

Course Outline

CS371S
Object-oriented Software Development

Instructor - J.C. Browne

Spring 2004

Course Approach and Goal

This course will introduce a model of software system development where an executable
program is derived directly from an executable specification called an analysis model.
No “code” is written except for a reusable software architecture.

The steps in the development cycle are:
a) The system is defined as an executable specification which is an object-oriented
analysis model.
b) The program is validated at the analysis model level.
c) A software and execution architecture is defined as a set of class templates in an
object-oriented programming system.
d) The executable system is realized by compilation of the validated analysis model to
the software execution architecture.

This method of software development is now being used for high-reliability long-lived
systems by leading embedded systems vendors such as Motorola, Xerox and Kodak.

Course Materials
The course materials include a textbook and some supplementary materials including
papers and software system manuals.

The text is “Executable UML” A Foundation for Model-Driven Architecture” by S.J.
Mellor and M.J. Balcer

The lecture notes will be distributed for the first few weeks and will then be available
over the web and in hard copy through a distribution service.

Work Statement

This is essentially a laboratory class. The lectures will cover the xUML and the
executable specification based development method in detail and other methods such as
alternatives. The main goal of the course will be to carry through a complete
development of a small software system using object-oriented development methods.
There will be two class examinations but no final examination. The second class
examination is scheduled for the last day of class. If there are objections to this date for
the second class examination let me know by January 22, 2004.
The examinations are open-book and open-notes. Each student must take and pass both
examinations. The course grade will be 50% on the project and 50% on the

examinations. Use will be made of commercial software tools which are used in
industry.

Project Specifications

Project Structure - The project will be development of a small software system through
the executable specification development methodology. The projects will be executed by
small teams of co-workers. I have a set of possible projects. Each team will do a
different project. A team can suggest a project of their own definition by preparing a
requirements specification and getting it approved. The scale and scope should be
similar to the requirements I will circulate.

Communication between Students and Instructor

The instructor is email oriented. He answers email almost every morning. This is by far
the best way to communicate. Formulate your questions in writing and send them to
browne@cs. Announcements concerning the class will be sent by email. Read your mail
every day.

Standards for Conduct

Standard University of Texas rules for conduct of classes will be followed. Please make
yourself familiar with those rules.

Appendix A – Analysis of Software Development Methods

Why Software Development by the Conventional Process is Difficult

Development of complex software systems has always been a challenging task. (We
assume the reader is familiar with the conventional software development process based
on manual translation of application designs to implementations in conventional
procedural programming languages such a C or C++. The steady increase in functional
complexity required for competitive capabilities in software products is compounded by
implementation of these systems on distributed and networked systems. But the root
causes of the problems of developing software by the convention process of manually
programming application operations in procedural programming languages are:

(a) The wide conceptual gap between the operations defined in typical application

domains and the operations defined in conventional programming languages. The
results of this gap are: high complexity for the manual translations from application
concepts to programming language concepts and high complexity and low readability
of the programs which result. This conceptual gap also impedes validation.

(b) In the conventional development process end-user operations of the application are

not validated until the programs in procedural programs are have been completed.
When complex application operations are realized through complex transformations
to complex programs in procedural programming languages, errors of translation are

inevitable and execution behaviors become unpredictable. The level of complexity of
the program in the procedural language precludes detailed understanding of the entire
system while at the same time the system must be validated in terms of application
level operations. Additionally there is no provision for validation of the increasing
important requirements for performance.

(c) Each software development project can make little use of artifacts from past

development projects except at the lowest level of data structure library routines.

(d) Modifications of functional requirements expressed in application concepts must be

done by modification of the procedural program in a different conceptual framework
and at a much higher level of complexity.

(e) Modifications in execution environment lead to complex ports of the procedural

program.

It is often difficult to estimate the effort necessary to realize products when the
conventional process is used. The products often contain many defects due the difficulty
of validation of the procedural program representations. The costs of modifications are
high and error prone because they must be done on the procedural program.

It is apparent that a qualitative improvement in software development must automate
translations from application specifications to procedural languages and that validation
must be done in terms of application concepts.

Foundations of a New Paradigm

The preceding section makes it clear that qualitative improvement in software
development process cannot be expected to arise in evolutionary enhancement based on
the conventional process. And the analysis given in Section b identifies the steps in the
development process which must be replaced.

(a) Manual translation from application operations to procedural programs must be

automated.

(b) The application system must be validated in the conceptual basis of the application.

Validation must include conformance to performance specifications as well as
functional specifications.

The innovations which enable a process which removes these fundamental barriers are:

Separation of Concerns – Specifications for the application operations are done
separately from specification of the execution environment.

Executable Specifications – The operations of the application are defined in a
specification language with an executable semantics in the application conceptual
domain.

Software Architectures – A software architecture is a specification of a set of operation
and data structure templates to which the operations of an application can be translated.
A software architecture is a virtual machine to which application level operations can
readily be compiled. Execution environments for the applications are defined as software
architectures in a standard procedural programming language.

Associative Objects – Associative objects are conventional objects extended and
encapsulated to support automation of reuse and composition of systems from
components. Associative interfaces replace and extend the concept of relationships in
conventional object models.

The steps in the development process based upon these concepts are as follows:

(a) Requirements are captured in a traceable form in a database.
(b) An executable representation of the application system is captured in application

concepts as an analysis level associative object model in which the constructs of the
analysis model all have an operational semantics.

(c) A software architecture is selected or constructed.
(d) A simulation model of the execution environment is selected or constructed.
(e) The executable specification of the application is validated by execution over a

workload (test suite) defined in terms of invocations of “end user” operations of the
application.

(f) The functionally validated executable specification of the application is used as a
workload generator for the simulation model of the execution environment to validate
the performance behavior of the application operations.

(g) The fully validated executable specification of the application is translated to the
software architecture by a compiler.

(h) The resulting program is compiled and linked by the standard compilers for the
procedural languages to realize the production system.

This development process leads to a qualitative improvement over conventional
development processes because it avoids the sources of difficulty listed in above. The
characteristics of the new development process are:

(a) The application is validated in application concepts and with application based test

cases. The immense complexity of validation of the procedural program is avoided.
(b) Modifications driven by changes in functional requirements are made to the

executable representation of the application. Error-prone modifications of procedural
program representations are avoided.

(c) Modifications driven by changes in execution environment are made to the software
architecture and the simulation model of the execution environment. Production
systems for new platforms are accomplished by compiling the application
specification to the new software architecture. Error-prone ports of procedural
programs to new platforms are avoided.

(d) Each software development task is accomplished by an appropriate expert.
Application experts construct the executable specification of the application.
Software designers develop the software architectures.

(e) Reuse of application level objects is enabled by defining the application objects as
associative objects.

(f) The software architecture can often used for multiple projects with little or no change,
particularly in the common case of a family of software products with similar
characteristics.

	Appendix A – Analysis of Software Development Met
	Foundations of a New Paradigm

