
9/12/2002 Internet and Grid Computing - Fall
2002

1

Search/Discovery (and Insertion) in Distributed Systems

Lecture Coverage
1. Survey of Approaches
2. Napster/Gnutella
3. Distributed Hash Table Based Systems

1. Chord
2. Can
3. Freenet

4. Semantic (keyword search)
5. Topology Aware Routing and Search

Assumed Knowledge
Public Key Encryption
Hashing Algorithms

9/12/2002 Internet and Grid Computing - Fall
2002

2

Search/Discovery (and Insertion) in Distributed Systems

The Search/Discovery Problem

• “Location Resolution”
Given an object (might be name, attribute, or even

content)
Return a channel to a node (peer) that has that object

• Approaches:
– Centralized Index (Napster)
– Broadcast information to be resolved (Gnutella)
– Search Strategies
– Distributed Hashing

9/12/2002 Internet and Grid Computing - Fall
2002

3

Search/Discovery (and Insertion) in Distributed Systems

Design Goals

• Scalability
• Low latency (efficient resolution)
• Load balancing
• Completely distributed/self-organizing
• Robust
• Deployable
• Simple

9/12/2002 Internet and Grid Computing - Fall
2002

4

Search/Discovery (and Insertion) in Distributed Systems

Spectrum of “Purity”

• Hybrid
– Centralized index, P2P

file storage and transfer
• Super-peer

– A “pure” network of
“hybrid” clusters

• Pure
– functionality completely

distributed

9/12/2002 Internet and Grid Computing - Fall
2002

5

Search/Discovery (and Insertion) in Distributed Systems

Metrics

• Cost (aggregate)
– Bandwidth
– Processing Power

• Quality of Results
– Number of results
– Satisfaction (true if # results >= X, false

otherwise)
– Time to satisfaction

9/12/2002 Internet and Grid Computing - Fall
2002

6

Search/Discovery (and Insertion) in Distributed Systems

P2P File-sharing

• Napster
– Decentralized storage of actual content

• transfer content directly from one peer (client) to another

– Centralized index and search
• Gnutella

– Like Napster, with decentralized indexing
– Search via flooding
– Direct download

9/12/2002 Internet and Grid Computing - Fall
2002

7

Search/Discovery (and Insertion) in Distributed Systems

Napster

xyz.mp3, 128.1.2.3)

(
128.1.2.3

Central Napster server

9/12/2002 Internet and Grid Computing - Fall
2002

8

Search/Discovery (and Insertion) in Distributed Systems

Napster

xyz
.mp3 ?

128
.1.

2.3

128.1.2.3

Central Napster server

9/12/2002 Internet and Grid Computing - Fall
2002

9

Search/Discovery (and Insertion) in Distributed Systems

Napster

128.1.2.3
xyz.mp3 ?

Central Napster server

9/12/2002 Internet and Grid Computing - Fall
2002

10

Search/Discovery (and Insertion) in Distributed Systems

Gnutella

9/12/2002 Internet and Grid Computing - Fall
2002

11

Search/Discovery (and Insertion) in Distributed Systems

Gnutella

xyz.mp3 ?

9/12/2002 Internet and Grid Computing - Fall
2002

12

Search/Discovery (and Insertion) in Distributed Systems

Gnutella

9/12/2002 Internet and Grid Computing - Fall
2002

13

Search/Discovery (and Insertion) in Distributed Systems

Gnutella

xyz.mp3

9/12/2002 Internet and Grid Computing - Fall
2002

14

Search/Discovery (and Insertion) in Distributed Systems

Current Techniques: Gnutella: Breadth-First Search (BFS)

= forward
query

= processed
query

= source

= found
result

= forward
response

9/12/2002 Internet and Grid Computing - Fall
2002

15

Search/Discovery (and Insertion) in Distributed Systems

Iterative Deepening

• Interested in satisfaction, not # of results
• BFS returns “too many” results expensive
• Iterative Deepening: common technique to reduce the cost

of BFS
– Intuition: A search at a small depth is much cheaper

than at a larger depth

9/12/2002 Internet and Grid Computing - Fall
2002

16

Search/Discovery (and Insertion) in Distributed Systems

Iterative Deepening

= source
= forward

query
= processed

query

= found
result

= forward
response

?

