
8/27/2008 CS371P - Fall 2008 1

Overview Lecture

Course - CS371S

Instructors: Jim Browne and William Cook

Course Overview

Model Driven Development Overview

Executable UML Overview

Tool Overview

8/27/2008 CS371P - Fall 2008 2

Overview Lecture

Course Overview

• Design of Software Systems
• Analysis of Software Systems
• Topics

– Design Representations
– Design Extraction and Refinement
– Design Capture
– Design Analysis

• Key Concept – Executable Design
Specifications

8/27/2008 CS371P - Fall 2008 3

Overview Lecture

Issues to be Resolved

• What is a software system?
• How will we represent a software system?
• How will we analyze our system to be sure it is

does what it is supposed to do?
• How will we maintain and extend our software

system?
• How will we connect with mainstream

languages and systems?

8/27/2008 CS371P - Fall 2008 4

Overview LectureIssues to be Resolved

• What is a software system?
– Answer – A set of interacting entities.

• What must we specify?
– The entities and their interactions

8/27/2008 CS371P - Fall 2008 5

Overview LectureIssues to be Resolved

• How will we represent a software system?
– Answer – In a language which captures the states

and behaviors of entities
• What are examples of such languages?

– Executable UML is one.
– There are several others

8/27/2008 CS371P - Fall 2008 6

Overview LectureIssues to be Resolved

• How will we analyze our system to be sure it is
does what it is supposed to do?
– We will state a set of properties the system must

have and the set of environments in which the
system will exhibit these behaviors.

• How will we represent properties and
environments?
– In the same language as the design capture

language.

8/27/2008 CS371P - Fall 2008 7

Overview LectureIssues to be Resolved

• How will we maintain and extend our software
system?
– In the same way we developed it.

8/27/2008 CS371P - Fall 2008 8

Overview LectureIssues to be Resolved

• How will we connect with mainstream
languages and systems?
– Compile the design representation to a

conventional imperative language such as Java or
C++.

8/27/2008 CS371P - Fall 2008 9

Overview Lecture

Problems with Conventional Approach

• Representation is has low level semantics
conceptually far removed from application
domains. Which means that:
– Executable representation is not readily readable or

analyzable.
– Analysis for properties is in low level terms.
– Human understandable representations must be

created separately.

8/27/2008 CS371P - Fall 2008 10

Overview Lecture

Approach of this Course

• Represent system in executable design level
representation.
– Design capture is direct from requirements
– Design representation and executable

representation are one and the same.
– Analysis is of the design.
– Maintenance and extension are in design

representation.

8/27/2008 CS371P - Fall 2008 11

Overview Lecture

Illustration

• You have graduated and are at work. Your
boss gives you an English requirements
specification and says “ Develop a system in
Java implementing these specifications.
Provide documentation which is
understandable to those who don’t read code.
Prove to me it is correct. ”

8/27/2008 CS371P - Fall 2008 12

Overview Lecture

Illustration - Requirements

• Reservation System for Avis Rent a Car
• Avis has a set of offices in a set of cities. Each city/office pair has a set of cars available for rental. Each car is belongs to a

rental class. A rental class has a model name, a manufacturer and a base daily rental price. Each car belongs to some rental
location but may at any given time be in some other location.

• Avis is putting in a web-based reservation system. Customers request a reservation for a specific class of car in some city at
some location for some span of dates and specifying a location to which to return the car. Many customers may be
simultaneously attempting to make reservations. Requests are accepted in FIFO order. A customer either gets the class of
car desired or a notification that a car in the rental class he/she requested is not available. The customer will sometimes then
request another class of car. If the customer accepts the available rental car then he/she then presents a credit card against
which the rental charges will be made. The system obtains an authorization from the credit card company for the expected
charge. The rental is denied if the credit card company refuses to authorize the charge.

• If a customer has requested to return the rental car to a location different from the renting location then the system will
choose a car belonging to the return site if one is available at the rental site.

• A reservation may be cancelled before its initiating date and time. When the customer picks up the car a rental is initiated. A
rental may be extended while the customer is in possession of the car. If a car has not been returned 24 hours after the
scheduled date and the customer has not requested an extension the car is reported to the local Police Department of the
location as being missing or stolen.

• Each customer belongs to an organization, for example, AAA or AARP. Each organization has a discount percentage for
each car class. Rental rates are determined by the organization to which a customer belongs. The discounts are revised fairly
often as a function of contracts and competitive pressures.

• The software system you are to develop should support making and canceling of reservations in a fair and orderly manner. It
should also keep track of when cars are returned and create a bill for the rental of each car and send copies of that bill to the
organization and the customer. Your software should cover the cases when a car is not available and where a given class of
car is not available. The software should keep track of the number of rental days for each class of cars by manufacturer to
enable optimization of the mix of cars in the rental fleet. The GUI is a separate domain with which your system exchanges
messages. The credit card company is also a separate domain with which your system exchanges messages.

