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Scenarios I: Understanding Instructions [ucari1]

What to Learn from Natural Instructions?

Understanding Games’ Instructions — A A Two conceptual ways to think about learning from instructions

Game nstance

Atop card can be moved to the tableau if it
has a different color than the color of the
top tableau card, and the card have

(i) Learn directly to play the game [EMNLP'09; Barziley et. al 10,11]

successive values. N Consults the natural language instructions
L:J UL:JL:JL:J Use them as a way to improve your feature based representation
. . (i) Learn to interpret a natural language lesson [I)CAI'11]
Allow a human teacher to interact with an automated learner L . . )
. ) . (And jointly) how to use this interpretation to do well on the final task.
using natural instructions " . .
Will this help generalizing to other games?
Agonstic of agent's internal representations ) L. R L.
, - ) ) Semantic Parsing into some logical representation is a
Contrasts with traditional 'example-based' ML

necessary intermediate step

an move any of the oy,

Learn how to semantically parse from task level feedback
Evaluate at the task, rather than the representation level
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Scenario I': Semantic Parsing [CoNLL’10,ACl’11..]

X :“What is the largest state that borders New York and Maryland ?"

Y: largest( state( next_to( state(NY)) AND next_to (state(MD))))

Successful interpretation involves multiple decisions
What entities appear in the interpretation?
“New York” refers to a state or a city?

How to compose fragments together?
state(next_to()) >< next_to(state())

Question: How to learn to semantically parse from “task
level” feedback.

Goorrpve Cow APUTATION Group
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Scenario Il. The language-world mapping problem
“the world”

[UCAI'11, ACL'10,..]

How do we acquire language?

“the language”

W”

[Topid rivvo den marplox.]

Is it possible to learn the meaning of verbs from natural,
behavior level, feedback? (no intermediate representation)

Ws Page 6 n
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Outline

Background: NL Structure with Integer Linear Programming
Global Inference with expressive structural constraints in NLP

Constraints Driven Learning with Indirect Supervision

Training Paradigms for latent structure
Indirect Supervision Training with latent structure (NAACL’10)
Training Structure Predictors by Inventing binary labels (ICML’10)

Response based Learning
Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11)
Semantic Parsing ; playing Freecell; Language Acquisition

MPATGN
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Interpret Language Into An Executable Representation

X :“What is the largest state that borders New York and Maryland ?"

Y: largest( state( next_to( state(NY) AND next_to (state(MD))))
Successful interpretation involves multiple decisions
What entities appear in the interpretation?

“New York” refers to a state or a city?

How to compose fragments together?
state(next_to()) >< next_to(state())

Question: How to learn to semantically parse from “task

level” feedback.
TP e [
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Learning and Inference in NLP

Natural Language Decisions are Structured

Global decisions in which several local decisions play a role but there
are mutual dependencies on their outcome.

It is essential to make coherent decisions in a way that takes
the interdependencies into account. Joint, Global Inference.

But: Learning structured models requires annotating structures.

Interdependencies among decision variables should be
exploited in Decision Making (Inference) and in Learning.
Goal: learn from minimal, indirect supervision
Amplify it using interdependencies among variables

"OMPUTATION GROUP
u
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Constrained Conditional Models (aka ILP Inference
Penalty for violating
the constraint.

K
argmax X - F'(e,y) — Z pid(y. Lea))
i=1

(Soft) constraints
component

How fary is from
a “legal” assignment

How to train?

u

Weight Vector for / l
“local” models —
Features, log-

linear models (HMM,
CRF) or a combination

How to solve?

This is an Integer Linear Program Training is learning the objective

Solving using ILP packages gives an | | 1<HO"

exact solution. Decouple? Decompose?

Cutting Planes, Dual Decomposition &
_—other search techniques are possible
V4

How to exploit the structure to
minimize supervision?

APUTATION GROUP
INOTS AT URBANA-CHAMPAIGN
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Three Ideas

Idea 1:

Separate modeling and problem formulation from algorithms
Similar to the philosophy of probabilistic modeling

Idea 2:
Keep model simple, make expressive decisions (via constraints)

Unlike probabilistic modeling, where models become more expressive

Idea 3:
Expressive structured decisions can be supervised indirectly via

related simple binary decisions
Global Inference can be used to amplify the minimal supervision.

