
[56] R. Sahner and K. Trivedi. A software tool for learning about stochastic models. IEEE Transactions on

Education, 36(1):56{61, Feb. 1993.

[57] W. Sanders and J. Meyer. Reduced base model construction methods for stochastic activity networks.

IEEE Selected Areas of Communications, pp. 25{36, Jan. 1991.

[58] L. Schmickler. MEDA { mixed Erlang distributions as phase-type representation of empirical functions.

Stochastic Models, 8(1):131{156, Aug. 1992.

[59] M. L. Shooman. Probabilistic Reliability: An Engineering Approach. McGraw-Hill, New York, 1968.

[60] C. Singh, R. Billinton, and S. Lee. The method of stages for non-Markovian models. IEEE Transactions

on Reliability, R-26(1):135{137, June 1977.

[61] L. A. Tomek and K. S. Trivedi. Fixed point iteration in availabilitymodeling. In M. D. Cin and W. Hohl,

editors, Proc. of the 5th International GI/ITG/GMA Conference on Fault-Tolerant Computing Systems,

pp. 229{240, Berlin, Sept. 1991. Springer-Verlag.

[62] K. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Applications.

Prentice-Hall, Englewood-Cli�s, NJ, 1982.

[63] K. Trivedi, J. Muppala, S. Woolet, and B. Haverkort. Composite performance and dependability anal-

ysis. Performance Evaluation, 14:197{215, 1992.

26

[42] M. Malhotra and K. S. Trivedi. A methodology for formal expression of hierarchy in model speci�cation

and solution. In Proceedings of Fifth Intl. Workshop on Petri Nets and Performance Models, 1993.

[43] M. Malhotra and K. S. Trivedi. Reliability analysis of redundant arrays of inexpensive disks. Journal

of Parallel and Distributed Computing, 17:146{151, Jan. 1993.

[44] J. Meyer. On evaluating the performability of degradable computer systems. IEEE Transactions on

Computers, C-29:720{731, Aug. 1980.

[45] W. Miranker. Numerical Methods for Sti� Equations and Singular Perturbation Problems. D. Reidel,

Dordrecht, Holland, 1981.

[46] D. Mitra, \Stochastic Theory of Fluid Models of Multiple Failure-Susceptible Producers and Consumers

Coupled by a Bu�er," Advances in Applied Probability, Vol. 20, pp. 646-676, 1988.

[47] I. Mitrani. Fixed-point approximations for distributed systems. In G. Iazeolla, P. J. Courtois, and

A. Hordijk, editors, Mathematical Computer Performance and Reliability, pp. 245{258. North-Holland,

1984.

[48] M. Molloy. Performance analysis using stochastic Petri nets. IEEE Transactions on Computers, C-

31(9):913{917, Sept. 1982.

[49] R. R. Muntz, E. de Souza e Silva, and A. Goyal. Bounding availability of repairable computer systems.

IEEE Transactions on Computers, C-38(12):1714{1723, Dec. 1989.

[50] J. Muppala and K. Trivedi. Numerical transient analysis of �nite Markovian queueing systems. In

U. Bhat and I. Basawa, editors, Queueing and Related Models, pp. 262{284. Oxford University Press,

1992.

[51] J. Musa, A. Iannino, and K. Okumoto, Software Reliability; Measurement, Prediction, Application,

McGraw-Hill, 1987.

[52] M. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press, Baltimore,

MD, 1981.

[53] V. Nicola. Lumping in Markov reward processes. In W. Stewart, editor, Numerical Solution of Markov

Chains, pp. 663{666. Marcel Dekker Inc, New York, 1991.

[54] A. Reibman and K. Trivedi. Numerical transient analysis of Markov models. Computers and Operations

Research, 15(1):19{36, 1988.

[55] R. Sahner and K. Trivedi. Performance and reliability analysis using directed acyclic graphs. IEEE

Transactions on Software Engineering, 14(10):1105{1114, Oct. 1987.

25

[27] M. Johnson and M. Ta�e. Matching moments to phase distributions: mixtures of Erlang distribution

of common order. Stochastic Models, 5:711{743, 1989.

[28] M. Johnson and M. Ta�e. Matching moments to phase distributions: density function shapes. Stochastic

Models, 6:283{306, 1990.

[29] H. Kantz and K. Trivedi. Reliability modeling of MARS system : A case study in the use of di�erent

tools and techniques. In International Workshop on Petri Nets and Performance Models, Melbourne,

Australia, 1991.

[30] J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer-Verlag, 1976.

[31] W. Kleinoder. Evaluation of task structures for hierarchical multiprocessor. In D. Potier, editor,

Modeling Techniques and Tools for Performance Analysis. North-Holland, 1985.

[32] V. Kulkarni, V. Nicola, R. Smith, and K. Trivedi. Numerical evaluation of performability measures and

job completion time in repairable fault-tolerant systems. In Proc. 16th Intl. Symp. on Fault Tolerant

Computing, Vienna, Austria, July 1986. IEEE.

[33] K.S. Trivedi and V. G. Kulkarni, \Fluid Stochastic Petri Nets," Proc. 14th International Conference on

Applications and Theory of Petri Nets, Chicago, June 1993.

[34] J. Lambert. Numerical Methods for Ordinary Di�erential Systems. John Wiley and Sons, 1991.

[35] S. Lavenberg. Computer Performance Modeling Handbook. Academic Press, 1983.

[36] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance.

Prentice-Hall, Englewood Cli�s, NJ, USA, 1984.

[37] M. Malhotra. A computationally e�cient technique for transient analysis of repairable Markovian

systems. To appear in Performance Evaluation subject to revision, 1993.

[38] M. Malhotra, J. K. Muppala, and K. S. Trivedi. Sti�ness-tolerant methods for transient analysis of sti�

Markov chains. Technical Report DUKE-CCSR-92-003, Center for Computer Systems Research, Duke

University, 1992.

[39] M. Malhotra and A. Reibman. Selecting and implementing phase approximations for semi-Markov

models. To appear in Stochastic Models, 1993.

[40] M. Malhotra and K. Trivedi. Higher-order methods for transient analysis of sti� Markov chains. In

Third international conference on Performance of Distributed Systems and Integrated Communication

Networks, Kyoto, Japan, 1991.

[41] M. Malhotra and K. Trivedi. Dependability modeling using Petri-net based models. Technical Report

DUKE-CCSR-92-012, Center for Computer Systems Research, Duke University, 1992.

24

editors, Linear Algebra, Markov Chains, and Queueing Models, IMA Volumes in Mathematics and its

Applications, volume 48. Springer-Verlag, Heidelberg, Germany, 1993.

[14] G. Ciardo and K. Trivedi. A decomposition approach for stochastic reward net models. To appear in

Performance Evaluation.