9/12/2002 Internet and Grid Computing - Fall
2002

17

Search/Discovery (and Insertion) in Distributed Systems

Directed BFS

• Sends query to a subset of neighbors
• Maintains statistics on neighbors

– E.g., ping latency, history of number of results
• Chooses subset intelligently (via heuristics), to maximize

quality of results
– E.g., Neighbors with shortest message queue, since

long message queue implies neighbor is saturated/dead

9/12/2002 Internet and Grid Computing - Fall
2002

18

Search/Discovery (and Insertion) in Distributed Systems

Directed BFS

?

= source
= forward

query
= processed

query

= found
result

= forward
response

9/12/2002 Internet and Grid Computing - Fall
2002

19

Search/Discovery (and Insertion) in Distributed Systems

Directed BFS: Heuristics

Highest degreeDEG

Shortest message queueQLEN

Sent our client greatest # of messagesMSG

Had smallest avg. # hops for response
messages in past

HOPS

Had shorted avg. time to satisfaction in
past

TIME

Returned greatest # results in pastRES

(Random)RAND

SIMPLE

9/12/2002 Internet and Grid Computing - Fall
2002

20

Search/Discovery (and Insertion) in Distributed Systems

Local Indices
• Each node maintains index over other nodes’ collections

– r is the radius of the index
– Index covers all nodes within r hops away

• Can process query at fewer nodes, but get just as many
results back

r

9/12/2002 Internet and Grid Computing - Fall
2002

21

Search/Discovery (and Insertion) in Distributed Systems

sdf
nrd

sdf
nrd

sdf
nrd

sdf
nrd

Local Indices (r=1)

= source
= forward

query
= processed

query

= found
result

= forward
response

9/12/2002 Internet and Grid Computing - Fall
2002

22

Search/Discovery (and Insertion) in Distributed Systems

Distributed Hashing — General Approach

NodesObjects

1. Map both objects and nodes into some topology (“id
space”)

9/12/2002 Internet and Grid Computing - Fall
2002

23

Search/Discovery (and Insertion) in Distributed Systems

Distributed Hashing — General Approach

NodesObjects

1. Map both objects and nodes into some topology (“id
space”)

2. Each node “owns” some neighborhood in the topology,
has channel to some neighbors

9/12/2002 Internet and Grid Computing - Fall
2002

24

Search/Discovery (and Insertion) in Distributed Systems

Distributed Hashing — General Approach

NodesObjects

1. Map both objects and nodes into some topology (“id space”)
2. Each node “owns” some neighborhood in the topology, has channel

to some neighbors
3. Topological structure lets query be routed to the “owner” of a given

point

9/12/2002 Internet and Grid Computing - Fall
2002

25

Search/Discovery (and Insertion) in Distributed Systems

Chord - Basic Idea

• Topology is a ring of ordered, fixed-size
IDs (say 32 bits)
– Node ID based on IP address, object ID based

on name, content, ...
0

9/12/2002 Internet and Grid Computing - Fall
2002

26

Search/Discovery (and Insertion) in Distributed Systems

Chord - Basic Idea

0

• Nodes “own” the part of the ID space
between their ID and their predecessor’s ID.

9/12/2002 Internet and Grid Computing - Fall
2002

27

Search/Discovery (and Insertion) in Distributed Systems

Chord - Basic Idea

• Each node has a channel to its successors at
distances 1, 2, 4, 8, 16, ..., 2^(m-1)
– where m = log_2 of the ring size (32 in this

case) 0

9/12/2002 Internet and Grid Computing - Fall
2002

28

Search/Discovery (and Insertion) in Distributed Systems

Chord: Resolution

• Get ID of desired object
• Find the last node whose ID is LESS than

the desired ID
– Look in finger table to find farthest-away

neighbor whose ID is LESS than the desired ID
– Ask it for somebody closer

• That node’s successor is the “owner” of the
object

9/12/2002 Internet and Grid Computing - Fall
2002

29

Search/Discovery (and Insertion) in Distributed Systems

Chord: Performance

• Resolution: O(log N)
• Joining: O(log2 N) = find all your neighbors

– Doesn’t count cost of “moving” objects that
have a new owner

• Stability: provable

9/12/2002 Internet and Grid Computing - Fall
2002

30

Search/Discovery (and Insertion) in Distributed Systems

CAN: Basic Idea

• virtual coordinate space
– really just a conceptual aid

• entire space is partitioned amongst all the
nodes in the system
– every node “owns” a zone in the overall space