Y/

w ¥e CoMPUTATION GROUP
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Examples: CCM Formulations (aka ILP for NLP)
K

argmax A - F(r, y) — E pid(y. 1eyiz))
u :

i=1
CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)
m=p 1.Sequence tagging (HMM/CRF + Global constraints)
mmmp 2. Sentence Compression (Language Model + Global Constraints)
m=p  3.SRL (Independent classifiers + Global Constraints)

Sentence Linguistics Constraints
Compression/Summarization:

If a modifier chosen, include its head
If verb is chosen, include its arguments

Language Model based:
Argmax X A, . Xije

 a
V4
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Any Boolean rule can be encoded as
a (collection of) linear constraints.

Example: Sequence Tagging
LBJ: allows a developer to encode
HMM / CRF: example| CONStraints in FOL, to be compiled

} into linear inequalities automatically.

P

¥ = argmax P(yo) P(volyo) [T Plyilys 1) P(ailye) B U o B B
ey .
=t A A A A A
As an ILP: 0 v 0 0 0
o =

o=y =1 Discrete predictions
vey
YUy Vema) = 20 Luomy ey
vey .
- - output consistency
(7R S D DI VRIS DS P
vey vrey

-1
Lyamvry + 20 2 Ly oy gy 2 1

i=1yey

Other constraints

77
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Information extraction without Prior Knowledge

Lars Ole Andersen . Pro?ram analysis and specialization for the
C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .

argmax A - Fr., y)
u

Prediction result of a trained HMM

LAUTHOR Lars Ole /\nc\eyse; yrogram analysis and
TITLE] specialization for the B
[EDITOR] C
[BOOKTITLE] Programming language
[TECH-REPORT] hD thesis .

INSTITUTION. KU, University oFCopenhag@/\ay
[DATE] 1994 .

Violates lots of natural constraints!

77
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Strategies for Improving the Results

(Pure) Machine Learning Approaches
Higher Order HMM/CRF?
Increasing the window size?
Adding a lot of new features

Requires a lot of labeled examples

Increasing the model complexity

What if we only have a few labeled examples?

Can we keep the learned model simple and
still make expressive decisions?

Other options?
Constrain the output to make sense
Push the (simple) model in a direction that makes sense

y
7 -
"%41/ yE CompuTaTiON GROUP 2 Page 15 ﬂ
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Examples of Constraints

Each field must be a consecutive list of words and can appear
at most once in a citation

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.

Quotations can appear only in TITLE
Easy to express pieces of “knowledge”

Non Propositional; May use Quantifiers

%5 Page 16 E
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Information Extraction with Constraints
Adding constraints, we get correct results!
Without changing the model

argmax A - Flr,y)
u
n [AUTHOR] Lars Ole Andersen@
[TITLE] Program analysis and-$pecialization for the
C Programming languag
[TECH-REPORT] ~ PhD ’(hesiQ
[INSTITUTION] DIKV, Univefsity of Copenhagem

1L constrained Conditional Models Allow:
Learning a simple model
Make decisions with a more complex model
Accomplished by directly incorporating constraints to bias/re-
rank decisions made by the simpler model

/7
N/ E—— -
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Guiding (Semi-Supervised) Learning with Constraints

® In traditional Semi-Supervised learning the model can drift
away from the correct one.
m Constraints can be used to generate better training data

0 Attraining to improve labeling of un-labeled data (and thus
improve the model)
o Atdecision time, to bias the objective function towards favoring

constraint satisfaction.
Constraints

Decision Time Un-labeled Data
Constraints

pe

/i o
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Constraints Driven Learning (CoDL)
[Chang, Ratinov, Roth, ACL'07;ICML'08,ML, to appear]

Several Training Paradigms Generalized by Ganchev et. al [PR work]

Supervised learning algorithm parameterized by

(Wo,po earn(L) (w,p). Learning can be justified as an optimization
Eor N iterations do procedure for an objective function
T=¢ Inference with constraints:

. augment the training set
For each x in unlabeled dataset

h — argmax, W' ¢(xy) - X p de(xy)
T=T U {(x, h)}

Learn from new training data
Weigh supervised &

l60) = v (o) + (1-7) learn(r)
unsupervised models.

