

Humans Teaching Robots: Challenges to Decoding the Intention Behind Natural Instruction

IJCAI 2011 Workshop on Agents Learning Interactively from Human Teachers (ALIHT) Barcelona, Spain

Presenter: Tasneem Kaochar

Work done in collaboration with Raquel Torres Peralta, Ian R. Fasel, Clayton T. Morrison, Thomas J. Walsh and Paul R. Cohen

> THE UNIVERSITY OF ARIZONA

Human-Instructable Computing

<u>Research Focus</u>: build an intelligent agent that is capable of learning a task from a naïve human teacher

- Complex, multi-tasking intelligent devices will soon become ubiquitous in the home and workplace
 - Examples: household robot, networked home entertainment system,
- Such devices will be interacting daily with untrained and naïve human users
- Users may wish to extend or customize a device's capabilities beyond its factory-manufactured settings

Human-Instructable Computing

- To build a capable electronic student we need to first understand how humans teach
 - "Natural" human teaching is dynamic, interactive and much less structured than formal programming
 - We want to bridge the gap between human natural instruction methods and machine learning algorithms
- We performed an exploratory study using Wizard of Oz protocol to better understand human teaching patterns

How Do Machines Learn?

Imagine you wanted to teach a robot to help you clean the dishes. How might you teach the robot? **How might the robot learn?**

- through *concept* definitions
 - Robot can learn the distinction between objects (such as a *cup* and a *plate*) based on observed characteristics of each object
- by observing *demonstration* of how to perform a task
 - Robot can watch how you (teacher) place the dishes into the dishwasher and attempt to imitate
- by using teacher *feedback*
 - to reinforce learning with a numerical value (or simply a thumbs up or down)

THE UNIVERSITY OF ARIZONA®

 \circ to explain what went wrong, i.e., critique

Can the modes of interaction of machine learning (examples, demonstrations, feedback) be a basis for natural instruction?

<u>Next Step:</u> Build a teaching interface that allows a human teacher to provide natural instruction to an electronic student using the modes of interaction from machine learning?

BLUI: Bootstrapped Learning User Interface

- Domain: X-Plane simulated flying environment
- Student is the control system of a simulated unmanned aerial vehicle (UAV) that will be taught to carry out missions
- UAV is equipped with 3 sensors: wide-range camera, high-resolution camera and radiation sensor

UAV with three sensor ranges displayed: wide-range camera in gray, high resolution camera in yellow and radiation sensor in green.

BLUI: Teaching & Testing Facilities

Four modes of instruction:

- *Teaching concepts by example* using the object labeling facility
- *Teaching by demonstration* using the procedure demonstration facility (positive and negatives traces of a demonstration can be given)
- *Teaching by feedback* (positive and negative feedback can be provided)
- Testing the Student
- Note: A free text chat facility was also provided to teachers for use in case they were unable to convey instruction to Student using existing teaching tools

Data Recorder Status: stopp

Data Receiver Status:

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 Time (ms)			
COMMAND	PARAMETERS	TIMESTAMP	
Load New Scenario	File: Clear Lake 1; Instruction:	02:28:790	
Fly plane to object/location	Name: Boat11; ID: Boat11@1	02:45:724	
Use camera to track object/lo	Name: Boat11; ID: Boat11@1	03:12:742	
Unpause Plane	Instruction: Unpause the pla	03:41:831	
Pause Plane	Instruction: Pause the plane;	03:47:256	
Label Good Object Example	Name: Boat11; ID: Boat11@1	04:16:698	
Label Bad Object Example	Name: Boat11; ID: Boat11@1	04:37:347	
Fly plane to object/location	Name: Boat10; ID: Boat10@1	04:58:005	
Use camera to track object/lo	Name: Boat10; ID: Boat10@1	05:18:488	
Unpause Plane	Instruction: Unpause the pla	06:22:186	
Pause Plane	Instruction: Pause the plane;	06:24:978	
Label Bad Object Example	Name: Boat10; ID: Boat10@1	07:01:061	
Label Good Object Example	Name: Boat10; ID: Boat10@1	07:10:230	
Use radiation sensor to take	Name: Boat10; ID: Boat10@1	07:26:903	
Teacher Feedback	Feedback: 2 happy faces; La	07:51:896	
Generate Report	Instruction: Generate report;	07:53:792	
Label Good Procedure Example	Step 1: Fly plane to object/loc	08:29:355	
Label Bad Procedure Example	Step 1: Fly plane to object/loc	09:47:369	
Reset to new location	Name: ; ID: ; Latitude: 39.031	10:22:410	
Fly plane to object/location	Name: ; ID: ; Latitude: 39.039	10:41:940	
Use camera to track object/lo	Name: Boat12; ID: Boat12@7	10:47:412	
Unpause Plane	Instruction: Unpause the pla	10:50:124	
Pause Plane	Instruction: Pause the plane;	10:52:412	
Label Good Procedure Example	Step 1: Fly plane to object/loc	11:21:654	
Give label of object	Name: Boat12; ID: Boat12@7	11:37:735	

