Chapter 1. Introduction to iUML.te 2.20

Through this lecture we will explore the executable UML formalism and how it is supported by
iIUML.

We will also develop a model based on a case study.

Case Study — A Simple Gas Station System

Mission Statement

This (simple) Gas Station System manages the dispensing of fuel, customer payments and
tank levels.

A computer-based system is required to control the dispensing of fuel, to handle customer
payment and to monitor tank levels. The system must be “best of breed”, easy to uss,
reliable, fast and easy to modify fo incorporate requirements yet to be conceived.

* Enabling the Pump & Delivering Fuel

Befare a customer can use the self-service pumps, the pump must be enabled by the
attendant. When a pump is enabled, the pump motor is started, if it is not already on,
with the pump clutch free. When the trigger in the gun is depressed, closing a micro
switch, the clutch is engaged and fuel pumped. When itis released, the clutch is freed.
There is also a micro switch on the holster in which the gun is kept which prevents
fuel being pumped until the gun is taken out. Once the gun is replaced in the holster,
the delivery is deemed to be completed and the pump disabled. Further depressions
of the trigger in the gun cannot dispense more fuel. After a short stand-by pericd, the
pump motor will be turned off unless the pump is re-enabled.

* Measuring the Delivery
A metering device in the fuel line sends a pulse to the system for each hundredth of
a litre dispensed. The cost of the fuel is calculated using the amount deliverad and
unit cost which is displayed on the pump.

+ Payment
Transactions are stored until the customer pays. Customers sometimes abscond
without paying and the operator must annotate the transaction with any available
information, the vehicle's registration number for example. At the end of the day,
transactions are archived and may be used for ad-hoc enquiries on sales.

* Fuel
At present, two grades of fuel are dispensed from three pumps on the forecourt. Each
pump takes its supply from one of two tanks, one tank for each grade. The tank level
must not drop below 4% of the tank's capacity. If this happens, the pumps serviced
by that tank cannot be enabled to dispense fuel.

Chapter 2. Managing your Database

Basics of iUML database:
1. itis a multi-user database
2. can create as many databases as you want
3. each of these databases can be accessed by one or more users

This section describes how to create and edit databases.

1. Creating an iUML database —

a. Pull-down File > New Repository
b. Mavigate to the folder/directory that you wish to store your database in.
c. Enter the name of the database:
Simple_Gas_Station
d. Click OK.
e. Enter the following fields in the Database Details dialog:

Pressing the Tab kev will cvcle through the text entrv boxes.

In field Type

Administrator | =Your name:

Database Simple Gas Station System

Description Gas Station case study for the {UML
tutorial

f. Click OK.

You have now created a database in the directorv vou specified.

Acquiring the model for edit

Before vou can edit the items 1n the database, vou must acquire a lock. When you
exit the database and re-enter vou will need to acquire the model for edit each
time.

To acquire the Top Level Lock for the database:

From the tree RMB pull-down Database name > Acquire Lock > Top Level Lock

Opening, Exiting and Saving Models

In order to work through the tutorial at your own pace, you will need to save your
work, exit and re-enter 1UML Modeller.

To Save and Exit and iUML Database

Pull-down File > Exit.

Click Save.

You can enter an comment to describe your additions to the database.
Click Publish.

Confirm your exit of IUML by clicking OK.

B o &

To Open an iUML Modeller Database

Start iIUML Modeller

Pull-down File > Open.

Select the location of the IUML Database.
Click 0K.

=T

To Save an iUML Database

To save changes and continue to work through the tutoral:

a. Pull-down File > Save.
b. You can enter an comment to describe your additions to the database.
. Click Publish.

NOTE: After saving you will need to acquire a lock to continue editing.

Chapter 3. Using iUML to create and manage the components of your system

Important terms:
1. Components — Domains
2. Integrated assemblies of these components (Domains) — Projects

In this section you will

» Create a Project for the case study.
+ Construct a set of Use Cases for the case smdy.

