
1

The CODE 2.0 Graphical Parallel Programming Language*

Peter Newton
James C. Browne

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

ABSTRACT

CODE 2.0 is a graphical parallel programming system that
targets the three goals of ease of use, portability, and production
of efficient parallel code. Ease of use is provided by an
integrated graphical/textual interface, a powerful dynamic model
of parallel computation, and an integrated concept of program
component reuse. Portability is approached by the declarative
expression of synchronization and communication operators at a
high level of abstraction in a manner which cleanly separates
overall computation structure from the primitive sequential
computations that make up a program. Execution efficiency is
approached through a systematic class hierarchy that supports
hierarchical translation refinement including special case
recognition. This paper reports results obtained through
experimental use of a prototype implementation of the CODE 2.0
system.

CODE 2.0 represents a major conceptual advance over its
predecessor systems (CODE 1.0 and CODE 1.2) in terms of the
expressive power of the model of computation which is
implemented and in potential for attaining efficiency across a
wide spectrum of parallel architectures through the use of class
hierarchies as a means of mapping from logical to executable
program representations.

 *This research is supported by a DARPA/NASA Research
Assistantship in Parallel Processing administered by the Institute
for Advanced Computer Studies, University of Maryland, by IBM
Corp. through grant 61653, and by the State of Texas through
TATP Project 003658-237.

1. INTRODUCTION

Common use of architectures that support macro-level
coarse-grain parallel computation has been hindered by the
difficulty of programming such machines. Effective parallel
programming systems for these architectures must satisfy three
practical goals. They must be easy to use, they must provide a
portable representation basis for algorithms, and they must
produce efficient executable parallel structures.

Several approaches to parallel programming are currently

--

This paper will appear in Proc. ACM Int. Conf. on
Supercomputing, July, 1992.

in use. Most, if not all, fail to satisfy one or more of these
requirements to a major degree.

• Augment sequential languages with architecture-specific
procedural primitives.

This approach permits the creation of efficient parallel
programs, but the primitives supplied tend to be at such a low
level of abstraction that they may be awkward to use for a wide
variety of algorithms. Program development with them tends to
be slow and error prone. In addition, parallel architectures are
quite diverse, and their programming models are equally diverse.
For this reason parallel programs written using architecturally
specific extensions to sequential languages tend to be quite non-
portable.

• Have compilers automatically detect parallelism in sequential
language programs.

This approach clearly provides application portability. It is
the case, however, that current parallel compilers often miss
significant parallelism due to the difficulties engendered by name
ambiguity in programs written in today’s sequential
programming languages [EIG91].

• Extend sequential languages to allow data partitionings to be
specified.

One emerging trend is to include declarative partitioning of
data structures in the sequential program formulation and to ask
the compiler to utilize this parallel structure [HIR91]. This
promising method is as yet immature.

The CODE Approach

The approach to medium and coarse grain parallel
structuring in the CODE series of programming environments
[BRO89,WER91], has been to have the programmer express the
parallelism directly and declaratively at a high level of
abstraction by composing macro-level units of computation into
parallel structures in the form of generalized dependence graphs
[BRO85]. These graphs are then automatically translated into
architecture specific code. The syntax of the "programming
language" of CODE is essentially a multigraph, with the
semantics of the nodes and arcs mostly specified declaratively.

Versions of CODE prior to 2.0 demonstrated considerable
success in ease of use, component reuse [LEE89] and efficiency

2

of the resulting programs [JAI91], however they implemented
only a rather static version of a unified model of parallel
computation [SOB90]. There were many useful algorithms
which were cumbersome to express in these earlier versions of
CODE. CODE 2.0 addresses the expressiveness limitations of
the earlier versions of CODE with what appears on the basis of
limited experimentation to be improved efficiency.

There is, of course, no free lunch in parallel programming.
The goals of expressive power, ease of use and portability on one
hand and efficiency of execution on the other are difficult to
satisfy at the same time. The CODE 2.0 approach exploits
several key technologies and a compromise in order to satisfy all
three. The key technologies and their benefits relative to CODE
2.0's goals are shown in figure 1.1.

Ease of
Use

PortabilityExecution
Efficiency

Expressive

Integrated
Graphical/
Textual
Interface
Declarative,
Abstract,
Dynamic
Model

Program
Component
Reuse

Hierarchical
Class-based
Model
Basis
Lazy
Creation,
State
Retention
Integration
of Function
and Data
Parallelism

CODE 2.0 Goal

Technol.

Figure 1.1 - CODE 2.0 Goals and Key Technologies

CODE 2.0 is easy to use because it rests upon an expressive
declarative abstract model of parallel computation and because it
has a graphical interface. Users create parallel programs by
drawing a picture showing communication structure (a graph)
and annotating it. There are no complex parallel programming
primitives to learn. This approach also enhances portability
since CODE’s abstract program representation basis is not tied to
any particular architecture.

Execution efficiency is approached by the use of a class
hierarchy to represent the abstract model and by the software
engineering structure of the CODE 2.0 translators. By means of
class refinement, new heuristic translation optimizations may be
added (in general) without rewriting old ones. The CODE 2.0

translation scheme may be thought of as a grab-bag of
optimizations. This is further explained in section 6.

