeled as positive for some other class, 

then make them “less similar”
 Hypothesis:
 Local learning will prevent feature weights from over-

generalizing beyond the local neighborhood



Experiments: Oracle Study
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Oracle study: What happens if you can pick the “best” 
feature labels possible?

 Datasets
 Balanced subset of 20 Newsgroups (4 classes)
 Balanced subset of Modapte (4 classes)
 Balanced subset of RCV1 (5 classes)

 Oracle feature labels:
 10 most informative features for each class (information gain 

computed over entire dataset)
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Results: Oracle Study
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With oracle feature labels, LWLR-FL outperforms or 
matches the performance of SVM variants

Summary



Experiment: User Study
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But what about real end users?
 How good are their feature labels? 
 First user study of its kind:

Statistical user study allowing end users to label any 
features



Results: User Study
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 Presented 24 news articles from 4 Newsgroups:
Computers, For Sale, Medicine, Outer Space

 Collected feature labels from 43 participants:
 24 male, 19 female
 Non-CS background

 Experimental Setup
 Features are unigrams
 Training set: 24 instances
 Validation set: 24 instances
 Test set: remainder of data



User Study: Open-Ended Feature Set
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 Participants allowed to highlight any text (including words 
and punctuation) that they thought was predictive of the 
newsgroup

 Separate results into two groups:
 Existing: feature labels only on unigrams
 All: feature labels on unigrams and any additional features 

highlighted by end users



Results: User study
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Results: User Study
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 End users introduced
 non-continuous words (“cold” with “flu”)
 continuous phrases (“space shuttle”)
 features with punctuation (“for sale” with “$”)

 Analysis of participants’ features vs the oracle:
 Lower average information gain (0.035 vs 0.078)
 Higher average ConceptNet relatedness (0.308 vs 0.231)



Results: User Study
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 Looked at relatedness from ConceptNet as an 
alternative to information gain

 End users picked features with higher average 
relatedness than oracle



Results: User Study
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Results: User Study
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LWLR-FL Gains Over Baseline
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Variation in Macro-F1 with r  for SVM-M1M2
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Variation in Macro-F1 with k  for LWLR-FL
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Results: User Study
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Sensitivity Analysis

LWLR-FL is less sensitive to changes in key parameter



Results: User Study
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 With real end-user feature labels, LWLR-FL 
outperforms SVM variants

 LWLR-FL is more robust to lower quality feature 
labels

 End users able to select features that have high 
relatedness to class label 

Summary
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Learning First-Order Theories using 
Object-Based Queries
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 Goal:
 Learn a first-order Horn theory

 Set of Horn clauses
 No functions
 No constants (only variables)

 A Horn theory covers a training example if it D-subsumes the 
example
 Subsumption is required to be a one-to-one mapping
 For example:
 Theory: P(X,Y), P(Y,Z) ⇒ Q(X,Z)
 D-subsumes P(1,2), P(2,3) ⇒ Q(1,3)
 Does not D-subsume P(a,b), P(b,b) ⇒ Q(a,b)

 Every theory under normal semantics has an equivalent theory that 
uses the new semantics



Previous Work
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 Angluin et al. 1992:
 Propositional Horn theories can be learned in polynomial time using 

Equivalence Queries and Membership Queries
 Equivalence Query (EQ):

 Ask teacher if theory T is equivalent to the correct theory
 If No, returns a counter-example

 Membership Query (MQ):
 Ask teacher if example X is a positive example of the correct theory

 Reddy & Tadepalli, 1997:
 Non-recursive function free first-order Horn definitions (single 

target predicate) can be learned in polynomial time using EQs and 
MQs

 Khardon, 1999
 General first-order Horn theories can be learned in polynomial time 

using EQs and MQs (for fixed max size)



Shortcoming: MQs and EQs are unrealistic
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 All of the algorithms make heavy use of MQs
 This can be unnatural for humans to answer
 Teacher effort of labeling can be especially high
 Often the examples asked about are created by the algorithm, 

and may not make sense in the real world
 Each query only conveys a small amount of information



New Queries
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 ROQ: Relevant Object Query
 Given a positive example ܧ, returns a minimal set of objects ܳ

such that there exists a clause ܥ in the true theory and a D-
substitution Θ such that ܥΘ ⊆ ܧ

