
9/3/2002 Internet and Grid Computing - Fall
2002

1

Introduction to MPI

Table of Contents

1. Program Structure
2. Communication Model

Topology
Messages

3. Basic Functions
4. Made-up Example Programs
5. Global Operations
6. LaPlace Equation Solver
7. Asynchronous Communication
8. Communication Groups
9 MPI Data Types

9/3/2002 Internet and Grid Computing - Fall
2002

2

Introduction to MPI

MPI Program Structure

1. MPI is a set of precompiled library routines that the user links with their code.

2. An “MPI” parallel program is a sequential program which has been modified
to include calls to MPI routines and conditional statements to adapt the
execution of the program to its local context.

3. An “MPI” program is a set of processes, each running in a separate address
space and usually on a different processor.

4. Processes communication by sending messages. There are multiple message
modes.

5. The processors accessible to an MPI program are normally confined to a single
domain or a single common file system.

6. Each process in an MPI program belongs to one or more “communication
groups.”

9/3/2002 Internet and Grid Computing - Fall
2002

3

Introduction to MPI

7. Each processor has a position, called a rank, in the communication group
in which it was originally initiated. A processes rank is a unique
identifier for the process in its communication group. Messages
are addressed to a processor “rank.”

8. Each processor executes the same program using local processor id to
determine its behavior. Most MPI programs are structured with
some form of central control implemented in the processor with
rank “0.”

9. MPI distributes the programs to the processors, loads them and initiates
execution on each processor. MPI chooses processors upon which
to load a program from a list of processors stored in a file,
“machines.”

10. Environment specification and execution initiation is external to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

4

Introduction to MPI

Computer Science Department MPI machines file
aspen.cs.utexas.edu% pwd
/stage/public/share/src/mpi/share
aspen.cs.utexas.edu% more machines.LINUX
yeenoghu
zorkmid
asmodeus
beartrap
bladnoch
bowmore
bruichladdich
bunnahabhain
clynelish
crom
…..
…..

9/3/2002 Internet and Grid Computing - Fall
2002

5

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

6

Introduction to MPI

Communication Model

1. A communicator (A variable of type MPI_Comm) is a collection of
processors that can send messages to each other. For basic programs,
the only communicator needed is MPI_COMM_WORLD. It is
predefined in MPI and consists of all the processors running when
program execution begins. The default communicator created by
running an MPI program on the CS Linux systems would have the
MPI processes on yeenoghu, zorkmid, asmodeus and beartrap as its
membership.

2. Subsets of MPI_COMM_WORLD can be created to partition the
processors into smaller communication groups.

3. Message communicators much match between message sender and receiver.

9/3/2002 Internet and Grid Computing - Fall
2002

7

Introduction to MPI

Communication Model – Continued

4. Communicators can also be used to determine the number of processors
participating in a particular communicator set and the sequence
of the processor in the communicator.

5. The processor's location in the communicator sequence is determined by
the MPI_Comm_rank function.

6. The total number of processors in the communicator can be determined
by executing the the MPI_Comm_size.

9/3/2002 Internet and Grid Computing - Fall
2002

8

Introduction to MPI

Message Properties

1. The data of an MPI message is a one dimensional array of items and is
specified as the first argument of the send (MPI_Send) and receive
(MPI_Recv) functions.

2. There is an argument to indicate where the array starts for a given
member of a communicator. Arguments that specify the number of elements
in the array (count) and the type of each element (data type) are also passed
to the MPI functions.

3.The tag and comm arguments are used to differentiate multiple messages
originating from the same processor.

4. The status argument in the receive function stores information about the
source, size, and tag of the message. This is useful in cases where the receive is
allowed to receive a set of possible sources.

9/3/2002 Internet and Grid Computing - Fall
2002

9

Introduction to MPI

An Parallel Pseudo-Program Using the MPI Library

program main

begin

MPI_INIT() //Initiate computation

MPI_COMM_SIZE(MPI_COMM_WORLD, count)//Find # of processes

MPI_COMM_RANK(MPI_COMM_WORLD, myid) //Find my id

print("I am", myid, "of", count) //Print message

MPI_FINALIZE() //Shut down

end

9/3/2002 Internet and Grid Computing - Fall
2002

10

Introduction to MPI

1. If the program on the previous slide is executed by four processes, we
will obtain something like the following output.