Also, the CODE 2.0 model is the result of a delicately
balanced compromise between expressiveness and efficiency. A
model that is abstract and powerful, especially in the area of
runtime determined communication structure and data types, may
be easy to use, but is difficult to implement efficiently. Yet, the
model must be abstract and powerful enough to permit a wide
class of algorithms to be conveniently expressed. Much of the
CODE 2.0 design effort has gone into finding the correct level of
abstraction and expressive power to achieve all of the system’s
goals. The attributes of the programming model at this balance
point include the following.

1. User specified parallelism. The system does not have to
automatically discover parallelism. It does have to
automatically exploit it.

2. Declarative expression of algorithm communication and
synchronization structure.

3. Runtime instantiation of a dynamic set of instances from a
set of types that is fixed at runtime.

4. Lazy creation of instances. This refers to the fact that no
CODE 2.0 object (node, graph, etc.) is instantiated at
runtime until it is needed. A node is needed when a value
is first placed onto an incoming arc. A side effect of this is
that CODE 2.0 graphs may be recursive.

5. State retention. Once an instance is created, it is retained
for possible future use and may be used many times. The
cost of using a dynamic set of instances is essentially equal
to the cost of using a static set, once the set is created.

The dynamic nature of the dependence graphs is
fundamental to the CODE 2.0 model of parallel computation.
Each node and each arc is a member of a type family of nodes
and arcs. An instance of any type known to the system can be
instantiated at any time. Instances are distinguished by integer
valued indices.

A brief discussion of the interaction of dynamic parallel
structuring and efficient execution may help to illustrate these
trade-offs. Very often, parallel algorithms are most readily
expressed as graphs whose structure is input-driven. Hence, the
complete structure is not known until runtime. The structural
parameters which may need to be resolved at runtime may be the
number of occurrences of some unit of computation at a level of
the dependence graph, a choice of what unit of computation to
instantiate, or the pattern of connectivity among a family of
object instances. CODE 1.0 and CODE 1.2 could express only
the first type of dynamic structure. One simple illustration of
these circumstances is a block-oriented parallel algorithm for the
solution of a triangular set of linear equations. The desirable
runtime parameters include the total size of the matrix and the
size of the blocks into which it is to be decomposed. These two
parameters together determine the number of logical units of
computation and the connectivity among the units of
computation. CODE 1.2 cannot readily express the general case
of this algorithm. A single CODE 2.0 program easily captures
the full dynamic structure of the algorithm for all cases. The
result, however, is that the number of processes to be created is
not known until runtime. A CODE program that solves this
problem is presented in section 7.2.

3

Processes could be created at the beginning of the
computation by the commonly used early binding strategy, but
this would result in a tremendous waste of space and time. At
the same time, if objects which are likely to be reused, as in
loops in a dependence graph are not saved from iteration to
iteration, the cost of creation becomes very high. The CODE 2.0
strategies of lazy creation and state retention minimize these
overheads. At the same time the declarative graph structure of
the program sometimes allows the runtime system to determine
when a point of the graph will definitely not be revisited so that
unneeded node instances can be discarded.

2. CODE 2.0 PROJECT STATUS

The model of parallel computation which is to be
implemented by CODE 2.0 has been defined. A prototype
implementation which utilizes all of the key technologies of the
CODE 2.0 model has been developed and used to test the
effectiveness of the model of computation on several modest
scale programming projects. It translates graphs into parallel
Ada, which is executed on a Sequent Symmetry. The major
omission from the model of parallel computation in the prototype
is a mechanism for sharing names and bound values among a set
of computational elements. The results are serving as a guide
for design and implementation of the next version of CODE 2.0
implementing the full model of parallel computation. This
version will be available for public distribution and will be used
in classes at The University of Texas at Austin. The releasable
version of CODE 2.0 will be C (rather than Ada) oriented and
will run under X-Windows on Sun and IBM RS6000
workstations. It will eventually produce parallel programs for
several environments including both partitioned and shared
memory machines.

3. CODE 2.0 USER INTERFACE

The CODE 2.0 user interface will not be discussed in detail
in this paper, although much information about it can be inferred
from the examples in the next section. The interface is a what
you see is what you get graph editor in which nodes and arcs can
be drawn and then annotated by means of filling out forms.

4. THE CODE 2.0 MODEL

In this section, we present an overview of CODE 2.0's basic
model of computation, mostly by means of a simple example
program. However, some preliminaries are needed. CODE 2.0
programs consist of a set of graph instances that interact by
means of Call nodes. Graph instances in CODE 2.0 play the role
of subroutines in conventional programming languages. The
number and type of the instances is determined at runtime, but
each graph is instantiated from one of a fixed set of graph
templates. When the user draws a graph in the programming
model, he is creating a template, not an instance. Instances are
created at runtime when they are referenced from a Call node.
This concept of dynamic instantiation from fixed templates is
ubiquitous in CODE 2.0. Almost all model objects work in this
way. It is helpful to view the objects the user creates with the
graphical interface as templates for instances rather than single
instances.

Graphs consist of nodes and arcs. Arcs represent channels
for the flow of data from one node to another. They serve as
unbounded (subject to system memory constraints) FIFO buffers.

There are several types of nodes. They are shown in figure 4.1.
As alluded to before, Call nodes specify arc connections to other
graph instances. Interface nodes specify points at which a called
graph can connect to another graph. Unit of computation nodes
(UCs) represent basic sequential computations. Hence, they are
the fundamental elements from which parallel programs are
assembled. They consume data from incoming arcs, perform a
computation, and place data onto outgoing arcs for other nodes to
consume.

