
aO' ¢
I l r t l ¢ l e l

K e n n e t h S. R u b i n a n c l A c l e l e G o l c l b e r g

O b j e c t B e h a v i o r A n a l y s i s
nalysis is t h e study and m o d e l i n g o f a given problem domain, w i t h i n t h e context
of stated goals and objectives. It focuses on what a system is supposed to do, rather
than how it is supposed to do i t (w h i c h we consider the design aspects). In addi-

t ion, it must embody the rule of traceability (w h y) , w h i c h j u s t i f i e s t h e e x i s t e n c e o f a given
result by t y i n g i t b a c k t o t h e stated goals and objectives. The components of the problem
domain can be described as anything that end users of the system, both h u m a n s and
machines , v iew as part o f t h e p r o b l e m c o n t e x t . T h i s may include technical issues, i f the
users v iew such issues as part of the problem. • • • • • • • • • • • • • • • •

We want the analysis process to
be carried out in a predictable and
controllable manner. In taking an
object-oriented approach to analy-
sis, our goal on completion is that
we have a clear understanding of
the behaviors exhibited by the sys-
tem, the objects that exhibit these
behaviors, the relationships among
the objects, and how the objects in-
teract with one another (the system
dynamics). This must all be speci-
fied in a clear and well-defined lan-
guage of object and behavior
names, chosen from the problem
domain. In addition, any imple-
mentation code must be traceable
back to the results of the analysis.
This means that the vocabulary and
structures apparent in the design
and implementation must clearly
reflect the vocabulary and struc-
tures that result from the analysis.

Object-Oriented Analysis
Object-oriented analysis endeavors
to model a situation in terms of a
collection of interacting entities,
each of which provides a well-
defined set of behaviors and attri-
butes. Most published approaches
describe conceptually similar defi-
nitions, although they adopt alter-
nate terminologies [2, 3, 10]. There
is a high degree of agreement on
the desired structure of the end
result; we differ in how to get to the
end result.

Many approaches recommend
first searching for the tangible ob-
jects, notably seeking the nouns in a

requirements specification and any
applicable verbs and adjectives.
With nouns as the objects, the mes-
sage interface is determined from
the verbs, and the logical properties
are derived from the adjectives.
Although this basic approach may
work for small systems, it is our
experience that it simply will not
scale up. First, it assumes that a
complete, formal and correct re-
quirements specification exists.
This is almost certainly not true for
large systems. In addition, this ap-
proach has a strong bias toward the
tangible aspects of a problem (i.e.,
those things that can be seen,
heard, felt, smelled, and tasted).
Tangible objects are often impor-
tant to recognize and capture. But,
just as often, the conceptual objects
have significant influence on the
structure of the analysis results.
Nouns and verbs are often an in-
sufficient guide to locating these
types of objects.

Furthermore, a common claim is
that, by adopting an object-oriented
point of view, all tangible objects
necessarily become part of the anal-
ysis result. This is a naive, and often
erroneous interpretation. For ex-
ample, consider the tangible piece
of paper in many businesses known
as the Purchase Order. Although
this paper document exists in many
departmental operations, it is often
not required as a separate entity in
a computer-based system. What is
important to understand is the na-
ture of the required information

processing, in terms of the services
to be performed. Once these ser-
vices are understood, we can deter-
mine what kinds of entities are best
suited to carry them out. "Things"
well suited to the paper world may
not be well suited to the electronic
world.

Object Behavior Analysis
We need a more effective way of
finding the objects. The approach
we use emphasizes first under-
standing what takes place in the sys-
tem. These are the system behaviors.
We next assign these behaviors to
parts of the system, and try to un-
derstand who initiates a n d who par-
ticipates in these behaviors. These
two kinds of players, the initiators
and the participants, help us un-
derstand the roles of different as-
pects of a system, and which parts
of the system must take responsibil-
ity for providing services and man-
aging system information. Initi-
ators and participants that play
significant system roles are recog-
nized as objects, and are assigned
the behavioral responsibilities for
these roles.

This analysis approach is called
"Object Behavior Analysis" or
OBA. It is a five-step process whose
outcome is in the form of:

• Scripts that record the use of the
(proposed) system
• Glossaries of:

Initiator-participant names
Participants' services

48 September 1992/Vol.35, No.9/COMMUNICAlrlON$ OF THE ACM

a r t i c l e s

Attributes
State definitions

Object models
Hierarchical relationships
Contractual relationships

• System dynamic models
Object life cycles
Sequencing of operations

OBA is part of a larger process
model incorporating the specific
engineering opportunities intro-
duced by object-oriented technol-
ogy [9]. The remainder of this arti-
cle provides an outline of the
specific steps of the OBA method-
ology. This methodology describes
how to conduct the analysis of a
problem situation. The outcomes of
the analysis must be captured in
some notation for purposes of com-
munication. With the special excep-
tion of the script notation and glos-
saries, many of the notations
recommended by other published
sources [2, 3, 8, 10, 12] are appro-
priate.

The Order of Analysis
and Design
The issue of where to start is at the
heart of distinguishing among vari-
ous analysis approaches. Our goal is
to be able to answer the question:
Which roles and responsibilities are
needed in order to accomplish the
required tasks? Furthermore, we
must answer why a particular object
exists, why it is linked to another
object, why a particular service is
provided by an object, and how the
object participates in fulfilling the
functional requirements. Each step
of OBA contributes to the explana-
tion or is a source for information
used in determining the final out-
comes. As such, each of the steps of
OBA ultimately must be completed.

OBA can be characterized as an
iterative approach, but one with
multiple entry points. Within this
article, the steps of OBA are stated
in a linear manner for purposes of
exposition. In practice, they are
used both iteratively, within a single
part of a project, and in parallel, on
multiple parts of a project. When
we complete a step, we do so believ-

lug we have gathered sufficient in-
formation or results for the next
step. On moving to the next step,
we might discover that information
is missing or that new questions are
raised. To resolve these issues, we
iterate back. The steps of OBA are
specifically designed to provide this
form of check and balance, to verify
that the growing context of the
analysis is internally consistent
across all steps.

In the previous section, we ar-
gued in favor o f starting the analy-
sis process with a focus on behavior.
In several situations, however, this
might not be possible. For example,
any one of the following could have
been completed prior to the deci-
sion to apply OBA:

1. A nonobject-oriented, data-
oriented approach has produced a
data model.
2. An enterprise-wide analysis has
defined a common vocabulary for
functions and/or data.
3. A domain analysis has been
completed with the basic objects
being proposed.

As we explain each step, we will
note possible alternative entry
points based on having the infor-
mation from these situations.

The Steps of ODJect
Behavior Analysis
Object Behavior Analysis (OBA)
consists of five steps:

• Setting the context for analysis
• Understanding the problem by
focusing on behaviors
• Defining objects that exhibit be-
haviors
• Classifying objects and identify-
ing their relationships
• Modeling system dynamics

The goal o f OBA is first, to under-
stand the problem description and,
second, to formulate this descrip-
tion in terms of multiple interacting
objects. These objects fill system
roles and responsibilities by both
providing and contracting for well-
defined services that carry out sys-
tem behaviors. The analysis result
should be understandable to the

end user, lend itself to further de-
sign and implementation, and be
traceable to system goals and objec-
tives. Based on OBA, estimates can
be formulated for the remaining
project development based on the
numbers of identified behaviors,
participants and initiators, and re-
lationships among these various
parties. 1

We label the five steps of OBA as
Steps 0 through 4, emphasizing the
first step with the unusual label
"zero" in order to bring attention to
the fact that this step is often out-
side the scope of what is tradition-
ally called analysis. Figure 1 con-
tains an outline o f each of the five
steps, their substeps and activities.
The structure of the article follows
the outlined steps, and we use the
labels shown in the figure when
identifying substeps. In addition,
the article presents an example
analysis o f an electronic spread-
sheet application that illustrates
each step.