Excellent Experimental Results showing the advantages of using constraints,
especially with small amounts on labeled data [Chang et. al, Others] ﬂ

(e i E CoMPUTATION GROUP 47
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Constraints Driven Learning (CODL)
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ, to appear]
Generalized by Ganchev et. al [PR work]
Semi-Supervised Learning Paradigm that makes use of constraints to
bootstrap from a small number of examples
Objective function: [fi.c(x.¥) = Z iy (X, ¥) Z e (X0¥).
A

0.95 Learning w 10 Constraints

/]

0.9 Learning w/o Constraints: 300 examples. Poor model + constraints

Constraints are used to:
Bootstrap a semi-supervised
learner
Correct weak models
predictions on unlabeled
data, which in turn are used
to keep training the model.

S 10 15 20 25 100

etz CotmtamiiobiCiabaled examples
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Constrained Conditional Models

Constrained Conditional Models — ILP formulations — have been

shown useful in the context of many NLP problems, [Roth&vih,
04,07; Chang et. al. 07,08,...]

SRL, Summarization; Co-reference; Information Extraction;
Transliteration, Textual Entailment, Knowledge Acquisition

Some theoretical work on training paradigms [punyakanok et. al., 05
more]

See a NAACL'10 tutorial on my web page & an NAACL'09 ILPNLP workshop

Summary of work & a bibliography: http:/L2R.cs.uiuc.edu/tutorials.html

But: Learning structured models requires annotating structures.

STV O 1L TURBANA CHAMEAIGN
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Outline

Background: NL Structure with Integer Linear Programming
Global Inference with expressive structural constraints in NLP

Constraints Driven Learning with Indirect Supervision

Training Paradigms for latent structure
Indirect Supervision Training with latent structure (NAACL'10)
Training Structure Predictors by Inventing binary labels (ICML’10)

Response based Learning
Driving supervision signal from World’s Response (CoNLL’10,lJCAI'11)
Semantic Parsing ; playing Freecell; Language Acquisition
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Semantic Parsing as a Structure Prediction

S1: What s the Jargest state that borders NY?

S2: largest( state( next_to( const(NY))))
Is S2 a representation of S1?

A high level task requiring many “small decisions”
Which entities appear in the interpretation?
“NY” refers to the state or to the city
How to compose the meaning from the fragments?
state(next_to()) >< next_to(state())
Interdependency between decisions
E.g., is NY is more likely a state than a city (const (NYC))?

There is a need for an intermediate representation to justify this decision

Y/
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Semantic Parsing as a Structure Prediction

X:  Whatis the |argest state that borders NY?

Y: largest( state( next_to( const(NY))))

Is S2 a representation of S1?
There is a need for an intermediate representation to justify this decision
A hidden structure prediction problem

Decompose the prediction into a set of decisions over segments of text

E.g., “is this word span mapped to this logical symbol?”

Structured output (Y) : output composed of many decisions

Hidden (H) : segmentation and mapping is unknown
Predicted structure: Optimal global structure

y¥=F, (x)=argmax score (x, 1) =arg max w’ ®(x, v, h)
ye¥ ye¥ heH

45 ¥ COMPUTATION GROUP
RS TY 07 TLLIN D15 A T U RAN A-CH AN FATGN



http://l2r.cs.uiuc.edu/tutorials.html
http://l2r.cs.uiuc.edu/tutorials.html
http://l2r.cs.uiuc.edu/tutorials.html

Given an inputx € X
Learn a model f: X — {-1, 1}

ENNY

S1: Druce will face murder charges, Conte said.

|. Paraphrase Identification

Consider the following sentences:

S2: Conte said Druce will be charged with murder .
We need latent variables that explain
why this is a positive example.
Are S1 and S2 a paraphrase of each other?
There is a need for an intermediate representation to justify

this decision Given an input x € X

Learnamodel f: X — H — {-1, 1}

/
orrpve ComputaTion Group
e i
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Algorithms: Two Conceptual Approaches

Two stage approach (a pipeline; typically used for TE, paraphrase id, others)

Learn hidden variables; fix it
Need supervision for the hidden layer (or heuristics)
For each example, extract features over x and (the fixed) h.