Figure 4.1 - CODE 2.0 Node Types

UC nodes have a large number of attributes. For example,
the node’s computation is expressed as a call to a subroutine in a
conventional sequential language, and input rules specify
conditions under which this computation is allowed to execute.
UC nodes also have input and output ports for the
communication of data to and from the node. Arcs are bound to
specific ports. Hence, multiple arcs may enter or leave a node
without ambiguity. Figure 4.2 shows an example.

.

X

Y

input_rules {
 avail(X) => v = val(X)}
comp {
 Invert(v);}
output_rules {
 TRUE => Y = v;}

Figure 4.2 - Example UC Node

This example node has input port X and output port Y. The
node may execute when there is a value available on the
incoming arc bound to X. The value is placed into variable v and
inverted by the node's computation, which is a call to a user-
supplied sequential routine. Finally, the value is placed onto the
outgoing arc bound to Y. UC nodes are further explained in
section 4.3.

Multiple arcs may connect two nodes. Hence, CODE
graphs are actually multigraphs. An extended example follows.

4.1 AN EXAMPLE PROGRAM: SGRID

Due to space considerations, the complete CODE 2.0 model
of computation will not be presented [NEW91]. Instead, a

4

simple example program will be used to demonstrate the most
important aspects of the model. These include

1. Graph-based declarative model structure.
2. Hierarchical structuring via distinct graph instances

interacting through Call nodes.
3. User-specified execution conditions for UC nodes.
4. Methods for specifying runtime determined communication

patterns.

The example program is based loosely on a program in
chapter two of [LUS87]. It computes values on a grid
(represented as a 2-dimensional array) that satisfy Laplace’s
equation given fixed values on the boundaries of the grid. The
algorithm is shown in figure 4.3.

Repeat Goal times:
 For each interior cell, set
 cell value to the mean of
 neighboring cell values.

Fixed value on
boundary.

Interior cell.

Figure 4.3 - Example Algorithm

This computation is readily parallelized by partitioning the rows
to be updated during each iteration among the processors
available.

4.2 HIERARCHICAL STRUCTURING

The CODE 2.0 program consists of two graphs, main and
Laplace (see figure 4.4). Graph main reads input values and
calls Laplace via Call node CallLaplace to compute the grid,
which it then prints. Node ReadInputs is the first to execute. It
reads from the user’s terminal the size of the grid, the number of
iterations, and the number of processors and places this
information onto arcs S, Goal, and NProcs. These arcs are
actual input parameters to graph Laplace. The arc leaving
CallLaplace (arcs need not have names) is an actual output
parameter.

A separate graph instance is associated with each Call node.
Hence, there can be many instances of a graph in a program. For
example, there could be two Call nodes in main, both calling
Laplace. Then, there would be two instances of graph Laplace
created. In fact, the number of graph instances need not be
determined until runtime. This is because Call nodes may be
replicated at runtime and because graphs may be recursive.

Actual parameters from main are bound to formal
parameters in Laplace. There are two varieties of formal
parameters in the CODE 2.0 model, creation parameters which
are not displayed graphically and interface nodes which are
represented by small circles. Interface nodes simply represent
the binding of arcs. For example, actual parameter arc Goal in
main is bound to interface node Goal in Laplace. This means

that the goal number of iterations is passed from ReadInputs in
main to InitMat in Laplace.

Graph Laplace (figure 4.5) has two creation parameters, S
(the size of the grid) and NProcs (the number of processors
to use for the main part of the computation). Creation
parameters are given values exactly once when the graph
instance that contains them is created at runtime. Hence, a graph
cannot be created until values are placed on all actual parameter
arcs that are bound to its creation parameters. When

Figure 4.4 - Graph main

a graph is created, its creation parameters become constants in
the scope of all nodes in the graph. This provides a convenient
mechanism to broadcast values to all of the nodes in a graph
upon their creation. Creation parameters are often used to create
a graph instance at runtime to solve a problem of runtime
determined size.

Figure 4.5 - Graph Laplace

5

Computation nodes in CODE 2.0 have user-supplied input
firing conditions that determine the states in which node
execution is permitted. Node InitMat’s rule permits it to fire
whenever a value is present on its incoming arc. When it fires, it
allocates storage for the grid and partitions it by rows into
NProcs pieces. Node LoopControl has input and output rules
that cause it to act as a “for” node. It causes node family Comp
to execute NProcs times, after which it passes the grid out of the
graph. In the production version of CODE 2.0, the programming
model will provide loop control nodes as primitive model
elements.

There are NProcs copies of node Comp instantiated at
runtime. The “[*]” by node Comp is a comment indicating that
the node is instantiated more than once. These nodes perform
the main computation, each acting on a piece of the grid
extending from StartRow to EndRow. Of course, separate
values of StartRow and EndRow are sent to each instance of
Comp.

4.3 COMPUTATION NODES AND FIRING RULES

Let us now concentrate on the definition of a unit of
computation node and the rules that define its execution
conditions. Although node execution is to be considered as an
atomic transition of the node and its incident arcs into a new
state, node definitions consist of three principal parts, a set of
input rules, a computation, and a set of output rules. A node’s
firing conditions are determined by its input and output rules,
both of which consist of sets of Guard => Binding pairs. Figure
4.6 shows an example computation node with two input ports X1
and X2 and one output port Y. Variable v is local to the node.