Step 0--Setting the Analysis
Context
Step 0 consists of four substeps that
identify goals and objectives, ap-
propriate resources for analysis,
core activity areas, and a prelimi-
nary analysis plan. 2 Carrying out
these substeps forms the founda-
tion for the context in which we
carry out analysis. In particular,
Substep 0.1 identifies goals and ob-
jectives, which are statements of the
desired system outcome. Business
goals identify the specific business
reasons for building a system. As
analysts, we do not reason about the
appropriateness of these goals, but
require them as the base on which
we can measure our progress and
success. Where possible, a list of
system features should also be iden-

IWe are currently developing a set of metrics
based on the number of system behaviors (as
opposed to the number of lines of code
"kloc"). Our work is influenced by the work
on Function Point Analysis [6].

2The authors would like to acknowledge the
influence of Gurdon Blackwell of Gemini
Consulting, Morristown, N.J., in formulating
this all-important zeroth step.

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 49

~ F t i l : l O . %

tiffed. Objectives differ f rom goals
in that they are time-targeted,
measurable descriptions of every
key aspect of the project. There are
several categories of objectives, no-
tably resource and quality. Resource
objectives define the people, time

Figure 1. Outline of OBA methodol-
ogy

and money budgeted for the de-
sired project. Quality objectives are
quantitative descriptions of qualita-
tive results. Examples are perfor-
mance, reliability, and reusability.
We use Gilb's quality templates [4]
in specifying quality objectives, one
example of which is shown in Fig-
ure 2.

Substep 0.2 serves to identify re-
sources--documents, dictionaries,

Step 0 - Setting the Analysis Context
Substep 0.1 - Identify goals and objectives
Substep 0.2 - Identify appropriate resources for analysis
Substep 0.3 - Identify core activity areas
Substep 0.4 - Generate preliminary analysis plan

Step 1 - Understand the Problem
Substep 1.1 - Scenario Planning

Choose major scenarios
Map scenarios to core activity areas

Substep 1.2 - Scripting
Define script metadata
Specify each step as initiator-action-participant triplet
Determine participant service
Determine scripting issues
Update scripting issues table
Divide scripts

Substep 1.3 - Build Glossaries
Generate Parties Glossary
Generate Services Glossary

Substep 1 . 4 - Deriving Attributes
Examine scripts for initiator and participant attributes
Generate Attributes Glossaries

Step 2 - Defining Objects
Substep 2.1 - Generate modeling cards

Determine different types of objects
Accumulate attributes
Accumulate provided services
Accumulate contracted services

Step 3 - Classifying Objects and Identifying Relationships
Substep 3.1 - Describe contract relationships
Substep 3.2 - Organize objects into hierarchies

Choose organizing principle(s)
Determine abstractions
Determine specializations
Factor objects
Generate/update reorganization table

Step 4 - Modeling System Dynamics
Substep 4.1 - G e n e r a t e State Definition Glossaries

Determie states associated with each object
Define each ~;tate

Substep 4.2 - Determine object life cycle
Identify events
Organize into life cycle

Substep 4.3 - Determine sequencing of operations

as well as end-user and domain
exper ts- - that can contribute to the
analysis effort. The next substep,
Substep 0.3, is to identify the core
activity areas. These are the major
areas of the system that require
analysis. Identifying these areas will
provide a basis for the scripting
process (discussed in Step 1) and
for work partitioning and parallel
development. One way to identify
these areas is to sketch out the pr/s-
tine life cycle of the system. This is
typically a time-sequenced ordering
of the major activities that occur in
a problem domain.

Another way of determining
core activity areas is to examine the
operation of a current system (elec-
tronic or not), and determine the
major clusters o f behavior. And a
third is to make a guess or use naive
knowledge of the system problem
to identify key high-level tasks that
should be carried out. There is no
requirement that the first-pass core
activity areas survive over time; the
final version is likely to have
evolved over the life of the analysis.
However, it is useful to generate an
initial set to help begin the process.

The last task, Substep 0.4, is to
generate a preliminary analysis
plan. The plan takes the partition-
ing of core activity areas, and estab-
lishes priorities and makes esti-
mates of time and resources for
analysis activities. This plan is inte-
grated into the master project plan.

For the purposes of our exam-
ple, suppose we run an accounting
depar tment in a small software
company that requires automated
support tools. Although several
popular electronic spreadsheets are
commercially available, we feel that
their prices are prohibitive. So we
decide to create the necessary tool
ourselves. The engineering group
is asked to create a limited-func-
tionality spreadsheet application.
Figure 2 contains the general de-
scription and constraints given to
the engineering group, as well as
results f rom Step 0 of OBA.

step 1--Understand the Problem
Once the context has been set, the

S O September 1992/Vol.35, No.9/COMMUNICATIONS OF THE ACM

a r t i c l e s

next step is to determine what the
system is supposed to do, and for
whom and with whom it is sup-
posed to do it. The basic idea is to
specify use scenarios that cover all
possible pathways through the sys-
tem functions. (Jacobson's Ob-
jectory approach also suggests a
similar technique that he calls Use
Cases [7].)

One approach to obtaining the
use scenarios is through a struc-
tured interviewing process. 3 Two
kinds of people are typically inter-
viewed: the users and the domain
experts. Users are the people who
perform some of the activities in
the current system, or who will per-
form activities in the system to be
built. Experts vary, depending on
the type of system. Generally, ex-
perts include the people who have
sponsored the work and who have
expectations about the system, con-
sultants who work in the domain
and are considered knowledgeable,
as well as other developers who are
experts in building systems of the
same type.

In situations in which interview-
ing is either not possible or not de-
sired, the analyst might rely on ex-
isting written documentat ion or
personal knowledge in order to
construct the use scenarios. These
approaches are especially useful
when the problem is an engineer-
ing one, such as creating an elec-
tronic spreadsheet. In the example
of the spreadsheet application, we
identify several example spread-
sheets that we wish to construct.
The use scenarios describe in detail
how the construction of these ex-
ample spreadsheets is carried out.
One such example is provided in
Table 1. In Substep 1.2, we use
scripting and a special script nota-
tion for capturing use scenarios.
This notation is a simple tabular
form as shown in Table 2.

The basic idea behind a script is
directly related to the operational
concept of an object-oriented sys-

SThere are several good references on struc-
tured interviewing techniques, notably from
cognitive psychology and the artificial intelli-
gence communities [11].

Substep 0.1 Goals and object ives
Business Goals

Support the accounting department budget preparation with appropriate
tools by creating a simple spreadsheet manager whose features are a
subset of those available on the personal computing market.

