
Q. Yang and G. Webb (Eds.): PRICAI 2006, LNAI 4099, pp. 1155 – 1159, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Construction of Object Oriented Design
Models [UML Diagrams] from Natural Language

Requirements Specification

G.S. Anandha Mala1 and G.V. Uma2

Department of Computer Science and Engineering, College of Engineering,
Anna University, Guindy, Chennai, Tamil Nadu, India-600025
malamanosuke@yahoo.co.in, gvuma@annauniv.edu

Abstract. Application of natural language understanding to requirements
gathering remains a field that has only limited explorations so far. This paper
presents an approach to extract the object oriented elements of the required
system. This approach starts with assigning the parts of speech tags to each
word in the given input document. Further, to resolve the ambiguity posed by
the pronouns, the pronoun resolutions are performed before normalizing the
text. Finally the elements of the object-oriented system namely the classes, the
attributes, methods and relationships between the classes, sequence of actions,
the use-cases and actors are identified by mapping the ‘parts of speech- tagged’
words onto the Object Oriented Modeling Language elements using mapping
rules which is the key to a successful implementation of user requirements.

1 Introduction

As already several attempts have been made to semi automate the process of
requirements capture, this is yet another approach of automatic construction of object
oriented design model [UML diagram] from the natural language requirement
specification. The paper begins with a review of the advances in the field of
requirements engineering in section 2. The proposed methodology is explained in
section 3. Our implementation and results are explained in section 4. The conclusion
and future work is contained in Section 5.

2 Related Work

The first relevant published technique attempting to produce a systematic procedure
to produce design models from NL requirements was Abbot [1]. Abbot suggested a
non-automatic methodology that only produces static analysis and design products
obtained by an informal technique requiring high participation with that of users for
decisions. Methods to bring out a justified relationship between the natural- language
structures and OO concept is proposed by Sylvain [9] who show that computational
linguistic tools, are appropriate for preliminary computer assisted OO analysis.
Sawyer in their REVERE [5] makes use of a lexicon to disambiguate the word senses
thus obtaining a summary of requirements from a natural language text but do not

1156 G.S. Anandha Mala and G.V. Uma

attempt to model the system. Liwu Li [6] also presents a semi-automatic approach to
translate a use case to a sequence diagram. It needs to normalize a use case manually.
Overmyer [8], also present only a complete interactive methodology and prototype.
However, the text analysis remains in good part a manual process. Liu [3] present an
approach, which uses formalized use cases to capture and record requirements. Ke Li
[4] also semi-automate the process of requirement elicitation where the text is
matched with predefined statements. If there is no match then get help from user to
clarify incomplete/ambiguous data. Participation of domain experts, customer are
needed in class identification process in contrast to our fully automatic methodology.

3 The Proposed System

In all the earlier works mentioned, the requirement elicitations are not fully automatic.
The proposed methodology includes the automatic reference resolution, which
eliminates the user intervention as in the previous works. The system architecture is
shown in fig. 1. The system named as ‘REQUIREMENTS ELICITOR’. The given
input problem statement is split into sentences by the sentence splitter for sentence
tagging. Then each sentence is subjected to tagging in order to get the parts of speech
marker for every word. The noun and the verb phrases are identified for the tagged
text by chunker based on simple phrasal grammars. To remove ambiguity posed by
pronouns, they are resolved to their respective noun phrases by reference resolver.
The text has to be simplified into the following constructs by the normalizer to ease
the task of mapping the words onto the Object Oriented system constituents.

• Conditional: Conditional syntax is If aCondition transaction [else other
Transtions]

• Iteration: Iteration syntax is While condition transactions endwhile.
• Concurrency: Concurrency syntax is

Start concurrency transaction 1 … concurrent transaction k
end concurrency

which executes transaction l, to transaction k concurrently.
• (Synchronization) A synchronization syntax is

Start Synchronization transaction 1 … synchronized transaction k
end Synchronization

Which requires synchronize transaction l, to transaction k.
All the transaction statements are simple. A number of patterns using conjunctions

and their corresponding splits in the sentences are stored in the catalog. Each sentence
is checked against the stored patterns and the corresponding split up is made.