Learn a binary classier for the target task
X < H > Y

ion is good to the extent is

Proposed Approach: Joint Learning
Drive the learning of h from the binary labels
Find the best h(x)

.

An inter structure repr
supports better final prediction.
Algorithm? How to drive learning a good H?

Ws Page 26 n

it
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Learning with Constrained Latent Representation (LCLR): Intuition

If x is positive
There must exist a good explanation (intermediate representation)
Jh, w' ¢(x,h) >0
or, max, W' ¢(x,h) >0
If xis negative
No explanation is good enough to support the answer
Vh,w' ¢(x,h) <0
or, max, w' ¢(x,h) <0
Altogether, this can be combined into an objective fui ction:
Min,, M/2 | |w|[? + CX;L(1-zmax, c c W' Z{s) hs ¢, (x)))
Why does inference help?

New feature vector for the final decision.
Chosen h selects a representation.

Inference: best h subject to constraints C

a Constrains intermediate representations supporting good\p/redictions

"/""uw e COMPUTATION GROUP n‘]la
i Po s L1 07 TLLIN 015 AT URB AN A-CHAME A TGN page 27

Optimization

Non Convex, due to the maximization term inside the global
minimization problem
In each iteration:
Find the best feature representation h* for all positive examples (off-
the shelf ILP solver)
Having fixed the representation for the positive examples, update w
solving the convex optimization problem:

PRI G S T — y 7 -
min 5 | wi* + C errl w Zl;,,lm,)u( Z,”“":E"}W Z!ul,m,u

Not the standard SVM/LR: need inference
Asymmetry: Only positive examples require a good
intermediate representation that justifies the positive label.
Consequently, the objective function decreases monotonically

45 ¥ COMPUTATION GROUP
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ILP inference discussed earlier;
restrict possible hidden

Iterative Objective Function Learnir~ structures considered.

GerZrare features

Prediction
with inferred h

Inference
best h subj. to C

Initial Objective

Function
Update weight Feedback relative
vector to binary problem
Training
w/r to binary
decision label

Formalized as Structured SVM + Constrained Hidden Structure

LCRL: Learning Constrained Latent Representation

orrpve ComputaTion Group
Lo U
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Learning with Constrained Latent Representation (LCLR): Framework

LCLR provides a general inference formulation that allows the
use of expressive constraints to determine the hidden level
Flexibly adapted for many tasks that require latent representations.

H: Problem Specific
LCLR Model | <—— Declarative Constraints |~ X < i > Y

Paraphrasing: Model input as graphs, V(G, ,), E(G, ,)
Four (types of) Hidden variables:

h,,,,— possible vertex ings; h,y ., — possible edge
v eV(G), Y humthu.=1 YweV(G), > huwthop=1
©EV(Ga) nev(Gy)
e €B(G), Y. hamthas=1 Yer€E@Ga), Y hamthem=1
e2€E(Ga) €1 €E(G1)
hoyen + by = herea <1, b 2 heyeny  hogg 2 here

it
%mﬁﬁ Page 29 n
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Experimental Results

Transliteration: Transliteration System Acc | MRR
’ (Goldwasser and Roth 2008) || N/A | 89.4
Alignment + Learning 80.0 | 85.7
LCLR 92.3| 954
Recognizing Textual Entailment: | ["Entailment System Acc
Median of TAC 2009 systems || 61.5
Alignment + Learning 65.0
LCLR 66.8 |¢umm
Paraphrase Identification:*
Alignment + Learning 72.00
LCLR 72.75
IUHANE COMPUTATION GROUP .. o e ﬂ

Outline

Background: NL Structure with Integer Linear Programming
Global Inference with expressive structural constraints in NLP

Constraints Driven Learning with Indirect Supervision

Training Paradigms for latent structure
Indirect Supervision Training with latent structure (NAACL'10)
Training Structure Predictors by Inventing binary labels (ICML’10)

Response based Learning
Driving supervision signal from World’s Response (CoNLL’10,lJCAI'11)
Semantic Parsing ; playing Freecell; Language Acquisition
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II: Structured Prediction

Before, the structure was in the intermediate level

We cared about the structured representation only to the extent it
helped the final binary decision

The binary decision variable was given as supervision
What if we care about the structure?