System Features
Presented as lined grid with delineated border
Label rows of cells from 1 to 16384
label columns of cells from A to IZ
Cell can hold arbitrarily large strings, integers, floating-point numbers,

percentages, dollars, and expressions
Expressions cannot contain strings
Currency in expressions are treated as floating point for purpose of

arithmetic evaluation
Expressions can 'not contain cycles
Evaluation of the cells and redisplay is continuous
Main commands are: c'reating new spreadsheet, retrieving one from

file, formatting, file management, and printing
It is possible to select an individual cell or arbitrary two-dimensional

collection of cells
Resource Objectives

Personnel: Donna
Time: 3 person-months

Quality Obiective for Response Time
(this would be one of several quality objectives)
scale seconds to recalculate whole spreadsheet
prerequisite expressions exist in several cells, and at

least one value changed
test carry out calculations for any change in all specified examples
worst 30 seconds
plan 20 seconds
best immediate

Substep 0.2 Analysis resources
User: Accounting Manager, Adam
References: Excel and Lotus 1-2-3 user manuals

Substep 0.3 Core activity areas
* Creation
• Modification
• Calculation
• Save and Load

Substep "0.4 Prel iminary analysis plan
• No users have to be interviewed
• Use a Salary Plan Example (one example is shown in Table 1)
• Script each activity area by creating an example to construct

- Script a path with no errors
- Opening and closing a spreadsheet should include use of files

• Script special situations
- Note possible input errors that could occur
- Note special external events that could occur

tem. Specifically, there are a collec-
tion of entities in the system, each
of which provides a set of well-
defined services that may be used
by other entities. Work gets done
when one entity communicates with
another to notify that an event has
taken place, to provide informa-
tion, to request information, or to
request service. Scripts are de-
signed to capture this information
in the context of a particular use
scenario that defines a sequence of
service requests in order to accom-

F i g u r e | . A simple spreadsheet--Step
0 of OBA

plish some overall task.
In order to unders tand scripts,

we must define our terminology.
We say that a contract is an agree-
ment between two entities such that
one entity will utilize (invoke) a ser-
vice provided by the other. This
definition is similar, but not identi-
cal, to other definitions of contract
in the literature [13]. Two parties
are involved in any contract: the

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 S l

a r t i c l e s

initiator and the participant. The
initiator is the par ty responsible for
invoking the service of another
party. The participant is the party
that provides the service. An action
is a behavior of an initiator that
causes a service invocation on the
par t of the part icipant. A service is a
behavior of the par t ic ipant that can
be contracted for use by another
party. In o ther words, it is a behav-
ior that can be invoked via the avail-
able service interface of the partici-
pant. In this article, unqualif ied
uses of the word service always mean
participant service, which can be de-
scribed as a part icipant 's response

to the question: "What services do
you provide to other parties?" Con-
tracted services are an initiator 's re-
sponse to the question: "What ser-
vices do you contract to use in o rde r
to carry out your behaviors?" The
actions of an initiator indicate its
contracted services.

The columns of a script are la-
beled with the four key terms: initi-
ator, action, part icipant, and ser-
vice. Each row indicates a contract
between an initiator and a partici-
pant. Using Table 2 as the example,
we can in terpre t each row as fol-
lows. In the first row we see that
th ing l (initiator) notifies (action)

Table 1.
A Simple Spreadsheet- -Step 1.1 of OBA

A B C D

1 NEW

2 NAME SALARY %RAISE SALARY

3 Joe $55,000 4% $57,200

4 Mary $60,000 4% $62,400

5 Henry $30,000 4% $31,200

6 Abel $25,000 4.5% $26,125

7 Sam $40,000 4% $41,600

8 Jane $30,000 4% $31,200

9 Betty $25,000 5% $26,250

10 Martha $30,500 4% $31,720

11

12 TOTALS $295,500 $307,695

13 Average Raise 4.2% $1,524

14 Expense Increase $12,195

Table 2.
Script Notat ion

Initiator Action Participant Service

thing1 notifies thing2 thing2 can be notified

thing1 provides Info to thing2 thing2 can accept Info

thing1 requests info from thing2 thing2 can provide Info

th ing1 requests service from th ing2 th ing2 can provide service

thing2 (participant). We in terpre t
this to mean that in the execution of
the use scenario, th ing l wants to
interact with thing2 and, in particu-
lar, it wants to notify thing2 that
something has taken place in the
system. Since we are developing an
object-oriented model of the prob-
lem, the only way thing2 can be
notified is if it provides some ser-
vice that allows it to be notified.
This is deno ted in the four th col-
umn of the script as the partici-
pant 's service. So, th ing l is con-
tracting to use a service of thing2,
and we see this contract invoked
explicitly by the cor responding
action o f th ing l .

A service is not a reaction of the
par t ic ipant to an initiator 's action.
Rather, it is a specification of what
interface the par t ic ipant must pro-
vide in o rde r for the contract to be
fulfilled. Any reaction on the par t
of the par t ic ipant would normally
be the next line of the script. This
next line might have, for example,
the roles o f the initiator and the
par t ic ipant swapped. T h e remain-
ing rows in Table 2 illustrate the
basic forms of contracts that may
exist between an initiator and a par-
ticipant.

Table 3 contains a script for the
spreadsheet example. The first
action listed indicates that a User
(initiator) selects the D 1 cell of the
Spreadsheet (participant). Notice
the content of the service column:
select a cell. In o rde r for the User to
select D1 from the Spreadsheet , it
must be the case (in an object-
or iented system) that the Spread-
sheet provides a service to select a
cell. Services are expressed in a
br ief declarative format.

Each script contains o ther im-
por tan t information, i l lustrated in
Table 3, including:

• Name or Ident i f ier
• Author
• Interviewee(s) or References, if
appropr ia te
• Version or o ther change history
• Precondit ions
• Postconditions
• Trace to a goal, objective, core

5 2 September 1992/Vol.35, No.9/COMMUNICATIONS OF THE ACM

a r t i c l e s

activity, or another script

The name uniquely identifies the
script. The preconditions denote
what must be true in order for the
script to be applicable. The
postconditions denote what is true
of the world as a result o f carrying
out the script to completion. This
information is helpful later in gen-
erating the full system dynamic
model and in determining relation-
ships among the scripts. Pre- and
postconditions are expressed in
terms of state descriptions and ob-
jects. For example, we would ex-
press the notion that an account in
a banking system is overdrawn sim-
ply as "overdrawn (Bank Ac-
count)."

A number of rules, not detailed
in this article, apply when scripting.
(At this point they are only docu-
mented in course notes [9]). Most
important, however, scripts must be
understandable to the interviewees
and other analysts.

Actions in scripts can be marked
to indicate four possible considera-
tions. They are shown here with the
marks we have adopted. Each mark
in the script is uniquely numbered
to reference a note with additional
explanation. Such notes are main-
tained in various tables, in particu-
lar, a Design Issues Table, Analysis
Issues Table, and an External Is-
sues Table.

A? Additional information need-
ed in order to complete anal-
ysis

A > Explained in another script
D Elaborate at design time
E Outside or external to scope

of system

All issues flagged with A? or A >
must be resolved before the analysis
phase is considered complete; is-
sues considered to be outside the
scope of the system should come
under scrutiny during the analysis
review. 4 All issues flagged with D
must be resolved during the design
phase. Once a script is completed,
interviewees or other resources are
consulted to make sure all terms are
meaningful, and the level of detail

T a b l e 3.
A Simple S p r e a d s h e e t ~ S t e p 1 . 2 O f O B A

script Name
Author
version
Precondition
POStCOndltloN
Trace

Initiator

User select D1

User

User

User select A2

User

User

User

User

User

User

User

User

User

User

User

User

User

User

User

User

User

Modlflcation.l.example
Donna
1.0
exists (Spreadsheet), displayed (spreadsheet)
modified (Spreadsheet)
Core Activity--Modification

Action Participant Service

spreadsheet select a cell

type text NEW D1 set content to text

set text style to bold D1 set text style to bold

spreadsheet select a cell

type text NAME A2 set content to text

(repeated select and type B2, C2, D2, A3
text for example) through A10

seleCt Row 2 spreadsheet select a row

set text style to bold Row 2 set text style to bold

extend row height to 34 Row 2 reslze height
plxels

select A12 spreadsheet select a cell

type text TOTALS A12 set content to text

(repeat select and type) A13, A14

seleCt A12:A14 spreadsheet select vertical collection
of cells

set text style to bold A12:A14 set text style to bold

select B3 spreadsheet select a cell

type number 55000 B3 set content to number

choose format $xx,xxx B3 set format to currency

select B3:B10 spreadsheet seleCt vertical collection
of cells

copy first cell Into rest B3:B10 fill down
of cells

select B4 Spreadsheet select a cell

replace 55 by 60 B4 set content to text

(repeat rest of changes) B5:B10

select Column A Spreadsheet select a column

contract column width Column A reslze Width
to 30 plxels

is appropriate to the resources in-
volved.