+ Partition the Gas Station System into a number of subject matter areas
(Domains) and represent them on a Domain model.

Domains in our case will be:
1. Gas Station Control
2. Attendant Interface
3. Pump Interface
4. Operating System

Projects can be defined as: - A project will specify an assembly of domains that constitute the
system.

How to create/add a project ?

Add a Project

You can now create the Gas Station System project.

a. Acquire a lock If necessary,
b. From the Tree RMB pull-down Projects > Add Project > <New:>
c. Fillin the details of the Project as follows:

Number 2

Name (Gas Station System

Key Letter GSS

Short Description Simple Gas Starion Case Study

Mission Statement? To develop a model of a Gas Station in order to develop an understanding of
xUML models and to learn about the features of {UML.

Build Area Leave blank for now

a.0Of course, 1 a real system this would reflect the system mission.

d. Click OK.

Expand the tree for Projects to see the projects you have created, click on the project name to
see its fine details.

Use Cases for the Gas Station System

In simple words — it is a black box view of the required functionality of the system.

Creating a Use Case Diagram

a. Expand the tree to Projects = Gas Station System = Initial Version.

b. RMB pop-up Initial Version and select Show Use Case Diagram > <New
Diagram:.

c. Type the name Fuel Delivery and Purchases and click OK.

The diagram frame now shows an empty Use Case Diagram.

Add an Actor

RME pop-up menu from the Diagram window and select Add = Actor.
Enter the name of the Actor Attendant and click OK.

Click where you want the Actor to be placed.

In the same way, add the Actors, Customer and Tanker Driver.

a0 oo

Add a Use Case

RMEB pop-up menu and select Add = Use Case.

LMB click where you want the Use Case to be placed.

Enter the name of the Use Case Customer Fuels Car and click OK.
Now add the Use Case Fuel Delivery in the same way.

o0 oW

Add a Communication

A communication signifies a link between an Actor and a Use Case.

LMB select the Actor Attendant.
RMBE pop-up menu and select Add = Communication.
LMB click on the Use Case Customer Fuels Car.

Add further communications from Customer to Customer Fuels Car and from
Tanker Driver to Fuel Delivery

o o oTpe

Note that Communications can be added in either direction. 1.e. they can be added
from the Use Case ro the Actor, or vice versa.

Arrange the Use Case Diagram

To arrange the Use Case diagram, select Actors and Use cases and drag them into
position on the screen. Hold the MMB and drag the target to view different areas
of the model.

Use Cases should be moved to the middle of the diagram and Actors placed
around them.

Use Case o
Communication Actor

Fuel Delivery and Purchases

Creating a Domain Model

Types of Domains in xXUML
1. Application Domains — represents the purpose of the system form end users point of
view. Like Gas Station Control etc.
2. Service Domains — provide generic services to support the application domains. Like,
Attendant Interface, Pump Interface, etc.

3. Architecture Domains — represents the globally applied design and coding strategies. Like
Software Architecture, etc.

4. Implementation Domains — represent pre-existing software components. Like, C,
Hardware Interface, etc.

Add a Domain to the Domain Model

The aim of this exercise 1s to represent the identified Domains on a Domain
Model. A domain 1s represented as a package on the Domam Model.

a. Expand the tree to Projects > Gas Station System.
Click Initial Version.

From an empty space in the Diagram Window and RMB pop-up Add = Domain
Package.

d. Enter the name Gas Station Control and description.. .
The Gas Station Control domain manages the dispensing of fuel, customer

payments and tank levels.
...in the Domain Details dialog and click OK.

e. Point to where you wish to place a domain symbol and click.

Adding a Domain Dependency to the Domain Model

The domains are organised on the Domain Chart into a hierachy of Client Server
Dependencies. In each Client/Server pair the Client is the Domain which requires
the services of the Server in order to fulfil its mission.

Each dependency between a Client/Server Domain Pair has a deseription which
explains the purpose of the dependency.