[15] G. Ciardo, R. German, and C. Lindemann. A characterization of the stochastic process underlying

a stochastic Petri net. In Proc. of the Fifth Int. Workshop on Petri Nets and Performance Models

(PNPM93), Toulouse, France, Oct. 1993.

[16] A. Costes, J. Doucet, C. Landrault, and J. C. Laprie. SURF: A program for dependability evaluation of

complex fault-tolerant computing systems. In Proc. 11th Intl. Symposium on Fault-Tolerant Computing,

pp. 72{78, 1981.

[17] P. Courtois. Computable bounds for conditional steady-state probabilities in large Markov chain and

queueing models. IEEE J. Sel. Areas in Comm., SAC-4(6):926{937, 1986.

[18] D. Cox. A use of complex probabilities in the theory of stochastic processes. Proc. of the Cambridge

Philosophical Society, 51:313{319, 1955.

[19] A. Cumani. ESP { A package for the evaluation of stochastic Petri nets with phase-type distributed

transition times. In Proc. of International Workshop on Timed Petri Nets, pp. 144{151, Torino, Italy,

July 1985.

[20] E. de Souza e Silva and H. R. Gail. Performability analysis of computer systems: frommodel speci�cation

to solution. Performance Evaluation, 14:157{196, 1992.

[21] J. Dugan, K. Trivedi, M. Smotherman, and R. Geist. The hybrid automated reliability predictor. AIAA

Journal of Guidance, Control and Dynamics, pp. 319{331, May-June 1986.

[22] R. Geist and K. Trivedi. Ultra-high reliability prediction for fault-tolerant computer systems. IEEE

Transactions on Computers, C-32(12):1118{1127, Dec. 1983.

[23] A. Goyal, W. Carter, E. de Souza e Silva, S.S, Lavenberg, and K. Trivedi. The system availability

estimator. In Proc. of IEEE 16th Fault-Tolerant Computing Symposium, pp. 84{89, July 1986.

[24] B. Haverkort and K. Trivedi. Speci�cation and generation of Markov reward models. Discrete-Event

Dynamic Systems: Theory and Applications 3 , pp.219{247, 1993.

[25] R. A. Howard. Dynamic Probabilistic Systems, Vol.II: Semi-Markov and Decision Processes. John

Wiley & Sons, New York, 1971.

[26] M. Johnson. Selecting parameters of phase distributions: combining nonlinear programming, heuristics,

and Erlang distributions. To appear in ORSA JOC.

23

References

[1] M. Ajmone-Marsan, G. Balbo, and G. Conte. Performance Models of Multiprocessor Systems. MIT

Press, Cambridge, MA, 1986.

[2] M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalized Stochastic Petri Nets for the

performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems, 2(2):93{

122, 1984.

[3] G. Balbo, S. C. Bruell, and S. Ghanta. Combining queuing networks and GSPN's for the solution of

complex models of system behavior. IEEE Transactions on Computers, 37:1251{1268, 1988.

[4] A. Bobbio and A. Cumani. A Markov approach to wear-out modeling. Microelectronics and Reliability,

23(1):113{119, 1983.

[5] A. Bobbio and A. Cumani. ML estimation of the parameters of a PH distribution in triangular canonical

form. Technical Report R.T. 393, Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, Italy, 1990.

[6] A. Bobbio, A. Cumani, A. Premoli, and O. Saracco. Modeling and identi�cation of non-exponential dis-

tributions by homogeneous Markov processes. In Proc. of the Sixth Advances in Reliability Symposium,

Apr. 1980.

[7] A. Bobbio and M. Telek. Parameter estimation of phase type distributions. In 20th European Meeting

of Statisticians, Bath, UK, Sept. 1992.

[8] A. Bobbio and K. Trivedi. An aggregation technique for the transient analysis of sti� Markov chains.

IEEE Transactions on Computers, C-35(9):803{814, Sept. 1986.

[9] W. Bux and U. Herzog. The phase concept: approximation of measured data and performance analysis.

In K. Chandy and M. Reiser, editors, Computer Performance, pp. 23{38. North-Holland, Amsterdam,

1977.

[10] K. M. Chandy, U. Herzog, and L. S. Woo. Parametric analysis of queuing networks. IBM Journal of

Research and Development, 19:43{49, 1975.

[11] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov Regenerative Stochastic Petri Nets. In 16th

IFIP W.G. 7.3 Int'l Sym. on Computer Performance Modelling, Measurement and Evaluation (Perfor-

mance'93), Rome, Italy, Sept. 1993.

[12] H. Choi and K. S. Trivedi. Approximate performance models of polling systems using stochastic Petri

nets. In Proc. of IEEE Infocom 92, pp. 2306{2314, Florence Italy, May 1992.

[13] G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and K. S. Trivedi. Automated generation

and analysis of Markov reward models using Stochastic Reward Nets. In C. Meyer and R. J. Plemmons,

22

6 Conclusion

We discussed several types of modeling techniques used in dependability and performability analysis, with

a particular emphasis on approaches based on the (entire or partial) generation of the state-space.

The common underlying formalisms we consider, continuous-time Markov chains (CTMCs) and Markov

reward models (MRMs), are capable of modeling a large class of systems, but they result in large models,

di�cult to describe and analyze. The description problem is solved by using higher-level formalisms, such

as reliability graphs, fault trees, queueing networks, generalized stochastic Petri nets, and stochastic reward

nets. With the appropriate software modeling tools, these can then be automatically translated into CTMCs

or MRMs.

The solution problem, though, remains, since the size of the underlying stochastic process grows combi-

natorially. In addition, when modeling activities with very di�erent time-scales, such as failure and repair

of components, and performance-related behavior, such as arrival and departure of jobs, sti�ness arises.

Advanced numerical techniques, and exact or approximate approaches such as truncation, aggregation, com-

position, and
uid models, can then be e�ectively used to obtain numerical solutions.

21

Johnson and Ta�e [27, 28] have considered matching the �rst three moments of mixtures of two Erlang

distributions. For more references on this topic, refer to [7].

� Generation of the overall CTMC. After the parameters of phase approximations for all the non-

exponential distributions have been �tted (or estimated), the overall CTMC is generated. This may

require the cross-product of phase approximations [39].

A few software packages implementing this approach have been developed. Phase approximations were

used in the SURF package [16], although SURF was intended only for a restricted class of reliability models.

Cumani [19] has designed the software package ESP for evaluation of SPNs with phase-type distributed �ring

times. Phase approximations for a class of non-Markovian models have been implemented in GSHARPE

[39]. GSHARPE is a front end for a general purpose performance and reliability modeling toolkit called

SHARPE [56]. It accepts a non-Markovian model and converts it into a CTMC in SHARPE syntax after

applying phase approximations.