Many scripts are written when

carrying out a complete analysis.
Creating scripts introduces potenti-
ally new terminology. In Substep

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 S 3

a r t i c l e s

1.3, we create a set of glossaries in
which each new term is defined.
Three specific glossaries are cre-
ated:

• Parties

• Services
• Attr ibutes

Tables 4a and 4b contain versions
of an example parties glossary. The
first version is directly der ived from

T a b l e 4a .
A Simple Spreadshee t - -S tep 1.3 of OBA

Part ies Glossary--version 1

Party Definition Traces

User Modlficatlon.l.example

Spreadsheet Modiflcatlon.l.example

Dt Modifcation.1 .example

A2 Modlfcat lon. l .example

A12 Modiflcatlon.l.example

Row 1 Modification.l.example

A12:A14 Modifcation.l.example

B3 Modlfcatlon.1 .example

B3:B10 Modifcatlon.l.example

B4 Modlflcation.l.example

BS:B10 Modification.l.example

Column A Modiflcatlon.l,example

D1 Modlficatlon.l,example

ROW 2 Modif catlon.l.exam pie

Column A Modlflcation.l.example

Role

I

P

P

P

P

P

P

P

P

P

P

P

P

P

P

T a b l e 4b.
Part ies Glossary--Version 2

Party Definition Traces R01e

User human or other driver of the application Modification.1. I
example

Spreadsheet 2D grid of cells that can contain Modiflcation.l. P
data and formula fo r computing example
(in a nonclrcular manner)

Cell container fo r an element that has a value Modifcatlon.1. P
example

Vertical cell contiguous set of cells from the same Modification.1. P
collection column example

Row collection of cells occupying the full Modification.1. P
horizontal dimension of the grid example

Column P collection of cells occupying the full
vertical dimension of the grid

Modification.1.
example

the script shown in Table 3. T h e
format for the parties glossary de-
fines each initiator or par t ic ipant
name in terms of the role each
par ty plays in the system. In addi-
tion to the role definit ion, each
entry for a par ty includes traces
back to the scripts in which the
par ty is referenced. Associated with
each trace is an indication as to
whether or not the par ty played the
role of an init iator (I), par t ic ipant
(P), or both (I/P).

This example is interest ing in the
sense that the scenario scripted was
very specific in identifying a partic-
ular cell (A2), a part icular row (Row
2), a part icular column (Column A),
or a part icular collection of cells
(A12:A14). The problem state-
ment, including the list of features,
gave more general reference names
we can use to simplify the glossary.
We can therefore choose general
par ty names for the specific partici-
p a n t s - C e l l , Row, Column, Vertical
Cell Collection. These are shown in
Table 4b.

Consistent with our requ i rement
to maintain traceability, we must
keep track of these name generali-
zations. We do this in an Alias Table
consisting of a General or Pre-
fe r red Name and its Aliases, as
shown in Table 4c. The services
glossary, shown in Table 5, contains
a definit ion for each service name,
based on the script action f rom
which the service is derived. Each
service entry includes the list of
part icipants who exhibit the behav-
ior and traces to all the scripts in
which the service was identified.

The final task of Step 1, Substep
1.4, is to derive the attributes of
each par ty in the script, and de-
scribe these attributes along a num-
ber of dimensions. An at tr ibute is a
logical p roper ty of a par ty that is
associated with the requ i rement to
fulfill one or more contracts. I f it is
associated with the initiator, we can
assume the initiator requires the
at tr ibute in o rde r to invoke the ser-
vice. Similarly, if it is associated with
the part icipant , we can assume the
par t ic ipant requires it in o rde r to
fulfill the service.

S4 September 1992/%1.35, No.9/COMMUNICATION$ OF THE A C M

a r S l ¢ l m S

As stated, attributes are logical
and not necessarily physical prop-
erties. This distinction is made clear
by the following example. From a
script, we might conclude that an
at tr ibute of a person is age and that
this person can be asked, "How old
are you?" The assumption that the
person can answer this question
does not imply that age is a physical
at tr ibute (i.e., a stored value). Per-
haps the person stores a birth date
and computes age by taking the dif-
ference between the current date
and the birth date. The decision as
to how a logical at tr ibute is physi-
cally realized is a design issue. The
relationship between the party and
its attribute, however, is an analysis
issue. Knowing the semantics of this
relationship will provide the de-
signer with information needed to
make decisions regard ing a physical
implementat ion.

A common practice at analysis
time is to draw some form of se-
mantic net d iagram that represents
parties and attributes as nodes, and
the relationships among them as
named arcs. Many of the published
notations make special provisions
for showing composition (a.k.a.
whole-part) and cardinality [2, 3,
10]. The benefit of doing this is to
provide a graphical perspective of
parties and their attributes, a per-
spective that can be effective at
communicat ing the relationships.

The graphical d iagrams are use-
ful, but not sufficient in the sense
that it is difficult to communicate
the total essence of the relationship
between a par ty and its at tr ibute
using a single word descriptor. In
the past, we tried to define a small
set of relationships between objects
and their a t t r ibu tes - -names such
as: "knows-about," "communicates-
with," and "has-as-part." We con-
cluded that no such small set exists
that adds real value to captur ing
the deep semantic relationships and
at the same time can be used by the
designers to specify the deliverable
system. Our current approach is to
capture dimensions of the relation-
ship in an extensible table format,
the at tr ibute glossaries, as illus-

t rated in Table 6. When desired, we
can augment these with diagrams
that, in fact, can be generated from
the glossaries.

The re is an at tr ibute glossary for
each party that has identif ied attri-
butes. We require separate glossa-
ries because attributes are private to
each party, and common vocabu-
lary at this level is not meaningful .
Table 7 describes the purpose of
individual columns, in particular, to
capture the relationship between

Table 4¢.
AUasTable

General or
Preferred Name

Cell

Vertical Cell
ColleCtion

Row

Column

Aliases

A2, A12, B3, B4, D1

A12:A14, B5:B10

Row 1, Row 2

Column A

the at tr ibute and service contracts.
Note that the rows of this table are
in terpre ted by designers to make
decisions about the physical struc-
ture of the system.
In each case, ra ther than saying
simply "yes," more specific infor-
mation should be provided. For
example, which contract, the name
o f the accessor or mutator service,
or the cardinality or constraint of
the type of collection. Attr ibutes for
only one party identif ied in the ex-
ample script of Table 3 are shown
in Table 6.