 Example for target concept 
 :ܧ ݎ݄݁ݐ݂ܽ ܽ, ܾ , ݎ݄݁ݐ݂ܽ ܽ, ܿ , ݁ݏݑݏ ܽ, ݀ , ݎ݄݁ݐݎܾ ݁, ܽ ,

ݎ݄݁ݐ݂ܽ ݁, ݂ , ݎ݄݁ݐ݂ܽ ݁, ݃ , ݈݁ܿ݊ݑ ݁, ܾ , ݈݁ܿ݊ݑ ݁, ܿ ,
݈݁ܿ݊ݑ ܽ, ݂ , ݈݁ܿ݊ݑ ܽ, ݃ , ݐ݊ݑܽ ݀, ݂ , ,ሺ݀ݐ݊ݑܽ ݃ሻ

 ܳ: ሼܽ, ܾ, ݁ሽ
 Clause: 



New Queries
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 PQ: Pairing Query
 Given two positive examples ܧଵ and ܧଶ, returns ݂݈ܽ݁ݏ if there is no 

clause ܥ in the true theory that covers both of them.  Otherwise, it 
picks a clause ܥ that covers both of them and returns a 1 െ 1
mapping of the objects in ܧଵ and ܧଶ where objects are mapped 
together if they correspond to the same variable in ܥ

 Example:
 :ଵܧ ݄݉ܽ݁ܶ݁݉ ݃1, ݏ݈݈ܽܽ݀ , ݉ܽ݁ܶݕܽݓܽ ݃1, ݈ܽ ,

݀݁ݎܿݏ ݃1, ,ݏ݈݈ܽܽ݀ 23 , ݀݁ݎܿݏ ݃1, ݈ܽ, 15 , ݍ݈݁ 15,23 ,
ݎ݁݊݊݅ݓ ݃1, ݏ݈݈ܽܽ݀ , ,ሺ݃1ݎ݁ݏ݈ ݈ܽሻ

 :ଶܧ ݄݉ܽ݁ܶ݁݉ ݃2, ݈݀݊ܽݐݎ , ݉ܽ݁ܶݕܽݓܽ ݃2, ݕ݊ ,
݀݁ݎܿݏ ݃2, ,݈݀݊ܽݐݎ 34 , ݀݁ݎܿݏ ݃2, ,ݕ݊ 32 , ݍ݈݁ 32,34 ,

ݎ݁݊݊݅ݓ ݃2, ݈݀݊ܽݐݎ , ,ሺ݃2ݎ݁ݏ݈ ሻݕ݊
 Mapping: 

ሼ݈݈݀ܽܽݏ ⟷ ,݈݀݊ܽݐݎ ݈ܽ ⟷ ,ݕ݊ 15 ⟷ 32, 23 ⟷ 34, ݃1 ⟷ ݃2ሽ



Results
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 Result 1: By incorporating ROQs into Khardon’s
algorithm, the number of Membership Queries is greatly 
reduced, but not eliminated. 

 Result 2: First-order Horn theories can be exactly learned 
in polynomial time using only PQs and EQs.



Next Steps
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 Experimental test of how well users can answer each of 
these types of queries

 Theoretical studies of imperfect oracles
 Try to model the kinds of errors teachers are likely to make
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Learning from Demonstrations and State 
Queries
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 Setting:
 Teacher has a policy ்ߨ for selecting actions in a Markov 

Decision Problem (MDP) with states ܵ and actions ܣ
 Learner has access to a simulator for the dynamics of the 

MDP:
ܲ	~	௧ାଵݏ ௧ାଵݏ ,௧ݏ ܽ௧ // next state distribution
ሻݏ~ܲሺݏ // start state distribution

 Teacher provides training trajectories (demonstrations)
 ,ଵଵݏ ܽଵଵ , … , ሺݏுଵ , ܽுଵ ሻ
 ,ଵଶݏ ܽଵଶ , … , ሺݏுଶ , ܽுଶ ሻ

 Learner’s Goal: Learn the Teacher’s policy over the first ܪ steps
 Note: No reward function!