Now that the Domains have been added to the Domain Model you can add the
Client/Server Dependencies.

In the Diagram window:

a. From the Client Domain Gas Station Control RMB pop-up Add > Dependency.
b. Click on the server domain Attendant Interface.

The Client/Server dependency has now been added to the diagram.

Adding a Description to the Dependency

a. From the Gas Station Control to Attendant Interface Dependency line on the
Package Diagram, RMB pull-down Modify = Edit Description.

b. Enter the following description in the edit field and click OK.

Sequence Diagrams
Using Sequence Diagrams to model the interaction between domains.

Creating Sequence Diagrams: - it captures the system threads which corresponds to a single Use
Case.

Statement Bar Statement Diagram Title Boundary Line Liteline Interaction

n |] |]
Customer Fuels Cam
n |] |]

- <Boundary> Pump Ipterface Attendarllt Interface Gas Station Control

1:Gun Rernaved Fram Holster

| o Custarmer remaves Gun from Puamp Halster

5|
' 2:Gun Removad I
r T J
3 el level low | | 4:Pump Unavailsble!

5.8et Pump Unavailable Indicator | | |
| |

4o Inform Customer Fuel not availabie

9

To Show the Sequence Diagram

a. Expand the tree to Projects > Gas Station System > Initial Version > Use Case
Model > Use Cases > Customer Fuels Car > Sequence Diagrams.

b. Single click Customer Fuels Car.
c. On the Diagram window, click the pencil icon to acquire the lock if required.

The Diagram Frame will display an empty sequence diagram for Customer Fuels
Car, containing a vertical Boundary Line and an empty Statements column..

A Lifeline represents a Domain involved in the Use Case.

a. From an empty area of the Sequence Diagram, RMB pop-up menu and select
Add > Lifeline.

b. Select the domain name Pump Interface from the pick list.

c. Place the lifeline a few cms to the right of the Boundary Line.

Add an Interaction

Each interaction represents a service required by the source domain and a service
provided by the destination domain or system boundary. In this exercise you will
add the sequence of domain interactions for part of the thread corresponding to
the “Customer Fuels Car’ Use Case.

a.

® o0 T

LMB Select the source Lifeline or Boundary Line - in this case, select the
Boundary Line.

RMB pop-up menu Add > Interaction.
LMB Click on the destination lifeline - in this case the Pump Interface.
Select New Interaction from the pick list.

Enter the Interaction Name Gun Removed from Holster (you can leave the
Provided and Required service fields blank) and click OK.

Enter the corresponding statement text Customer removes Gun from Pump
Holster and click OK.

Repeat this sequence for the interaction from Pump Interface to Gas Station
Control called Gun Removed, leaving the Statement text blank.

Add a statement

o 0o

LMB select the vertical dotted ‘Statement Bar'.

Ctrl. RMB pop-up Add > Statement.

Select <End> from the Position before Statement... pick list.
Enter the statement If fuel level low and click OK.

Chapter 5. Static Modeling of Domains

So far you have seen how a set of Use Cases:

+ Expose the usage of the Gas Station System from an external viewpoint.

* Supplement the system requirements so that the initial domain partitioning can
be specified using a Domain model.

* Describe the interactions amongst the domains (domain level threads), using a
number of sequence diagrams.

From this analysis, an analyst may:

+ make a qualitative assessment of the viability of the domain model:
» establish the interfaces between the domains:

+ identify the required dependencies between domains,

What you will do in this section

*+ Learn about the purpose of Static Modelling
» Add Classes. Associations, Attributes and Identifiers to the Static Model

» Explore the viewing and diagram editing facilities of iUML

Static Model Overview

A static model is represented on a class diagram which is enhanced with supportive
descriptions and data definitions. By contrast, the dynamic model describes the events
and operations which will cause the data described in the static model to change.

Domain Creation

Each of the Domains on the Domain model will require a corresponding Domain
within the database in which the analysis can be conducted - as such you will be
required to add one or more domains to the database.