8/27/2008 CS371P - Fall 2008 13

Overview Lecture

Illustration – Design Extraction

• What is the first thing you should do?

8/27/2008 CS371P - Fall 2008 14

Overview Lecture

Illustration – Design Extraction – Step 2

• Now What??

8/27/2008 CS371P - Fall 2008 15

Overview Lecture

Model Driven Paradigm for Software Development

The steps in the development cycle are:

a) The system is defined as an executable specification which is an
object-oriented analysis model.

b) The system is validated at the analysis model level.

c) A software and execution architecture is defined as a set of class
templates in an object-oriented programming system.

d) The executable system is realized by compilation of the validated
analysis model to the software execution architecture.

8/27/2008 CS371P - Fall 2008 16

Overview Lecture

Why

Using models to design complex systems is standard
practice in traditional engineering disciplines. No one
would imagine constructing an edifice as complex as a
bridge or an automobile without first constructing a
variety of specialized system models. from using
models and modeling techniques. Models help us
understand a complex problem and its potential
solutions through abstraction. Therefore, it seems
obvious that software systems, which are often among
the most complex engineering systems, can benefit
greatly.

8/27/2008 CS371P - Fall 2008 17

Overview Lecture

Why

MDD’s defining characteristic is that software
development’s primary focus and products are models
rather than computer programs.The major advantage of
this is that we express models using concepts that are
much less bound to the underlying implementation
technology and are much closer to the problem domain
relative to most popular programming languages. This
makes the models easier to specify, understand, verify
and maintain.

8/27/2008 CS371P - Fall 2008 18

Overview Lecture

Requirement - Code Generation

If models are merely documentation, they are of limited
value, because documentation all too easily diverges
from reality. A key premise behind MDD is that
programs are automatically generated from their
corresponding models.

Therefore

Models must be executable.

Further

The resulting executable must be reasonably competitive wrt
resource consumption.

8/27/2008 CS371P - Fall 2008 19

Overview Lecture

This course is about designing, constructing, validating and
verifying executable models which can be compiled to
procedural code such as C++ or Java.

Modeling Language – xUML

Design Principles and Paradigms – textbook and
example papers

Validation and verification

Tools – BridgePoint, iUMLite, Rational Rose, etc.

Evaluation of MDD process

8/27/2008 CS371P - Fall 2008 20

Overview Lecture

Course Work Requirements

This is essentially a laboratory class. The lectures will cover
the xUML and the executable specification based development
method in detail and other methods as alternatives. The main
goal of the course will be to carry through a complete
development of a small software system using object-oriented
development methods. There will also be periodic laboratory
exercises to develop skills before projects are started.

There will be two class examinations but no final examination.

8/27/2008 CS371P - Fall 2008 21

Overview Lecture

Project Specifications

The project will be development of a small software system
through the executable specification development
methodology. The projects will be executed by small teams of
co-workers. I have a set of possible projects. Each team will
do a different project. A team can suggest a project of their
own definition by preparing a requirements specification and
getting it approved.

8/27/2008 CS371P - Fall 2008 22

Overview Lecture

Glimpse at an IDE – Objectbench

1. Graphical capture

2. Execution by discrete event simulator interpretation of
program.

3. Early dialect of xUML

4. Dining Philosophers Problem

8/27/2008 CS371P - Fall 2008 23

Overview Lecture

8/27/2008 CS371P - Fall 2008 24

Overview Lecture

8/27/2008 CS371P - Fall 2008 25

Overview Lecture

8/27/2008 CS371P - Fall 2008 26

Overview Lecture

8/27/2008 CS371P - Fall 2008 27

Overview Lecture

Executable UML
• What is Executable UML
• Executable UML Model
• Domain Modeling
• Classes
• Actions
• Constraints
• Lifecycles
• Signals and Events
• Synchronization
• Model Compilers
• Summary
• References

8/27/2008 CS371P - Fall 2008 28

Overview Lecture

What is Executable UML?
• Executable UML is a program in a language more abstract

than typical procedural languages.
• Subset of UML + Action Language Specification
• Describes data and the behavior
• Doesn’t make coding decisions
• Can be deployed in various software environments without

change
• Makes use of model compiler to generate code

8/27/2008 CS371P - Fall 2008 29

Overview Lecture

Executable UML Model

• An Executable UML model comprises:
– UML class diagrams
– UML state charts
– Set of procedures, where each procedure is a set of

actions.
• Other UML diagrams can be used to support the

construction of Executable UML models.

