
8/30/2001 Parallel Programming - Fall 2001 1

Models of Parallel Computation

Philosophy

Parallel processing is the normal mode for most human
activities.

Driving a car,
cooking a meal,
listening to a lecture

But in programming we have been led astray by history.
Von Neumann machines are sequential.

Parallel programming should be taught first!
Sequential programming should be taught as a special case

of parallel programming.

8/30/2001 Parallel Programming - Fall 2001 2

Models of Parallel Computation

Pervasiveness of Parallelism

1. Parallelism is a central conceptual issue across most
of computer science.

2. Every subfield of computer science uses a different and
parochial view of its problem domain.

3. The “wheel” is constantly being reinvented and restated
with confusion and duplication of effort.

4. We will discuss parallelism from the viewpoint of
programming but with connections to other domains.

8/30/2001 Parallel Programming - Fall 2001 3

Models of Parallel Computation

Machine Architecture Oriented MOPC
SIMD, MIMD, etc.

Theoretical Performance Oriented MOPC
PRAM, CREW, EREW, LogP, LogGP

Theoretical-Practical Bridge MOPC
Bulk Synchronous Protocol - BSP

Theoretical Analysis Oriented MOPC
Petri nets

Memory Consistency MOPC
Strong Consistency, weak consistency

Programming Oriented MOPC
Programming Languages - data flow, data

partitioning MOPC, etc.
Operating Systems - processes, threads, mutual exclusion
Data Base - transaction concurrency MOPC
AI - Parallel Production Rules, Neural Nets, Parallel Logic

Programming

Pervasiveness of Parallelism

8/30/2001 Parallel Programming - Fall 2001 4

Models of Parallel Computation

HISTORICAL SURVEY

1946 - Vannevar Bush - Concept

1962 - Petri - Model Of Parallel Computation

1963 - Conway - Fork/join

1966 - Bernstein - Single Assignment

1966 - Karp & Miller - Model Of Parallel Computation

1960 - Multiprogramming Operating Systems

1964 - Array Processors

1975 - Database Transaction Systems

1975 - Scientific Computation

1972 - Language Theory

8/30/2001 Parallel Programming - Fall 2001 5

Models of Parallel Computation

Multi-programming operating system

Job-1 Job-2 Job-3 Job-N

Operating system

- - - - - - - -

Resources

OS must be conceptually parallel (or concurrent)

Requirements - partitioning of system state
- Consistency of shared state data under concurrent update

It has a thread of execution for each job and each active resource

- Specification of action sequences
Concepts - processes

- Mutual exclusion
- Message systems

8/30/2001 Parallel Programming - Fall 2001 6

Models of Parallel Computation

Database systems

Job-
1

Job-
2

Job-
N

- - - - - - - -

Data base system

- - -

os/hardware

Requirement - updates to database must be consistent under concurrent
update.

Concepts - transactions (indivisible actions)
Mechanisms - lock/unlock protocols

- commit protocols

8/30/2001 Parallel Programming - Fall 2001 7

Models of Parallel Computation

DISTRIBUTED SYSTEMS

P1
P2

P3

Requirement - Management Of Distributed And
Partitioned System State

Concepts - Partitioned State Management Algorithms

- Forced Recognition Of Issues

Mechanisms - Versioning Of Data
- Distributed Algorithms

8/30/2001 Parallel Programming - Fall 2001 8

Models of Parallel Computation

Approach

From
Models of Parallel Computation

to
Methods of Formulation

to
Parallel Programming Languages

to
Programs and Debugging

To
Architectures and Executions

8/30/2001 Parallel Programming - Fall 2001 9

Models of Parallel Computation

What is a computation?

1. A Computation is a specification for transformation of
one instance set of data structures or objects to
some other instance set of data structures or objects.

2. A computation is a process which leads to the
satisfaction of a set of constraint specifications.

3. A computation is an ordered sequence of execution
of a (possibly dynamic) set of primitive units of
computation.

4. Computation is a recursive and hierarchical
concept. A computation may be primitive
in one view and composed in another view.

8/30/2001 Parallel Programming - Fall 2001 10

Models of Parallel Computation

Parallel Computations - Semi-Formal Model

Computation = (V,S,T,O)

V = set of variables

S = Set of states or set of assignments of values to variables.

T = Set of transformations on members of V to transition among members of S.

O = Ordering relation on the application of t in T to v in V to generate s in S.

O is the subject of study of this course.

There are concepts for specification of orderings.

There are mechanisms for specification of orderings

There are representations of concepts and mechanisms for ordering.