2. The order in which the output appears is not defined; however, we
assume here that the output from individual print statements is not
interleaved.

I am 1 of 4
I am 3 of 4
I am 0 of 4
I am 2 of 4

3. The output from an actual run was:

deerpark.cs.utexas.edu% mpirun -np 4
HelloWorld
Hello world from process 0 of 4
Hello world from process 2 of 4
Hello world from process 3 of 4
Hello world from process 1 of 4

9/3/2002 Internet and Grid Computing - Fall
2002

11

Introduction to MPI

Foundry - Bridge Process

9/3/2002 Internet and Grid Computing - Fall
2002

12

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

13

Introduction to MPI

Master Acknowledgement Program

1. Each process finds out about the size of the process pool, its own rank within
the pool, and the name of the processor it runs on.

2. Process of rank 0 becomes the master process.

3. The master process broadcasts the name of the processor it runs on to other
processes.

4. Each process, including the master process constructs a greating message
and sends it to the master process. The master process sends the
message to itself.

5. The master process collects the messages and displays them on standard
output.

6. This is the way to organise I/O, if only certain processes can write to the
screen or to files.

9/3/2002 Internet and Grid Computing - Fall
2002

14

Introduction to MPI

Master Acknowlegement Program
#include <stdio.h>
#include <string.h>
#include <mpi.h>
#define TRUE 1
#define FALSE 0
#define MASTER_RANK 0
main(argc, argv)
int argc;char *argv[];
{ int count, pool_size, my_rank, my_name_length, i_am_the_master =

FALSE;
char my_name[BUFSIZ], master_name[BUFSIZ],
send_buffer[BUFSIZ],recv_buffer[BUFSIZ];
MPI_Status status;
MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD,

&pool_size); MPI_Comm_rank(MPI_COMM_WORLD,
&my_rank);

9/3/2002 Internet and Grid Computing - Fall
2002

15

Introduction to MPI

MPI_Get_processor_name(my_name, &my_name_length);
if (my_rank == MASTER_RANK)
{ i_am_the_master = TRUE;

strcpy (master_name, my_name); }
MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK,

MPI_COMM_WORLD);
sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",

master_name, my_name, my_rank);
MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

MASTER_RANK, 0, MPI_COMM_WORLD);
if (i_am_the_master)
{ for (count = 1;
count <= pool_size; count++)
{ MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("%s\n", recv_buffer); } }

MPI_Finalize();
}

9/3/2002 Internet and Grid Computing - Fall
2002

16

Introduction to MPI

This program in English

When you look at an MPI program and try to trace its logic, think of yourself
as one of the processors.

And so, you begin execution and the first statement that you encounter is

MPI_Init(&argc, &argv);

What this statement tells you is that you are not alone. There are others like
you, and all of you comprise a pool of MPI processes. How many there are in
that pool altogether?

To find out you issue the command

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

which, translated into English means:

How many processes there are in the default communicator, which is guaranteed
to encompass all processes in the pool, MPI_COMM_WORLD? Please put the
answer in the variable pool_size.

9/3/2002 Internet and Grid Computing - Fall
2002

17

Introduction to MPI

When this function returns you know how many colleagues you have. But the next
pressing question is: how can you distinguish yourself from the others? Are you all
alike? Are you all indistinguishable? When processes are born, each process is
born with a different number, much the same as each human is born with
different DNA and different fingerprints.

That number is called a rank number, and if you are an MPI process you can find
out what your rank number is by calling function:

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

The English translation of this call is:

What is my rank number in the default communicator MPI_COMM_WORLD?
Please put the answer in the variable my_rank.

A process such as yourself can belong to many communicators. You always belong
to MPI_COMM_WORLD, but within the world you can have many sub-worlds,
or, let's call it states. If you have multiple citizenships, you will also have multiple
tax numbers, or multiple social security numbers, that would distinguish you from
other citizens of those states. By the same token a process that belongs to many
communicators may have different a different rank number in each of them, so
when you ask about your rank number you must specify a communicator too.

9/3/2002 Internet and Grid Computing - Fall
2002

18

Introduction to MPI

OK, by now you know how many other processes there are in the pool, and
what is your rank number within that pool. You can also find the name of the
processor that you yourself run on.