As the process of scripting con-
tinues, it is impor tant to have the
interviewees and analysts work to-
gether to agree on the semantics for
each o f the entries in the three
kinds o f glossaries. This assists
everyone in unders tanding the
problem domain. All scripts must
use the same name when refer r ing
to the same action, initiator, partici-
pant, or service, or a def ined alias.
Skilled analysts act as facilitators to
win consensus on these definitions.
The purpose of obtaining this con-

sensus is to de te rmine a unique and
persistent descript ion for each as-
pect of the system. Performing this
normalization of vocabulary pros-
pectively gives a first-pass enforce-
ment o f polymorphic protocols
(that is, it identifies the common
message names to be shared by dif-
ferent objects). 5

It is possible that a data-or iented
analysis approach or an enterprise-
wide analysis has already been car-
r ied out before OBA is started. In
such cases, it is likely that a vocabu-
lary for any aspect of the analys is - -
initiators, participants, services, or
a t t r ibu tes - -has already been deter-
mined. The challenge then is to
start with the glossaries, fill them
out based on the pr ior non-OBA
analysis, and then devise scripts
that suppor t the decision to include
each aspect.

step 2uDef lne Objects
Up to this point, we have created
use scenarios that describe core ac-
tivities, and whose content is based
on interviews, example construc-
tions, or references (experts or
written materials). We have cap-
tured these scenarios of how things
should work, and presented them
in the form of scripts. The scripts
are l inked together by matching
postc0nditions with precondit ions,
giving a larger picture of how ac-
tions might progress in the system.
In doing so, we identify a number
of parties that act as ei ther initi-
ators, part icipants or both. In addi-
tion, we identify the contracts and
the required part ic ipant services, as
well as the logical proper t ies of the

awe assume that analysis is carried out in the
context of a project process model which in-
cludes a system of periodic reviews.

Sin other words, we are obtaining a common
vocabulary incrementally and iteratively as
part of working with the end users to obtain
understandable scripts. The incremental
building of the glossaries provides multiple
interviewers with the basis for shared termi-
nology with end users, rather than making up
new words that then need to be renegotiated.
This avoids the need for a post-normalization
pass over the results of the scripting to clean
up terminology and arrive at a common vo-
cabulary. This yields a set of objects with poly-
morphism already specified.

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 ~ S

parties needed to invoke or carry
out services. We are now ready to
select the parties that should be
analysis objects. 6

To do so, we first note that initi-
ators that are no t part ic ipants will
also no t be objects. This is a conse-
quence of the very def in i t ion of
ob j ec t s - - t ha t objects are in par t
de f ined by a wel l -def ined service
interface. Parties that are no t par-
t icipants have no service interface.

6We call these "analysis objects" to raise the
issue that in fact these are the objects that di-
rectly map to the problem space. Not all of
these objects will necessarily remain once the
design is completed; moreover, new objects
will typically be introduced during design to
support particular architecture and imple-
mentation decisions.

Typically these initiators reside jus t
outside the scope of the cu r r en t sys-
tem, or r ight on the bounda ry .
T h e y are in te res t ing in the context
o f the analysis because they con-
tract to use the services of objects
inside the scope of the system. To
this end , they help ident ify the ser-
vices of these objects.

Any par ty that provides a service
is a potent ia l object. T h e r e are sev-
eral cases to consider :

1. Part ic ipants that are no t initi-
ators. These are usually data-store
objects that provide behavior for
accessing and m u t a t i n g stored val-
ues.

2. Part icipants that n a m e a collec-

t ion of objects. For example , in an
automat ic bank teller domain , the
par t ic ipant Bank System may really
be the n a m e of a collection of f iner-
gra in objects. As such, Bank System
itself may no t be an object in the
system, bu t ra the r the n a m e of an
aggrega t ion of objects.

3. Part icipants that are also initi-
ators and do no t appea r to be over-
b u r d e n e d with respect to their
roles/responsibilit ies. These will be
the most a b u n d a n t objects. Note
that we use the no t ion of overbur -
d e n i n g to raise the ques t ion as to
whe the r the par t ic ipant may really
be n a m i n g several objects.

W h e t h e r or no t a par t ic ipant is

l~llble S.
A Simple s p r e a d s h e e t m s t e p 1.3 of OBA

Services Glossary

Service

select a cell

set content to tex t

set content to number

select a row

set tex t style to bold

resize height

select a vertical
collection of cells

Definition Participants Traces

select a single cell and make It the Spreadsheet Modification.1.
current selection example

set the contents of a cell to be a Cell Modification.1.
Text example

set the contents o f a cell to be a Cell Modification.1.
number such as a FlOat or Integer example

select a row o f cells and make It the Spreadsheet Modification.1.
current selection example

Cell set the tex t style to a bold
emphasis

change the height of a given
row

select a partial column of cells and
make it the curent selection

Modification.1.
example

Row Modification.1.
example

Vertical Cell
Collection

ROw

Spreadsheet

Modification.1.
example

Modlf lcatlonA.
example

Modif lcatlonA.
examPle

set fo rmat to set the format as Currency Cell Modification.1.
currency example

fill down Vertical Cell
Collection

replace remaining contents of each cell
In vertical selection With replication
Of f i rst cell in the selection

select a column of cells and
make It the current selection

seleCt a column Spreadsheet

Modification.1.
example

Modification.1.
example

reslze width change the width of a given Column Modification.1.
column example

S 6 September 1992/Vol.35, No.9/COMMUNICATIONS OF THE ACM

a F t i c l e s

T a b l e 6.
A Simple S p r e a d s h e e t ~ S t e p 1.4 o f OI IA

A t t r i b u t e GlOSSary~ROW

Multi/Single Range of state
Name Definition contract Accessor Mutator Value Values Defn

height height of the none none reslze row single Integer no
row In number height 24 .. 1024
of plxels

format Interpretation none none set format single $xx,xxx no
of the contents

style presentation of none none set style single bold no
contents

overburdened is a question of the
number o f roles the part icipant is
playing as reflected in the diversity
of services. In the spreadsheet ex-
ample, we might imagine that the
spreadsheet object is given respon-
sibility for managing the 2D array
of cells and, in addit ion, manages
the format and style o f each of the
cells. Our scenario steered us to as-
sign responsibility for format and
style to the cell. I f we had written
the scenario differently, however,
we might have found ourselves with
an overburdened spreadsheet and,
at this step, recognized the prob-
lem. We would then iterate back to
Step 1 in o rde r to de termine an
appropr ia te change. The re are no
concrete rules other than to make
sure that services of an object relate
reasonably to one another and to
the in tended role of the object.

To begin organizing the infor-
mation we gathered in Step 1, we
have adapted the idea of CRC cards
as a technique for captur ing infor-
mation related to a proposed object
[l , 13]. However, we have ex-
panded the information content of
the cards, and set up pr ior steps so
that the initial cards can be fully
generated from information con-
tained in the glossaries. We call
these Object Modeling Cards. As
shown in Figure 3, they contain:

• Name of the object
• Names of the objects f rom which
attributes and behaviors are inher-
ited
• Informat ion and behaviors

added by the object
• Attr ibutes identif ied with the

object
• Services provided by the object
• Services contracted by the ob-

ject
• Card trace

All names in the Object Model-
ing Card must agree with the
names in the glossaries. So far, in
Steps 0 -2 , we have specified inheri-
tance of nei ther attributes nor be-
haviors. This will be done in Step 3.
When the par ty acts as a partici-
pant, we list the services provided.
I f the par ty also serves as an initia-
tor, we capture the contracted ser-
vices (i.e., those services the party
expects to be fulfilled by others).
In format ion about contracted ser-
vices is logically done in Step 3,
where we identify object relation-
ships.

The re are four traces on the Ob-
ject Modeling Card. The first refer-
ences the script in which each attri-
bute was identified. The second

references a script action in which
an initiator invoked a part icular
service from this object. And the
third trace references the script in
which the object, as initiator, re-
quested action of another partici-
pant, and thereby specified a ser-
vice to be contracted.

Fourth, we need a trace for the
card itself. By default , this trace is
blank to indicate that the card was
initiated by the analyst as a way to
summarize already obtained infor-
mation. A change to this fourth
trace occurs only in Step 3. In addi-
tion to the four traces, there is in-
formation about the Object Model-
ing Cards that has to be retained,
for example, versioning informa-
tion.