X1
X2

Y

input_rules {
 avail(X1) => v = val(X1);
 avail(X2) => v = val(X2); }
comp {
 AddOne(v); }
output_rules {
 v > 0 => Y = v; }

.

Figure 4.6 - Computation Node

A computation node becomes eligible to fire when one or more of
its input rule guards become TRUE and the corresponding rule(s)
become enabled. At that point one of the enabled rules is
selected nondeterministically, and its binding section executes.
Function avail returns TRUE if and only if the its argument port
contains a value. Function val returns that value and removes it
from the arc as a side effect.

Rule guards are not limited to single terms, but their syntax
differs from general Boolean expressions. The property that is
required is that a guard must remain TRUE once it becomes
TRUE, at least until its node fires. We call this property
“monotonicity.” Hence a guard like “the incoming arc is
empty” cannot be allowed. Our experience shows that extremely
complex guards are almost never required in practice so guard
syntax in the CODE 2.0 prototype is further constrained. The
rule syntax is

E1, E2, ..., En

where “,” should be read as AND. The E’s are either general
Boolean expressions in the node’s local variables, or in the case
of input guards they may be calls to the avail function. In
addition, there is a mechanism for specifying indexed
replications of rules and rule terms. An example of this is given
in section 4.4.

After input binding is complete, the node’s computation
begins. Computations are expressed as subroutines in
conventional languages such as C. When the computation
returns, the output rule guards are evaluated. Binding sections
for all enabled rules are executed. The notation “Y = v” means
place the value bound to v onto the arc denoted by Y.
4.4 RUNTIME DETERMINED STRUCTURES

Very often, parallel algorithms are most readily expressed
as graphs whose structure is input-driven. Hence, the structure is
not known until runtime. Graph Laplace provides a simple
example and will be discussed below. The block triangular
solver program of section 7.2 provides a somewhat more complex
example.

 Graph Laplace’s communication structure is not known
until runtime because the number of Comp nodes is determined
by an input parameter (NProcs) to the graph. The structure
created at runtime is shown in figure 4.7. For simplicity, we will
ignore all incoming arcs to Comp except that which carries the
current iteration count. Call this arc GoalIn, according to the
name of the port in Comp to which it is connected.

LoopControl

Sync

Comp[0] Comp[1] Comp[NProcs-1]

GoalOut

GoalIn

...

Figure 4.7 - Structure of Comp Family in Laplace

Comp is a family of nodes, and the “arcs” incident upon it
represent a family of arcs. Such dynamic structures are specified
in CODE 2.0 by an interaction of input rules, output rules, and
arc topology specifications associated with arcs.

First, consider the LoopControl output rule that passes the
current iteration count to the Comp nodes.

Goal > 0 => {GoalOut[i] = Goal : (i NProcs)}

GoalOut is LoopControl’s name for the port bound to the arc
going to Comp, and Goal is the iteration count. The expression
“(i NProcs)” is a replicator that causes the binding to be done for
values of “i” from 0 to NProcs-1.

Arc topology specifications determine where data should be
sent when placed onto an arc, given where it originates. The arc
between LoopControl and Comp has the following
specification. (Actually the node name is supplied by graphical
context.)

6

LoopControl.GoalOut[i] => Comp[i].GoalIn

Hence, if a value is placed onto the port with name
LoopControl.GoalOut[7], then that value will be passed to port
GoalIn of node Comp[7]. This causes node Comp[7] to be
created if it is not already instantiated. In this manner, arbitrary
communication topologies can be built at runtime.

5. PROGRAM COMPONENT REUSE

CODE graphs form a natural unit for program fragment
reuse because they have clean and complete interface
specifications. This has been explored with the ROPE system
[LEE89], which is coupled to earlier versions of CODE. We
plan to incorporate an updated ROPE system into CODE 2.0 that
will take advantage of its ability to package types with graphs.

6. FRAMEWORK FOR EFFECTIVE TRANSLATION

Abstract models of parallel computation are not useful
unless they can be translated into efficient executable structures,
preferably on multiple target architectures. CODE 2.0’s
implementation addresses this issue by raising the level of
abstraction at which translators are defined. In particular, the
CODE 2.0 model of computation is defined and implemented as
a class hierarchy. Translators are defined as methods bound to
the various classes in the hierarchy. The key aspect of this is that
the translators associated with the various classes in the
hierarchy are relatively decoupled. Thus, it is possible to alter a
translator without drastic modifications to other translators. The
classes are used more for their information hiding properties than
for inheritance. Figure 6.1 shows the top few layers in the class
hierarchy.

Program

Graph

Collection

Node

Collection

Node Node

•••

Figure 6.1 - CODE 2.0 Class Hierarchy

A program consists of a set of graphs, a graph is a set of
collections, and so on.

The translation process uses the class hierarchy in a manner
that is roughly analogous to code improvers for traditional
languages like Fortran. The objective is to recognize and
produce special optimized code for special case programming
constructs. CODE 2.0’s implementation permits classes to be
defined for each special case. Optimized translation methods are
then bound to the new classes. The process of adding classes to
the hierarchy and defining new translation methods for them is
called translation refinement. It involves preparing a new class

and a new translation method and recompiling the CODE 2.0
system.