In this exercise you will add the *Gas Station Control” domain to the database
which has been identified on the Domain model.

Add a Domain to the database

a. Select Domains > Acquire Lock > Top Level if necessary.
b. Select Domains > Add Domain > <News.

Fill in the details of the Domain as follows:

Number 3
Name (Gas Station Control
Key Letter GSC

Short Description Simplified Gas Station Control

Mission Statement To control the dispensing of fuel, customer payments and
tank levels.

Type Application
Initial Version Standard
Build Area leave blank

c. Click OK to add the Domain to the Database.

Classes
The first stage of editing the static model involves adding the classes to the class

diagram and the associations between them.

Showing the Class Diagram

The Class Diagram ‘belongs’ to the domain version.

a. Expand the tree to Domains > Gas Station Control.
b. Click Initial Version.

The Class Diagram, which will be initially blank., 1s shown in the Diagram
Window.

Adding a Class

This 1s the graphical representation of the TANK class:

Class Name I TANE
attributes 3
Attributes Tank Number :Integer Attribute
Grade Name:Text T}'DE
Tank ImptI Flag:Eool. .
Tank Lewvel:Rea
Tank Capacity:Real
Enpty Threshold:Rezl

a. On an any empty area of the Diagram Window RMB pop-up Add > Class..
b. Enter the Class Details for the TANK class in the table and click OK..

c. Click to place the Class

d. Repeat for the other classes shown in the table.

Number Name Key Letter

4 TANK TNK

3 PUMP EMP

2 DELIVERY DLV

5 FUEL GRADE FGR

6 TRANSACTION TRN

Attributes
Adding Attributes to Classes

a. From the Class RMB pop-up Add > Attribute.

b. Enter the attributes and details from the table and click OK (leaving the Default
Value blank).

Identifiers

Adding an Attribute to the Preferred Identifier

a. From the attribute RMB pop-up Modify > Add to Preferred Identifier.
b. Here are the other attributes which are the preferred identifiers of their Classes:

Class Attribute to make preferred

TANK Tank Number

FUEL GRADE Grade Name

TRANSACTION Transaction number

DELIVERY Delivery Time
PUMP Pump number
Associations

Conditionality .
Association

Number Role Phrase
PUMP TANE
attributes 0..% .) attributes
Pump Number:Integer Rl is pomping fuel from | Tank Number : Integer
Tarnk Number:Integer is providing fuel for 1 Tarnk Empty Flﬁqrﬁﬂﬂl- 5

Tark Lewvel:Real
Tank Capacity:Real
Enpty Threshold:Real

Association Line Single Valued

Add an Association between TANK and PUMP

a. From the PUMP class RMB pop-up Add > Association
b. Click on the TANK class.

Generalizations

To create a Generalisation:

a. From PENDING TRANSACTION class and RMB pull-down Add >
Generalisation.

b. Click on the TRANSACTION class to create the association between them.

To add the other Subclasses to the super/sub class hierarchy:

a. From the classes RMB pull-down Add > Generalisation.

TRANSAGTION
attributes ————
Transacktion Humber:Integer
Transaction Type:Transaction. .
Cost:Real
Transaction Process Time:Tin. .
Generalisation Crosspiece | Deliwery Start Time:Tims of ..

43

Fd

EVADED TRANSACTION PATD TRANSACTION

———attributes atbributes
Transactlion Number: Integer

Observations: Text

b. Clickon TRANSACTION and select the existing Generalisation from the pick
list.