Information & Relation Extraction; POS tagging, Semantic Parsing
Invent a companion binary decision problem!

|
las Page 33 n
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Information extraction
Lars Ole Andersen . Pro?ram analysis and specialization for the
C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR Lars Ole Andem@rogram analysis and
TITLE] specialization for the —
[EDITOR] i T
[BOOKTITLE] Programming language
[TECH-REPORT] hD thesis .
INSTITUTION,

KU, University ofCopenhag@’\ay
1994 .

[DATE]

Structured Prediction X < o > v
Before, the structure was in the intermediate level
We cared about the structured representation only to the extent it
helped the final binary decision
The binary decision variable was given as supervision
What if we care about the structure?
Information Extraction; Relation Extraction; POS tagging, many others.
Invent a companion binary decision problem!
Parse Citations: Lars Ole Andersen . Program analysisand
specialization for the C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .
Companion: Given a citation; does it have a legitimate citation parse?
POS Tagging
Companion: Given a word sequence, does it have a legitimate POS
tagging sequence?
Binary Supervision is almost free

\\

y
QeLupiiE Comrutation Grour
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Companion Task Binary Label as Indirect Supervision

The two tasks are related just like the binary and structured
tasks discussed earlier

All positive examples must have a good structure
Negative examples cannot have a good structure \
We are in the same setting as before X < bl /’ Y
Binary labeled examples are easier to obtain
We can take advantage of this to help learning a structured model

Algorithm: combine binary learning and structured learning

\45 Page 35 ﬂ
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Learning Structure with Indirect Supervision

In this case we care about the predicted structure
Use both Structural learning and Binary learning
Predicted

Correct w

+ Unknown
X ... | best structure
Predicted
{9(x, h) }nenix) structure

The feasible structures
of an example Negative examples restrict
Zz the space of hyperplanes

Wz N .
denriide CoMPUTATION (GROUP supporting the decisions for x
@M-‘M“ww e

{®(x2, h) bnenix)

Negative examples cannot
have a good structure

&y )'

Joint Learning Framework

Joint learning : If available, make use of both supervision types

Target Task Companion Task
Il1linois

I tal
¢ v K) Yes/No
(R OIS A K Y aq s

Loss function —same as described earlier.
Key: the same parameter w for both components

min %WTW-f CD Lo (%, Visw)

ieS
//" Loss on Target Task Loss on Companion Task
(e COMPUTAT TOUP EE (P
D AT IOT 2 ROB i rarcn FEMP7 page 38 "J

Experimental Result

Very little direct (structured) supervision.

85
80
s - E.sltr:.ic(rtured
70 labeled) only
65
60

|

IE

%«%:,mlas Page 39 ﬂ

Experimental Result

Very little direct (structured) supervision.
(Almost free) Large amount binary indirect supervision

85
80
W Direct
75 (structured
70 labeled) only
65 ® Direct + indirect
(both structured
60 and binary)
55
/ _ Phonetic Alignment POS IE
Y& COMPUTAT GROUP e
R g e T #ﬁ?&mla Page 40 X
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Outline

Background: NL Structure with Integer Linear Programming
Global Inference with expressive structural constraints in NLP

Constraints Driven Learning with Indirect Supervision

Training Paradigms for latent structure
Indirect Supervision Training with latent structure (NAACL’10)
Training Structure Predictors by Inventing binary labels (ICML’10)

=) Response based Learning
Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11)
Semantic Parsing ; playing Freecell; Language Acquisition

Connecting Language to the World [coNLL'10,ACl’11,1)CAr'11]

Can | get a coffee with no
sugar and just a bit of milk

Can we rely on this interaction to provide supervision?

y
s Cc ATION GRC ko
I SN EATION RO wraon f“l Page s BN

STy o
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Real World Feedback

Supervision = Expected Response

x N “What is the largest state that borders NY?"
UDadipprebapproach: Query
wanntfromeipgicabforms tasieg! [ - bl = > ]
and gold alignments o Pelargésihistate( next_to( const(NY))))
EXPENSIVE! N
e A
Binary Check if Predicted response == Expected response

SUPer‘"%QPaannc parsing is a structured prediction problem:
@nia
identify ma?}ﬂ %: Pennsy‘\g'rfnaaa meanln%’}‘éﬁiﬁ%%e?&%c’ﬁblﬁ

Positive Response Negative Response

Train a structured predictor with this binary supervision !