5.3.2 Non-homogeneous CTMCs

If transition rates in a CTMC are allowed to be time-dependent, where time is measured from the beginning of

system operation, the model becomes a non-homogeneous CTMC. Such models are used in software reliability

under the name of NHPP (Non-Homogeneous Poisson Process) [51] and in hardware reliability models of

non-repairable systems [22]. Tools such as CARE III and HARP allow component failure distributions to

be Weibull using this approach.

5.3.3 Markov regenerative processes (MRGPs)

The use of non-homogeneous CTMC allows transition rates to be globally time-dependent while the use

of SMPs allow the time dependence to be local (since the entry into the state). Both of these are often

inadequate in practice. While, in principle, the phase approximations allow more general time dependence,

their practical usefulness is limited by the increased size of the underlying stochastic process, which further

exacerbates the largeness problem. MRGPs seem to provide a useful time-dependence that can capture

many interesting practical scenarios. The basic idea is that not every state change is required to be a

regeneration point. Thus, in a multi-component system with each component having exponential time-to-

failure distribution and a generally distributed repair with a single repairperson (FCFS), the underlying

stochastic process is a MRGP (but not a SMP or a CTMC). Recent work on this topic can be found in

[11, 15].

20

methods. It has been shown [54, 40] that uniformization is ine�cient for sti� CTMCs. A modi�ed implemen-

tation of uniformization which incorporates steady-state detection of the underlying discrete-time Markov

chain (DTMC) [50] was shown to be more e�cient than the standard implementation when the solution

interval was larger than tss. However, uniformization remains much more ine�cient than L-stable ODE

methods [38]. L-stable ODE methods [34] are recommended for sti� CTMCs. Among these, second-order

TR-BDF2 [54] is e�cient for low accuracy requirements and third order implicit Runge-Kutta method [40]

is e�cient for high accuracy requirements. Recently, more e�cient methods based on sti�ness detection [37]

have been proposed.

5.3 Non-exponential distributions

5.3.1 Phase Approximations

The basic methodology of phase approximations is to replace a non-exponential distribution in a model by

a set of states and transitions between those states such that the holding time in each state is exponentially

distributed. This follows from Cox [18], who showed that any non-exponential probability distribution with

rational Laplace Steiltjes transform (LST) can be represented by a series of exponential stages with complex

valued transition rates. Each stage is entered with some probability and exited (the process stops) with

complementary probability. However, conditions to determine whether the resulting function is a proper

cdf or not are not known. To overcome this problem, Neuts [52] restricted the Coxian representation by

de�ning phase type distributions as absorbing-time distributions of a CTMC with at least one absorbing

state. Non-exponential distributions can be approximated by phase type distributions (also known as phase

approximations when used in this context). Distributions without rational LSTs can be approximated by

distributions having rational LSTs, although, arbitrarily close approximations may require a CTMC with a

large state space.

A complete approach to phase approximations is discussed in [39]. This approach consists of a few basic

steps:

� Selecting a phase approximation class for a given distribution. One of the most commonly used phase

approximation classes is a mixture of Erlang distributions [9]. It has been used in [26, 39, 60] and

good �ts to some commonly occurring distributions such as Weibull, deterministic, lognormal, and

uniform have been obtained. Schmickler [58] has used mixtures of Erlang distributions to �t empirical

functions. Bobbio et al. [6, 4, 5] have used a di�erent kind of acyclic phase approximation and obtained

good �ts to several distributions.

� Obtaining the parameters of phase approximations. Once a suitable phase approximation has been

chosen for a given distribution (which may be in empirical form), the next step is to �t the parameters

of this phase approximation. The choices include moment matching, function (cdf or pdf) �tting,

maximum likelihood estimation (in case of empirical distributions), or a combination of these [9, 39].

19

5.2 Sti�ness

CTMC sti�ness is a computational problem which adversely a�ects the stability, accuracy, and e�ciency of

a numerical solution method unless that method has been specially designed to handle it. CTMC sti�ness

is caused by extreme disparity between transition rates. In a reliability model, repair rates could be 106

times the failure rates. In a monolithic performability model, the job arrival rates could be 109 times the

component failure rates. In this section, we discuss how sti�ness can be overcome. To begin with, we describe

how the extreme disparity between transition rates translates into a computational problem for numerical

solution methods.

Let us consider the linear system of di�erential equations in Equation 2. This system is considered sti�

if the solution has components whose rates of change (decay or gain) di�er greatly. The rate of change of

each solution component is governed by the magnitude of an eigenvalue of the generator matrix Q . This

system is considered sti� if for i = 2; :::;m; Re(�i) < 0 and

max
i
jRe(�i)j >> min

i
jRe(�i)j ;

where �i are the eigenvalues of Q. The rate of change of a solution component is de�ned relative to the

solution interval, hence Miranker [45] gave the following de�nition: \a system of di�erential equations is said

to be sti� in the interval [0; t) if there exists a solution component of the system which has variation in that

interval that is large compared to 1=t". However, the CTMC attains numerical steady-state at some �nite

time tss: within the speci�ed accuracy (or error tolerance) the state probability vector does not change with

increase in time. Hence we may rede�ne sti�ness: \the system of di�erential equations in Equation 2 is

said to be sti� in the interval [0; t) if there exists a solution component of the system which has variation in

that interval that is large compared to 1=minft; tssg. The large di�erence in transition rates of the CTMC

approximately translates into large di�erence in magnitude of the eigenvalues of the generator matrix.

Sti�ness could cause numerical instability and make the solution methods ine�cient if the methods are

not designed to handle sti�ness. Like largeness, two basic approaches to overcome sti�ness are: sti�ness

avoidance or sti�ness tolerance.

5.2.1 Sti�ness Avoidance

According to this approach, sti�ness is eliminated from a model by applying some approximation scheme.

This results in a set of non-sti� models which are then solved to obtain the overall solution. Bobbio and

Trivedi [8] have designed one such technique based on aggregation. Most of these approaches avoid largeness

as well, since some kind of model decomposition or aggregation is involved.

5.2.2 Sti�ness Tolerance

Special solution methods that are designed to handle sti�ness are used in this approach. The two most

commonly used methods for transient analysis of CTMCs are uniformization and numerical ODE solution

18

p2

failA failB

repair

p1 p3

p4
0101

1001 0110

1010

failA

failB failA

failB

repair

failA0101

repair1010

p0101

p1001 p0110

p1010

failB0101

failA0110failB1001

K

Figure 14: Lumping of a model.

Composition In this approach, the overall model is composed of a set of submodels. Construction and

generation of a large model is avoided and the solution is obtained by interactions among the submodels.

Interactions imply exchange of information between the submodels. Reward based performability analysis

[44, 63] is an example of composition of reliability and performance models. The performance submodel is

solved and its results are passed as reward rates to the reliability submodel. In general, quantities such as

probability distributions, mean, variance, or numerical values of reliability and availability are exchanged

among submodels.