Adding new types

The Class Collaboration Diagram

The Class Collaboration Diagram (CCD) sumimarises the mteractions between:

* Classes - Representing classes whose dynamic behaviour is specified only by
operations - such classes are stereotyped <<class>> on the CCD:

* Classes with State Machines - Representing classes whose dynamic
behaviour 1s specifed both in terms of operations, and whose state-dependent
behaviour i1s defined by a state chart and a corresponding state transition table
- such classes are stereotyped <<state machine>> on the CCD:

* Terminators - which are abstractions of entifies outside of this domain. There
are a number of different types of terminator (the semantics of which are
detailed in the iUML Modeller Manual and the ASL Reference Guide):

* Non Counterpart Terminators - which are stereotyped <<terminator=>>
on the CCD:
* Association Terminators - stereotyped <<association terminator=>> on the
CCD:
* Specialisation Terminators - stereotyped <<specialisation terminator=>=>
on the CCD.
There are two forms of interaction supported:

» Synchronous interactions - an operation invocation. represented by an arrow
with a filled arrowhead. Note that the direction of the arrow reflects the
invocation direction. not the data flow (which could be in both directions 1f
there are both input and output parameters associated with the operation);

» Asynchronous interactions - the transmission of a signal. represented by an
arrow with an open arrowhead. Note that the direction of the arrow reflects the
transmission from sender to receiver.

Adding a State Machine to the Pump class

a. Expand the tree to Domains > Gas Station Control > Initial Version.
RMB pull-down Initial Version > Show Class Collaboration Diagram.

In the Diagram Window, RMB pop-up PUMP class > Modify > Create State
Machine.

d. Confirm by clicking Yes.
The PUMP class now has <<state machine>> annotated at the top of the class.
This indicates that the PUMP class has a State Machine.

e. You can also add state machines to the classes TRANSACTION, TANK
and DELIVERY.

Terminators

Interactions

Add a Signal Transmission

a. From Class Terminator from which the signal is to be transmitted, RMB pop-up
Add = Send Signal.

Click on Class Terminator to transmit to.

c. Click <New Signal=.
d. Enter the name of the Signal Transmission and click OK.

The Signal Transmission is added to the Class Collaboration Diagram.

Add an Operation Invocation

a. From the Class Terminator from which the Operation Invocation is to be
transmitted, RMB pop-up Add = Call Operation.

b. LMB click on Class Terminator to transmit fo.
c. Click New Operation.
d. Enter the name of the Operation Invocation and click OK

The Operation Invocation 1s added to the Class Collaboration Diagram

Adding Operations

You can write Operation Actions for the Operation Invocations you have added
to the Class Collaboration Diagram. The Operation you will load for Create
Transaction creates a pending transaction which a customer needs to pay for.

a. From the Operation Invocation name Create Transaction on the Class
Collaboration Diagram RMB pop-up Show Details.

b. RMB pop-up <Method> text beneath Method and select Load.

Navigate to the <1tUML release directory=/Manual/Tutorial Files/ASL code
directory and double click createTransaction.txt.

d. Click OK on the Action Description dialog. The new Action is shown in the Text
Window.

State Chart

Example-
state nhame SIJEIIE‘
ed Available

entry /

find old patient

old_patient = this -» Rl

action—" # remove old patient

unlink this Rl old patient
signal
name

signal

transition /

bed_assigned_to_patient(ward_ bed_unassigned (ward_name, bed_

nane, bed_number, new_patient number) {no=1, kl=F}

rumber) {no=2, k1=B}
~.class

" signal key letter
number
signal (Bed Unavailable N

parameter entry /
find new patient
new_patient = find-only In_Patient where /

new_patient = new patient rumber
create link to patient
link this Rl new patient

A oy

Add a State

A state represents a condition of the class, subject to a defined set of rules, policies
or physical laws.

a. Expand the tree to Domains = Gas Station Control = Initial Version = Classes.
b. From PUMP, RME pop-up Show State Chart.
c. From the empty chart RMB pop-up Add = State.
d. Enter the state name Waiting For Customer then click OK. The state will be
shown on the diagram.
e. LMB click on an area of the frame to place the State.
f. You can add some or all of the states to the diagram in this way. As the states

form a cycle of behaviour, add their boxes clockwise round the screen.
Watting For Pump Enable
Ready To Pump
Pumping
Pumping Paused
Fuel Delivery Complete

Edit Actions

Add Transitions

Attach a Signal