As noted in pr ior steps, it is pos-
sible that a pr ior analysis was car-
r ied out before OBA, and that the
outcomes from this analysis are to
be utilized. One possible situation is
that a domain analysis has been
completed with the basic objects
already proposed. In this case, the

T a b l e 7.
Descr ipt ion o f Columns In an A t t r i b u t e Glossary

Column Description

Name
Definition

Contract
Accessor
Mutator
Multi/Single

Value
State-Definition

A unique name for this attribute in the context of the party.
An unambiguous definition of the attribute In the context

of the containing party.
Does the party have any contracts with the attribute?
DOeS the party provide a service for accessing the attribute?
Does the party provide a service for mutating the attribute?
Does the attribute denote a collection of values In the

context of the party?
Is the attribute used to define states of the party?

COMMUNIC:ATIONS OF THE ACM/September 1992/Vol.35, No.9 57

entry point for OBA analysis can be
Step 2, to create Object Modeling
Cards for the (already) proposed
objects. Then it is necessary to iter-
ate back to Step 1, to create scripts
that suppor t the proposal and to
create the glossaries. It might be
possible to reuse the scripts and
glossaries f rom the domain analysis
if it were conducted using OBA. In
ei ther case, by i terat ing back it is
possible that some of the proposed

F igure 3. A simple spreadsheet--Step
2 of OBA

F igure 4. A simple spreadsheet--Step
3.1 of OBA

objects will be el iminated and oth-
ers added.

Step 3--Classify Objects and
Identify Relationships
The tasks in Step 3 involve applying
a set of techniques to identify rela-
t ionships among objects. Applying
these techniques enables us to fill in
the blanks left over f rom Step 2 in
o rde r to complete the Object Mod-
eling Cards:

• Contracted Services
• Card Trace
• Inheri ts From

The purpose of Substep 3.1 is to

O b j e c t M o d e l i n g Card

Name of Object Row
Inherits From
Version 1.0

Attributes/
Logical Properties Traces

t style t Modification.l.example
height Modification. 1 .example

Provided Services Traces
I set text style to bold Modification. 1 .example

resize height Modification. 1 .example

Contracted
Services Objects Traces

I I I I

Card Trace

Contractual Relationships

-provide information
m-request action w

-provide information
m-request action

-provide information
m-request action v

-provide information
---request action ,~-

-provide information
m-request action ,."-

set context
set text style
set format
delete
create copy
set selection paste
change height cut out undo
change width insert
save on file print
open from file terminate
set format
fill down
till right
delete

set text style
set format
change height
delete

set text style
set format
change width
delete

describe the contractual relation-
ships among the objects. Inclusion
of contracts in the Object Modeling
Card serves two purposes. First, it
allows us to derive the relationships
between this object and other ob-
jects in the system. In object-
or iented terms, this contractual re-
lationship is essentially a statement
that the object sends a message to
another object for the purposes of
obtaining information, providing
information, request ing action, or
notifying that some event has oc-
curred. The second purpose is to
avoid errors that result when one
object expects a service of another ,
but no object has taken responsibil-
ity for that service.

For each Object Model ing Card
created in Step 2, we capture the
contracts the object expects to be
fulfilled by others. An illustration
of contractual relationships, par-
tially der ived f rom Object Model-
ing Cards for the spreadsheet ex-
ample, are shown in the d iagram of
Figure 4. In o rde r to provide this
and subsequent examples, we as-
sume that more scripts have been
created, and a more complete set of
objects has been identified.

We are now ready for Substep
3.2 in which we apply several tech-
niques we refer to as reorganization
techniques. The goal is to determine:

• services common to two or more
objects, and to create an object that
captures the shared descript ion o f
these services
• logical proper t ies common to two
or more objects (by examinat ion of
at tr ibute glossaries) and, again, to
create an object that captures the
shared descript ion of these attri-
butes
• services or logical proper t ies of
one object can be described as a re-
f inement of the services or logical
proper t ies of another object
• an object assigned mult iple re-
sponsibilities (in terms of its pro-
vided services), and to factor these
into a separate object for each area
of responsibili ty

The first two techniques are called
abstraction, the third specialization,

5 8 September 1992/Vo1.35, No.9/COMMUNICATIONS OF THE ACM

a r t i c l e s

and the fourth isfactorization. As an
outcome of applying these tech-
niques, we create new objects and
their associated model ing cards.

We must maintain traceability
despite the introduct ion of new ob-
jects by the application of these
techniques--objects that do not
appear in the scripts. In o rde r to
keep track of the rationale for any
change, we create a special reorga-
nization table, as shown in Table 8.
Each entry lists the type of tech-
nique, which existing objects were
inputs to the technique, and which
resulted as outputs. The trace con-
tains a justification for the reorga-
nization. I f the decision comes
under reconsiderat ion at a later
date, captur ing why it was made
can help in avoiding change errors.

Reorganization can create new
objects. New Object Modeling
Cards must therefore be created.
The Card Trace on any new card
indicates how it was created by ref-
erencing the appropr ia te entry in
the table of Reorganization Tech-
niques. I f the new object is a spe-
cialization of another object so that
it inherits its services from this
o ther object, then this relationship
is recorded in the "Inheri ts From"
field of the Object Modeling Card.
Similarly, any new version o f an
existing object, which recasts itself
as inheri t ing from a new object, will
record the inheri tance relationship
in this field of the new version of its
Object Modeling Card.

We continue with the spread-
sheet example, in which we identi-
fied objects we named Cell, Row,
and Vertical Cell Collection. From
Figure 4, we see that Column and
Vertical Cell Collection both share
services to delete and to set the for-
mat of the selected cells. Based on
the geometry of 2D grids, we un-
ders tand a Column to be a special
case of a Vertical Cell Collection; a
Column consists of all the cells in
the full height of the spreadsheet .
Thus we can specify that a Column
is a specialization of a Vertical Cell
Collection, and allow Column to
inherit the delete and set format
services. We create a new Object

Modeling Card for Column indicat-
ing that it inherits from Vertical
Cell Collection. Two services speci-
fied in Vertical Cell Collection, set
format and delete, are inheri ted by
Column. We note that one other
service, fill down, is now a service o f
a Column, and that the Column
serv ice- -change w id th - - can rea-
sonably be provided as a service of
Vertical Cell Collection as well.

Imagine that after fur ther script-
ing (not shown) we had also def ined
a Horizontal Cell Collection. Simi-
larly, then, we de te rmine that a
Row is a specialization of a Hori-
zontal Cell Collection. Next, we
notice that a Spreadsheet provides
the service for setting a selection,

which could be any one of a Cell, a
Row, a Column, or more generally,
any Vertical or Horizontal Cell Col-
lection. Thus, it is possible to relate
the descriptions of these objects to
the more abstract notion of a Selec-
tion. It is possible to set the text
style or format of any Selection.
Again, Object Modeling Cards for
new objects or new versions of ob-
jects are created, clearly specifying
these relationships and assignment

Figure 5. A simple spreadsheet--Step
3.2 of OBA

Figure iS. A simple spreadsheet--Step
4.2 of OBA

Organizational Relationship Diagram

change height change width

Harel S t a t e c h a r t - S p r e a d s heet

Modification State Selection State

¼

T1 T4

¼
T1 - All scripts whose postconditions contain a clause of the form

not modified(Spreadsheet)
T2 - All scripts whose postconditions contain a clause of the form

modified(Spreadsheet)
T3 - All scripts whose postconditions contain a clause of the form

not selected(Spreadsheet)
T4 - All scripts whose postconditions contain a clause of the from

selected(Spreadsheet)

COMMUNICATIONS OF THE AOM/Septenaber 1992/Vol.35, No.9 S 9

 o'e

of service responsibilities.
Now that we have a collection of

Object Modeling Cards, we might
wish to see the relationships in a
graphical form. Various objeclL rela-
t ionship d iagramming notations,
such as those r ecommended by
Booch or Rumbaugh et al., can be
used at this point [2, 9]. Figure 5
presents a d iagram of the objects
and their relationships, represent-
ing the outcome o f Substep 3.2.