8/30/2001 Parallel Programming - Fall 2001 11

Models of Parallel Computation

Ordering Relations for Sequential Programs

a) next - positional

b) or - if () then {} else {}

c) one of - case (i): 1{};2{};

d) ordered list - for i =1, n {}

e) members of a set - while () {};

Ordering Relations for Parallel Programs

a) after - <

b) in parallel - ||

c) mutual exclusion - <>

8/30/2001 Parallel Programming - Fall 2001 12

Models of Parallel Computation

Let c1 = t1: v1 - be a computation - application of an operator to a set
of variables.

The simplest sequential ordering is uses only positional ordering

c1, c2 ……….. cn

Let us look at some possible parallel orderings

c1 < [c2 || c3 || c4] < c5 ……….. cn

c1 must precede c2 , c3 and c4 , c2 , c3 and c4 can be executed
in any order but all must complete before c5 is begun.

The following are all correct sequential executions:

c1 < c2 < c3 < c4 < c5

c1 < c3 < c2 < c4 < c5

c1 < c4 < c3 < c2 < c5

…………………………………..

8/30/2001 Parallel Programming - Fall 2001 13

Models of Parallel Computation

Graphical Specification of Parallel Computations

Let us represent the ordering
relations as a directed graph where
the arrows specify precedence of
execution among the nodes.

Let us assume that c1 generates an
output needed by each of c2, c3 and c4
and c5 requires input from each of its
immediate predecessors in the
graph.

Let us then specify that the arcs
connecting the nodes carrying the
output of the execution of the
computation done at the node.

What else do we have to specify at
each node?

c1

c2 c3 c4

c5

c1 => x = 2;
c2 => y= x;
c3 => z = x;
c4 => w = x;
c5 => v = y+z+w;

8/30/2001 Parallel Programming - Fall 2001 14

Models of Parallel Computation

Local versus Distributed Execution

1. The ordering specifications say nothing about where the computations
are executed or how the output-input relations among the computations
are implemented.

2. Therefore this type of specification of parallel execution is independent
of the execution environment of the program.

3. If we could compile this type of specification to an efficient parallel
implementation then parallel programming would be little more difficult
than sequential programming.

4. Even though compilation of these declarative specifications of
orderings to efficient parallel programs is possible there is little use of
these declarative representations.

5. Attention is still focused on procedural mechanisms for
implementation of ordering relations by procedural specification of
communication or synchronization.

8/30/2001 Parallel Programming - Fall 2001 15

Models of Parallel Computation

Ordering
Relation

Name
Space Single Multiple

Remote
Procedural
Calls

Sequential
Composition.

Sequential

Communication
Operators -
Messages, etc.

Synchronization
Operators

Parallel

Implementation Mechanisms for Single and Multiple
Name Spaces.

8/30/2001 Parallel Programming - Fall 2001 16

Models of Parallel Computation

Let us examine the execution behavior of Program P which consists of a
main program M which during its first execution, executes procedures P,
Q, R and S in that order.

M is resident on computer A

P is resident on computer B

Q is resident on computer C

R and S are resident on computer D.

The second time M is executed the procedures are executed in the order
P, R, Q and S. The answer is correct both times.

Is P a sequential program or a parallel program?

What can you infer about the relationship among procedures R and Q?

8/30/2001 Parallel Programming - Fall 2001 17

Models of Parallel Computation

Parallel Programming systems are most often discussed or classified not
by the ordering mechanism which is used but rather by the execution
environment (shared or distributed memory) or by the mechanisms used
to formulate the program (data parallelism, pipeline parallelism or task
parallelism) or by the mechanisms for implementation of ordering (wait
and signals or messages.)

We will (reluctantly) follow conventional practice and discuss parallel
programming in terms of the conventional classifications.

8/30/2001 Parallel Programming - Fall 2001 18

Models of Parallel Computation

COMPUTATION OF BINOMIAL COEFFICIENTS

Let C[n,k] be array of binomial coefficients
ALGORITHM

1. INITIALIZE C[I,0] AND C[I,I] TO 1 FOR 0 <= I <= N

2. COMPUTE
C[K,I], 2 <= K <= N, 1 <= I <= K-1

FROM
C[K,I] := C[K-1,I-1] + C[K-1,I]

PROGRAM

DO 10 I = 0,N
10 C[I,0] := C[I,I] := 1

DO 11 K = 2,N
DO 12 I = 1,K-1

12 C[K,I] := C[K-1,I-1] + C[K-1,I]
11 CONTINUE

8/30/2001 Parallel Programming - Fall 2001 19

Models of Parallel Computation

Specification of Execution Sequences

Strict or Partial Orders
Sequencing by output/input dependencies

Implementation depends on name space specifications
partitioned - messages - data flow
shared - synchronized access
call/return

Sequence by Schedule
Sequential
Priority

Sequence by functional dependencies
functional and logic languages

Sequence by data dependencies
Sequence by logical expression

first order linear logic of events

8/30/2001 Parallel Programming - Fall 2001 20

Models of Parallel Computation

Properties of Execution Schedules for Parallel Computations

1. There are often many valid sequences.
2. There exist some sequences which result in minimal computation.

event specification
“data flow” specification
sequential specification

A sequence which results in a correct transformation with minimum
number of operations insures that when a computation is executed for
the first time all of its dependence relations have been satisfied.
3. There exist correct sequences which do not result in minimum

computation.
Partial Orders and “weak fairness” condition.