For example “If the source and the destination of the request fall on the same route,
the receptionist checks the seat that are available and issues the ticket to the passenger
and blocks the seat” is normalized to

If the source and the destination of the request fall on the same route
The receptionist checks the seat.
The receptionist issues the ticket to the passenger
The receptionist blocks the seat

End if

 Automatic Construction of Object Oriented Design Models 1157

Fig. 1. System Architecture

The NL-OOML mapper accepts a normalized problem description as input. Using
the syntactic structures as in table 1. it translates each normalized sentence into a
message record. Simple rule based approach is followed for identifying OO
elements.The rules are,

1: Translating Nouns to Classes. A noun, which does not have any attributes, need not
be proposed as a class.
2: Translating Noun-Noun to Class-Property according to position. When two nouns
appear in sequence in the text, the first Noun is translated to Class and the following
Noun is translated to properties of this Class.
3: A simple heuristic is used to decide which nouns are classes, and which form the
attribute. In Noun-Noun, if the first noun is already been chosen as the class then the
second noun is taken as the attribute. The attributes are decided based on the verb
phrase.
4: Translating the lexical Verb of a non-personal noun to a Method of this noun.
Decide the sender, receiver classes and argument to this method based on the
Table 1.
5: Translating the lexical Verb of a personal noun to a use case (or part of a use case)
linked with an actor defined by this noun.
6: Matching a Noun to a Personal Pronoun as the nouns of previous sentence.

Input problem statement

Message Records & Object Oriented Design Models

REQUIREMENTS ELICITOR

Normalizer Catalog

Syntactic Structures NL-OOML Mapper

 Preprocessor

Sentence
splitter

Tagger Chunker Reference
Resolver

1158 G.S. Anandha Mala and G.V. Uma

Table 1. Syntactic Structures of Simple Sentences

4 Implementation and Results

The ‘Requirements Elicitor’ was implemented using JAVA and validated using 100
problem samples each of around 500 lines. The result produced by the system was
compared with that of the human output. The human outputs were the results that
were obtained by conducting the noun-verb analysis on the text. It was considered as
the baseline and taken as expert judgment. The system does not miss to identify any
of the classes and methods. But approximately 12.4% of additional classes and 7.4%
of additional methods are identified in the entire sample taken, those that are removed
by human by intuition that they may not be classes. Since system lacks that
knowledge, they are listed as classes. The missed out methods occur only if the tagger
assigns a wrong tag to the word. Also the system perfectly identifies all the attributes,
usecases and actors with out any additional, missed or miss assignments.

5 Conclusion and Future Work

The project presents an approach to restructure the natural language text into a
modelling language in order to elicit the stated requirements of a system. Further the
work can be extended for identifying the different modules present in the requirement
specification by properly segmenting the input text, which will help us to identify the
packages. The deficiencies in the tagger and the reference resolver can be overcome
by building a knowledge base which can also improve the effectiveness of generation
of the system elements.

 Automatic Construction of Object Oriented Design Models 1159

References

1. Abbot.R.J.: “Program Design by informal English descriptions”. Communications of the
ACM, vol.26, (1983) 882 – 894.

2. Brill E.: “A simple rule-based part-of-speech tagger”. Proceedings of Third ACL
Conference on Applied Natural Language Processing, Trento, Italy, (1992) 152-155

3. Dong Liu, Kalaivani Subramaniam, Behrouz H. Far, Armin Eberlein: “Automating
transition from use cases to class model”, MSc Thesis, University of Calgary, (2003).

4. Ke Li: “Towards Semi-automation in Requirements Elicitation: mapping natural language
and object-oriented concepts”, 13th IEEE International Requirements Engineering
Conference, (2005)

5. Sawyer P., P Rayson, and R Garside: “REVERE: support for requirements synthesis from
documents”, Information Systems Frontiers Journal. Vol.4, (2002) 343 - 353.

6. Liwu Li: “A semi-automatic approach to translating use cases to sequence diagrams”,
Proceedings of Technology of Object-Oriented Languages and Systems, July (1999), IEEE
CS Press, 184 –193

7. Mitkov. R: “Robust pronoun resolution with limited knowledge”, Proceedings of the 18.th
International Conference on Computational Linguistics (COLING'98)/ACL'98”, Montreal,
Canada, (1998) 869-875.

8. Overmyer ScottP., Lavoie.B.Rambow: “Conceptual modelling through linguistic analysis
using LIDA”, Proceedings of the 23rd International Conference on Software Engineering,
ICSE 2001, Toronto (2001).

9. Sylvain Delisle, Ken Barker, Ismaïl Biskri: "Object-Oriented Analysis: Getting Help from
Robust Computational Linguistic Tools, in G. Friedl, H.C. Mayr (eds) Application of
Natural Language to Information Systems, Oesterreichische Computer Gesellschaft, (1999)
167-172.

	Introduction
	Related Work
	The Proposed System
	Implementation and Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