Step 4 - -Model System Life Cycles
U p to this po in t , we have dea l t w i th
static views of the system we are
analyzing. These identify the struc-
ture o f the system at a single point
in time, that is, what behaviors the
system contains, which objects are
responsible for these behaviors,
and any relationships among ob-

jects.
Step 4 o f OBA is concerned with

model ing system dynamics, that is,
those aspects of the system that
change over time. The system will
carry out behaviors in response to
events, in a prescr ibed order . Ob-
ject states, events, and the o rde r in
which behaviors occur must be
clearly represented.

The states associated with an ob-
ject are def ined in Substep 4.1.
States are used to represent a situa-
tion or condit ion of an object dur-
ing which certain physical laws,
rules, and policies apply (this defi-
nition comes f rom [12]). Changes in
state typically result in changes in
the behavior o f one or more objects
in the system. Suppose, for exam-
ple, that our scripting indicates that
there is an application for loading

Table 8.
A Simple spreadsheetmstep 3.2 o f OBA

Reorganizat ion Techniques

l~/pe of
ID Inputs Outputs Traces Technique

1 Column, ver 1 Column, ver 2 Column is a kind Specialization
Vertical Cell Vertical Cell of Vertical Cell
Collection, ver 1 Collection, ver 1 Collection

2 Row, ver I Row, ver 2 Row Is a kind of Specialization
Horizontal C e l l Horizontal Cell
collection, ver 1 Collection

3 Abstraction Cell, ver 1
Vertical Cell
ColleCtion, ver 1
Horizontal Cell
COllection, ver 1

Selection, ver 1
Cell, ver2
Vertical Cell
Collection, ver 2
Horizontal Cell
Collection, ver 2

Selection holds
common servlces
for Cell or a Cell
ColleCtion

Table 9.
A Simple Spreadsheet - -Step 4.1 o f 0BA

State Definit ion Glossary

state Definition Description Traces

has selection current selection used to Indicate modification.9
not equal to nil when a selection .example

has been made precondition
(script not
shown)

modified for all cells c, there used to indlcate modification.9
exists at least one that some aspect .example
c such that the c is of the spreadsheet postconditlon
modified has been changed

since the last save

and saving spreadsheets. Whenever
the user tries to exit, the applicat ion
determines whether or not the
spreadsheet was modif ied since it
was last saved and, if so, offers to
save before exiting. Thus, the state
of the sp readshee t - -mod i f i ed or
no t - -a f fec t s the behavior of the
application.

The states o f objects are deter-
mined from script pre- and
postcondit ion expressions. Expres-
sions are composed o f a collection
of clauses, each o f which is in turn
composed f rom a state descript ion
and object pair. T h e first pass of
de te rmin ing the interest ing states
of an object is to search all pre- and
postcondit ion expressions for
clauses that contain the object. The
state definit ion is not complete until
all such clauses have been consid-
ered. Conversely, if we have knowl-
edge of the problem domain that
indicates a state condit ion has not
been accounted for, we have evi-
dence to believe that scripting has
not been completed, and we should
iterate back to Step 1.

Notice that in Table 3, the origi-
nal script for creat ing par t of the
example spreadsheet , we identif ied
the postcondit ion to be modif ied
(Spreadsheet). This was our first
hint that the spreadsheet has a state
cond i t i on - -mod i f i ed or n o t - - t h a t
could affect its behavior or that o f
o ther objects.

Each state of an object is def ined
in terms of a Boolean function over
attr ibutes and values. Suppose a
Spreadsheet has the state condit ion
"has selection." Fur the r suppose
the Spreadsheet has an at tr ibute
called cur ren t selection. The state
condit ion, then, is def ined to be
"current selection not empty."

An object can exist in a set o f
nonover lapping states. For exam-
ple, it makes sense to say a Spread-
sheet is modif ied or not, and has a
selection or not (we assume that a
selection alone does not constitute
modification). These states are
nonover lapping in the sense that
ei ther state can change without nec-
essarily affecting the other.

A State Definition Glossary, as

60 September 1992/Vol.35, No.9/COMMUNICATIONS OF T H E ACM

a r t i c l e s

shown in Table 9 for the Spread-
sheet, is created for each object that
undergoes state changes that affect
its behavior. Each glossary contains
the name of a given state, its associ-
ated definit ion and description, as
well as trace information.

In Substep 4.2, we de termine the
life cycle of each object for which
we created a State Definition Glos-
sary. The life cycle describes how
an object moves from state to state
in response to events. In an object-
or iented system model, an event
conceptually occurs any time one
object invokes a service in another
object. This conceptual view of an
event is too fine a level of granular-
ity to help us model and eventually
construct a workable system. From
this point of view, we would con-
clude that even the most trivial ser-
vice invocation causes one or more
objects to experience state changes.
Since this is not true in practice, we
prefe r to view an event as an occur-
rence or change in the system or
environment that causes one or
more objects to experience a state
change that consequently affects
the behavior of the system.

So flow do we find events? The
answer lies with the scripts. Scripts
are groupings of activities that can
be viewed as singular events. More
important , we know that the invo-
cation of a script will cause one or
more objects to move f rom one
state to another as def ined by the
pre- and postconditions of the
script. Using scripts as events, and
pre- and postcondit ion clauses as
state definitions, we are able to con-
struct the life cycle of a given object.
Because an object may simultane-
ously exist in more than one state,
we, like [10], have opted to use
Harel 's Statechart notation [5] as a
means of describing the life cycle.
Figure 6 contains an example use of
Harel 's Statechart.

In constructing an object's life
cycle, we may de termine that a
meaningful state is not current ly
represented. As ment ioned earlier,
this is an indication to re turn to the
scripting process. However, we may
not have to generate new scripts but

perhaps we need to divide existing
scripts. This would occur if an ob-
ject enters an interest ing state in the
middle of a script. In o rde r to make
this state explicit, we divide the
script and capture the interest ing
state in the postcondit ion of one
script and the precondi t ion o f an-
other.

Finally, many system s are highly
event-driven. As such, it might be
apparen t from the onset of the
project what types of events the sys-
tem must handle. This information
might prove quite useful in deter-
mining which scripts to generate.

In Substep 4.3, we de te rmine the
sequencing of operat ions within the
system, otherwise re fe r red to as
control flow. We define control
flow as the aspect of a system that
describes the sequences o f opera-
tions that occur in response to an
event. Up to this point, we have
been working under the assump-
tion that the default o rder ing is
sequential. This is inherent in the
notat ion we chose for scripts, which
happens to present them in a fash-
ion that leads to a sequential inter-
pretation. The re are, however,
many other order ings that may be
appropr ia te and/or required. For
example, lines in a script could be
executed concurrently, repetitively,
selectively, or optionally.

Our goal in handl ing control
flow is to capture the t rue con-
straints on order ing. I t has been
our experience that over-constrain-
ing the o rde r in which activities
take place within a system is one of
the principal causes of change re-
quests in big systems. For example,
if there are 5 activities that must
take place, and the o rde r in which
they take place does not matter,
then there are 5! or 120 ways to
execute these activities. I f we jus t
assume sequential execution, then
we have chosen 1 out o f the 120
potential execution paths. Over
time, it is likely that some change
request will occur to suppor t one or
more of the 119 execution paths we
neglected. I t may be difficult to ac-
tually build a system that supports
all 120 pathways, but that is a de-

sign t rade-off issue. At analysis time
we are interested in captur ing the
true constraints so that designers
unders tand what is required and
what is optional.