BLUI: Teacher's View

jLabel3

Wizard of Oz (WoZ) Behavioral Study

- We want to learn *how* humans would teach *if* they believed that they were interacting with a capable electronic student
- We perform an exploratory study using a Wizard of Oz paradigm
 - Human teacher participant believes he/she is interacting with a capable electronic student, who in reality is being controlled by another human (without the teacher's knowledge)

BLUI WoZ Study

- 44 non-expert human participants (UA students)
- Teaching task: teach Student to identify all cargo boats in a specified body of water. Once a cargo boat has been identified, the Student must take its radiation sensor reading and generate a report.
 - Teach concepts cargo and fishing boats
 - Teach procedure use radiation sensor only on cargo boats and generate a report of the readings
- Each participant spent at least 20 minutes interacting with simulated electronic student

BLUI WoZ Study: Overview of Results

- Human teaching patterns:
 - Evidence of bootstrapping in teaching
 - Testing becomes more important as teaching session progresses
 - Teach-test-feedback is very common
 - Implicit object labeling
 - Implicit procedure definition
 - Ill-defined procedure boundaries
 - Consistent naming conventions

Teachers begin session by defining object concepts

Distribution of Teaching Commands Over Time

A

3

Note: All 44 teaching session data was split into 3 equal time phases

Testing becomes more important as teaching session progresses

Distribution of Teaching and Testing Over Time

<u>A</u>

Note: All 44 teaching session data was split into 3 equal time phases

Teaching-Testing-Feedback is common pattern

Teaching – Testing – Feedback Loop

- 130: T: Start good example of procedure 'fly to cargo boat'
- 131: T: Fly to object at lat 38.62, long. -120.12
- 159: T: End example of procedure 'fly to cargo boat'

. . .

160: T: Perform procedure 'fly to cargo boat' near lat. 39.10, long. -122.82

164: S:Radiation sensor reading: high165: T: You achieved goal 'find cargo boat'166: T: 1 happy face

Start procedure demonstration

...procedure steps

End procedure demonstration

Test procedure comprehension in a new scenario location

Positive feedback provided

Patterns in Procedure Definitions

Patterns in Procedure Definitions (cont.)

Implicit procedure definition

Consistent Naming Conventions

- Human teacher participants used meaningful naming conventions when providing labels for object concepts and procedures
 - Names derived from vocabulary of the task domain
 - cargo boat', 'fish boat', 'fishing boat', 'fly to cargo boat', 'scan boat'
 - Identifying verb phrases versus noun phrases can help identify when procedure definition facility was used for object labeling
 - 'fly to cargo boat' versus 'cargo boat'

Most teachers are unstructured in their teaching

We categorized our 44 teachers based on the organization of Teacher-Student interaction transcripts

Structured teachers (16%)

- Used the interface's object labeling facility to teach object concepts no implicit object labeling
- Used the procedure demonstration facility to define procedures – welldefined procedure boundaries
- Tested only on previous lessons

Semi-structured teachers (50%)

- Tested on previous lessons
- Explicit and implicit object labeling

Free-style teachers (34%)

• Testing before teaching

- Explicit and Implicit labeling
- Ill-defined procedure boundaries

What we learned...

- Humans can teach by demonstration, concept definitions and *feedback*, which is good news because these are the modes of interaction from which ML algorithms can learn
 - Teachers rarely used the free text chat facility to instruct the Student
- When the Student "acted smart" and competent, the *majority of* teachers were pretty sloppy and unorganized.
- However, despite the unstructured teaching style of most teachers, patterns in teaching do emerge and may be used to automatically extract teacher intentions

Next Step: Translate NIMs into ML Algorithms

Natural Instruction Methods (NIMs) Machine Learning Algorithms

- Teachers interchange modes of interaction without notification
- Often times instruction is implicit

- Precision
- Structure

Automatic labeling/learning systems from natural instruction

Complete end-to-end system

(Underlying Machine Learning Algorithms)

<u>A</u>

Automatic Transcript Annotation

<u>A</u>

What we can do now:

Label	Labeling Heuristic	Script Successful
Explicit Object Label	Teaching command defining good or bad object example using the <i>object labeling construct</i>	√
Implicit Object Label	Teaching command defining good or bad object example using the <i>procedure construct</i>	х
Explicit Procedure Definition	Teaching command defining a procedure using the procedure construct	\checkmark
Implicit Procedure Definition	Repetition of similar set of action commands (camera track, take radiation reading or picture, generate report) in different scenario locations	х
Test	Testing command (ask Student to perform a previously taught procedure or give the label of a world object)	\checkmark
Feedback	Command evaluating Student's performance (1-3 <i>happy</i> or <i>frowny</i> faces)	√
Goal Specification	Command labeling a goal that Student has achieved	√
Setting Up for Teaching	All setup commands (change in location, speed, altitude or sensor settings) preceding a teaching command (object labeling or procedure definition)	√*
Setting Up for Testing	All setup commands preceding a testing command	\checkmark

Automatic labeling/learning systems from Natural Instruction

What we need to do next:

Detect Concept and Procedure Definitions (Explicit and Implicit)

STILL A LOT OF WORK TO BE DONE!

<u>A</u>