Of course, one needs to determine which special case
constructs should be given optimized translation methods. Our
experience with previous versions of CODE suggests that CODE
programming is quite idiomatic, at least within the scientific
problem domains we have studied chiefly. Hence, interesting
special constructs are easy to find. Many of the most important
are subgraphs (node collection classes). Figure 6.2 shows two
examples.

Sequences of nodes for which pipeline parallelism is
impossible or undesirable should be translated into a sequence

Sequence translates to
Call A(...); Call B(...);

Translate using barrier
constructs.

A

B

• • •

Figure 6.2 - Special Node Collections

of calls to their sequential computations. No intertask
communication should be done. The common pattern of splitting
data, computing, and joining can often be implemented with
tailor-made barrier primitives.

Other special cases are more local in nature since they
involve only a single node or arc. Some examples are listed
below.

• Nodes with special firing rules-- especially pure dataflow rules
in which values on all input arcs are needed for firing.

• Situations such as program SGRID in which values need not
be copied on shared memory machines when passed from node
to node.

• Situations in which no more than one value may appear on an
arc so that buffering is not needed.

The buffering optimization is partially implemented in the
prototype. We can examine its effect on the simple graph
fragment shown in figure 6.3. Actual Ada code is given in
Appendix A. A single arc is bound to port X of a single node.
The node is enabled when there is a value on the arc.

X .

Figure 6.3 - A Simple Graph Fragment

If the buffering optimization is not applied, the CODE 2.0
prototype produces the Ada code shown by the pseudocode in
figure 6.4. There is an Ada task associated with the node and the
incoming arc. This task must do a rendezvous to accept an
incoming value on

7

Node Task:

select
 accept X do
 enqueue value;
 end;
 check input rules;
or when rule is true =>
 accept StartComp;
or accept EndComp;
 *
 *
end;

StartComp;
Call SeqComp;
EndComp;

Compute Task:

Figure 6.4 - Unoptimized Ada Pseudocode for Fragment

the arc. It must then locally enqueue the value, and accept two
rendezvous from a second task that performs the sequential
computation. In total, the following resources are required.

• Two tasks.
• Node internal queueing.
• Three rendezvous.

However, if the system can assume that no more than one
value will reside on the arc, much better code can be generated.
This case is quite common because it is caused by loop
recurrences. Figure 6.5 shows the Ada code that is produced.

Node Task:
select
 accept X
 Call SeqComp;
 *
 *
end;

Figure 6.5 - Optimized Ada Pseudocode for Fragment

Now, we use one task instead of two, have no internal queuing,
and do one rendezvous instead of three. Since we have found
that the rendezvous count is the most significant overhead on our
system, this simple optimization has cut the node’s overhead by a
factor of three. Measurements showing the effectiveness of this
are presented in the next section.

In general, experiment and measurement as well as our
intuition will be used to identify candidates for optimization.
CODE 2.0 translators will be able to insert instrumentation into
the code they produce in order to measure its performance and
find bottlenecks. It is expected that this instrumentation applied
to a benchmark suite of programs will supply valuable insights.

7. EXAMPLES AND PERFORMANCE RESULTS

The process of finding optimizations begins with measuring
and modeling (or in some way understanding the performance) of
benchmark programs and evaluating the performance of the
executable structures that CODE 2.0 generates. In order to do
this, we develop three versions of each algorithm under study.

1. A sequential program (using a straightforward but high
quality algorithm).

2. A hand-coded parallel program tailored to the target
architecture.

3. A CODE 2.0 program.

Using these three programs, we can compute speedups
relative to the sequential program and compare the CODE 2.0
program with a hand-coded parallel program. This latter
comparison yields the overhead of the CODE 2.0 abstractions.
We have performed such experiments on several small programs
using the CODE 2.0 prototype. The results are distinctly
encouraging, although it must be admitted that the benchmark
problems are simple and that Ada is a reasonably easy target due
to the high execution time cost of the rendezvous primitive. One
noteworthy result of the prototype is that it produces code that is
at least as efficient as that produced by earlier versions of CODE
despite a much more dynamic model. The production version of
CODE 2.0 will be C oriented, will utilize many more
optimizations, and will be used for larger experiments.

7.1 SGRID (LAPLACE PROGRAM)

Performance results have been obtained for the Laplace grid
example described in section 4.1. Since the CODE 2.0 prototype
produces Ada, both the sequential grid program and the hand-
coded parallel version were also written in Ada. All programs
were run on a Sequent Symmetry shared memory MIMD
machine and timed with the UNIX “time” facility. The grid size
is 100 x 100. Initial results for NProcs = 7 showed that the hand-
coded parallel version has a speed up of 5.2 as compared with
4.5 for CODE 2.0, a 16% difference. Measurement indicated
that rendezvous on the Symmetry are quite expensive and that
performance could be dramatically improved by reducing the
rendezvous count. Applying the buffering optimization
accomplishes this, so translation methods for it were
implemented. The optimized CODE 2.0 program ran with a
speed up of 5.1, a 2% percent difference. Speed ups for the three
programs are shown in figure 7.1.