Other examples of composition include
ow-equivalent server approximation introduced by Chandy et

al [10], behavioral decomposition used in the software tool HARP [21], composition of GSPNs and queuing

networks proposed by Balbo et al [3], and hybrid hierarchical composition employed in the software tool

SHARPE [56]. These approaches can be classi�ed as hierarchical composition techniques. Hierarchical

composition approaches di�er not only in the way the model is constructed but also in the way the model

is solved. The set of submodels can be solved iteratively using a �xed-point iteration scheme (a cyclic

dependence exists among the submodels) [12, 14, 47, 61] or in a non-iterative fashion (a strict hierarchy exists

among the submodels) [43, 56]. For a uni�ed view of these seemingly di�erent approaches to hierarchical

composition, refer to [42].

Fluid Models As the number of tokens in a place or the number of jobs in a queue becomes large, the size

of the underlying CTMC grows. It may be possible to approximate the number of tokens in the place, or

the number of jobs in the queue, as a non-negative real number. It is then possible to write the di�erential

equations for the dynamic behavior of the model and, in some cases, provide solution. Mitra has developed

models along these lines [46]. More recently, Kulkarni and Trivedi have proposed
uid stochastic Petri nets

(FSPNs) [33].

17

This application of lumping [30, 53] is indeed so natural that we used it in conjunction with truncation,

without even justifying its adoption. In real systems, though, the reachability graph of a subsystem might

be quite complex. The general algorithm to obtain the lumped state space for a system consisting of K

independent subsystems can be easily expressed making use of SPNs [13] (see also [29] for an example of use

of this algorithm):

1. Generate the reachability graph for a single subsystem. Markings and arcs are labeled with the number

of tokens in each place and the name of the corresponding transition, respectively.

2. Transform the reachability graph into a SPN: for each marking i, add a place pi, initially empty; for

each arc from state i labeled by transition t, add a transition ti with marking-dependent rate equal

#(pi) times the rate of ti in marking i for a single subsystem, an input arc from pi to ti, and an output

arc from ti to pj (#(pi) is the number of tokens in place pi).

3. Set the initial marking of the SPN: for each subsystem, if its initial state is i, add a token in pi. Note

that the subsystems can start in a di�erent initial state without a�ecting the correctness of lumping.

4. Generate the CTMC underlying this SPN.

Figure 14 shows the application of the algorithm to a system composed of K dual-redundant subsystems,

where repair is initiated only when both units have failed. Each subsystem is described by a SPN whose

reachability graph has four markings. If no lumping is applied, the total number of states is 4K . The

application of our algorithm, instead, results in a SPN with (K + 3)(K + 2)(K + 1)=6 states.

In general, if there are K subsystems with N states each, the size of state space with and without lumping

is

NK = N � � � � � N| {z }
K terms

vs:

�
N +K � 1

K

�
=
N +K � 1

K
� � � � �

N + 1

2

N

1| {z }
K terms

Each of the K terms in the second case is smaller than N , with the exception of the last one, which is N ,

so this approach is always guaranteed to reduce the size of the state space. The reduction is particularly

sizable when N is small and K is large: for example, when N = 2 we have 2K vs. K + 1.

In practice, the submodels have some interaction, so independence does not hold. If the interaction is

limited to a \rate dependence" [14] where the transition rates in a subsystem depend on the number of

subsystems in certain states, but not on their identity, the algorithm can still be applied: only a di�erent

speci�cation of the �ring rates for the resulting SPN is needed. In our example, the repairperson could be

a shared resource, so the rate of transition repair in each subsystem could be �=f1:1, where f is the total

number of subsystems being repaired, and the exponent 1.1 models the inherent ine�ciency due to resource

sharing. The rate of transition repair1010 in the resulting SPN should then be speci�ed as �=#(p1010)
1:1,

where #(p1010) indicates the number of tokens in p1010 or, in other words, f .

Other types of dependence are structural: often, tokens might have to move from a submodel to another

portion of the global model. With some care, lumping might still be possible [57].

16

and

�a = [�aK = K; . . .�aK�k = K � k; �au = 0]

with the states of the two CTMCs, we obtain the inequalities

Cs(t) =
X

i2fK;...K�kg

�si�
s
i � C(t) �

X
i2fK;...K�k;ug

�ai �
a
i = Ca(t)

If we are interested in the expected instantaneous computational capacity in steady state, c, that is, the

expected number of non-failed processors in the long run, the CTMC in Figure 12 still o�ers an upper bound,

but the one in Figure 13 is of no use, since state u has probability one in steady state, which would simply

result in the trivial lower bound 0 for c. In any case, our ability to obtain useful bounds is normally tied to

our a priori knowledge of aspects of the CTMC structure and values of the reward rates. In our example,

we can prove that Cs(t) is an upper bound on C(t) because we know that

� Removing the set of states fK � k � 1; . . . 0g does not decrease the probability of any of the states in

fK; . . .K � kg

� The maximum reward rates of the states in fK � k � 1; . . .0g is not larger than the minimum reward

rates of the states in fK; . . .K � kg.

and we can prove that Ca(t) is a lower bound on C(t) because we know that

� Aggregating the set of states fK � k � 1; . . .0g into a single absorbing state u does not increase the

probability of any of the states in fK; . . .K � kg

� The minimum reward rates of the states in fK � k� 1; . . .0g is not smaller than 0, the reward rate of

states u.

For steady state analysis, more sophisticated arguments based on [17] can be used [49]. We conclude by

observing that simulation is, in a probabilistic sense, a form of automatic truncation, since the most likely

states are visited frequently while unlikely states may not be visited at all.

Lumping Most complex systems (models) consist of a large set of systems (submodels), many of them of

the same type. The state of the system is then obtained by composing the state of each subsystem. When

performing state-space exploration, though, there are simpli�cations which might lead to a smaller state

space while still allowing an exact solution. For example, in our system with K processors, we could model

each of them as an independent subsystem which can be in one of two states, up or down. The entire system

can then be viewed as composed of K such subsystems, thus having 2K states. This approach is wasteful,

though, since it is not necessary to distinguish between processors, if they all have the same failure and

repair behavior. Rather, we can represent the state of the system as the number of subsystems in each state

(up or down, but, since the total number of processors is known, we can simply remember the number of up

processors).

15

K K-1 K-2 K-k 1 0

Figure 11: A typical model that can be truncated.

K K-1 K-2 K-k

Figure 12: Strict truncation.

[0; t), C(t), that is, the expected number of non-failed processors as a function of time, integrated between

0 and t. If the state is characterized by the number of working processors, the model corresponds to a

birth-death process with state space fK;K � 1; . . .0g (Figure 11). If the processors have di�erent failure

and repair behaviors, the identity of the failed processors must be recorded in the state and the size of the

state space grows, dramatically, from K + 1 to 2K.