8/27/2008 CS371P - Fall 2008 30

Overview Lecture

Domain Modeling

• An executable UML model is to be built for each subject matter, or
domain in the system.

• The functional requirements of the system can be expressed in terms
of use cases

• For a domain, a class diagram is defined comprising classes,
attributes and associations and description for each element.

• A state machine formalizes a lifecycle of an object in terms of states,
events, and transitions.

• Each state on the state chart diagram has an associated procedure.
• Each procedure comprises a set of actions.

8/27/2008 CS371P - Fall 2008 31

Overview Lecture

Classes

• Class diagram in an xUML model comprises:
– Classes: class’s name, attributes, and events
– Generalization and Specialization relationships

• All superclasses are tagged {abstract}
• All generalizations are tagged {disjoint, complete}
• Multiple generalization is permitted, but no diamond

generalizations

– Associations: association’s name, multiplicity, and
roles.
• There can be two or more associations between the same

two classes.

8/27/2008 CS371P - Fall 2008 32

Overview Lecture

Examples

Shipment
shipmentID
trackingNumber
recipient
deliveryAddress
contactPhone
timePrepared
timePickedUp
timeDelivered
“event”
requestShipment
Packed
pickedUp
deliveryConfirmed

Class

8/27/2008 CS371P - Fall 2008 33

Overview Lecture

Examples

Product
{abstract}

BookProduct RecordingProduct SoftwareProduct

productID
title
copyright
unitPrice
description

bookNumber
subTitle

runningTime productVersion

R1 {disjoint, complete}

Generalization

8/27/2008 CS371P - Fall 2008 34

Overview Lecture

Examples
Multiple Generalization

Account
{abstract}

CheckingAccount
{abstract}

InterestBearingAccount
{abstract}

RegularCheckingAccount InterestCheckingAccount

SavingsAccount

R1 {disjoint, complete}

R2 {disjoint, complete}

R3 {disjoint, complete}

8/27/2008 CS371P - Fall 2008 35

Overview Lecture

Examples
Improper Multiple Generalization

Account
{abstract}

CheckingAccount
{abstract}

InterestBearingAccount
{abstract}

RegularCheckingAccount InterestCheckingAccount SavingsAccount

R1 {disjoint, complete}

R2 {disjoint, complete} R3 {disjoint, complete}

8/27/2008 CS371P - Fall 2008 36

Overview Lecture

Examples

Tenant Apartment

0..* R1 0..*
Is rented by rents

Associations

0..* R2 0..*
Is occupied by lives in

8/27/2008 CS371P - Fall 2008 37

Overview Lecture

Actions

• An action is an individual operation that performs a single
task on an element

• Executable UML relies on the Precise Action Semantics
for UML adopted by OMG

• Different xUML versions use different Object Action
Languages

• Classes as well as associations have actions for creating
and deleting instances. A reclassification action allows a
subclass to move from one leaf subclass in the
specialization hierarchy to another

8/27/2008 CS371P - Fall 2008 38

Overview Lecture

Representative Action Language Syntax
Action Syntax
Create object create object instance <object reference> of <class>;
Write attribute <object reference>.<attribute name> = <expression>;
Delete object delete object instance <object reference>;
Class extent select many <object reference set> from instances of <class>;
Qualification (1) select any <object reference> from instances of <class> where <clause>;
Qualification (+) select many <object reference set> from instances of <class>where<clause>;
Loop for each <object reference> in <object reference set> <statements> end for;
Create link relate <object reference> to <object reference> across <association>;
Traverse link select [one|many] <object reference> related by

<object reference>-><class>[<association>];
Delete link unrelate <object reference> from <object reference> across <associattion>;
Reclassify object reclassify object instance <object reference> from <class> to <class>;

8/27/2008 CS371P - Fall 2008 39

Overview Lecture

Constraints

• A constraint is a rule that restricts the value of attributes and/or
associations in a model

• Constraints can be expressed in OCL, action language or graphical
notation

• Unique Instance Constraints: An identifier is a set of one or more
attributes that uniquely distinguishes each instance of a class:
– Single Attribute Identifier
– Multiple Attribute Identifier

• Referential Constraints: A referential attribute identifies the instance
of associated class

8/27/2008 CS371P - Fall 2008 40

Overview Lecture

Examples

Single Attribute Identifier

Customer
email {I}
name
shippingAddress
phone
purchaseMade

Indicates an identifier

8/27/2008 CS371P - Fall 2008 41

Overview Lecture

Examples

Multiple Attribute Identifiers

Car
manufacturer {I}
modelName
serialNumber {I}
province {I2,I3}
titleNumber {I2}
tagNumber {I3}
color
datePurchased
dateInspected
lastRecordedMileage