You call function:

MPI_Get_processor_name(my_name, &my_name_length);

which translated to English means:

What is the name of the processor that I run on? Please put the name in the
variable my_name and put the length of that name in my_name_length.

So far every process in the pool would have performed exactly the same
operations. There has been no communication between you guys yet. But now
you all check if your rank number is the same as a predefined
MASTER_RANK number. Who defines what the MASTER_RANK number is?
In this case it is the programmer, the God of MPI processes. But on some
systems all processes may go through additional environmental enquiries and
check for the existence of a host process or processes which can do I/O, and so
on, and then jointly decide on which is going to be the MASTER.

Well, here the MASTER has been annointed by God.

9/3/2002 Internet and Grid Computing - Fall
2002

19

Introduction to MPI

Only one process will discover that he or she is the annointed one. That one
process will place TRUE in the i_am_the_master variable. For all other
processes that variable will remain FALSE. This one process will laboriously
copy its name into the variable master_name. For all other processes that
string will remain null.

But all other processes will know that they are not the master, and they will
know who the master is, because by now they all know that their rank is not
MASTER_RANK.

At this stage all processes that are not the master subject themselves to
receiving a broadcast from the master. All processes, including yourself
(regardless of whether you are the master or not), perform this operation at
the same time, and all of them end up with the same message in the variable
master_name. This message is the name of the processor the master process
runs on. The name has been copied from the variable master_name of the
master process and written on variables called master_name that belong to
other processes. The MPI machine will have done all that.

9/3/2002 Internet and Grid Computing - Fall
2002

20

Introduction to MPI

This operation is accomplished by calling:

MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK,
MPI_COMM_WORLD);

In plain English the meaning of this call is as follows:

Copy BUFSIZ data items of type MPI_CHAR from a buffer called master_name
that is managed by process whose rank is MASTER_RANK within the
MPI_COMM_WORLD communicator, to which I must belong too, to my own
buffer also called master_name.

At this stage whether you are a slave process or a master process you are very
knowledgeable about your MPI_COMM_WORLD universe. And, if you are a
slave process, you are prudent enough to prepare and send a congratulatory
message to the master process.

And so first you write the message on your send_buffer:

sprintf(send_buffer, "hello %s, greetings from %s, rank = %d", master_name,
my_name, my_rank);

9/3/2002 Internet and Grid Computing - Fall
2002

21

Introduction to MPI

And observe that you write this message even if you are the master. Well there is
nothing wrong with congratulating yourself. Some people do it all the time.
Having prepared the message you send it to the master process, and if you are
the master process you send it to yourself, which is fine too. Some people seldom
receive messages from anyone else.

Here is how you will have accomplished this task:

MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,
MASTER_RANK, 0, MPI_COMM_WORLD);

In plain English the meaning of this operation is as follows:

Send strlen(send_buffer) + 1 data items (don't forget about the terminating null
character, for which function strlen does not account) of type MPI_CHAR, which
have been deposited in send_buffer to a process whose rank is MASTER_RANK.
Attach a tag 0 to that message (to distinguish it from other messages that the master
process may receive from elsewhere, perhaps). The ranking and communication
refer to the MPI_COMM_WORLD communicator.

If you are a slave process then this is about all that you are supposed to do in this
program, so now you can relax and spin, or go home.

9/3/2002 Internet and Grid Computing - Fall
2002

22

Introduction to MPI

But if you are a master process you have to collect all those messages that have
been sent to you and print them on standard output in the receive order.

How many messages are you going to receive, master? There will be pool_size
messages sent to you from all processes including yourself. So you can just as
well enter a for loop and receive all those pool_size messages, knowing, when you
count the last one, that your job is done too.

To receive a message you do as follows:

MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);

which in plain English means:

Let me receive up to BUFSIZ data items of type MPI_CHAR into my array
recv_buffer from any source (MPI_ANY_SOURCE) and with any tag
(MPI_ANY_TAG) within the MPI_COMM_WORLD. The status of the received
message should be written on structure status.