Formally, given a reachability graph (S;A), a state truncation results in a truncated reachability graph

(S0;A0).

If (S0;A0) is a subgraph of (S;A), the exact state-space exploration algorithm, or the model, is simply

modi�ed to ignore certain arcs which lead to states in S n S 0. In our example, we can prevent a k + 1-th

failure in a state which already has k failed components. We call this case \strict truncation" (Figure 12).

Alternatively, (S0;A0) might be composed by a subgraph of (S;A), augmented with one or more states

and arcs. In our example, we might add a new state u (for unknown), and an arc from each state with k

failed components to u, corresponding to further failures of the non-failed components. Strictly speaking,

this is more an \aggregation", so we call this approach an \aggregation truncation" (Figure 13).

The two approaches often allow us to obtain upper and lower bounds on the measure of interest. In our

example, we can solve the two CTMCs of Figures 12 and 13, obtaining two transient probability vectors:

�s(t) = [�sK(t); . . .�
s
K�k(t)]

and

�a(t) = [�aK(t); . . .�
a
K�k(t); �

a
u(t)]

respectively. If we associate the reward rates

�s = [�sK = K; . . .�sK�k = K � k]

K K-1 K-2 K-k u

Figure 13: Aggregation truncation.

14

5 Computational Problems

In modeling practice, it is often the case that no single model is adequate to solve a problem. Di�erent parts

or levels of detail in a system may require di�erent modeling techniques. In cases where a single model type

can be used, it may be too large (a problem both for speci�cation and analysis) or intractable (\sti�" or

ill-conditioned). Three main di�culties in analytic models include largeness, sti�ness, and the need to model

non-exponential distributions. We explore these topics in the following subsections.

5.1 Largeness

The problem of model largeness can be handled in two ways: it can be avoided or it can be tolerated.

5.1.1 Largeness Tolerance

For the sake of simplicity we assume that the underlying model is a CTMC or an MRM. If we are prepared

to store and solve the matrix of a large model, we should start with a concise description of the system

model and provide for the automated generation and the solution of the underlying state space. A number

of approaches have evolved for such speci�cations. Haverkort and Trivedi [24] summarize these approaches.

They present seven di�erent classes of speci�cation techniques: Stochastic Petri nets and their variants,

Communicating processes, Queueing networks, Specialized languages, Fault-trees, Production rule systems,

and Hybrid techniques. We refer the reader to the cited paper for further details.

5.1.2 Largeness avoidance

If the size of the underlying CTMC (or MRM) is so large as to preclude generation and storage, we must

resort to approximations that avoid the large underlying model. State truncation, lumping, decomposition

and
uid models constitute the types of approximations that have been utilized. We discuss these four

approaches below.

Truncation For many practical systems, the exact number of structural states in a corresponding model

might be extremely large, or even in�nite. State-space based approaches, then, cannot be applied directly

to the model. In many cases, though, the system spends most of the time in a small subset of the entire

state space; most states have an extremely small probability.

This is particularly true of highly reliable systems: if a system has K components, and if each component

fails with a very small rate (as is normally the case), states with more than a handful of failed components

are rarely reached. Indeed, it is common practice in reliability modeling to stop the state-space exploration

after k � K failures, with the implicit assumption that states with k + 1 or more failed components have

negligible probability. This is just one example of state truncation.

As an example, consider a K-processor system, where nodes fail and are repaired with rate � and �,

respectively. We want to compute the expected cumulative computational capacity during the time interval

13

pBC

tR pR pF

pC

pB

pA

Figure 9: GSPN availability model of the network

pA pB pC

Name Boolean Function

boolA (#tokens(pA) == 1)
boolBC (#tokens(pB) == 1) _ (#tokens(pC) == 1)
boolNW boolA ^ boolBC

Reward Rate Function

if (boolNW == 1) then r = 1 else r = 0

Figure 10: SRN availability model of the network

12

sinksrc

C

B

A

Figure 8: A simple network

since they include all the features of GSPNs and add more features. There are several structural extensions

such as guards (earlier known as enabling functions), priorities with timed transitions, marking-dependent

arc cardinalities, and halting condition. Besides the structural extensions, a reward rate function associates

a reward rate with each reachable marking. GSPNs and SRNs have been shown to be isomorphic to CTMCs

and MRMs respectively. However, we show in this section that SRNs allow a much more concise description

of system behavior than GSPNs. This is particularly true for dependability models. Furthermore, certain

reward-based measures as described in Section 3 can be computed using SRNs but cannot be computed

using GSPNs.

To compare GSPNs and SRNs, we present an example. Consider a simple network between src and

sink nodes consisting of three links (Figure 8). The network is operational as long as link A and at least

one of the links B or C is operational. Assuming that each link has its independent repairperson, the

availability of the network can be modeled by the GSPN shown in Figure 9. A token in places pA, pB,

and pC respectively indicates that links A, B, and C are operational. A token in place pF implies that

the network is failed. A token in place pR implies that, due to repair of one or more links, the component

is ready to be operational again. The �ring of transition tR removes the token from pF, signifying that

the network is operational. The steady-state (transient) probability of a token being in place pF gives the

steady-state (transient) unavailability of the network.

The availability of this network can also be modeled by an SRN as shown in Figure 10. The reward rate

function is as shown in the table. The expected value of reward rate r in steady-state (or at time t) gives

the steady-state (transient) availability of the network. Let us now compare the GSPN and SRN models. A

GSPN model requires a mesh of immediate transitions, places, and inhibitor arcs to capture the operational

dependence of the network on the links. Part of this mesh captures the dependence such as the subsystem

of links B and C fails only when both B and C have failed. The other part of the mesh captures the impact

of repairs of links which re
ect complementary conditions, such as removal of a token from place pBC as

soon as either B or C is repaired. As the systems grow in complexity, this mesh becomes very complex

and unwieldy. On the other hand, an SRN captures the operational dependence of the network on links by

reward rate function. This results in a simpler and more manageable net.

11

The mean time to absorption is given by:

MTTA =
X
i2	T

�i :

To compute reliability measures, all the system-down states are made absorbing states (transitions leaving

from them are deleted). The same 0-1 reward assignment is used. The reliability is given by E[�(t)].

The lifetime (similar to total uptime) [20] of the system over the interval [0; t) is E[�(t)]. The expected

accumulated reward until absorption is:

E[�(1)] =
X
i2	T

ri�i :

and the mean time to failure (MTTF) of the system is E[�(1)].

The distribution of the reward rate at time t, �(t), is computed as:

P [�(t) �] =
X

ri� ;i2	

Pi(t) :

The distribution of accumulated reward until absorption or a �nite period can also be computed. If the

time to accumulate a given reward r is �(r), then the distribution of �(r) is known once the distribution of

accumulated reward is known [32]:

P [�(r) � t] = 1� P [�(t) < r] : (3)

For instance, the distribution of time to complete a job that requires r units of processing time on a system

which is modeled by an MRM can be computed in this fashion.