• abstraction
– can store data at “points” in the space
– can route from one “point” to another

• point = node that owns the enclosing zone

9/12/2002 Internet and Grid Computing - Fall
2002

31

Search/Discovery (and Insertion) in Distributed Systems

CAN: Basic Idea

• Topology is an N-dimensional torus
– N=2 for simple examples

• Each node is responsible for a subrange in
each dimension
– Space is partitioned among all nodes

• Route via neighbors -- move in direction of
destination

9/12/2002 Internet and Grid Computing - Fall
2002

32

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

1

9/12/2002 Internet and Grid Computing - Fall
2002

33

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

1 2

9/12/2002 Internet and Grid Computing - Fall
2002

34

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

1

2

3

9/12/2002 Internet and Grid Computing - Fall
2002

35

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

1

2

3

4

9/12/2002 Internet and Grid Computing - Fall
2002

36

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

9/12/2002 Internet and Grid Computing - Fall
2002

37

Search/Discovery (and Insertion) in Distributed Systems

CAN: simple example

(K,V)

retrieve (K)

(a,b)

insert
(K,V)

hash(K) = (a,b)

9/12/2002 Internet and Grid Computing - Fall
2002

38

Search/Discovery (and Insertion) in Distributed Systems

CAN: routing table

9/12/2002 Internet and Grid Computing - Fall
2002

39

Search/Discovery (and Insertion) in Distributed Systems

(a,b)

(x,y)

CAN: routing

9/12/2002 Internet and Grid Computing - Fall
2002

40

Search/Discovery (and Insertion) in Distributed Systems

CAN: node insertion

Bootstrap
node

new node
1) Discover some node “I” already in CAN

9/12/2002 Internet and Grid Computing - Fall
2002

41

Search/Discovery (and Insertion) in Distributed Systems

CAN: node insertion

I

Bootstrap
node

new node

1) Discover some node “I” already in CAN

9/12/2002 Internet and Grid Computing - Fall
2002

42

Search/Discovery (and Insertion) in Distributed Systems

CAN: node insertion

2) pick
random
point in
spaceI

(p,q)

new node

9/12/2002 Internet and Grid Computing - Fall
2002

43

Search/Discovery (and Insertion) in Distributed Systems

CAN: node insertion

(p,q)

3) I routes
to (p,q),
discovers
node J

I

J

new node

9/12/2002 Internet and Grid Computing - Fall
2002

44

Search/Discovery (and Insertion) in Distributed Systems

CAN: node insertion

newJ

4) split
J’s zone in
half… new
owns one
half

9/12/2002 Internet and Grid Computing - Fall
2002

45

Search/Discovery (and Insertion) in Distributed Systems

CAN: node failures

• Simple failures
– know your neighbor’s neighbors
– when a node fails, one of its neighbors takes over its

zone

• More complex failure modes
– simultaneous failure of multiple adjacent nodes
– scoped flooding to discover neighbors
– hopefully, a rare event

• Background zone reassignment algorithm

9/12/2002 Internet and Grid Computing - Fall
2002

46

Search/Discovery (and Insertion) in Distributed Systems

CAN: scalability

• For a uniformly partitioned space with n nodes
and d dimensions
– per node, number of neighbors is 2d
– average routing path is (dn1/d)/4 hops

– A hop here is an application-level hop
– 1 app-level hop = (possibly) multiple IP-level hops

– simulations show that the above bounds hold for
imperfectly partitioned spaces

Can scale the network without increasing per-node
state

9/12/2002 Internet and Grid Computing - Fall
2002

47

Search/Discovery (and Insertion) in Distributed Systems

Summary

• Two similar approaches to locating objects
by “computed routing”
– Similar to Manhattan Street Networks

• Both are scalabe, reasonably robust
• All these P2P networks ignore underlying

topology!