State Queries
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 The Learner can ask the Teacher state queries:
 Learner: “What action should be performed in state ݏ?”
 Teacher:

 If ்ߨvisits state ݏ with non-zero probability, then return action 
ܽ ൌ ሻݏሺ்ߨ

 Else, return ٣, which means “bad state”



Queries that result in Bad State
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 Model cases where the Teacher doesn’t know what to do
 Teacher is not reliable in such cases

 Avoid unnecessary complexity in the learned policy
 The Teacher’s policy ்ߨ doesn’t need to model such cases, 

which can make learning the Learner’s policy easier



Proposed Method: Extension of Bayesian 
Active Learning
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 Space of hypotheses ଵ 

 Space of Teacher responses ଵ 

 Demonstrations + query answers = 
 Posterior distribution 

 = posterior probability of those hypotheses 
that would respond to state query with 
 ܲ ,ݏ ܽ ܦ ൌ ∑ ܲ ܦ|ߨ ܫ ܲ ݏ ߨ  0 ܫ ܽ ൌ ߨ ݏ
 ܲ ,ݏ ٣ ܦ ൌ ∑ ܲ ߨ ܦ ܫ ܲ ݏ ߨ ൌ 0

 Intuition: Student should learn to predict the Teacher’s 
query responses (including Bad State responses)



Query Rule
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 Choose to maximize

ܧܸ ݏ ൌ െܲ ,ݏ ݔ ܦ log ܲሺݏ, ሻܦ|ݔ
௫

 Greedy reduction in our uncertainty about 
 Let  
 Let  

 Then

Bonus that is 
maximized when 

Posterior prob. of 
target policy visiting 

s

Uncertainty over 
action choices at s



A Practical Algorithm:
Imitation Query-By-Committee (IQBC)
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 Treat demonstrations and non-٣Teacher responses as training 
examples for supervised learning

 Represent each policy as a multi-class classifier the predicts 
the action to take in each state

 Approximate the posterior distribution over ߨ by a committee 
learned using bagging

 This does not make any use of ٣ responses during learning
 Query Rule requires computing probability that each policy ߨ

visits each state ݏ
 Sample Average approximation (Pegasus-approach) for stochastic 

MDPs
 Only query in states visited by at least one ߨ



Experimental Test of the Method
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 Domains:
 Grid world with pits
 Cart-pole

 Algorithms:
 IQBC
 Random: Selects stats to query uniformly at random from ܵ
 Standard QBC (SQBC):  Ignores ܫ ܲ ݏ ߨ  0
 Passive imitation learning (Passive): Execute learned policy and 

ask teacher what to do in each state
 Confidence based autonomy (CBA) (Chernova & Veloso, JAIR 

2009):
 Executes policy until confidence falls below an automatically-adjusted 

threshold, then query Teacher



Goal
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Cart Pole

 State: 
 Actions: {Left, Right}
 Bounds on cart position: 
 Bounds on pole angle: 
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Teacher Types
 “Generous”: always responds with an action 
 “Strict”: declares states >2 steps away from states visited 

by ் as bad states

End-Users and Teachers39



Grid World With Pits: Generous Teacher
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Grid World With Pits: Strict Teacher
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Cart Pole: Generous Teacher
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Cart Pole: Strict Teacher
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Conclusions
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 IQBC outperforms previous active learning algorithms for 
Imitation Learning
 It is important to take the MDP dynamics into consideration 

when choosing states to query
 The certainty threshold in CBA is very sensitive and can easily 

lead to premature convergence



Next Steps
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 Incorporate feedback when learning policies
 Consider the “mental cost” to the Teacher of 

understanding the query state 
 Perhaps present short state sequences (“scenarios”) and ask 

the Teacher to provide correct actions and/or ٣ feedback for 
each state

 Conduct user studies to test the hypothesis that 
feedback is easier to provide
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Reinforcement Learning from Critiquing and 
Practice
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 Setting:
 Standard reinforcement learning setting

 Learner has access to an MDP and can learn via standard exploration 
policies

 From time to time, the Learner can show the Teacher a 
trajectory from its current best policy ߨ௧

 Teacher can choose any state or states along the trajectory 
and provide feedback of the form of
 Good actions in state ܣ :ݏௗ
 Bad actions in state ݏ: ௗܣ
 Feedback: ݏ, ,ௗܣ ௗܣ
 Either ܣௗ or ܣௗ can be empty



Application Problem: 
Tactical Battles in Wargus
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 Wargus: Open Source 
version of Warcraft II

 We provide a GUI 
that allows the 
Teacher to scroll 
backwards/forwards 
in the game and find 
states to critique