From the above discussion, it is clear that dependability analysis can be carried out using MRMs with

special reward rate assignment to various system states. This analysis can also be carried out using CTMCs

(without rewards) in an equally e�cient manner. However, performability analysis, which can be easily

carried out using MRMs, becomes cumbersome if rewards are not used.

4 SPNs versus SRNs

CTMCs modeling real systems tend to be large, sometimes with hundreds of thousands states. A higher-

level speci�cation mechanism is thus needed for the concise description of the model and the automatic

conversion into a CTMC. Stochastic Petri nets (SPNs) provide such a mechanism. Molloy [48] used SPNs

for performance analysis and showed that they are isomorphic to CTMCs. Since then, several extensions

have been made to SPNs. Some of these extensions have enhanced the
exibility of use and allowed for even

more concise description of performance and reliability models. Some other extensions have enhanced the

modeling power by allowing for non-exponential distributions (see Section 5.3).

In this section, we compare SPNs with and without rewards. Speci�cally, we compare SRNs as de�ned

by Ciardo et al. [13] and GSPNs as de�ned by Ajmone-Marsan et al. [2]. SRNs are an extension of GSPNs,

10

given the initial state probability vector P(0). The steady-state probability vector � (assuming that it exists

and is unique) is obtained by setting the l.h.s. in Equation 2 to zero:

�Q = 0 ;
X
i2	

�i = 1 ;

The cumulative state probability vector of the MRM is de�ned as L(t) =
R t
0
P(x)dx, where Li(t) denotes the

expected total time spent by the MRM in state i during the interval [0; t). To compute L(t), we integrate

Equation 2:
dL(t)

dt
= L(t)Q+P(0) :

The reward rate at time t for the MRM is given by �(t) = r�(t). The accumulated reward over the

interval [0; t) is given by:

�(t) =

Z t

0

�(x)dx =

Z t

0

r�(x)dx :

The expected reward rate at time t of the MRM is:

E[�(t)] =
X
i2	

riPi(t) :

The expected reward rate in steady-state for the MRM is:

E[�ss] =
X
i2	

ri�i :

To compute availability measures, the state-space of the MRM is partitioned into two: a set of system-up

states, with reward rate 1, and a set of system-down states, with reward rate 0. We term this a 0-1 reward

assignment. The transient availability of the system is given by E[�(t)] and steady-state availability is given

by E[�ss].

The expected accumulated reward over the interval [0; t) is:

E[�(t)] =
X
i2	

riLi(t) :

The expected time-averaged reward rate over the interval [0; t) is given by
P
i riLi(t)=t. In an availability

model with 0-1 reward assignment, the total uptime of the system over the interval [0; t) is E[�(t)]. Interval

availability is the proportion of time a system is up in a given interval of time and it is given by E[�(t)]=t

for the interval [0; t).

For MRMs with absorbing states, the state-space 	 is partitioned into two: 	A (set of absorbing states)

and 	T (set of transient states). Let QT be the submatrix of Q corresponding to the transitions between

transient states. The mean time spent by the MRM in state i 2 	T before absorption is given by �i =R
1

0
Pi(x)dx, which is obtained by integrating Equation 2 from 0 to 1:

�QT +PT (0) = 0 :

9

3 CTMCs versus MRMs

CTMCs have been traditionally used to model dependability. MRMs [25] are CTMCs in which reward rates

may be associated with states of the CTMC (rate-type rewards) or with transitions of the CTMC (impulse-

type rewards) or both. We consider MRMs with rate-type rewards. MRMs have been successfully used for

performability analysis [44, 63] according to the following methodology. Initially, a dependability model (also

known as structural model) of the system is constructed. Assuming the dependability model is state-space

type (such as a CTMC), a performance measure is obtained (possibly by solving a performance model) for

each state of the dependability model. This performance measure becomes the reward rate of that state

in the dependability model. With the reward-rate assignment, the dependability model becomes an MRM

which may then be solved for various performability measures. There is an approximation involved in this

decomposition of performance and dependability models: the system is assumed to have attained (quasi-

)steady-state in each state of the dependability model, so that the reward rate for each state of the reliability

model is a steady-state performance measure. Transient or steady-state analysis of the dependability model

with rewards is then carried out. The justi�cation for this decomposition lies in the fact that the performance

activities are much faster than the dependability events.

CTMCs can also be used for performability analysis if a monolithic model is constructed which combines

both the dependability and performance model of the system. However, the state-space of this model is

approximately the cross-product of state-spaces of the dependability and performance models. In addition,

this monolithic model is sti� because of extreme disparity between the transition rates (job arrival rates

could be 109 times or more than the fault occurrence rates). One may argue that this approach is more

accurate than the MRM approach since no approximation is involved. However, this gain in accuracy may

well be negated due to the computational problems posed by largeness and sti�ness of the monolithic model.

We focus more on these two problems, largeness and sti�ness, in later sections. The MRM approach has

another signi�cant advantage. No assumptions are made about how the reward rates are obtained. The

reward rates may be obtained by simulation, by solving a queuing network, or by solving a semi-Markov

process (SMP), etc.

It is easy to see that CTMCs are special cases of MRMs and therefore dependability analysis becomes a

special case of performability analysis. In this section, we brie
y show how various dependability measures

can be analyzed as performability measures when the MRM has a special reward-rate assignment. Let

f�(t); t � 0g be an MRM with state space 	 and constant reward rate ri associated with each state i of

the CTMC. If the MRM spends �i units of time in state i, then ri�i is the reward accumulated during this

sojourn. Let Q be the generator matrix and P(t) be the state probability vector of the MRM. Here Pi(t)

denotes the transient probability of the MRM being in state i at time t. The transient behavior of this MRM

is given by the Kolmogorov di�erential equation:

dP(t)

dt
= P(t)Q ; (2)

8

The network in Figure 6 is for the design containing two processors and three shared memory modules.

We model the two processors by a multiple-server station. That is, jobs wait in a single queue and enter

whichever server becomes free. When a job wants to access the memory, it requires memory moduleMi with

probability pri. After some visits to the processor, a job �nishes: pr0 is the probability that a job is �nished

when it leaves one of the processors. As is usual for closed queueing networks, the assumption is that each

�nished job is replaced by a statistically identical new job.

The network in Figure 7 is for the design containing two private memory modules. For this system, we

assume that jobs are targeted to particular processors. This is reasonable, since, once a job starts on a

processor, we want it to continue where it has access to that processor's private memory. We carry out this

assumption by making the queueing network a \multiple-chain" queueing network, in this case having two

\chains", or classes of jobs. Jobs in the �rst class go from P1 to either M1 or Ms and back to P1 and jobs

in the second class go from P2 to either M2 or Ms and back to P2.