9/12/2002 Internet and Grid Computing - Fall
2002

48

Search/Discovery (and Insertion) in Distributed Systems

FreeNet - Serverless, Symmetric, Secure, Parallel Internet File System

FreeNet Nodes

9/12/2002 Internet and Grid Computing - Fall
2002

49

Search/Discovery (and Insertion) in Distributed Systems

Content Summary
Conceptual Elements
File Insertion
File Retrieval
File Update
Large File Management
Node Join
Communication Protocols

9/12/2002 Internet and Grid Computing - Fall
2002

50

Search/Discovery (and Insertion) in Distributed Systems

Conceptual Elements of FreeNet

Network Nodes
Storage
Files
Routing Tables

Files
Byte String
Path Name
Search Key

Keyword Signed Key
Content Key

File Signature
Directories - Personal Name

Spaces
Signed SubSpace Key

Interactions/Transactions
Join Network
Insert File
Request File

Storage Management Algorithm
File Storage, Retrieval and

Retention
Routing Tables

9/12/2002 Internet and Grid Computing - Fall
2002

51

Search/Discovery (and Insertion) in Distributed Systems

Files

File Content = string of bytes

File Name/ File Description - Unix text string

/text/philosophy/sun-tzu/art-of-war

/peertopeer/books/oram

Keys associated with each file.

{Public Key, Private Key} = PPKP-Generator(File Descriptor)

File Keys

Keyword Signed Key = Secure Hash Algorithm(Public Key)

Content Hash Key = SHA(File Content)

File Encryption Key - Use file descriptor as an encryption key.

File Signature = Private Key

9/12/2002 Internet and Grid Computing - Fall
2002

52

Search/Discovery (and Insertion) in Distributed Systems

Definitions:

1. Node Locality Set

* Each node has a locality set of neighbors.

2. Node Routing Table

* A Node Routing Table is a set of Search Key - Node pairs.

Node Resource Management

1. Each node allocates the amount of storage to be assigned to FreeNet Functions.

2. Storage is partitioned for file data storage and routing table storage.

3. Node data storage is managed as an LRU Cache. Files which are not accessed are
eventually deleted from a node.

4. Routing table entries are also managed as an LRU cache but entries of the
routing tables persist after eviction of file data.

9/12/2002 Internet and Grid Computing - Fall
2002

53

Search/Discovery (and Insertion) in Distributed Systems

Personal Name Spaces/Directories

File keys may be coupled to a unique identifier for a personal name space The
personal name space is created as follows.

1. Randomly generate a public/private key pair (The signed subspace
key.)

{Public Key, Private Key} = PPKP(Random())
2. Hash the public key

HPK = SHA(Public Key)
3. Hash the file path name/file descriptor

HFPN = SHA(Path Name)
4. File Key = XOR(HFPN, HPK)
5. File Signature = Private Key
6. Publish the file descriptor, the public key and the File Encryption

Key.
7. This file is a “directory file” to which only the owner of the private

key can add files.

9/12/2002 Internet and Grid Computing - Fall
2002

54

Search/Discovery (and Insertion) in Distributed Systems

Name Space “Directory Structure”
Create a file using the signed-subspace key process with hypertext links to other

files, perhaps signed-subspace key files.
The linked files may themselves contain links, etc.
Used to implement file update.

9/12/2002 Internet and Grid Computing - Fall
2002

55

Search/Discovery (and Insertion) in Distributed Systems

3. File Insertion Algorithm

a) Create a path name and a binary file key for the file.

b) The creating node sends a message to itself including a “hops to live”
counter for this insertion.

c) The originating node then checks to see if that key is already in use.

d) If a match is found then the file associated with the previously defined
key is returned as though a request had been made and the node knows
this key has already been used. The node generates a new key for this file
and again attempts the insertion process.

e) If no match is found then the originating node finds the node with the
nearest key in its routing table and sends it an “insert” message with the
key and the “hops to live” counter.

f) If this insert message causes a collision then the file is returned to
the upstream inserter and again behave as though a request had
been made. (Cache the file locally and create a routing table entry
for the data source.

9/12/2002 Internet and Grid Computing - Fall
2002

56

Search/Discovery (and Insertion) in Distributed Systems

3. File Insertion Algorithm - Continued

g) If the “hops to live” limit is reached without a collision being
detected then the insertion is successful and the “all clear” message
is sent back to the originator of the file insertion.

h) The originator of the file insertion then sends the file itself which
is propagated along the path of the key collision search. Each node
will create a local copy of the file and establish a routing table entry
matching the inserting node and the key. (A forwarding node may
choose to arbitrarily change the supposed source when it forwards
the insert message.)

i) The descriptive string (path name) is published by some out of
band mechanism or in the case of name space encoded files, the
descriptive string name and the subspace public key.