Learning Algorithm
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 Assume space of policies parameterized by Θ
 Let
 ܥ = Critiquing examples
 ܶ ൌ Observed ݏ௧, ܽ௧, ,௧ݎ ௧ାଵݏ tuples along the Learner’s 

exploratory trajectories
 Find Θ to maximize
 ܬ Θ, ,ܥ ܶ ൌ ܷߣ Θ, ܶ  1 െ ߣ ,ߠሺܮ ሻܥ
 where

 ܷሺΘ, ܶሻ is the estimated expected return of policy ߨ
 Evaluated via off-policy importance sampling [Peshkin & Shelton, 2002]

 ,ሺΘܮ ሻܥ is the log likelihood of the Teacher’s critiques under ߨ
 ܮ Θ, ܥ ൌ ∑ log 1  ߨ ௗܣ ݏ െ ߨ ௗܣ ݏ

 ߣ is a parameter that trades off the two criteria



Experimental Setup

Map 1 Map 2

 Our Domain: Micro-management 
in tactical battles in the Real Time 
Strategy (RTS) game of Wargus.

 5 friendly footmen against a group 
of 5 enemy footmen (Wargus AI).

Two battle maps, which differed only in the initial 
placement of the units. 

 Both maps had winning strategies for the friendly 
team and are of roughly the same difficulty.
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Experimental Details
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 RL agent
 Log-linear model over 27 hand-coded features 
 Choose action for each unit every 20 game cycles
 Same policy applied to all units (independently)

 Each Practice Phase
 Generate 10 trajectories
 With probability 0.8: choose action according to ߨ
 With probability 0.2: choose action according to ߨఈ

 Where ߙ shrinks the weights, which causes the policy to become 
more random



User Study
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 Goal is to evaluate three systems
 Pure Supervised = no practice session (ߣ ൌ 0)
 Pure RL = no critiques ሺߣ ൌ 1ሻ
 Combined = includes practice and critiques ሺߣ ൌ 0.3ሻ

 The user study involved 10 end-users
 6 with CS background
 4 no CS background

 Each user trained both the supervised and combined systems
 30 minutes total for supervised
 60 minutes for combined (30 minutes of practice)



Simulated Learning Curves
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 After user study, selected the worst- and best-performing 
users on each map when training the Combined system

 Total Critique data: 
 User#1: 36, User#2: 91, User#3: 115, User#4: 33.

 For each user: 
 divide critique data into 4 segments containing 25%, 50%, 75%, 

and 100% of the data

 Evaluate the Combined system varying both the amount 
of practice and the amount of critique data



 RL is unable to learn a 
winning policy (i.e. achieve a 
positive value).

Simulated Experiments:
Benefit of Critiques from User #1
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With more critiques 
performance increases a 
little bit.

Simulated Experiments:
Benefit of Critiques from User #1
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As the amount of 
critique data increases, the 
performance improves for a 
fixed number of practice 
episodes.

 RL did not go past 12 
health difference on any 
map even after 500 
trajectories.

Simulated Experiments:
Benefit of Critiques from User #1
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 Even with no practice, 
the critique data was 
sufficient to outperform RL.

 RL did not go past 12 
health difference.

Simulated Experiments:
Benefit of Practice for User #1
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With more practice 
performance increases too.

Simulated Experiments:
Benefit of Practice for User #1
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 Our approach is able to 
leverage practice episodes 
in order to improve the 
effectiveness on a given 
amount of critique data.

Simulated Experiments:
Benefit of Practice for User #1
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 Pure RL did not go past 12 health difference on any 
map even after 500 trajectories.
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Results of User Study
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 Users were slightly more successful using the purely 
supervised method (no practice)
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Conclusions
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 Combining Teacher critiques with practice has potential 
to speed learning

 User study did not achieve this potential
 Insufficient practice
 Users complained that the combined system “ignored them”



Summary
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Summary
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 End-users can reliably label features, and these can be 
exploited by local learning algorithms to speed up 
learning

 Horn Clause Theories can be learned exactly in 
polynomial time using the more-realistic Object 
Relevance and Pairing Queries

 Imitation Query-by-Committee is more effective than 
existing methods for learning a Teacher’s policy in an 
MDP\R

 Combining RL with Critiquing feedback shows promise of 
speeding up reinforcement learning



Questions?
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