86420
0

2

4

6

8

Hand Coded
CODE Opt
CODE Unopt

Ideal

Grid example speedups
relative to sequential
program

Value of NProc

Sp
ee

du
p

(f
ro

m
 ti

m
e)

Figure 7.1 - Grid Program Performance

Remaining performance bottlenecks for both the hand-coded and
CODE versions include the high cost of the rendezvous operation
and some I/O done by our particular Ada implementation at

8

program termination time. If this latter factor is discounted, 7
processor speedups are

Hand-Coded: 5.8
CODE 2.0 Optimized: 5.60
CODE 2.0 Unoptimized: 4.9

7.2 BLOCK TRIANGULAR SOLVER

This section contains an example program that solves the
Ax = b linear algebra problem for a known lower triangular
matrix A and vector b. The parallel algorithm is quite simple
and is due to Jack Dongarra and Danny Sorenson. It involves
dividing the matrix into blocks as shown in figure 7.2. The
inputs to the algorithm are A, b, the size of the system, and the
size of the block system used to partition it. In figure 7.2, the S’s
represent lower triangular submatrices that are solved
sequentially, and the M’s represent submatrices that must be
multiplied by a vector. The arcs represent the dependences
between these operations. Let the block system be of size sb x sb
and note that the vector multiplications for all M’s within a
column may be done in parallel. This parallelism yields an ideal
speedup of sb/3, for large values of sb.

S1

S2

S3

M11

M12 M22

• Lower triangular matrix partitioned into a
 3 x 3 block system.
• S's are small lower triangular systems that are
 solved sequentially.
• M's are blocks that must be multiplied by a
 vector.
• Arrows show flow of the CODE 2.0 program.
 Note that M11 and M22 multiplications may be
 performed in parallel.

Figure 7.2 - Parallel Block Triangular Solver

The CODE 2.0 program for this example consists of three
graphs, the main graph, a graph that defines A and b, and a graph
that solves the system. We will concentrate solely on the latter.
A, b, and x are passed to the graph as creation parameters. (It
would be better to use a name sharing relation, at least for A, but
they are not implemented in the CODE 2.0 prototype.) Figure
7.3 shows the graph.

Figure 7.3 - Block Triangular Solver Graph

In this graph, a single instance of node solve performs all of the S
operations, one after another, and sb - 1 instances of node
blkmult perform the M’s. Hence, the arc control implies an
iteration. First S1 is done and then M1,j for j = 1..sb-1. Then S2
is done followed by M1,j for j = 2..sb-1, and so on. Since the
block system size is an input to the program, the number of
blkmult nodes to create is not determined until runtime. In
addition, sb determines the number of times each node fires so
this is also not known until runtime.

Figure 7.4 shows the ideal speedup and the speedups of the
CODE 2.0 and hand-coded parallel program for a matrix of size
420 x 420.

86420
0

1

2

3

Hand Coded

CODE Opt

Ideal

Block Triangular Solver
Matrix Size 420 x 420
Time less I/O

Block System Size

Sp
ee

du
p

Fr
om

 C
al

en
da

r

Figure 7.4 - Block Solver Speedups

The CODE 2.0 program is actually faster than the hand-coded
program which was done by a graduate student (unrelated to the
CODE 2.0 project) at the University of Texas at Austin. Timings
used to compute these speedups include only the solving of the
system, not I/O. (Due to the slow speed of naive I/O in Ada on
our system, this problem is I/O bound.) The programs were run
on a Sequent Symmetry.

The relatively slow speed of the hand parallelized program
may be surprising. Of course, it is the case that this program is
not optimally written, at least not as far as performance is
concerned. It is a subjective point, but the hand written program

9

is elegant and stylistically natural given the Ada model. Perhaps
abstract parallel programming can sometimes produce faster code
than low-level parallel programming just as sequential programs
written in high-level languages sometimes run faster than
assembly language programs-- because they are better structured
at a high level.

8. CODE PROJECT HISTORY

The CODE project has been underway at the University of
Texas at Austin for several years, and CODE 2.0 is based on
lessons learned from much previous work-- in particular the
CODE 1.2 system [WER90]. The fundamental intellectual basis
of CODE 2.0, the use of a declarative graph-based abstract model
of computation, is directly inherited from previous CODE
systems as is the concept of graphical component reuse [LEE89].

However, CODE 2.0 expands on previous CODE systems in
many ways. It’s model has been completely rethought to place
greater emphasis on runtime determined structures, program
modularity, and a wide set of data types. This significantly
expands the class of algorithms that can be effectively and
efficiently expressed under the CODE model. In addition,
CODE 2.0 has been implemented from scratch using more
modern tools such as the GUIDE user interface toolkit. Also, the
CODE 2.0 project places greater emphasis on execution
efficiency. Key features of the new CODE 2.0 model include the
following.

• Runtime determination of structure via template instant-iation.
• User supplied Input and Output rules.
• Hierarchical structuring via Call nodes and runtime instant-

iated graphs.
• Clean name scoping and improved type system.

9. RELATED PROJECTS

There are several other graphical parallel programming
systems in various stages of development. Each of these systems
tends to have its own particular strengths and goals. We mention
a few that are relatively closely related to CODE 2.0. CODE
2.0’s particular strengths include a powerful node firing
condition syntax, support for graphs with runtime determined
structure, and a framework for the creation of optimized parallel
code generators.