As expected, the system with private memories provides higher system throughput as opposed to that

for the shared-memory system.

To model the systems when one memory has failed, we remove the server M1 (and its queue) from each

of the models and adjust the probabilities pri and prij appropriately.

Queueing models are able to capture the e�ects of resource contention, but measures related to the total

number of jobs serviced do not capture the performance of the system as seen by a single parallel program:

series-parallel acyclic graph models [55] can be used for this purpose.

Also CTMCs provide a useful framework to model system performance, but a detailed CTMC model

is often large and complex and its construction is an error-prone process. Hence there is a need for a

higher-level model-type having an underlying CTMC, which is then automatically generated from it. Some

attempts in the speci�c instance of dependability modeling have resulted in useful packages like SAVE [23],

for availability modeling, which uses a block diagram input, and HARP [21], for reliability modeling, which

uses a fault-tree input. A suitable interface is necessary for a more general modeling environment. GSPNs

[1] and SRNs [13] provide an excellent interface for detailed performance modeling of complex systems.

The advent of fault-tolerant computing has resulted in the design of machines which continue to function

even in the presence of failures, albeit at a reduced level of performance. Pure reliability or performance

models of such systems do not capture the whole picture. This has prompted researchers to consider the

combined evaluation of performance and reliability [44, 63]. The CTMC is extended by associating rewards

with its states to obtain a \Markov reward process", or \Markov reward model" (MRM). This process not

only facilitates modeling of performance and reliability but also the combined evaluation of performance and

reliability. Since this paper considers the automatic generation of the CTMC from the GSPN description of

the model, the reward structure must also be de�ned in terms of the GSPN entities. Consequently the GSPN

description is modi�ed to obtain \stochastic reward nets" [13] which can be automatically transformed to

obtain the underlying MRM.

7

M1

M2

M3

P1

P2

prate=3600

smrate=1800
prate=3600

pr =0.10

pr =0.31

2pr =0.3

3pr =0.3

Figure 6: A product form queueing network for the system with three shared memories.

pmrate=7200

pmrate=7200

M1

Ms

M2

P1

P2

prate=3600

smrate=1800

prate=3600

11pr =.675

1spr =.225

20pr =0.1

10pr =0.1

2spr =.225

22pr =.675

Figure 7: A product form queueing network for the system with one shared memory and two local memories.

other hand, can represent contention for resources. However they cannot model concurrency within a job,

synchronization, or server failures, since these violate the product form assumptions.

We consider the same two system architectures as in Section 2.1: the �rst containing two processors

and three shared memory modules and the second containing two processors, each with a private memory

module, and one shared memory module.

To capture the e�ects of contention for the processor and memory resources, we use queueing network

models. We assume that the memory modules are servers in the sense that they queue requests and perform

block transfers. To set up a realistic queueing model, we would have to take into account the proposed oper-

ating system design, especially the scheduling aspects, and we would need some kind of expected workload

characterization. For the sake of illustration, we use the closed queueing network models shown in Figures

6 and 7.

6

µp

pmup

pmrep

ppup

pprep

tpfailtprep tmfail tmrep

µ

λλp

2 3
1

n np m

m

m

Figure 5: A GSPN model.

Before leaving the subject of unavailability, we illustrate the use of one more model type, the GSPN. For

a discussion of this model type, the reader is referred to [1]. Modeling the availability of this system with a

GSPN does more than just give us another validity check. It allows us to �nd the unavailability for a system

with any number of processors and memories without having to construct a separate model for each number

of components. The GSPN in Figure 5 is a model of the system in which there is one repair facility to be

shared for all components.

There is a token for each processor and each memory. Initially, there are np tokens in the place ppup (place:

processors up) and nm tokens in the place pmup (place: memories up). When a processor fails, its token

moves from place ppup through transition tpfail (transition: processor fails) to place pprep (place: processor

waiting for repair). Processor repair is represented by a token moving from place pprep through transition

tprep to place ppup. The inhibitor arcs from pprep to tmfail and pmrep to tpfail re
ect the assumption that

if the system has already failed because all processors or all memories have failed, the remaining working

components do not fail while they are not running. This aspect of the system was modeled only implicitly in

the CTMC model, by the absence of failure transitions from the places with either no operating processors

or no operating memory modules. The inhibitor arc from pprep to tmrep is the one that represents our

assumption that there is only one repair facility; if there are any failed processors, there can be no memory

repair.

We can verify that analyzing this GSPN with np = 2 and nm = 3 gives the same result for system steady-

state unavailability as the CTMC model. We note that the GSPN, although a more e�cient speci�cation,

is no more e�cient to analyze than the CTMC, since analysis of a GSPN involves translating the GSPN

into a CTMC. However, dependability modeling with GSPN tends to be clumsy [41]. Stochastic reward nets

remove this restriction from GSPN models. We elaborate more on this in Section 4.

2.2 System Performance Models

In this section, we look at aspects of system performance, including performance of gracefully degraded

systems. In the performance domain, task precedence graphs [31, 55] can be used to model the perfor-

mance of concurrent programs with unlimited resources. Product form queueing networks [35, 36], on the

5

31 21 11 01

3λ

µ

m 2λm

µ µ

32 22 12 02

3λ

µ

m 2λm λ m

µ µ

µp µp µp µp2λp 2λp

λ m

m m m

m m m

2λp

30 20 10µm

µp µp µpλ p λ p λ p

µm

Figure 4: A CTMC model.

the ith component has exponentially distributed failure behavior with rate �i and repair is also exponentially

distributed with rate �i, its unavailability at time t is

Ui(t) =
�i

�i + �i
�

�i

�i + �i
e�(�i+�i)t (1)

and the steady-state unavailability is given by

lim
t!1

Ui(t) =
�i

�i + �i

These expressions can be derived by solving the two-state (up/down) CTMC for a component [62].

If we analyze the reliability block diagram of Figure 1 with the assignment of distribution functions of

Equation 1 to the components, the resulting function is the system unavailability at time t, Usys(t), and the

\mass at in�nity" (1� limt!1 Usys(t)) is the steady-state system availability.

To deal with the second and third repair strategies, we can no longer use the block diagram model. The

block diagram assumes that all components are statistically independent, but, if components share repair

facilities, the failure and repair behavior of one component is dependent on the state of all components.

If the failure and repair distributions are exponential, we can use a CTMC model. Consider the CTMC

in Figure 4. State mp represents the system when m memory units and p processors are functional. The

model with all of the solid and dashed-line transitions is for the second repair strategy (one repair facility for

processors and one for memories). The model for the third strategy (only one repair facility giving priority

to the processors) is obtained by excluding the dashed lines, since no memory is repaired while there are

failed processors.

We note that we could have used a CTMC for the �rst repair strategy as well. We would have assigned

di�erent transition rates to the repair transitions to re
ect the fact that more than one component can be

repaired at a time. As an example, the rate for the transition from 02 to 12 would be 3 � �m rather than

�m. The block diagram model, though, is both easier to construct and more e�cient to analyze.