9/3/2002 Internet and Grid Computing - Fall
2002

23

Introduction to MPI

It is possible to find out a lot about a message before you are going to receive it.
You can find how long it is, where it comes from, what type are data items inside
the message, and so on. But in this case the master process doesn't bother. The
logic of the program is simple enough. God, i.e., the programmer, told the master
process to receive pool_size messages, so receive them it shall. And it shall it print
them on standard output as it receives them.

Once this point in the program is reached, all processes hit

MPI_Finalize;

which is the end of the world for them.

If you want to look at more examples in this style, go to

http://beige.ucs.indiana.edu/B673/node120.html

http://beige.ucs.indiana.edu/B673/node120.html
http://beige.ucs.indiana.edu/B673/node120.html

9/3/2002 Internet and Grid Computing - Fall
2002

24

Introduction to MPI

Ring Communication

Write a program that takes data from process zero and sends it to all of the other
processes by sending it in a ring. That is, process i should receive the data and
send it to process i+1, until the last process is reached.

Assume that the data consists of a single integer. Process zero reads the data
from the user.

9/3/2002 Internet and Grid Computing - Fall
2002

25

Introduction to MPI

#include <stdio.h>
#include "mpi.h"
int main(argc, argv)
int argc;
char **argv;
{

int rank, value, size;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

9/3/2002 Internet and Grid Computing - Fall
2002

26

Introduction to MPI

do {
if (rank == 0) {

scanf("%d", &value);
MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD

);
}
else {

MPI_Recv(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD,
&status);

if (rank < size - 1)
MPI_Send(&value, 1, MPI_INT, rank + 1, 0,

MPI_COMM_WORLD);
}
printf("Process %d got %d\n", rank, value);

} while (value >= 0);

MPI_Finalize();
return 0;

}

9/3/2002 Internet and Grid Computing - Fall
2002

27

Introduction to MPI

Global Communication Operations

9/3/2002 Internet and Grid Computing - Fall
2002

28

Introduction to MPI

Global Communication Operations

9/3/2002 Internet and Grid Computing - Fall
2002

29

Introduction to MPI

Global Communication Operations

9/3/2002 Internet and Grid Computing - Fall
2002

30

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

31

Introduction to MPI

MPI Program for Parallel Implementation of Jacobi iteration for
approximating the solution to a linear system of equations.

We solve the Laplace equation in two dimensions with finite differences.
Any numerical analysis text will show that iterating

while (not converged) {
for (i,j)
xnew[i][j] = (x[i+1][j] + x[i-1][j] + x[i][j+1] + x[i][j-1])/4;

for (i,j)
x[i][j] = xnew[i][j];

}
will compute an approximation for the solution of Laplace's equation.

9/3/2002 Internet and Grid Computing - Fall
2002

32

Introduction to MPI

Replacement of xnew with the average of the values around it is applied only in
the interior; the boundary values are left fixed. In practice, this means that if
the mesh is n by n, then the values

x[0][j]
x[n-1][j]
x[i][0]
x[i][n-1]

are left unchanged. These refer to the complete mesh; you'll have to figure out
what to do with for the decomposed data structures (xlocal).

Because the values are replaced by averaging around them, these techniques
are called relaxation methods.

We wish to compute this approximation in parallel. Write an MPI program to
apply this approximation.

9/3/2002 Internet and Grid Computing - Fall
2002

33

Introduction to MPI

For convergence testing, compute

diffnorm = 0;
for (i,j)

diffnorm += (xnew[i][j] - x[i][j]) * (xnew[i][j] - x[i][j]);
diffnorm = sqrt(diffnorm);

Use MPI_Allreduce for this. (Why not use MPI_Reduce?)

Process zero will write out the value of diffnorm and the iteration count at
each iteration. When diffnorm is less that 1.0e-2, consider the iteration
converged. Also, if you reach 100 iterations, exit the loop.

For simplicity, consider a 12 x 12 mesh on 4 processors.

The boundary values are -1 on the top and bottom, and the rank of the process
on the side. The interior points have the same value as the rank of the process.