Ve CompuTaTion GROUP
(L \-zj STV DF TLLINGIS AT URBANA-CHAMIATGN
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Repeat
for all input sentences do
Find best structured output
Query feedback function
end for
Learn new W using feedback
Until Convergence

Response Based Learning

X:  What is the largest state that borders NY?

Y: largest( state( next_to( const(NY))))
Use the expected response as supervision
Feedback(y,r) = 1 if execute(query(y) =r) and 0 o/w
Structure Learning with Binary feedback
DIRECT protocol: Convert the learning problem into binary prediction
AGGRESSIVE protocol: Convert the feedback into structured
supervision
Learning approach — iteratively identify more correct
structures
Learning terminates when no new structures are added

¥E COMPUTA’ H'/H Grour
WSITY OF TLLINOTS AT URBANA-CHAMPATGN
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Repeat
for all input sentences do
Find best structured output
X: What is the largest state that borders NY? Query feedback function
end for
Learn new W using feedback
Until Convergence

Constraints Drive Inference

Y: largest( state( next_to( const(NY))))
V¥ =F (x)=arg max score (x, y) = arg max w' ®(x, v,h)
yey ye¥ heH
Decompose into two types of decisions: And now...
First order: Map lexical items to logical symbols So Far
{“largest” > 1argest(), “borders”>next_to(),.., “NY”>const(NY)}
Second order: Compose meaning from logical fragments
largest(state(next_to(const(NY))))
Domain’s semantics is used to constrain interpretations

declarative constraints: Lexical resources (wordnet); type consistency:
distance in sentence, in dependency tree,...

tE CoMPUTATION GROUP
15
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Empirical Evaluation [coNLL'10,ACL'11]

Key Question: Can we learn from this type of supervision?

Algorithm # training Test set
structures accuracy
No Learning: Initial Objective Fn 0 22.2%
Binary signal: Protocol | 0 69.2 %
Binary signal: Protocol Il 0 73.2%
WM*2007 (fully supervised — uses 310 75%

gold structures)

*[WM] Y.-W. Wong and R. Mooney. 2007. Learning synchronous grammars for semantic
parsing with lambda calculus. ACL.

Current emphasis: Learning to understand natural language
instructions for games via response based learning

.‘ /V/E “OMPUTATION GROUP
SERSITY OF 1LLINOIS AT UR c
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Learning from Natural Instructions
A human teacher interacts with an automated learner using
natural instructions
Learner is given:

A lesson describing the target concept directly
A few instances exemplifying it

Natural Instruction “ You can move any fop card to an emply freeced *
/ / I\
Challenges: > Semantic Interpreter 7z 7 | | \
(1) how to interpret the OUtpUt Formula  MOVEanas) TOP( ) CARD(a) EMPTY() FREECELL(a)
lesson and

Game Instance

(2) how to use this MOVEQGng: Freecell)

interpretation to do well on
the final task.

Feedback

Real world
behavior

L. sommi0o1/20m0400

Lesson Interpretation as an inference problem

X: You can move any top card to an empty freecell

Y: Move(al,a2) Top(al, x) Card (al) Empty(a2) Freecell(a2)

y¥=F (x)=argmax score(x,))=arg max w ®(x, »h
ye¥ ye¥ heH

Semantic interpretation is framed as an Integer Linear Program
with three types of constraints:
Lexical Mappings: (1% order constraints)
At most one predicate mapped to each word
Argument Sharing Constraints (2" order constraints)
Type consistency; decision consistency
Global Structure Constraints
Connected structure enforced via flow constraints

e ComMpPUTATION GROUP
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Lesson Interpretation as an inference problem

“ You can move top

MOVE (ar.az) TOP(x1. x2) NULL EMPTY(x1)

(a) 17f-order decisions

“maver — 2

N
MOVE (a:, az) TOP(x1, x2)

(b) 2" order decisions (c) Flow variables

with three types of constraints:
Lexical Mappings: (1% order constraints)
At most one predicate mapped to each word
Argument Sharing Constraints (2" order constraints)
Type consistency; decision consistency
Global Structure Constraints
Connected structure enforced via flow constraints

WE COMPUTAT
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Empirical Evaluation [ucari1]

Can the induced game-hypothesis generalize to new game
instances?

