
9/24/2001 Parallel Programming - Fall 2001 1

Introduction to MPI

Table of Contents

1. Program Structure
2. Communication Model

Topology
Messages

3. Basic Functions
4. Made-up Example Programs
5. Global Operations
6. LaPlace Equation Solver
7. Asynchronous Communication
8. Communication Groups
9 MPI Data Types

9/24/2001 Parallel Programming - Fall 2001 2

Introduction to MPI

MPI Program Structure

1. MPI is a set of precompiled library routines that the user links with their code.

2. An “MPI” parallel program is a sequential program which has been modified
to include calls to MPI routines and conditional statements to adapt the
execution of the program to its local context.

3. Each processor executes the same program using local processor id to
determine its behavior.

4. MPI distributes the programs to the processors, loads them and initiates
execution on each processor.

5. Environment specification and execution initiation is external to MPI

9/24/2001 Parallel Programming - Fall 2001 3

Introduction to MPI

Communication Model

1. A communicator (MPI_Comm) is a collection of processors that can send
messages to each other. For basic programs, the only communicator
needed is MPI_COMM_WORLD. It is predefined in MPI and
consists of all the processors running when program execution
begins.

2. Subsets of MPI_COMM_WORLD can be created to partition the
processors into smaller communication groups.

3. Message communicators much match between message sender and receiver.
4. Communicators can also be used to determine the number of processors

participating in a particular communicator set and the sequence of
the processor in the communicator.

5. The processor's location in the communicator sequence is determined by the
MPI_Comm_rank function.

6. The total number of processors in the communicator can be determined by
the MPI_Comm_size.

9/24/2001 Parallel Programming - Fall 2001 4

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 5

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 6

Introduction to MPI

Message Properties

1. MPI messages are one dimensional array of items and are the first
argument of the send (MPI_Send) and receive (MPI_Recv) functions.

2. Argument to indicate where the array starts, arguments that indicate
the number of elements in the array (count) and the type of each element
(datatype) are also passed to the MPI functions.

3.The tag and comm arguments are used to differentiate multiple messages
originating from the same processor.

4. The status argurment in the receive function stores information about the
source, size, and tag of the message. This is useful in cases where the receive is
allowed to receive a set of possible sources.

9/24/2001 Parallel Programming - Fall 2001 7

Introduction to MPI

An Parallel Pseudo-Program Using the MPI Library

program main

begin

MPI_INIT() //Initiate computation

MPI_COMM_SIZE(MPI_COMM_WORLD, count)//Find # of processes

MPI_COMM_RANK(MPI_COMM_WORLD, myid) //Find my id

print("I am", myid, "of", count) //Print message

MPI_FINALIZE() //Shut down

end

9/24/2001 Parallel Programming - Fall 2001 8

Introduction to MPI

1. If the program on the previous slide is executed by four processes, we
will obtain something like the following output.

2. The order in which the output appears is not defined; however, we
assume here that the output from individual print statements is not
interleaved.

I am 1 of 4
I am 3 of 4
I am 0 of 4
I am 2 of 4

9/24/2001 Parallel Programming - Fall 2001 9

Introduction to MPI

Foundry - Bridge Process

9/24/2001 Parallel Programming - Fall 2001 10

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 11

Introduction to MPI

Ring Communication

Write a program that takes data from process zero and sends it to all of the other
processes by sending it in a ring. That is, process i should receive the data and
send it to process i+1, until the last process is reached.

Assume that the data consists of a single integer. Process zero reads the data
from the user.

9/24/2001 Parallel Programming - Fall 2001 12

Introduction to MPI

#include <stdio.h>
#include "mpi.h"
int main(argc, argv)
int argc;
char **argv;
{

int rank, value, size;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

9/24/2001 Parallel Programming - Fall 2001 13

Introduction to MPI

do {
if (rank == 0) {

scanf("%d", &value);
MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD

);
}
else {

MPI_Recv(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD,
&status);

if (rank < size - 1)
MPI_Send(&value, 1, MPI_INT, rank + 1, 0,

MPI_COMM_WORLD);
}
printf("Process %d got %d\n", rank, value);

} while (value >= 0);

MPI_Finalize();
return 0;

}

9/24/2001 Parallel Programming - Fall 2001 14

Introduction to MPI

Global Communication Operations

9/24/2001 Parallel Programming - Fall 2001 15

Introduction to MPI

Global Communication Operations

9/24/2001 Parallel Programming - Fall 2001 16

Introduction to MPI

Global Communication Operations

9/24/2001 Parallel Programming - Fall 2001 17

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 18

Introduction to MPI

MPI Program for Parallel Implementation of Jacobi iteration for
approximating the solution to a linear system of equations.

We solve the Laplace equation in two dimensions with finite differences.
Any numerical analysis text will show that iterating

while (not converged) {
for (i,j)
xnew[i][j] = (x[i+1][j] + x[i-1][j] + x[i][j+1] + x[i][j-1])/4;

for (i,j)
x[i][j] = xnew[i][j];

}
will compute an approximation for the solution of Laplace's equation.

9/24/2001 Parallel Programming - Fall 2001 19

Introduction to MPI

Replacement of xnew with the average of the values around it is applied only in
the interior; the boundary values are left fixed. In practice, this means that if
the mesh is n by n, then the values

x[0][j]
x[n-1][j]
x[i][0]
x[i][n-1]

are left unchanged. These refer to the complete mesh; you'll have to figure out
what to do with for the decomposed data structures (xlocal).