9/3/2002 Internet and Grid Computing - Fall
2002

34

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

35

Introduction to MPI

This is shown below:

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

9/3/2002 Internet and Grid Computing - Fall
2002

36

Introduction to MPI

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12
int main(argc, argv)
int argc;
char **argv;
{

int rank, value, size, errcnt, toterr, i, j, itcnt;
int i_first, i_last;
MPI_Status status;
double diffnorm, gdiffnorm;
double xlocal[(12/4)+2][12];
double xnew[(12/3)+2][12];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

9/3/2002 Internet and Grid Computing - Fall
2002

37

Introduction to MPI

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 4) MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */

/* Note that top and bottom processes have one less row of interior
points */

i_first = 1;
i_last = maxn/size;
if (rank == 0) i_first++;
if (rank == size - 1) i_last--;

/* Fill the data as specified */
for (i=1; i<=maxn/size; i++)

for (j=0; j<maxn; j++)
xlocal[i][j] = rank;

for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] = -1;
xlocal[i_last+1][j] = -1;

}

9/3/2002 Internet and Grid Computing - Fall
2002

38

Introduction to MPI

itcnt = 0;
do {

/* Send up unless I'm at the top, then receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < size - 1)

MPI_Send(xlocal[maxn/size], maxn, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

if (rank > 0)
MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
/* Send down unless I'm at the bottom */
if (rank > 0)

MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);

if (rank < size - 1)
MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE, rank + 1, 1,

MPI_COMM_WORLD, &status);

9/3/2002 Internet and Grid Computing - Fall
2002

39

Introduction to MPI

/* Compute new values (but not on boundary) */
itcnt ++;
diffnorm = 0.0;
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

xlocal[i+1][j] + xlocal[i-1][j]) / 4.0;
diffnorm += (xnew[i][j] - xlocal[i][j]) *

(xnew[i][j] - xlocal[i][j]);
}

/* Only transfer the interior points */
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++)
xlocal[i][j] = xnew[i][j];

9/3/2002 Internet and Grid Computing - Fall
2002

40

Introduction to MPI

MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

gdiffnorm = sqrt(gdiffnorm);
if (rank == 0) printf("At iteration %d, diff is %e\n", itcnt,

gdiffnorm);
} while (gdiffnorm > 1.0e-2 && itcnt < 100);

MPI_Finalize();
return 0;

}

9/3/2002 Internet and Grid Computing - Fall
2002

41

Introduction to MPI

Asynchronous Communication Operations

9/3/2002 Internet and Grid Computing - Fall
2002

42

Introduction to MPI

Creating Communication Groups

9/3/2002 Internet and Grid Computing - Fall
2002

43

Introduction to MPI

Communication Groups

A call of the form

MPI_COMM_SPLIT(comm, color, key, newcomm)creates one or
more new communicators.

It must be executed by each process in the process group associated with
comm.

A new communicator is created for each unique value
of color other than the defined constant
MPI_UNDEFINED.

9/3/2002 Internet and Grid Computing - Fall
2002

44

Introduction to MPI

Communicators from Partitioning

•Each new communicator comprises those processes that
specified its value of color in the MPI_COMM_SPLIT
call.

•These processes are assigned identifiers within the
new communicator starting from zero, with order
determined by the value of key or, in the event of
ties, by the identifier in the old communicator.

•Thus, a call of the form MPI_COMM_SPLIT(comm, 0, 0,
newcomm) in which all processes specify the same color and key, is
equivalent to a call MPI_COMM_DUP(comm, newcomm)

9/3/2002 Internet and Grid Computing - Fall
2002

45

Introduction to MPI

The following code creates three new communicators if comm contains at
least three processes.

MPI_Comm comm, newcomm;
int myid, color;
MPI_Comm_rank(comm, &myid);
color = myid%3;
MPI_Comm_split(comm, color, myid, &newcomm);

For example, if comm contains eight processes, then
processes 0, 3, and 6 form a new communicator of size
three, as do processes 1, 4, and 7, while processes 2
and 5 form a new communicator of size two.

9/3/2002 Internet and Grid Computing - Fall
2002

46

Introduction to MPI

Task Model versus Process Model

9/3/2002 Internet and Grid Computing - Fall
2002

47

Introduction to MPI

Communication Pattern for Program on Next Slide

9/3/2002 Internet and Grid Computing - Fall
2002

48

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

49

Introduction to MPI

MPI Data Type Creation Operations

9/3/2002 Internet and Grid Computing - Fall
2002

50

Introduction to MPI

9/3/2002 Internet and Grid Computing - Fall
2002

51

Introduction to MPI