Accuracy was evaluated over previously unseen game moves

[ Target Concept [ Initial Model | Learned Model |
FREECELL 0.78 0.956
HOMECELL 0.532 0.672
TABLEAU 0.536 0.628

Can the learned reader generalize to new inputs?

Accuracy was evaluated over previously unseen game moves using
classification rules generated from previously unseen instructions.

[ Target Concept | Tnitial Model | Learned Model |
FREECELL 0.78 0.967
HOMECELL 0.532 0.668
TABLEAU 0.536 0.608 ¢5
E COMPUTATION GROUF . o e Page 50 n

The language-world mapping problem

How do we acquire language?

“the world”

“the language”

o Pape

[Topid rivvo den marplox.]

0 e ComprutaTiON GROUP o 3
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BabySRL: Learning Semantic Roles From Scratch

A joint line of research with Cindy Fisher and Yael Gertner

Driven by Structure-mapping: a starting point for syntactic bootstrapping
Children can learn the meanings of some nouns via cross-situational
observations alone [Fisher 1996, Gillette, Gleitman, Gleitman, & Lederer, 1999;more]

But how do they learn the meaning of verbs?

Sentences comprehension is grounded by the acquisition of an initial set of concrete
nouns

These nouns yields a skeletal sentence structure — candidate arguments; cue to its
semantic predicate—argument structure.

Represent sentence in an abstract form that permits generalization to new verbs

Johanna rivvo den sheep.]
P ZOUP Ly
DAELTATICN SEOYE | Nouns identified i
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BabySRL [connor et. al, CoNLL'08, '09,ACL'10, 1ICAI'11]
Realistic Computational model developed to experiment with theories of
early language acquisition
SRL as minimal level language understanding: who does what to whom.
Verbs meanings are learned via their syntactic argument-taking roles
Semantic feedback to improve syntactic & meaning representation

Inputs and knowledge sources
Only those we can defend children have access to

Key Components:
Representation: Theoretically motivated representation of the input
Learning: Guided by knowledge kids have

Exciting results — generalization to new verbs, reproducing and
recovering from mistakes made by young children.

Qetie Conrutanion GrRoue ..., pagess [
. Thank You!
Conclusion

Study a new type of machine learning, based on natural language
interpretation and feedback
The motivation is to reduce annotation cost and focus the learning process
on human-level task expertise rather than on machine learning and
technical expertise
Technical approach is based on

(1) Learning structure with indirect supervision

(2) Constraining intermediate structure representation declaratively
These were introduced via Constrained Conditional Models: Computational
Framework for global inference and a vehicle for incorporating knowledge
in structured tasks

Integer Linear Programming Formulation —a lot of recent work (see tutorial)

Work continues in the Game Playing domain: learning to play legally
and learning to play better

¥e CoMPUTATION GROUP
CCORSITY 0T LLING 15 AT UREANA-CHAMEATGN
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Minimally Supervised BabySRL [IJCAI'11]

Goal: Unsupervised “parsing” for identifying arguments
Provide little prior knowledge & only high level semantic feedback

Defensible from psycholinguistic evidence
Learning with
Indirect Supervision
Unsupervised Parsing Input + Distributional Similarity
Identifying part-of-speech states
Structured

Argument Identification . .
ﬁ Intermediate Representation

Identify Argument States (no supervision)

Identify Predicate States

Binary Supervision for the final
decision

Argument Role Classification
Labeled Training using predicted arguments

Learning is done from CHILDES corpora

_» IJCAI'11: indirect supervision driven from scene feedback
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