In o rde r to capture the true con-
straints on order ing, we need to
annotate the scripts we created,
unless we believe that sequential
o rder ing is an appropr ia te default.
What is .needed is a notation that
can capture the different types o f
o rder ing we might desire. Several
are available: Petri Nets [8], Action
Diagrams [8], and Statecharts [5].
Our enhancement is to associate a
d iagram with each script such that
the d iagram describes the o rder ing
of the activities within the script.

Past, Present and
Future of OBA
The OBA methodology has been
evolving for the past two years. Its
original incarnat ion was as a series
of seminars p roduced by ParcPlace
Systems. These seminars have
evolved into a 31/2-day course of-
fered by ParcPlace Systems. During
the past 11/2 years, approximate ly
one thousand people have a t tended
this course or variants taught in
Nor th America, Europe and Aus-
tralia. The i r numerous suggestions
have helped the methodology grow
into its cur rent form.

A number o f organizations have
successfully appl ied the full OBA
approach from the onset of their
projects, eventually yielding results
coded in both Smalhalk and C+ +.
They typically reused off-the-shelf
tools to suppor t the analysis effort.
The lack o f specialized, integrated
tools has de te r red organizations
from using OBA on large-scale ef-
forts. This is current ly changing.

A prototype set of tools is cur-
rently under deve lopment with a
ParcPlace client in the manufactur-
ing sector. This prototype is being
developed in Objectworks\Small-
talk Release 4 and fully supports
the OBA approach. At the time of
the writing of this article (May,
1992), the prototype is being tested
in a number o f organizations who
have been t rained in OBA. Based

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 61

on the outcome of the tests, we will
de te rmine revisions to both the
methodology and the correspond-
ing tools, which can then be made
more broadly available.

Summary
This article discussed a methodol-
ogy for analysis that we call Object
Behavior Analysis. By using this
approach, the following artifacts
are created:

• Scripts
• Glossary o f Party (Initiator-
Participant) Names
• Glossary of Participants ' Services
• Glossaries of Attr ibutes
• Glossary o f State Definitions
• Object Modeling Cards and vari-
ous Object Relationship Diagrams
• System and Object Life Cycle
Diagrams

In this article we a t tempted to pro-
vide an overview of a behavioral

T h e
T i m e
H a s
Come.
. . . to s e n d f o r t h e l a t e s t
c o p y o f t h e f r e e
C o n s u m e r I n f o r m a t i o n
C a t a l o g .

I t l i s t s m o r e t h a n
2 0 0 f r e e o r l o w - c o s t
g o v e r n m e n t p u b l i c a t i o n s
o n t o p i c s l i k e m o n e y ,
f o o d , j o b s , c h i l d r e n ,
c a r s , h e a l t h , a n d f e d e r a l
b e n e f i t s .

S e n d y o u r n a m e a n d
a d d r e s s to :

C o n s u m e r I n f o r m a t i o n C e n t e r
D e p a r t m e n t TH
P u e b l o , Co lorado 8 1 0 0 9

A p u b l i c se rv ice of t h i s p u b l i c a t i o n a n d
t h e C o n s u m e r I n f o r m a t i o n C e n t e r of t h e
II.S. G~ne ra l Services A d m i n i s t r a t i o n

approach to object-oriented analy-
sis. Our emphasis was on describing
how, through this approach, it is
possible to start from clearly stated
system goals and objectives, to work
with experts and end users to cap-
ture system requirements , and to
turn these potentially ambiguous
requests into a statement of re-
quirements that are expressed in
terms of objects, object relation-
ships, and system dynamics, and
that can be fully just i f ied in terms
of the original goals.

Acknowledgments
Our thanks to Vicki Katzman for
assisting in the deve lopment of our
ideas and of this article in particu-
lar, and to Brian Alexander for his
editorial assistance. []

References
1. Beck, K. and Cunningham, W. A

laboratory for teaching object-
oriented thinking. In OOPSLA '89
Conference Proceedings, ACM
SIGPLAN Note 24, 10 (Oct. 1989).

2. Booch, G. Object Oriented Design with
Applications. Benjamin/Cummings
Inc., Redwood City, Calif., 1991.

3. Coad, P. and Yourdon, E. Object-
Oriented Analysis. Yourdon Press,
Englewood Cliffs, N.J., 1990.

4. Gilb, T. Principles of Software Engi-
neering Management. Addison-
Wesley, Reading, Mass., 1988.

5. Harel, D. Statecharts: A visual for-
malism for complex systems. In Sci-
ence of Computer Programming. Vol.
8, No. 3, North Holland, 1987,
pp. 231-274.

6. IFPUG. International Function Point
Users Group: Function Point Counting
Practices Manual. Release 3.1, Jan.
1991.

7. Jacobson, I. Object-Oriented Software
Engineering. Addison-Wesley, Read-
ing, Mass., 1992.

8. Kowal, J.A. Behavior Models: Specify-
ing User's Expectations. Prentice Hall,
Englewood Cliffs, N.J., 1992.

9. ParcPlace Systems. Object-Oriented
Methodology Course Notes. ParcPlace
Systems, Inc., Sunnyvale, Ca., 1992.

10. Rumbaugh, J., Blaha, M., Premer-
lani, W., Eddy, F. and Lorensen, W.
Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs,
N.J., 1991.

11. Scott, A.C., Clayton, J.E., and Gib-
son, E.L. A Practical Approach to

Knowledge Acquisition. Addison-
Wesley, Reading, Mass., 1991.

12. Shlaer, S., and MeUor, S.J. Object
Lifecycles: Modeling the World in
States. Yourdon Press, Englewood
Cliffs, N.J., 1992.

13. Wirfs-Brock, R., Wilkerson, B. and
Wiener, L. Designing Object-Oriented
Software, Prentice-Hall, Englewood
Cliffs, N.J., 1990.

CR Categories and Subject Descrip-
tors: D.2.1 [Software]: Software En-
gineering--requirements/specifications;
D.2.10 [Software]: Software Engi-
neering-design; 1.6.0 [Computing
Methodologies]: Simulation and Mod-
eling-general; 1.6.3 [Computing Meth-
odologies]: Simulation and Modeling
--applications; K.6.3 [Computing
Milieux]: Management of Computing
and Information Systems--software
management; K.6.4 [Computing
Milieux]: Management of Computing
and Information Systems--system man-
agement

General Terms: Design, Methodology
Additional Key Words and Phrases:

Analysis, Modeling

About the Authors:
KENNETH S. RUBIN is manager of
professional services for ParcPlace Sys-
tems. Current research interests include
successful software development in
large organizations, by developing and
communicating object-oriented meth-
odologies related to the analysis, design
and project management.

ADELE GOLDBERG is Chairman and
Founder of ParcPlace Systems, provid-
ing the technology direction fbr the
company and therefore focusing on
understanding and delivering both the
form and substance of object-oriented
technology.
Authors' Present Address: ParcPlace
Systems, 999 East Arques Ave., Sunny-
vale, CA 94086-4593; emaih {krubin,
adele}@parcplace.com

Permiss ion to copy wi thou t fee all or pa r t of
this ma te r i a l is g r a n t e d p rov ided tha t the
copies are not m a d e o r d i s t r ibu ted for d i rect
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0900-048 $1.50

62 September 1992/%1.35, No.9/COMMUNICATIONS OF THE ACM