One of the more interesting and current systems is HeNCE
[BEG91a]. This system permits programs represented as graphs
to be run intelligently on a heterogeneous network of computers
using the PVM system [SUN90]. HeNCE has an integrated tool
for tracing and analyzing a program’s execution. However,
CODE 2.0’s node firing conditions are more flexible and it is
able to realize more complex graphs with runtime determined
structure-- arbitrary cyclic and recursive graphs with fixed node
types. In addition, CODE 2.0 supports hierarchical structuring
by means of the graph Call node.

Phred [BEG91b] is related to HeNCE but stresses
determinacy and makes use of separate control and dataflow
graphs to define a computation. The Paralex system [BAB92] is
less expressive than CODE 2.0 or HeNCE but stresses fault
tolerance and dynamic load balancing. The PPSE system
[LEW90] places emphasis on providing full lifecycle support for
parallel program development. Its definition includes tools for

parallelizing sequential Fortran programs, graph editing, program
scheduling, code generation, performance analysis, and
debugging. The GILT system by Roberts and Samwell of City
University, London, U.K. is oriented towards Occam
programming, and GRAPE [LAU90] has a digital signal
processing orientation (while still useful for general purpose
programming) and is the target of a debugger effort. The
ParaGraph system [BAI91] uses graph grammars to specify
graphs that have runtime determined structure. The emphasis is
on massively parallel systems.

 In addition, W. Mayne [MAY92] is exploring a system with a
more expressive mechanism for describing node firing conditions
than that used by CODE 2.0. This system permits guard
priorities, for example. The system is also designed to facilitate
proofs of determinacy. There is no implementation at this time.

10. CONCLUSIONS AND FUTURE WORK

The CODE 2.0 parallel programming system has three
goals: ease of use, portability, and production of efficient
executable structures. A number of technologies are exploited in
order to achieve these goals. A graphical/textual user interface
with hypertext online help and integrated support for program
component reuse promote ease of use. Portability is approached
by means of an abstract model of parallel computation that
cleanly isolates program communication and synchronization
structure from primitive sequential computations. In addition,
the high level of abstraction is appropriate to the programming
process and, hence, supports ease of use.

Execution efficiency is approached through a hierarchical
object-based model representation basis that supports the concept
of translation refinement. Ubiquitous special case programming
structures with significant performance implications may be
singled out and given custom translation methods. An
experimental approach is used to identify such special cases.
The use of object semantics and translation method inheritance
assists in the software engineering of modules that translate
instances in the abstract model into executable structures.

A Prototype of CODE 2.0 is running and has produced
encouraging results for a relatively easy (from a performance
point of view) target architecture, Ada on a shared memory
MIMD machine. Future plans include the creation of a
production version of CODE 2.0 that will support multiple
MIMD shared and partitioned memory target architectures. In
addition the ROPE graph reusability system will be coupled with
CODE 2.0. It is expected that the flexibility of the CODE 2.0
model will promote graph reuse.

APPENDIX A - ADA CODE FOR EXAMPLE

--- Ada Code without the buffer optimzation

 task body MAIN2 is -- UC
 *
 *
 *
 procedure CHECKFIRERULES is
 YYEMPTY : BOOLEAN;
 begin
 RULETRUE := FALSE;
 YYEMPTY := TRUE;

10

 if not (X_ILIST.SAT(
 NM(0, 0, 0, 0, 0, 0, 0, 0))) then

goto BEGRULE9;
 end if;
 YYEMPTY := FALSE;
 if YYEMPTY then

goto BEGRULE9;
 end if;
 RULETRUE := TRUE;
 VARSLOCKED := TRUE;
 V := X_ILIST.VAL(
 NM(0, 0, 0, 0, 0, 0, 0, 0));
 return;

 <<BEGRULE9>>
 null;
 return;
 end CHECKFIRERULES;

 -- NOTE: This is a Task
 task body COMPUTE is
 *
 *
 *
 begin
 accept INIT; -- Sync non-
locals
 loop

MYADDR.STARTFIRE(KILLED); -- Extra
Rend.

exit when KILLED;
null;
MAININST.KILL;
MYADDR.ENDFIRE; -- Extra Rend.

 end loop;
 end COMPUTE;

 begin
 accept INIT(THEINDS : in SNAME;

THEADDR : in MAIN2_PTR;
THESERVADDR : in GENERIC_PTR)

do
 NODE := THEINDS;
 MYADDR := THEADDR;
 MYADDRSERVER := THESERVADDR;
 end INIT;
 loop
 if not VARSLOCKED then

CHECKFIRERULES;
 end if;
 select

terminate;
 or

accept KILL;
KILLED := TRUE; -- tell it to

compute
 or

when RULETRUE or KILLED =>
 accept STARTFIRE(KVAL : out

BOOLEAN)
 do

 KVAL := KILLED;
 end STARTFIRE;

 or
accept ENDFIRE;
VARSLOCKED := FALSE;

 or
accept CREPARAMS do
 null;
end CREPARAMS;
null;
COMPUTE.INIT;
VARSLOCKED := FALSE;

 or
accept X(VAL : in INTEGER;

 THENAME : in SNAME) do
 X_ILIST.INSERT(THENAME, VAL);
end X;

 end select;
 end loop;
 end MAIN2;