9/12/2002 Internet and Grid Computing - Fall
2002

57

Search/Discovery (and Insertion) in Distributed Systems

a b

c

d

e

2

4

5

7

6

6

Successful
insertion of
file key in five
nodes. File
data will
follow the
same path.

Inserter
1

3

6
0

9/12/2002 Internet and Grid Computing - Fall
2002

58

Search/Discovery (and Insertion) in Distributed Systems

Properties of Insertion Algorithm

1. Key-space locality

Files are cached on nodes with similar keys.

2. New nodes can use inserts to extend their network locality space.

3. Discourages fake file propagation. (A fake file is a file with “junk” or
malicious content with a key identical to some file with actual data.)

The original files are propagated upon collision.

9/12/2002 Internet and Grid Computing - Fall
2002

59

Search/Discovery (and Insertion) in Distributed Systems

File Search and Retrieval Algorithm

a) Obtain or calculate the binary file search key.

b) Send a message to yourself with the key and a “hops to live”
counter.

c) If the data is stored locally the request is satisfied.

d) If the data is not found then the search is continued at the node
in the local routing table associated with the key “nearest” to the
search key.

e) If the search is successful then the data is returned to the
upstream requestor which will cache the data and create a new
entry in its routing table associating the actual data source with
the key.

9/12/2002 Internet and Grid Computing - Fall
2002

60

Search/Discovery (and Insertion) in Distributed Systems

File Search and Retrieval Algorithm- Continued

f) If a node in the search path cannot forward a request to its
preferred downstream node then the node with the second nearest
key is selected as the downstream target, etc. If a node runs out of
possible downstream paths without finding the file then it reports
failure to the immediately upstream requestor. This upstream
requestor then chooses its second choice target. This process is
recursively followed until the originator runs out of downstream
targets at which time failure is reported.

g) If the “hops to live” limit is exceeded at any time in this search
process then the failure result is propagated back to the original
requestor.

9/12/2002 Internet and Grid Computing - Fall
2002

61

Search/Discovery (and Insertion) in Distributed Systems

a b

c

d

e

f

2

3

4

5

6
7

8

9

10

11

12

Requestor
1

Data Source

9/12/2002 Internet and Grid Computing - Fall
2002

62

Search/Discovery (and Insertion) in Distributed Systems

Properties of Search Algorithm
1. Nodes will tend to accumulate similar keys and similar files.

2. This should lead to better routing as well as better caching performance.

3. The greater the number of requests the more copies of the file which will
exist.

4. The more localized the requests the more localized the number of copies of
the file will become.

5. Network connectivity is increased as routing tables are built by requests and
inserts.

6. Nodes with popular files will preferentially appear in routing tables of other
nodes.

7. While files are clustered by key they are dispersed with respect to subject.

9/12/2002 Internet and Grid Computing - Fall
2002

63

Search/Discovery (and Insertion) in Distributed Systems

File Search and Retrieval for Up-datable Files

a) An up-datable file should be stored under a “content hash” key.

b) A file with the content hash key is inserted in a personal name
space (signed-subspace key)

c) The file is encrypted with a random key which is published with
the file key.

d) Retrieval is by first retrieving the file containing the content hash
key and using this key to search for the file.

9/12/2002 Internet and Grid Computing - Fall
2002

64

Search/Discovery (and Insertion) in Distributed Systems

File Update Algorithm

a) A new version of an up-datable file is inserted under its content
hash key.

B) The insert algorithm is executed for the new indirect file under
the original signed subspace key.

C) When the insert reaches a node with the old version of the file a
key collision will occur.

D) The node will check the signature on the new version, verify that
it is correct and replace the old version of the file with the new
version. Then the signed subspace key will always lead to the
new version while a content hash search will still lead to the
old version.

9/12/2002 Internet and Grid Computing - Fall
2002

65

Search/Discovery (and Insertion) in Distributed Systems

Management of Large Files

1. Partition a large file.

2. Create a content hash key for each partition.

3. Create a file to serve as the indirect access file for the partitions of the large file.

3. Insert the content hash key for each partition separately as an entry in the
indirect file.

5. Insert the indirect file.

9/12/2002 Internet and Grid Computing - Fall
2002

66

Search/Discovery (and Insertion) in Distributed Systems

Publication of Names and Search Mechanisms

1. Create a search engine specific to FreeNet.

2. Create for each actual file a family of “lightweight indirect files” each
named by a search keyword relating to the actual file and
containing a pointer to the actual file.