A) No sequencing other than “weak fairness.”
B) Partial or “optimistic” sequence specifications

8/30/2001 Parallel Programming - Fall 2001 21

Models of Parallel Computation

FIRING RULES OR GUARDS

(1) Define for each UC a predicate (firing rule or guard) which is a function of
the state of the computation

{t,f} ≡ F(S)

(2) The UC may execute whenever

F(S) => t

(3) If F and S are "complete" for each UC a minimum schedule results

(4) if F and S are "optimistic" then the UC's must follow "commit" protocols
to validate execution order to obtain a minimum schedule

Distributed databases - cost of assembly of "complete" S

Distributed/parallel simulations

8/30/2001 Parallel Programming - Fall 2001 22

Models of Parallel Computation

COMPUTATION OF BINOMIAL COEFFICIENTS

LET THERE EXIST A VALUE "UNDEFINED"

COBEGIN (0<=I<=N, 0<=J<=N)
C[I, J] : = "UNDEFINED"

COEND
COBEGIN (0<=I<=N)

C[I, O]:=C[I, I] := 1
COEND
COBEGIN (2<=K<=N)

COBEGIN (1<=I<=K-1)
{IF(C[K-1, I-1] = "DEFINED"

AND
(C[K-1, I] = "DEFINED")

THEN C[K, I]:=C[K-1, I-1] + C [K-1, I]}
COEND

COEND

8/30/2001 Parallel Programming - Fall 2001 23

Models of Parallel Computation

COMPUTATION OF BINOMIAL COEFFICIENTS

LARGE GRANULARITY PARALLELISM

COBEGIN
{DO 10 I = 0, N

1 0 C[I, 0] :=1}
{DO 11 I = O, N

1 1 C[I, I] :=1}
COEND

COBEGIN (2<=K<=N)
{ IF C[K-1, K-1] = "DEFINED"
THEN
DO 12 I = 1, K-1

1 2 C[K, I] := C[K-1, I-1] + C[K-1, I]}
COEND

8/30/2001 Parallel Programming - Fall 2001 24

Models of Parallel Computation

import java.lang.*;
public class BinomialWeakFairness
{public static void main(String[] args)
{int i,j,k,l;
Integer NBC = new Integer(args[0]);
int nbc= NBC.intValue();
Integer IT = new Integer(args[1]);
int it = IT.intValue();
int [][] b= new int[100][100];
int [][] c= new int[100][100];
for (i = 0; i <=nbc;i = i+1)

{b[i][0] = 1;
b[i][i] = 1;}

for (j = 1; j <=it; j = j+1)
{ RandomIntGenerator rk = new RandomIntGenerator(2,nbc);
k = rk.draw();
RandomIntGenerator rl = new RandomIntGenerator(1,k-1);
l = rl.draw();
b[k][l] = b[k-1][l] +b[k-1][l-1];
}

8/30/2001 Parallel Programming - Fall 2001 25

Models of Parallel Computation

If the order of execution is left totally unspecified (random selection)

Then attainment of specifications requires "weak fairness"

"Weak fairness"

The order of execution of UC's is chosen at random with the constraint
that each UC will be executed infinitely often during the total execution
of the computation

This is the end point of "no" specification of order

Intermediate points include "optimistic" protocols

Optimistic protocols

UC initiates execution without certain knowledge that a given execution
is in a minimum schedule - validates sequence before emitting outputs.
Example - Database transaction processing.

8/30/2001 Parallel Programming - Fall 2001 26

Models of Parallel Computation

Approaches and Languages

Distributed Memory – MPI

Coordination Models – Linda and Associative Interactions

Shared Memory –OpenMP, Direct Threads Programming (Java or Posix)

Parallelizing Compilers and Dependence Relations

Graphical/Visual Programming

Internet/Grid Programming – Globus/RSL, Web Services

	COMPUTATION OF BINOMIAL COEFFICIENTS
	FIRING RULES OR GUARDS
	COMPUTATION OF BINOMIAL COEFFICIENTS
	COMPUTATION OF BINOMIAL COEFFICIENTS