 -- Ada Code with the buffer optimization

 task body MAIN2 is -- UC
 *
 *
 *
 procedure CHECKFIRERULES is
 YYEMPTY : BOOLEAN;
 begin
 RULETRUE := FALSE;
 YYEMPTY := TRUE;
 if not (X_ILIST.SAT(
 NM(0, 0, 0, 0, 0, 0, 0, 0))) then

goto BEGRULE0;
 end if;
 YYEMPTY := FALSE;
 if YYEMPTY then

goto BEGRULE0;
 end if;
 RULETRUE := TRUE;
 VARSLOCKED := TRUE;
 V := X_ILIST.VAL(
 NM(0, 0, 0, 0, 0, 0, 0,
0));
 return;

 <<BEGRULE0>>
 null;
 return;
 end CHECKFIRERULES;

 -- NOTE: This is not a task.
 procedure COMPUTE is
 *
 *
 *
 begin
 null;
 MAININST.KILL;
 return;
 end COMPUTE;

 begin
 accept INIT(THEINDS : in SNAME;

THEADDR : in MAIN2_PTR;
THESERVADDR : in GENERIC_PTR)

do
 NODE := THEINDS;
 MYADDR := THEADDR;
 MYADDRSERVER := THESERVADDR;

11

 end INIT;
 loop
 if not VARSLOCKED then

CHECKFIRERULES;
 end if;
 if VARSLOCKED and RULETRUE then

COMPUTE;
VARSLOCKED := FALSE;

 end if;
 select

terminate;
 or

accept KILL;
KILLED := TRUE; -- tell it to

compute
 or

accept CREPARAMS do
 null;
end CREPARAMS;
null;

 VARSLOCKED := FALSE;
 or

accept X(VAL : in INTEGER;
 THENAME : in SNAME) do

 X_ILIST.INSERT(THENAME, VAL);
end X;

 end select;
 end loop;
 end MAIN2;

REFERENCES

[BAB92] Ö. Babaoglu, Paralex: An Environment for Parallel
Programming in Distributed Systems, to appear in
Proc. ACM Int. Conf. on Supercomputing, July,
1992.

[BAI91] D.A. Bailey, et al., ParaGraph: Graph Editor
Support for Parallel Programming Environments,
International Journal of Parallel Programming, Apr.,
1991.

[BEG91a] A. Beguelin, et al., Graphical Development Tools
for Network-Based Concurremt Supercomputing,
Proc. Supercomputing ‘91, Albuquerque, NM, pp.
435-444, 1991.

[BEG91b] A. Beguelin and G. Nutt, Collected Papers on
Phred, Dept. of Computer Science, Univ. of
Colorado, CU-CS-511-91, Jan., 1991.

[BRO85] J.C. Browne, Formulation and Programming of
Parallel Computers: a Unified Approach, Proc.
Intl. Conf. Par. Proc., 1985, pp. 624-631.

[BRO89] J.C. Browne, M. Azam, and S. Sobek, CODE: A
Unified Approach to Parallel Programming, IEEE
Software, July, 1989, p. 11.

[BRO90] J.C. Browne, J. Werth, and T.J. Lee, Experimental
Evaluation of a Reusability Oriented Parallel
Programming Environment, IEEE Trans. Soft.
Engin., Vol. 16, No. 2, 1990.

[EIG91] R. Eigenmann, and W. Blume, An Effectiveness
Study of Parallelizing Compiler Techniques, Proc.
Intl. Conf. Par. Proc., 1991, pp. II 17-25.

[HIR91] S. Hiranandani, K. Kennedy, and C.-W. Tseng,
Compiler Support for Machine-Independent Parallel
Programming in Fortran D, Rice University, CRPC-
TR91132, 1991.

[JAI91] R. Jain, J. Werth, and J.C. Browne, An Experimental
Study of the Effectiveness of High Level Parallel
Programming, Proc. 5th SIAM Conf. Par.
Processing, 1991.

[LAU90] R. Lauwereins, et al., GRAPE: A CASE Tool for
Digitial Signal Parallel Processing, IEEE ASSP
Magazine, Apr. 1990.

[LEE89] T.J. Lee, Software Reuse in Parallel Programming
Environments, PhD thesis, University of Texas at
Austin, Dept. of Comp. Sci., 1989.

[LEW90] T.G. Lewis and W. Rudd, Architecture of the
Parallel Programming Support Environment, Proc.
CompCon’90, San Francisco, CA, Feb. 26 - Mar. 2,
1990.

[LUS87] E. Lusk, R. Overbeek, et al., Portable Programs for
Parallel Processors, Holt, Rinehart, and Winston,
New York, 1987.

[MAY92] W. Mayne, Florida State University, personal
communication, Apr. 1992.

[NEW91] P. Newton, CODE 2.0 Prototype, unpublished
internal documentation, University of Texas at
Austin, July 16, 1991.

[SOB90] S. Sobek, A Constructive Unified Model of Parallel
Computation, PhD thesis, University of Texas at
Austin, Dept. of Comp. Sci., 1990.

[SUN91] V.S. Sunderam, PVM: A Framework for Parallel
Distributed Computing, Concurrency: Practice and
Experience, 2(4):315-339, Dec., 1990.

[WER90] J. Werth, et al., CODE 1.2 User Manual and
Tutorials, Tech. Report TR-90-35, Univ. of Texas
at Austin, Dept. of Comp. Sci., Nov., 1990.

[WER91] J. Werth, et al., The Interaction of the Formal and
Practical in Parallel Programming Environment
Development: CODE, Tech. Report TR-91-09, Univ.
of Texas at Austin, Dept. of Comp. Sci., 1991.