Identifier 1:
manufacturer + serial number

Identifier 2:
province + titleNumber

Identifier 3:
province + tagNumber

8/27/2008 CS371P - Fall 2008 42

Overview Lecture

Examples

Product

ProductCategory

Publisher

categoryID {I}
…

productID {I}
publisherGroupCode {R1}
publisherCode {R1}
categoryID {R2}
…publisherCode {I}

groupCode {I}
…

1 R1 0..*
is produced produces
by

1 R2 0..*
is classified classifies
according to

Refers to ProductCategory.categoryID

Refers to Publisher.groupCode
And Publisher.publisherCode

Referential Constraints

8/27/2008 CS371P - Fall 2008 43

Overview Lecture

Lifecycles – State Machines

• Each instance of a class generally has a lifetime. Its
behavior is a progression through various stages over
time. This is known as the lifecycle of the object

• A lifecycle is formally expressed as a state machine
comprising states, events, transitions and procedures

• A state machine can be expressed in terms of a State
Transition Table where each row represents a state and
each column an event.

• Filling the State Transition Table can result in
discovering new states, events and/or transitions

8/27/2008 CS371P - Fall 2008 44

Overview Lecture

Example

1. Preparing Shipment
entry/
relate self to rcvd_evt.order across R6;
self.recipient = rcvd_evt.order.recipient;
self.deliveryAddress = rcvd_evt.order.deliveryAddress;
self.contactPhone = rcvd_evt.order.contactPhone;
generate shipmentReadyToPack (

shipment:self.shipmentID) to EE_ShippingClerk;

Preparing Shipment

Waiting for Pickup

In Transit To Customer

Delivered

requestShipment

packed

pickedUp

deliveryConfirmed

Shipment Class Lifecycle (state chart)

8/27/2008 CS371P - Fall 2008 45

Overview Lecture

Signals and Events

• The behavior of the system is sequenced by signals
between state machine instances

• Objects communicate as a result of state machine
instances sending signals

• A signal is a message that carry data
• Signaling is asynchronous
• Once an event is detected by the receiver, a transition is

made and the receiver executes a procedure
• Event parameters can be viewed as an object rcvd_evt

created dynamically by the sender

8/27/2008 CS371P - Fall 2008 46

Overview Lecture

Example

Signal with Parameter:
Generate addSelection(productID:rcvd_evt.productID,

quantity:rcvd_evt.quantity) to order;

Signal to external entity:
Generate requestChargeApproval(…) to EE_creditCardCompany;

Creating object by signaling:
generate requestShipment (order:self) to Shipment creator

8/27/2008 CS371P - Fall 2008 47

Overview Lecture

Synchronization

• In executable UML time is local to each object
• There is no global time and no global synchronization

mechanism
• An object synchronizes its behavior with another by

sending signals
• Executable UML provides rules for signals and

procedures that are designed to describe required
synchronization between objects

• It’s the job of the model compiler to ensure these rules
by whatever mechanism

• It’s the developer responsibility to avoid data access
conflict by imposing some rules to the modeler or to the
model compiler

8/27/2008 CS371P - Fall 2008 48

Overview Lecture

Model Compilers
• An executable UML model compiler turns an executable

UML model into an implementation using a set of decisions
about the target hardware and software environment

• Model compilers can be extremely sophisticated
• There are many possible executable UML model compilers

for different system architectures
• The choice of the model compiler can be based on the

performance requirements and the environment of the
application

• Example of an existing model compiler is the transaction safe
system with rollback available from Kabira technologies

• A model compiler comprises a set of mechanisms that
manages the runtime system, and a set of rules for how to
weave the Executable UML models together

8/27/2008 CS371P - Fall 2008 49

Overview Lecture

Summary

• Executable UML is a profile of UML
• The Executable UML presented here is not the only

possible Executable UML
• Executable UML is not a standard
• It relies on model compilers to generate executable code
• Executable UML models are separate from any

implementation, yet can readily be executed to test for
completeness and correctness

• The choice of a model compiler affects the performance
of the generated code

	Course Overview
	Issues to be Resolved
	Issues to be Resolved
	Issues to be Resolved
	Issues to be Resolved
	Issues to be Resolved
	Issues to be Resolved
	Problems with Conventional Approach
	Approach of this Course
	Illustration
	Illustration - Requirements
	Illustration – Design Extraction
	Illustration – Design Extraction – Step 2
	Executable UML
	What is Executable UML?
	Executable UML Model
	Domain Modeling
	Classes
	Examples
	 Examples
	Examples
	Examples
	Examples
	Actions
	Representative Action Language Syntax
	Constraints
	Examples
	Examples
	Examples
	Lifecycles – State Machines
	Example
	Signals and Events
	Example
	Synchronization
	Model Compilers
	Summary