4

Failure

P1 P2M1 M2M3 M3

Figure 2: A fault tree model.

1

2

src share sink

P1

P2

M1

M2

M3

I1

I2

Figure 3: A reliability graph model.

happen along the edges labeled P1 and P2 and memory failures happen along the edges M1, M2, and M3.

The edges I1 and I2 do not represent system components; they represent the structure of the system (the

sharing of M3). We assign the \in�nite" distribution, de�ned by I(t) = 0, to them. There is a path from

source to sink if P1 and M1 are up or if P1 and M3 are up, and similarly for paths involving P2. Analysis

of the reliability graph results in the same failure time distribution as the fault tree analysis.

Now we extend our models to take into account repair or replacement of parts. We calculate the \avail-

ability" of the system, the (transient or steady-state) probability that the system is functioning. We examine

the all-shared-memory system and look at three repair strategies:

1. There are enough repair resources to repair all components at the same time, if necessary.

2. There are two repair facilities, one for processors and one for memory modules, each able to handle

one component at a time.

3. There is one repair facility, able to handle one component at a time. Processor repair has preemptive

priority over memory repair.

For the �rst strategy, the state of the components (either up or down) are mutually independent, since

the failure and repair of each component does not depend on that of any other component. Because of this

independence, we can use the block diagram used to model reliability (Figure 1) to model availability as well.

Instead of assigning to each component the time-to-failure distribution, we use the transient unavailability. If

3

proc mem

mem

mem
proc

Figure 1: A reliability block diagram model.

2 Approaches to Modeling

2.1 Dependability Modeling

Reliability block diagrams, fault trees, and reliability graphs are commonly used to study the dependability

of systems [59]. Although these models are concise and have e�cient solution methods, they cannot represent

dependencies among components [56] as easily as CTMC models can [21, 23].

We begin by considering a fault-tolerant, multi-processor computer with multiple, shared memory mod-

ules. The system is able to detect a processor or memory module failure and recon�gure itself to continue

operation without the failed component. The system can operate with just one processor and one memory

module.

Our �rst model of this system is the reliability block diagram in Figure 1. We could attach to each

component the probability of having failed by a particular time. In a more general parameterization, a

failure time distribution function, rather than a probability value, can be attached to each component. For

example, one can assign the exponential distribution Fp(t) = 1� e��pt to processors and Fm(t) = 1� e��mt

to memories. We can request the system failure time distribution as a function of the time variable t. For a

system with two processors and three memory modules,

Fsys(t) = 1� (1� (1� e��pt)2)) � (1� (1� e��mt)3)) :

We can also ask for the mean time to system failure,

MTTFsys =

Z
1

0

(1� Fsys(t)dt

=
6

�p + �m
�

3

2�p + �m
�

6

�p + 2�m
+

3

2�p + 2�m
+

2

�p + 3�m
�

1

2�p + 3�m
:

Now suppose we want to investigate a di�erent computer design where the two processors have fast private

memory modules and the system has slower, shared memory modules. We assume that the system operates

as long as there is at least one operational processor with access to either a private or shared memory. We

cannot model this system with a block diagram, because there is no way to model how the shared memories

are connected to all processors while private memories are connected to particular processors. So, we turn

to a fault tree model, shown for two processors and three memory modules in Figure 2. We could also use

a reliability graph, where time-to-failure distributions are assigned to the edges. The system is operational

as long as there is a path from source (src) to sink. In this particular model (Figure 3), processor failures

2

1 Introduction

Dependability, performance, and performability evaluation techniques provide a useful method for under-

standing the dynamic behavior of a computer or communication system. To be useful, the evaluation

should re
ect important system characteristics such as fault-tolerance, automatic recon�guration, and re-

pair; contention for resources; concurrency and synchronization; deadlines imposed on the tasks; and graceful

degradation. Furthermore, complexity of current-day systems and corresponding system evaluation should

be explicitly addressed.

Traditional performance evaluation is concerned with contention for system resources. Performance

evaluation of parallel and distributed systems also address concurrency and synchronization of tasks. Real-

time system performance evaluation takes into account various hard and soft deadlines on task exection

times.

Reliability, availability, safety, and related measures are collectively known as dependability. Depend-

ability evaluation encompasses fault-tolerance, recon�guration, and repair aspects of system behavior. More

recently, interest in combining performance and dependability evaluation has grown. Such performability

evaluation considers the graceful degradation of the system in addition to the dependability aspects.

While measurement is an attractive option for assessing an existing system or a prototype, it is not a

feasible option during the system design and implementation phases. Model-based evaluation has proven to

be an attractive alternative in these cases. A model is an abstraction of a system that includes su�cient

detail to facilitate an understanding of system behavior. Several types of models are currently used in

practice. The most appropriate type of model depends upon the complexity of the system, the questions to

be studied, the accuracy required, and the resources available for the study.

Discrete-event simulation is the most commonly used modeling technique in practice but it tends to be

relatively expensive. Analytical modeling provides a cost-e�ective alternative to simulation for studying the

performance and dependability of computer and communication systems. Due to recent developments in

model generation and solution techniques and automated tools, large and realistic models can be developed

and studied. In this tutorial we concentrate on such analytic models. The rest of this tutorial is organized as

follows. In the next section, we present an overview of various approaches to dependability and performance

modeling. In Section 3, we show how performability analysis can be carried out using MRMs. We also

show how dependability measures can be obtained via performability analysis using special reward rate

assignment.

In Section 4, we compare GSPNs and stochastic reward nets. In Section 5, we discuss in detail some prac-

tical issues in solving dependability and performability models: largeness, sti�ness, and non-exponentiality.

1

DEPENDABILITY AND PERFORMABILITY ANALYSIS1

Kishor S. Trivedi

Gianfranco Ciardo

Manish Malhotra

Robin A. Sahner

Department of Electrical Engineering, Duke University

Department of Computer Science, College of William and Mary

AT&T Bell Laboratories, Holmdel, NJ 07733

Urbana, IL, 61801

ABSTRACT

In this tutorial, we discuss several practical issues regarding speci�cation and solution of dependability and

performability models. We compare model types with and without rewards. Continuous-time Markov chains

(CTMCs) are compared with (continuous-time) Markov reward models (MRMs) and generalized stochastic

Petri nets (GSPNs) are compared with stochastic reward nets (SRNs). It is shown that reward-based models

could lead to more concise model speci�cation and solution of a variety of new measures. With respect to the

solution of dependability and performability models, we identify three practical issues: largeness, sti�ness,

and non-exponentiality, and we discuss a variety of approaches to deal with them, including some of the

latest research e�orts.

1This research was partially supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480 while the �rst two authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681.

i