Because the values are replaced by averaging around them, these techniques
are called relaxation methods.

We wish to compute this approximation in parallel. Write an MPI program to
apply this approximation.

9/24/2001 Parallel Programming - Fall 2001 20

Introduction to MPI

For convergence testing, compute

diffnorm = 0;
for (i,j)

diffnorm += (xnew[i][j] - x[i][j]) * (xnew[i][j] - x[i][j]);
diffnorm = sqrt(diffnorm);

Use MPI_Allreduce for this. (Why not use MPI_Reduce?)

Process zero will write out the value of diffnorm and the iteration count at
each iteration. When diffnorm is less that 1.0e-2, consider the iteration
converged. Also, if you reach 100 iterations, exit the loop.

For simplicity, consider a 12 x 12 mesh on 4 processors.

The boundary values are -1 on the top and bottom, and the rank of the process
on the side. The interior points have the same value as the rank of the process.

9/24/2001 Parallel Programming - Fall 2001 21

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 22

Introduction to MPI

This is shown below:

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

9/24/2001 Parallel Programming - Fall 2001 23

Introduction to MPI

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12
int main(argc, argv)
int argc;
char **argv;
{

int rank, value, size, errcnt, toterr, i, j, itcnt;
int i_first, i_last;
MPI_Status status;
double diffnorm, gdiffnorm;
double xlocal[(12/4)+2][12];
double xnew[(12/3)+2][12];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

9/24/2001 Parallel Programming - Fall 2001 24

Introduction to MPI

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 4) MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */

/* Note that top and bottom processes have one less row of interior
points */

i_first = 1;
i_last = maxn/size;
if (rank == 0) i_first++;
if (rank == size - 1) i_last--;

/* Fill the data as specified */
for (i=1; i<=maxn/size; i++)

for (j=0; j<maxn; j++)
xlocal[i][j] = rank;

for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] = -1;
xlocal[i_last+1][j] = -1;

}

9/24/2001 Parallel Programming - Fall 2001 25

Introduction to MPI

itcnt = 0;
do {

/* Send up unless I'm at the top, then receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < size - 1)

MPI_Send(xlocal[maxn/size], maxn, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

if (rank > 0)
MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
/* Send down unless I'm at the bottom */
if (rank > 0)

MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);

if (rank < size - 1)
MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE, rank + 1, 1,

MPI_COMM_WORLD, &status);

9/24/2001 Parallel Programming - Fall 2001 26

Introduction to MPI

/* Compute new values (but not on boundary) */
itcnt ++;
diffnorm = 0.0;
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

xlocal[i+1][j] + xlocal[i-1][j]) / 4.0;
diffnorm += (xnew[i][j] - xlocal[i][j]) *

(xnew[i][j] - xlocal[i][j]);
}

/* Only transfer the interior points */
for (i=i_first; i<=i_last; i++)

for (j=1; j<maxn-1; j++)
xlocal[i][j] = xnew[i][j];

9/24/2001 Parallel Programming - Fall 2001 27

Introduction to MPI

MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

gdiffnorm = sqrt(gdiffnorm);
if (rank == 0) printf("At iteration %d, diff is %e\n", itcnt,

gdiffnorm);
} while (gdiffnorm > 1.0e-2 && itcnt < 100);

MPI_Finalize();
return 0;

}

9/24/2001 Parallel Programming - Fall 2001 28

Introduction to MPI

Asynchronous Communication Operations

9/24/2001 Parallel Programming - Fall 2001 29

Introduction to MPI

Creating Communication Groups

9/24/2001 Parallel Programming - Fall 2001 30

Introduction to MPI

Communication Groups

A call of the form

MPI_COMM_SPLIT(comm, color, key, newcomm)creates one or
more new communicators.

It must be executed by each process in the process group associated with
comm.

A new communicator is created for each unique value
of color other than the defined constant
MPI_UNDEFINED.

9/24/2001 Parallel Programming - Fall 2001 31

Introduction to MPI

Each new communicator comprises those processes that
specified its value of color in the MPI_COMM_SPLIT
call. These processes are assigned identifiers within
the new communicator starting from zero, with order
determined by the value of key or, in the event of
ties, by the identifier in the old communicator. Thus,
a call of the form MPI_COMM_SPLIT(comm, 0, 0, newcomm)
in which all processes specify the same color and key, is equivalent to a call
MPI_COMM_DUP(comm, newcomm)

9/24/2001 Parallel Programming - Fall 2001 32

Introduction to MPI

The following code creates three new communicators if comm contains at
least three processes.

MPI_Comm comm, newcomm;
int myid, color;
MPI_Comm_rank(comm, &myid);
color = myid%3;
MPI_Comm_split(comm, color, myid, &newcomm);

For example, if comm contains eight processes, then
processes 0, 3, and 6 form a new communicator of size
three, as do processes 1, 4, and 7, while processes 2
and 5 form a new communicator of size two.

9/24/2001 Parallel Programming - Fall 2001 33

Introduction to MPI

Task Model versus Process Model

9/24/2001 Parallel Programming - Fall 2001 34

Introduction to MPI

Communication Pattern for Program on Next Slide

9/24/2001 Parallel Programming - Fall 2001 35

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 36

Introduction to MPI

MPI Data Type Creation Operations

9/24/2001 Parallel Programming - Fall 2001 37

Introduction to MPI

9/24/2001 Parallel Programming - Fall 2001 38

Introduction to MPI