3. Encourage users to create directories of “favorites”

9/12/2002 Internet and Grid Computing - Fall
2002

67

Search/Discovery (and Insertion) in Distributed Systems

Node Join Protocol
1. The joining node must obtain the address of at least one node which is

already a member of FreeNet by some out of band means.
2. The joining node chooses a random seed and sends an announcement

message containing the hash of that seed, its address and a “hops to
live” counter to the existing nodes for which it knows addresses.

3. When a node receives an announcement message it generates a random
seed, XORs that with the hash it received and hashes the result
again to generated a “commitment.”

4. The node which received the announcement message forwards the new hash
to some node chosen randomly from its routing table and decrements
the hops to live counter.

5. The last node to receive the announcement message just generates a seed.
6. There all the nodes in the announce chain share their seeds and the key for
the new node is assigned as the XOR of all of the seeds.
7. Then each of the nodes in the announce chain add the new node to their
routing table under that key.

9/12/2002 Internet and Grid Computing - Fall
2002

68

Search/Discovery (and Insertion) in Distributed Systems

FreeNet Communication Protocols

1. Each request, insert or join action is a transaction which has a (probably)
unique ID associated with it.

2. Each message originated as a result of a transaction has a transaction ID
which is carried in each message resulting from a transaction.

3.Node addresses are {transport identifier, transport specific identifier}, for
example {tcp/192.168.1.1:19114}

4. Nodes which change addresses frequently may wish to used address
resolution keys which are signed subspace keys updated to contain the
current actual address of the node.

5. All transactions begin with a Request.Handshake message specifying the
return address of the sending node.

6. The receiver of a Request.Handshake message may (or may not) respond
with a Reply.Handshake message specifying the protocol it
understands.

9/12/2002 Internet and Grid Computing - Fall
2002

69

Search/Discovery (and Insertion) in Distributed Systems

FreeNet Communication Protocols - Continued

7. All messages have a 64 bit randomly generated transaction ID, a hops to
live counter, and a depth counter.

8. Hops to live and depth are set by the originator of a transaction is
decremented by each receiver.

9. The propagation chain is continued with hops to live = 1 with some finite
probability.

10. Depth is incremented at each hop and is used by a replying node to set
hops to live high enough to reach a requestor. A depth of 1 is not
automatically incremented but may be passed unchanged with some
finite probability.

11. A time-out is superimposed on transactions.

12. Nodes in a chain may send back Reply.Restart messages based on
knowledge of network delays not accessible to the originator.

9/12/2002 Internet and Grid Computing - Fall
2002

70

Search/Discovery (and Insertion) in Distributed Systems

Summary and Conclusions

1. Design achieves goals of symmetry, fully distributed control, parallelism,
high security and use of “unused resources.”

2. Performance properties are generally unknown except for simulations.

3. Algorithm domain for fully distributed control is largely unexplored.

4. State of the art is about where client-server systems were 10 years ago.

5. Next step - Integration of distributed computation and distributed file system.

Potential of system with 100,000,000 computers linked by Internet.

6. Problem - Application design

	The Search/Discovery Problem
	Design Goals
	Spectrum of “Purity”
	Metrics
	P2P File-sharing
	Napster
	Napster
	Napster
	Gnutella
	Gnutella
	Gnutella
	Gnutella
	Current Techniques: Gnutella: Breadth-First Search (BFS)
	Iterative Deepening
	Iterative Deepening
	Directed BFS
	Directed BFS
	Directed BFS: Heuristics
	Local Indices
	Local Indices (r=1)
	Distributed Hashing — General Approach
	Distributed Hashing — General Approach
	Distributed Hashing — General Approach
	Chord - Basic Idea
	Chord - Basic Idea
	Chord - Basic Idea
	Chord: Resolution
	Chord: Performance
	CAN: Basic Idea
	CAN: Basic Idea
	CAN: simple example
	CAN: simple example
	CAN: simple example
	CAN: simple example
	CAN: simple example
	CAN: simple example
	CAN: routing table
	CAN: routing
	CAN: node insertion
	CAN: node insertion
	CAN: node insertion
	CAN: node insertion
	CAN: node insertion
	CAN: node failures
	CAN: scalability
	Summary

